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Abstract 

In the last decades, the aims of research in community ecology have been shifting from the 
mere description of observed patterns towards a mechanistic perspective that seeks to 
understand the processes shaping observed species communities. Simultaneously, the 
technical advances in data collection techniques dramatically raised the amount and quality of 
ecological data annually obtained and provided opportunities to address more comprehensive 
research questions. The combination of these novel aims and data increased the interest in the 
statistical ecology, seeking analytical methods capable to harness the full potential of the 
emerging data. A special interest has been focused on the development of approaches capable 
to combine multiple types of existing data and jointly model the dynamics and distributions 
of entire species communities or ecosystems. 

This doctoral thesis contributes to the ongoing methodological development of analytical tools 
for the joint species modeling. In the presented research I combine both perspectives of the 
statistical ecology: the ecologist’s practical point of view and the statistician’s 
methodological/theoretical vision. The thesis consists of four Chapters that are arranged to 
form a coherent narrative. I start with a synthesis of the recent advances in joint species 
modeling and propose a unifying statistical framework that enables scientists to easily address 
many common questions in community ecology simultaneously. This framework, called 
Hierarchical Model of Species Communities (HMSC), is capable to incorporate information 
on species occurrences, environmental covariates, species traits and phylogenic relationships, 
as well as the structure of study design. Next, I devise and present two important extensions 
to this framework. The first extension enables HMSC to neatly assess the variation in species 
associations and relate it to environmental factors. My second extension aims to achieve better 
numerical properties for the HMSC-based analysis of numerous spatial observations. I carry 
out a set of simulated data experiments to assess the performances of the proposed extensions 
in comparison to existing methods. To demonstrate how the proposed methods can be used in 
practice, I accompany these methodological developments with real-data examples and 
additionally present one detailed applied ecological study. 

My results demonstrate that the unifying HMSC framework can be robustly used to address a 
wide set of fundamental and applied ecological questions for various natural systems and 
contexts. Conducted simulation experiments verify that the proposed extensions considerably 
expand the framework’s potential. The developed software implementation of the HMSC and 
detailed user manual provide a practical guidance for ecologists on how to apply this 
framework for analysis of their own data on species communities. 

Although this thesis is a completed research item, it should be seen as a solid foundation for 
further developments in the field of joint species modeling. Some of these potential 
developments are related to how more comprehensive ecological questions could be answered 
with statistical models, while other correspond to the numerical challenges posed by emerging 
types and amounts of ecological data. I believe that advances and results of my study will 
enable future research to tackle these challenges and that the joint species modeling framework 
will become generally applicable and insightful for a wide array of real-world problems. 
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Introduction 

Theoretical foundations of community ecology 
Ecology has been described as the branch of biology that studies organisms and their 
interactions with surrounding environment and between each other, seeking the scientific 
understanding of factors determining their distributions (Smith 1966, Begon et al. 1996). This 
understanding can hardly be achieved by studying species separately one by one, since their 
abundances and distributions depend not only on their individual responses to the abiotic 
environment, but also on their interactions (Wisz et al. 2013). Consequently, the branch of 
community ecology studies the interactions between different species and aims to gain an 
integrative understanding of how biotic and abiotic factors shape observed local species pools 
at different spatiotemporal scales. 

Community ecology began as a descriptive science in which communities were classified 
based on the identities and sizes of local species pools (Clements 1936). Modern community 
ecology is shifting beyond the mere description of observed patterns towards a mechanistic 
perspective, which seeks to understand the processes determining the identities and 
abundances of the species at different scales (Agrawal et al. 2007, Logue et al. 2011, 
Ovaskainen et al. 2016b). During the last few decades, experimental ecologists have used 
observations and experiments to assess the relative influences of stochasticity, competition 
and niche differentiation (Logue et al. 2011, Weiher et al. 2011), theoretical ecologists have 
developed models for predicting community dynamics (Pickett and McDonnell 1989, Bolker 
et al. 2003, Holyoak et al. 2005), and statistical ecologists have developed metrics for 
assessing compositional changes among local communities (Legendre and Legendre 1998). 
While a general theory to explain how communities are assembled across space and time is 
still lacking, community ecologists have converged towards a synthesis acknowledging that 
local species communities are shaped though both stochastic and deterministic processes, 
henceforth called assembly processes (Gravel et al. 2006, Leibold and McPeek 2006, 
Gotzenberger et al. 2012). These encompass abiotic or environmental filtering, biotic filtering, 
as well as neutral and contiguous processes such as speciation or dispersal (Vellend 2010). 

Environmental filtering 
Environmental filters correspond to those abiotic factors, such as temperature, moisture and 
soil nutrients, which enable or prevent the establishment or persistence of species in local 
communities, and thus outline the fundamental niche of a species (Kraft et al. 2014). One of 
the most intuitive and illustrative examples of environmental filtering effects comes from plant 
communities, for example the very distinctive and pronounced turnover of vegetation along 
the elevation gradient of a mountain slope. Although the scope of applicability of this term is 
currently debated by community ecologists, since in practice essentially no living being could 
be found influenced by abiotic environment only (Cadotte and Tucker 2017), historically, the 
idea of establishing the link between species distributions and abiotic factors was among the 
very foundations of ecological research (von Liebig and Playfair 1847). 
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Biotic filtering 
Biotic filtering refers to interspecific and intraspecific interactions that determine the set of 
species in local communities, and thus define their realized niches (Wisz et al. 2013, Garnier 
et al. 2016). These interactions vary greatly in their outcomes for involved organisms and 
species, with at least the following categories being recognized: mutualism, commensalism, 
parasitism, neutralism, amensalism, competition, predation and pollination (Begon et al. 
1996). 

Nowadays, ecological theory proposes that different types of filtering processes may interact 
– the abiotic factors may modify the biotic interactions (Callaway and Walker 1997, 
Tylianakis et al. 2008). For instance, when resources become scarce, competition among 
species might be intensified (Goldberg and Barton 1992), whereas under abiotically stressful 
environmental conditions, facilitation might become particularly important (Brooker 2006, 
Maestre et al. 2009, He et al. 2013). Changes in the outcomes of interspecific interactions in 
relation to changing environmental conditions have been empirically found for a wide array 
of taxonomical groups (Erland and Finlay 1992, Brooker 2006, MacDougall et al. 2018). 

Neutral and stochastic processes 
Beyond the deterministic processes that drive the selection of realized species subsets, when 
zooming-in from regional to local species pools, stochastic processes create additional 
variation in the local communities. These processes – generally related to colonization, 
extinction, ecological drift, and environmental stochasticity – generate divergence among 
communities occupying identical environments (Chase and Myers 2011). For example, a long-
term-stable population of a species in certain area could persist even despite of the location’s 
characteristics being outside the fundamental niche, ‘fueled’ by an ongoing migration flow of 
individuals to this location. Another example would be the anthropogenic ecological barriers, 
such as highways, that for some species prevent the flow of individuals between the 
neighboring separated areas, which in turn could lead to very different ecological dynamics in 
these areas. 

Statistical analysis of species communities 
While faced with a variety of data types, community ecologists have so far been armed with 
rather disparate statistical tools for connecting them with theories on community assembly. In 
particular, we lack statistical frameworks that would enable us to robustly infer actual 
assembly processes from community samples (Logue et al. 2011), especially in observational 
studies. This leads to conceptual gap between predictions of theoretical models and available 
empirical data. Up to date, the most popular tools used to study community structure are 
distance-based ordinations (Braak and Oct 1986, Legendre and Legendre 1998) and diversity 
measures (Magurran 2004). While such approaches provide insights into patterns of diversity 
and community composition at different spatiotemporal scales (Legendre and Gauthier 2014), 
they offer little quantitative insight into the relative contributions of different assembly 
processes. To overcome these limitations, community ecologists are showing increasing 
interest in model-based approaches (Warton et al. 2015b). 
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Species distribution models 
Species distribution models (SDM) have been widely used to explain and predict how different 
taxa respond to environmental variation (Guisan and Thuiller 2005). Most of generic 
regression or classification analytical tools have found their applications in species 
distribution modeling, ranging from simplest linear regression models to state-of-the-art 
artificial neural networks, boosted regression trees and non-parametric statistical methods, as 
well as ensembles of those (Elith and Leathwick 2009, Golding and Purse 2016). Inspired by 
this success, there is a growing interest in extending SDMs to community-level models 
(Guisan and Rahbek 2011). The most straightforward way for predicting community-level 
properties is to combine predictions of single-species models into ‘stacked’ species 
distribution models (SSDM), possibly with some post-hoc correction applied (Guisan and 
Rahbek 2011, Calabrese et al. 2014). 

Ordination methods 
Community ecologists have traditionally inferred the presence and strength of interspecific 
interactions from observational species occurrence data by examining species’ co-occurrence 
patterns. Statistical methods for assessing species’ co-occurrences include distance-based 
ordination approaches (Legendre and Legendre 1998), pairwise co-occurrence approaches 
(Veech 2014), metrics measuring species’ aggregation and segregation patterns (Stone and 
Roberts 1990), and null model approaches (Gotelli 2000). A caveat with these methods is that 
they confound co-occurrence patterns generated by ecological interactions with those 
generated by co-variation in the species responses to abiotic variation, although more recent 
developments enable to examine whether the co-occurrences depend on environmental 
covariates (Williams et al. 2014). However, this approach does not necessarily clarify whether 
the environmental covariates influence the occurrences or co-occurrences of the species. 

Joint species modeling 
Another approach to community data analysis is the use of recently emerged joint species 
distribution models (JSDM), which explicitly acknowledge the multivariate nature of species 
assemblages, allowing one to gather more mechanistic and predictive insights into assembly 
processes (Warton et al. 2015a). JSDMs consider as the response variable the vector of 
occurrences or abundances of all species, and thus provide a model-based approach for 
inferring simultaneously species associations as well as species relationships to the abiotic 
environment (Ovaskainen and Soininen 2011, Pollock et al. 2012, Clark et al. 2014, Pollock 
et al. 2014, Ovaskainen et al. 2016a).  

As JSDMs allow to control for the effects of measured environmental covariates on single 
species distributions, their estimates of species associations are more representative of true 
interactions than raw co-occurrence indices, especially if such inference on interactions is 
derived from partial correlations or from time-series data (Ives et al. 2003, Ovaskainen et al. 
2016a, Thorson et al. 2016, Ovaskainen et al. 2017). Recently, community ecologists have 
adopted the Granger predictive causality principles and several studies exploited the vector 
autoregressive models for analysis of longitudinal observations of species communities, 
aiming to understand the community dynamics (Ovaskainen et al. 2017, Thorson et al. 2017). 
However, the potential of existing confounding factors makes the non-manipulative data on 
species occurrence insufficient for a conclusive causal inference on ecological interactions, 
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and therefore, species associations estimated by JSDMs should be treated with caution for 
claims regarding species interactions and preferably serve only as informed hypotheses, the 
validity of which should be verified in controlled experiments (Ovaskainen et al. 2010). 

In the early phase of the JSDM development, these approaches suffered from the curse of 
dimensionality, limiting the estimation of species association matrices to only few tens of 
species (Latimer et al. 2009, Ovaskainen et al. 2010). Thanks to recently introduced statistical 
techniques based on latent factor modeling, e.g. Bhattacharya and Dunson (2011), current 
JSDMs are able to estimate species association matrices for hundreds of species, including 
study designs with multiple hierarchical levels (Ovaskainen et al. 2016a). Other recent method 
developments have made it possible to apply JSDMs to various types of ecological data, 
including presence-absence, counts and biomass (Hui 2016, Clark et al. 2017, Hui et al. 2017, 
Niku et al. 2017). Several studies have developed approaches to incorporate study designs of 
spatial, temporal or spatio-temporal nature (Sebastián-González et al. 2010, Thorson et al. 
2015a, Ovaskainen et al. 2016c, Thorson et al. 2016). Increasing predictive performance of 
JSDMs by introducing potential non-linearity of included covariates’ effects has been just one 
more topic of active research in last years (Harris 2015, Chen et al. 2016, Vanhatalo et al. 
2018).  

Conceptually or from non-statistician’s point of view, JSDMs could be seen as a single-shot 
equivalent of consecutively applying SSDMs and additional post-hoc analysis of the resulted 
niches or residuals. For example, SSDM could be used to assess how species traits affect the 
structure of the community with respect to environmental covariates – first the SDMs are fitted 
separately and then the SDMs’ parameters (e.g. linear regression coefficients in GLM) used 
as outcome variables in a second regression, which seeks to link the estimated niches to 
species traits. However, the joint probabilistic formulation of JSDMs allows to propagate the 
probabilistic uncertainty through all model components in a fairer way than could be achieved 
with analogous sequential analysis.  
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Research aims 

In this doctoral thesis I make methodological contributions to the actively developing field of 
JSDM with the ambition to increase flexibility, robustness, computational efficiency, and 
practical usability of these models. My research is designed to provide practical resolve for 
existing challenges in modern community ecology, and my aims are split into two major 
categories: 1) development of novel statistical models and associated model fitting algorithms, 
and 2) demonstration of their utility for answering challenging questions in community 
ecology. 

In Chapter Ⅰ, my co-authors and I synthesize the results of several methodological 
enhancements for modeling species distributions jointly, which were introduced separately in 
recent years, and unite them within a single Bayesian statistical modeling framework. This 
statistical framework, named Hierarchical Model of Species Communities (HMSC) for its 
heavy dependence on hierarchical modeling techniques, provides a modular tool for statistical 
model-based analysis that is capable to incorporate and utilize multiple types of data common 
for community ecology: abundance/occurrences of species, quantified environmental factors, 
structure of sampling design, as well as species traits, attributes and phylogenic relationships. 
I present a full specification of the model structure alongside with a tailored block-Gibbs 
sampling scheme for efficient model fitting and its numerical implementation in Matlab and 
R. Together with co-authors, I exemplify how this generic model could be used to answer 
multiple ecological research questions by reproducing the analysis of three scientific research 
papers, which all focus on studying species communities, but differ greatly in ecological 
context, research questions and aims. I follow up with a more comprehensive and detailed 
example of a HMSC application in Chapter Ⅱ, where my research is focused on studying the 
variation patterns of gut microbial communities in well-studied metapopulation of Glanville 
fritillary butterfly (Melitaea cinxia) in Åland Islands, Finland. This application poses a special 
interest for the development of JSDMs, as it deals with an extremely high number of taxa, 
which were sampled with high-throughput sequencing techniques that are becoming 
increasingly available and popular for obtaining community data on micro-organisms. 
Additionally, this study displays how the JSDM-based approach, originally designed for 
studies of macro-organism communities, can be successfully utilized in the analysis of micro-
organisms, in which area statistical methods have been historically developing separately from 
those of macro-organisms. 

Chapter Ⅲ and Chapter Ⅳ introduce major augmentations to the baseline HMSC model, 
motivated by conceptual, methodological and numerical challenges actual for modern 
community ecology analysis. In Chapter Ⅲ, I tackle the potential variation of species 
interactions and associations with respect to the environmental factors and propose an 
appropriate modification to HMSC model structure that enables a model-based approach to 
assess such variation. I demonstrate the technical validity and ecological relevance of this 
extension by comparing its performance to previously-published methods for both simulated 
data and a case study of arctic plant communities. In Chapter Ⅳ, I address the practical 
computational challenges of applying JSDMs in analyzing many (e.g. tens of thousands) 
spatially-structured observations. I investigate two techniques from recent spatial statistics 
methodological advances that were demonstrated to efficiently deal with modeling numerous 



13 

spatial observations, namely Gaussian predictive process (GPP) and Nearest Neighbor 
Gaussian process (NNGP). I devise modifications to incorporate them to HMSC structure and 
model fitting algorithm to appropriately harness their computational benefits. I study the 
properties of these solutions in terms of their computational burden and predictive 
performance, also comparing them to currently available approaches, and highlight the 
differences between them in context of modeling ecological communities. The relevance of 
the method is demonstrated by applying it to a large database on Australian plant communities. 
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Materials and methods 

Typical data in community ecology include observations on the occurrence of species in a set 
of temporal and/or spatial replicates, henceforth called occurrence data and referred to as the 
Y matrix (Figure 1). Depending on the study/experimental design, research objectives and the 
subject organisms, the occurrence of the species can be recorded in various ways, and the 
occurrence matrix may thus describe e.g. presences-absences of species, species counts, 
percentage covered by each species or estimates of their biomass. The occurrence data are 
usually accompanied by environmental data consisting of a set of measured covariates that the 
ecologist hypothesized to be important in explaining community composition (X matrix, 
Figure 1). Beyond the effects of these environmental covariates, the spatiotemporal context 
may generate a structure to the data. In studies where the data have been collected in a 
hierarchical way (e.g. plots within sites), I call the finest scale (a single row of the data matrices 
X and Y) the ‘sampling unit’. In studies treating space and/or time as continuous, the study 
design may be described by spatial or temporal coordinates. To relate community-level 
responses to environmental variation to response traits, one may wish to include data on 
species-specific traits (T matrix, Figure 1). These data may range from morphological traits 
such as body size, or physiological traits such as tolerance to salinity, to functional traits such 
as feeding type, or to the actual position of the species within the surrounding food web. Apart 
of trait data, an ecologist may also have information on phylogenic relationships (C matrix, 
Figure 1). The availability of phylogenetic data is rapidly increasing, allowing the construction 
of quantitative matrices of phylogenetic correlations for many organism groups. Where 
quantitative phylogenies are lacking, data on taxonomic identity (at the level of genus, family, 
order, class, phylum...) can be used as a proxy of phylogenetic relatedness. 

Chapters Ⅰ, Ⅲ and Ⅳ of this thesis are primarily focused on methodological development of 
statistical modeling for analyzing data on species communities, and these chapters introduces 
new model structures and associated Bayesian model fitting algorithms.  

Structure and formulation of Hierarchical Model of Species Communities 
The statistical HMSC framework is illustrated graphically in Figure 2, and it is described in 
more detail below. I start by modeling the occurrence (e.g. presence–absence, count or 
biomass) of each species (denoted as , where ) in each sampling unit (denoted as 
, where ), i.e. the data summarized by occurrence matrix  in Figure 1. For this, 

use a latent variable model, which technique is well-known to ecologists from generalized 
linear modeling (GLM) framework: 
  (1) 

Here,  is a statistical distribution compatible with the particular type of measured data for 
observations in column  of matrix ,  is the latent variable, which corresponds to the 
location parameter of the distribution , and  is the variance parameter that is omitted for 
certain distributions, e.g. Bernoulli with probit link function. The latent variable  is 
modeled as a sum of fixed-  and random-  effects parts as . The fixed 
effects are modeled as a linear regression 
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 (2) 

where, the index  runs over a set of  covariates,  is the covariate  for sampling unit , 
and  is the response of species  to this covariate. The intercept is included by setting 

 for all sampling units , so that the number of included environmental covariates is . 
To allow the statistical framework to generate a community-level synthesis of how species 
respond to their environment, I assume that their responses to the environment (i.e. their 
regression parameters) adhere to a multivariate Gaussian distribution, 
  (3) 

I use the dot notation to single out a row or a column in a matrix, so that  denotes the 
column-vector of regression coefficients for species . As  describes how species  
responds to environmental covariates, it characterizes its environmental niche. The expected 
environmental niche of species is denoted by column-vector , and variation around this 
expectation is captured by the variance-covariance matrix  (Ovaskainen and Soininen 2011). 
The expected niche  can either be assumed to be the same for all species, or alternatively it 
can model the influence of species-specific traits on species’ responses. In the latter case, I 
assume another linear model  

 
Figure 1. Data typically collected in community ecology. The occurrence data (denoted as the  
matrix) includes the occurrences of the species recorded in a set of temporal and/or spatial sampling 
units. The environmental data (denoted as the  matrix) consists of the environmental covariates 
measured over the sampling units. The traits data (denoted as the  matrix) consists of a set of traits 
measured for the species present in the  matrix. To account for the phylogenetic dependencies 
among the species, we can include a fourth matrix consisting of the phylogenetic correlations among 
the species (denoted as the  matrix). The spatiotemporal context includes location and time 
information about the samples. 
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 (4) 

where  is the value of trait  for species  (matrix , Figure 1; with modeling the 
intercept) and the parameter  measures the effect of trait  on response to covariate  
(Abrego et al. 2016). The equations (3) and (4) can be also used to ask what percentage of 
variation in species’ environmental niches can be attributed to species’ traits.  

To account for phylogenetic relationships (summarized by matrix , Figure 1), I add the joint 
structure for the multivariate Gaussian distributions of  as  

  (5) 

where , and matrix  models the variation of responses among individual 
species around the trait-based expectation as 

  (6) 
where  denotes Kronecker’s product, and the parameter  determines the strength 
of phylogenetic relationships on species responses to the covariates. The model can be applied 
without trait data by including the intercept as the only species trait, and it can be applied 
without phylogenetic data by fixing . From equation (6) it follows that for  the 
residual variance is independent among the species, implying that closely related species do 
not have more similar environmental niches than do distantly related ones. When  
approaches , species’ residual environmental niches (after accounting for the influences 
of the measured traits) are fully aligned according to their phylogeny, with related species 
having more similar niches than expected by random, implying niche conservatism. 

Next, I turn to the random terms , which model the variation in species occurrences and co-
occurrences that cannot be attributed to the responses of the species to the measured 
covariates. If the study design consists of sampling units without any hierarchical, spatial or 
temporal structure,  will simply be , referring to a random effect  that operates at 
the level of the sampling unit. These random effects are modeled as 

  (7) 
where  is a residual species covariance matrix. Here, the word ‘residual’ refers to the fact 
that I have removed the influences of environmental covariates by the fixed effect part of the 
model. The diagonal element  describes the amount of random variation that species  
shows at the level of the sampling unit, whereas the off-diagonal element  describes the 
amount of covariation among the two species  and . For hierarchical study designs, the 
random terms  are modeled as a sum of the random effects over all levels of design, each 
of which may additionally have a spatial or temporal structure: 

 
 (8) 

Here  is the total number of study design levels,  is the projection for study design 
level , which maps the sampling units  to the corresponding units , and 
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 is the total number of units at the design level . Similar to equation (7), the random effects 
for each design level marginally follow a multivariate Gaussian distribution: 

  (9) 
Therefore, the model with hierarchical study designs includes multiple species covariance 
matrices , which correspond to potentially different patterns of species associations at 
different levels of the study design, see Ovaskainen et al. (2016a). 

 

 

 

 

 

 

 

 

 

 

Figure 2. Simplified directed acyclic graph (DAG) representation of Hierarchical Model of Species 
Communities (top) and the compact specification of the baseline model, introduced in Chapter Ⅰ, 
using vector-matrix notation (bottom). Orange boxes stand for the data objects and blue ellipses 
denote model parameters. The purple color depicts the extension of Chapter Ⅲ that enables 
association matrices to depend on environmental factors. 
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With  species, each covariance matrix  has bijective mapping to a space of  
unrestricted parameters (Lewandowski et al. 2009), making their estimation numerically 
challenging. To facilitate the estimation of such matrices, I use a latent factor approach, which 
assumes a product representation of the matrix of random effects  through latent factors  
and latent loadings  

 
 (10) 

The factor loadings  themselves typically do not have a straightforward interpretation in 
terms of ecological interactions. They could be considered similar to linear regression 
parameters  if the latent factors  are interpreted to model some ‘missing’ covariates, 
which have an impact on the species occurrences and are not represented in the matrix . For 
more detailed treatment of this interpretation see Warton et al. (2015a). Independently of their 
interpretation, given the classic assumption made in factor models that latent factors 
marginally follow multivariate Gaussian distribution , the latent loadings  

provide a parametrization of  as 

  (11) 
The utility of the latent factor approach comes from the dimension-reduced parametrization 
of  in cases where . I denote the species association network at the design level  

by the correlation matrix  defined by . The correlation  measures to 

what extent species  and  are found together more or less often than expected by chance at 
the level  of the study design, after controlling for the environmental covariates and random 
effects of other design levels.  

The number of latent factors  can be fixed a priori or treated as an unknown parameter 
through the shrinkage approach of Bhattacharya and Dunson (2011). From the practical point 
of view the shrinkage prior approach is beneficial compared to traditional methods of latent 
factor analysis for several reasons. First, in contrast to the typical strategy of restricting upper-
triangular part of  to zero, it imposes interchangeability in the prior for all modelled 
species. Next, this shrinkage approach enables an adaptive evaluation of the relevant latent 
factors number during the model fitting process, guided by the level of statistical support due 
to the complexity of observed associational patterns in the data. Finally, the estimated factors 
are naturally probabilistically ordered according to their relative importance, which step is 
often conducted during the interpretation of latent factor modelling with traditional priors 
(Thorson 2019). However, the prior of Bhattacharya and Dunson (2011) leads to the lack of 
identifiability for the parameters  and , since those are invariant for simultaneous zero-
flip of any latent factor and its loadings. However, the original authors stress that typically 
only the elements of  are of primary importance in applications and this derived matrix is 
identifiable. Alternatively, these latent factor approaches can be considered from the 
perspective of marginal prior on the covariance matrix  – with fixed number of factors all 
prior probability mass is assigned to covariance matrices which rank is no greater than , 
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while the shrinkage approach is more flexible and assigns higher probability mass to matrices 
that are close to low-rank with respect to special matrix norm (see the original publication of 
Bhattacharya and Dunson (2011) for details).  

I note that alternatively to the above-presented quantification of associations through 
covariance matrixes, a quantification based on the precision matrix (inverse of ) or related 
to it partial correlation matrix is possible, which are more likely to identify direct links among 
species than the correlation matrix, as the latter one is also influenced by indirect links 
(Ovaskainen et al. 2016a). As a further alternative, I note that instead of the latent variable 
approach, the random effects structure could be parameterized through a mixture modeling 
approach (Pledger and Arnold 2014). 

The latent factor approach to modeling random effects enables convenient inclusion on 
spatial/temporal dependence at some levels of study design (Thorson et al. 2015a, Ovaskainen 
et al. 2016c). I denote the spatial/temporal coordinates of unit  at the design level  by 

, with typically  for spatial structure and  for temporal 
structure. To incorporate spatial/temporal structure in random effects , I assume that the 
latent factors  come from realizations of a Gaussian process (GP) 

 with a zero mean and a covariance function  (Rasmussen 
and Williams 2006). This implies that the -th latent factor follows the multivariate Gaussian 
distribution 

  (12) 

where the  is the covariance matrix for spatial/temporal units  of the 

design level  included in the data, with pairwise covariance for the pair of units  and  
defined as . This GP structure also implies spatial cross-covariance 

structure for the matrix of random effects  

 

 (13) 

Here the operation  denotes the vector, produced by stacking the columns of a 
matrix : .While this approach is valid with general classes 
of covariance functions that are parametrized by few scalar values, in the implemented HMSC 
framework it is restricted to the exponential covariance function 

 with unit variance and a single spatial range parameter The 

exponential covariance function implies stationarity and isotropy (Rasmussen and Williams 
2006), and has been applied in previous work on spatial JSDMs (Ovaskainen et al. 2016c).  

I design the implementation of the HMSC framework in Bayesian paradigm, as uncertainty 
quantification is essential for a reliable ecological inference, especially on association 
matrices. Hence the full model specification requires defining the prior distributions for all 
primary model parameters, which correspond to the source vertices in its DAG, see Figure 2. 
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Aiming to facilitate efficient model fitting schemes, whenever possible the priors are chosen 
to be conditionally conjugate to the associated parameters. In cases of parameters  and , 
the conditionally conjugate priors are not known, and I propose to assign a discrete point-mass 
prior over the ecologically relevant range of values. More details on prior distributions and 
recommended values of hyperparameters are provided in the Supplement part of the 
Chapter Ⅳ.

In Chapter Ⅲ I extend the baseline HMSC model to allow the covariance matrix  to vary 
at different units of study design level  as a function of covariates , thus 
aiming to enable assessment of how species associations depend on environmental factors 
encoded with . I denote the matrix of covariates that is included for the -th level of study 
design by . These covariates may include some that duplicate the columns of the  matrix, 
but they may also include those that are not represented in the  matrix. To enable such 
variation of covariance matrices, I borrow from recent developments in the statistical literature 
(Hoff and Niu 2012, Fox and Dunson 2015) and, instead of assuming that latent loadings are 
constant, model them as a linear function of  

 
 (14) 

With this modification the equation (11) transforms to  

  (15) 

and correspondingly the correlation matrix also becomes dependent on the covariates 

 such that . Since apart of predicting the species 

associations for specific environmental conditions, ecologists are typically interested in 
quantifying the level of statistical evidence on whether the associations vary with different 
environmental conditions. To do so, I define the species-to-species matrix of posterior 
probabilities . A value of  close to 1 
indicates that there is a high level of statistical support that the co-occurrence pattern among 
species  and  is more positive under the environment  than under the environment , 
whereas a value of  close to 0 indicates that the opposite is true. 

In Chapter Ⅳ I reconsider how the spatial dependence could be included to the HMSC 
framework. This extension is motivated by the computational complexity of a single Gibbs 
MCMC step in posterior sampling for HMSC model with spatial random effect defined at the 
sampling unit level – the complexity scales as  in processing time and  in 
memory storage. This means that models are practically infeasible to apply to datasets even 
with moderately large numbers of sites, such as  being in the order of thousands. Nowadays, 
the most popular method for dealing with spatial data in ecological is to apply integrated 
nested Laplace approximation (INLA) to a latent Gaussian model, approximated with 
Gaussian Markov Random Field (GMRF), which approach allows for both precise and fast 
Bayesian approximate inference on a wide class of models (Rue et al. 2017). However, as is 
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highlighted by the INLA authors, it is ill suited for models with high number of parameters, 
which property is inherent to multivariate statistical methods. Alternatively, other methods 
recently adapted the INLA utilization of GMRF to integrate over the random effects and 
combined it with automatic differentiation to perform maximal likelihood inference on the 
fixed effects (Thorson 2019). Contrasting to those, in this study I specifically aim to achieve 
comparable computational gains but to keep the attractive benefits of Bayesian approach. I 
tackle this problem with two methods from spatial statistics that were shown been capable to 
efficiently model big spatial datasets: Gaussian Predictive Process (Banerjee et al. 2008, 
Finley et al. 2015) and Nearest Neighbor Gaussian process (Datta et al. 2016). Both these 
methods replace the original covariance matrix in the equation (12) with its approximation of 
a special structure, which provides numerically feasible adjustments to the HMSC sampling 
algorithm. For simplicity, in the two following paragraphs I assume that the model contains 
only single spatially structured random effect at the level of sampling units and drop out the 
index  from the formulas. 

The GPP denoted by , is constructed from the values of the original GP  defined at 
 ‘knot’ locations . Therefore, the value of the GPP at any site  is given 

by , where  denotes the 

vector of the original GP values at the knot locations ,  and 

. With this definition, it follows that  is itself a GP: 

, where the covariance function  is non-
stationary but factorizable (Banerjee et al. 2008). This key property of GPP greatly decreases 
the computational complexity of the model when , as sampling the posterior 
distribution takes  in processing time and  in memory storage (Banerjee et 
al. 2008). In equation (11), my definition of the covariance matrix  assumes that the marginal 
prior distribution each latent factor  is standard normal. However, the GPP fails to fulfill 
this requirement since its marginal variance generally decreases with increasing distance from 
the knot set . To circumvent this misbehavior, I apply a correction to the marginal prior 
variance of the GPP, so that it always equals that of the original GP (Finley et al. 2009). 

A more recent advance in spatial statistics, Nearest Neighbor Gaussian Process (Datta et al. 
2016), builds upon the conditional representation of the original GP. Given a specified 
ordering over the set of sites  the process  over this 

set corresponds to a multivariate Gaussian distribution  
that can be specified in conditional manner: 

  
 

 

 

(16) 
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This representation corresponds to a factorization of the covariance matrix 

, where  is the strictly lower triangular matrix with elements  and  
is the diagonal matrix with elements . The Nearest Neighbor approach approximates the 
conditional distribution  by conditioning only on the  preceding 

closest neighbors of : . This results in an approximate 

factorization of covariance matrix  with sparse matrix ; 

hence the precision matrix  is also sparse with  non-
zero entries. The enhanced computational efficiency of this method is achieved due to the 
decreased cost of sparse matrix operations compared to their dense counterparts.  

Bayesian model fitting algorithms 
The devised HMSC model could be fitted with various generic software for Bayesian model 
fitting. However, due to very high number of parameters in the model when fitting to data on 
many species sampled in many sites, conventional tools like JAGS are practically inapplicable 
due to extremely slow convergence to the posterior. Hence, I present another MCMC scheme 
that can be characterized as full-conditional Gibbs block sampler. This algorithm efficiently 
utilizes the potential of conjugate priors, conditional independences and is specified by a set 
of full-conditional updaters. In this subsection I first introduce the algorithm for the baseline 
HMSC model, following model’s matrix notation presented in Figure 2, and then briefly 
describe how it is modified in Chapters Ⅲ and Ⅳ. 

 Latent variable  is sampled elementwise using appropriate data augmentation 
techniques for the distributions  associated with the columns of abundance matrix . 
The implemented data augmentation techniques cover probit data augmentation for 
presence-absence data (Albert and Chib 1993) and lognormal Poisson augmentation for 
counts (Zhou et al. 2012), with non-overdispersed Poisson augmentation considered as a 
limiting case. 

 Linear regression coefficients  are sampled species-by-species  following Bayesian 
scheme for univariate linear regression when no phylogeny matrix  is included to the 
model. If phylogeny is included, all coefficients are sampled jointly following the 
formulas of conditional multivariate Gaussian distribution. 

 Trait impacts on regression coefficients  are sampled following the Bayesian scheme 
for univariate linear regression. 

 The strength of phylogenic signal  is sampled from its discrete prior locations, 
proportional to the prior weights multiplied with the full-conditional likelihood of linear 
regression coefficients. 

 Unstructured random variation scales  are sampled one-by-one from their Gamma full-
conditional posterior distributions. 
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Parameters associated with different sampling design levels are sampled consecutively, 
conditional on the values of all parameters of other levels. Therefore, I drop the sampling 
design level index  from the following formulas for simplicity. 

 Latent loadings  are sampled species-by-species  following Bayesian scheme for 
univariate linear regression. 

 The priors for latent loadings  and  are sampled according to the algorithm 
proposed in Bhattacharya and Dunson (2011). 

 If latent factors  are not assumed to be spatially/temporally structured, latent factors  
are sampled independently following Bayesian scheme for univariate linear regression. 
If the spatial/temporal structure is included, all latent factors  are sampled jointly 
following the formulas of conditional multivariate Gaussian distribution. 

 Spatial range parameters  are sampled one-by-one from their discrete prior locations, 
proportional to the prior weights multiplied with the full-conditional likelihood of 
corresponding latent factor values . 

I implement the HMSC sampling algorithm in Matlab scientific programming language. This 
implementation efficiently utilizes the Matlab efficiency for matrix and tensor operations and 
partially exploits the multithreading potential for parallelizing the parts that could be run 
simultaneously. Given the strong tendency of ecological community to use R as primary 
language for scientific computing, a mirroring R implementation of HMSC framework is 
developed in collaboration with other researchers. 

The transition from constant latent loadings to latent loadings that are dependent on covariates 
, introduced in Chapter Ⅲ, requires changes to conditional updaters 

of , ,  and . Conceptually, the modified formulas do not differ from corresponding 
counterparts in the baseline HMSC model, although they get algebraically more complicated. 
For details see Supplement section of Chapter Ⅲ. 

Modifications of Chapter Ⅳ concern only the full-conditional updaters of  and . I propose 
algorithms that utilize the low-rank property of Gaussian predictive process and precision 
matrix’s sparsity of Nearest Neighbor Gaussian process. For details see Supplement section 
of Chapter Ⅳ. 

Empirical datasets 
Each chapter of my thesis involves statistical analysis of at least one real dataset. In this 
subsection I provide a brief description for all these datasets, and the more detailed 
descriptions are given either in the Chapters, or in case of previously published data, in their 
original publications as cited below.  

Chapter I.  
a. Bryophytes dataset, presented in Oldén et al. (2014). The dataset contains abundances 

of 60 bryophyte species, recorded on aspen trees in 14 retention and 14 conservation 
sites in Central Finland in 2018. Overall, 204 aspens of various age were surveyed, 102 
in retention sites and 102 in conservation sites. The species abundance was calculated 
as the total area (cm2) of the trunk, covered by this species. The dataset also contains 4 
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covariates: diameter of the aspen tree, retention/conservation site type, time since 
logging and stand age. 

b. Butterfly dataset, presented in Ovaskainen et al. (2016c). The dataset covers the 
presence-absence of 55 butterfly species in the Great Britain. The data is based on the 
1995-1999 atlas data, with the whole study region being split to 2609 grid cells of size 

 km. Alongside the species data, the dataset contains 4 covariates: the number 
of growing days above 5°C, percentage of broadleaf woodland cover, percentage of 
coniferous woodland cover and percentage of calcareous substrates. 

c. Waterbirds dataset, presented in Sebastián-González et al. (2010). The dataset consists 
of time-series on 7 species of waterbirds, observed at 221 irrigation ponds in the Vega 
Baja Valley, southern Spain between 2002 and 2008. In each year, most of these ponds 
were visually surveyed during daylight for 3-4 weeks in the breeding season and 
presence-absences of the focal species were recorded. Additionally, the dataset contains 
information of the following pond characteristics: pond area, distance to closest 
wetland, connectivity to other ponds, pond construction design, presence of submerged 
vegetation, presence of shore vegetation, and presence of reed. 

Chapter II. Microbiota dataset. The dataset contains normalized operational taxonomic 
unit (OTU) quantification of bacterial DNA sequences, contained in larval and plant samples 
from natural populations of the M. cinxia and its host plant P. lanceolata in the Åland islands. 
The field sampling was conducted within three-day period in September 2015, following the 
general framework of the long-term survey of the M. cinxia butterfly that is described in 
Ojanen et al. (2013). DNA consisting of the V5-V6 region in the rrs gene was extracted from 
midgut for larvae samples and from the center of the leaf for plant samples. Alongside the 
microbiota data the dataset includes information on larvae sex, status of parasitoid infection 
by H. horticola and plant metabolome profile. Overall, the dataset covered 142 larvae samples 
and 55 host plant samples. The datasets for larvae and plant microbiota included 562 and 610 
OTUs correspondingly, for which a phylogenic correlation matrix was obtained with FastTree 
method assuming the General Time Reversible (GTR) evolution model.  

Chapter III. Arctic plant dataset, originally presented in Mod et al. (2014). The dataset 
contains the projective cover of 18 vascular plant species measured in 960 1-m2 cells, arranged 
in six nearby rectangular plots, located approx. 700 m. a.s.l. on a northern slope of the Saana 
massif, northwest Finland. The fieldwork was conducted in July 2011. The plots had the shape 
of  m, and the maximum distance between plots was 110 m. Two environmental 
covariates were quantified in all 1-m2 cells: soil moisture and integrated measure of 
disturbance, representing the cover of disturbed topsoil in the cell. 

Chapter IV. Australian plant dataset. The data originate from the Victorian Biodiversity 
Atlas (https://www.environment.vic.gov.au/biodiversity/victorian-biodiversity-atlas). The 
subset of this Atlas used in this study involves the occurrences of 1237 herbaceous species, at 
30,955 sampling locations within the State of Victoria, Australia, for which presence-absence 
were recorded. The data were collected in 1984-2014 years on sampling plots of 3900 m2. The 
dataset combines survey data undertaken for a range of purposes the predominant being: 1) 
ecosystem inventory, circumscription and mapping, 2) characterizing the habitats of species 
of management interest and 3) documenting and describing land subject to development or 
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land-use change. The sampling design is known to be biased towards public lands, typically 
less suitable for agriculture and peri-urban areas. Additional to the species data, I used four 
environmental covariates that were considered potentially important to vegetation and plant 
distribution: mean maximum temperature in January, measure of hydrology and landscape 
position, soil properties, and solar radiation and anisotropic heating. Further, 9 species traits 
were included as binary indicator variables, describing whether the species 1) is annual or 
perennial, 2) is pollinated by abiotic or biotic means, 3-4) has propagules that are dispersed 
by wind, invertebrates, or another agent, 5) forms a seed bank that typically persists for two 
or more years, and is considered vulnerable to or tolerant of 6) fire, 7) prolonged snow cover, 
8) protracted waterlogging, or 9) salinity.  
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Results and discussion 

In this section I outline the main results of the four chapters in this thesis and provide a 
unifying discussion of those. I first present results related to methodological development, and 
then results related to the ecological examples. 

Methodological advances 
Unifying framework 
Chapter Ⅰ illustrates, how the recent advances in communities and JSDMs can be incorporated 
within a single statistical approach. The key value of the resulted Bayesian model, termed with 
Hierarchical Model of Species Communities (HMSC, Figure 2), is due to its clear, easily-
interpretable, but robust design of how its different components relate to processes of 
community assembly. The HMSC application to three contrasting case studies demonstrates 
how the inference on assembly processes can be extracted from real data sets. While all 
examples are based on published studies, the primary novelty of this Chapter is in illustrating 
how a wide range of questions and data types can be analyzed with the help of this 
encompassing statistical framework. The types of communities and research questions of these 
case examples vary greatly: design of the first study is spatially hierarchical, the second study 
is spatially explicit, and the third study involves time-series data; the first deals with 
bryophytes, second – butterflies, and third – birds. Still, once the available data is organized 
according to the structure, presented in Figure 1, the HMSC could be used in seeking answers 
for questions actual in modern ecological community studies. A selection of such questions is 
summarized in Table 1, which also describes how HMSC can be applied to obtain an answer. 

The developed Matlab and R packages, accompanied by a detailed user manual provide a 
practical guidance for ecologists on how to apply the HMSC for analysis of their own data on 
species communities.  

Overall, the benefits of choosing HMSC to analyze species communities are summarized in 
the following list: 

(1) HMSC is a unifying framework which encompasses classic approaches such as single-
species distribution models and model-based ordinations as special cases. 

(2) HMSC provides simultaneous inferences at the species and community levels.  
(3) HMSC offers the general advantages of model-based approaches, such as tools for 

model validation and prediction.  
(4) HMSC overcomes previous problems of modeling communities with sparse data.  
(5) HMSC overcomes the long-standing challenge in species distribution modeling of how 

to account for species interactions in explaining and predicting species occurrences. 
(6) HMSC allows one to partition observed variation in species occurrences into 

components related to environmental variation measured vs. random processes at 
different study design levels – both at the species and community scales. 

(7) HMSC tackles the fourth corner problem (the influence of species traits to their 
occurrences, see Dray and Legendre (2008)) in a way that accounts for the phylogenetic 
signal in the data. 
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(8) HMSC can be applied to many kinds of study designs (including hierarchical, temporal 
or spatial) and many types of data (such as presence–absence, counts and continuous 
measurements). 

(9) HMSC can generate predictions at the species, community or trait levels, while 
propagating uncertainty in estimated parameter values to the level of the prediction. 

However, the core framework presented in Chapter Ⅰ should be considered just as a starting 
point: while the HMSC presented here already allows one to address any fundamental and 
applied questions in community ecology (Table 1), it clearly does not answer all of them. As 
I have based HMSC on hierarchical generalized linear mixed models, adding additional layers 
is conceptually and technically straightforward. Below, I cover two further developments that 
build on the core framework, and discuss the key perspectives that I consider especially fruitful 
in context of modeling ecological communities. 

Table 1. A summary of topical questions in community ecology and an outline of how they can be 
addressed within the HMSC framework. The presented list is not exhaustive, and the line between 
fundamental and applied questions is somewhat blurred. 

 Question How to address the question statistically? 
FQ1 How much variation in species occurrence is 

due to environmental filtering, biotic 
interactions, and random processes? 

By assessing the explanatory power of models and by 
variance partitioning among fixed and random effects. 

FQ2 How does the importance of environmental 
filtering, biotic interactions, and random 
processes vary across spatial and temporal 
scales? 

By variance partitioning between fixed and random 
effects operating at different scales. 

FQ3 How do species’ traits influence ecological 
niches? 

By modelling responses to environmental covariates as a 
function of species' traits. 

FQ4 Do phylogenetic relationships correlate with 
ecological niches, beyond that explained by 
traits? 

By including the phylogenetic correlation matrix ( ) 
when modelling the responses of species to 
environmental covariates. 

FQ5 Are there signals of niche conservatism or 
niche divergence? 

By examining whether the phylogenetic correlation 
matrix ( ) helps to explain the data. 

FQ6 What are the structures of species interaction 
networks? 

By estimating the species-to-species association 
matrices . 

FQ7 How does community similarity depend on 
environmental similarity and/or geographic 
distance? 

By decomposing community similarity into similarity 
due to responses to environmental covariates and/or 
spatial covariance. 

FQ8 How does community structure change over 
time due to predictable succession or stochastic 
ecological drift? 

By including time since environmental perturbation as a 
predictor, or by including temporally varying random 
effects. 

AQ1 Do some species indicate the presence of 
others? 

By testing how much the predictive power of the model 
increases for a focal species when accounting for the 
occurrences of other species. 

AQ2 How can geographic areas be classified into 
communities of common profile? 

By clustering of predicted communities based on their 
similarity. 

AQ3 Which processes have been central in 
determining the response of a community to 
environmental change? 

By decomposing the response to environmental change 
to components related to species niches and random 
effects. 

AQ4 How can species be classified in terms of their 
response to abiotic environment? 

By clustering parameters or predictions measuring the 
species responses to environmental covariates. 
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Variable species associations 
One of the fundamental drawbacks of the baseline HMSC model from Chapter Ⅰ is that it 
assumes the structure of association networks to be constant across all study. However, the 
type and strength of ecological interactions may be context-dependent (Poisot et al. 2016). For 
example, the stress-gradient hypothesis (SGH) predicts that positive interactions are 
accentuated under stressful abiotic environmental conditions (Callaway and Walker 1997). 
Hence, in Chapter Ⅲ I address this challenge and introduce an enhancement to HMSC, aiming 
to enable the context-dependence of the association matrices by modeling the underlying 
latent variable structure as a linear function of environmental covariates. After implementing 
the augmented sampling algorithm, I test the performance of the proposed model with two 
simulation-based studies.  

In the primary study, I use simulated data to test whether the developed framework 
successfully estimates the dependency of species associations on the environmental context. I 
generated presence-absence data on species occurrence along a single environmental gradient, 
called altitude for the sake of illustration ( ), with two kinds of models: in the null model 
the species associations were constant along the altitudinal gradient, and in the full model the 
species associations varied along the altitudinal gradient. Thus, in the null model I assumed 
the linear predictor 

 
 (17) 

whereas in the full model I assumed the linear predictor  

 
 (18) 

The observations were obtained as , where . The  parameters 
were generated such, that species varied in their responses to the altitudinal gradient and most 
species were rare. Additionally, I imitated that the species associations depend on altitude in 
a manner that is in line with SGH: the expected proportions of positive and negative 
associations at low altitude are equal, while at high altitude most of associations are positive. 

For each simulated dataset, I fitted the HMSC with structure equal to the full model and 
evaluated whether the model was able to correctly capture the variation on the species 
associations along the environmental gradient. To do so, I computed for each species pair the 
level of statistical evidence  that their association was more positive at high 
altitude than at low altitude. For each species pair I classified the inference obtained from the 
fitted model as ‘correct’, ‘misleading’ or ‘lack of statistical power’ based on the match 
between the estimate of  and underlying truth. I compared the performance of this 
method with SDM-based methods that were used earlier (Mod et al. 2014).  
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Next, I examined how much 
accounting for species 
associations influenced the 
predictive powers of the models. I 
mimicked a situation in which the 
ecologists would have surveyed 
the occurrences of all species for 
the sampling units that make up 
the training data (used for model 
fit), but only the few most 
dominant species for additional 
sampling units that make up the 
validation data. The question was 
on how well different models are 
able to predict the occurrences of 
the remaining species in the 
validation data. I compared the 
predictive powers of SDMs and 
HMSC that do or do not account 
for species associations: predicted 
the occurrences of the non-
surveyed species in the validation 
data with these four models, and 
evaluated the predictive power 
with two measures: Tjur's R2 and 
deviance (Tjur 2009). 

My results with this simulated data 
demonstrate that the approach 
proposed here is capable of 
finding signals of changing 
associations in a robust and 
statistically efficient way. As 
expected, the ability to classify 
how species associations depend 
on environmental conditions 
increases with the size of the data 
set. The HMSC approach have 
more statistical power than the 
SDM for capturing whether the 

associations changed with altitude, while the fraction of misleading inferences is in line with 
expectations based on the threshold criteria used for both approaches. In terms of predictive 
power, unconditional SDMs and HMSC show almost equal performance. Conditioning the 
predictions for each focal species on the dominant species considerably improve the models’ 
predictions in terms of the Tjur’s R2 both for SDM and HMSC, with no major differences 

 
Figure 3. A comparison between single species distribution 
models (SDMs) and joint species distribution models 
(JSDMs) in their ability to account for the dependency of 
species associations on environmental covariates. The 
heights of the bars in ABCD show the proportions of species 
pairs (averaged over the replicate data sets; error bars show 
standard errors) with correct inference (red), misleading 
inference (blue), and lack of statistical power (grey). Panels 
E and F compare the predictive powers of the fitted models, 
measured by deviance (E) and Tjur R2 (F) of the model’s 
predictions for validation data (averaged over the replicate 
data sets; error bars show 25%, 75% quantiles). The colors 
correspond to different models: SDM (light grey) and JSDM 
(light green) that do not account for species associations 
(unconditional), and SDM (dark grey) and JSDM (dark 
green) that utilize the information on the 10 most dominant 
species (conditional). The two rightmost bars and the 
horizontal lines represent the unconditional and conditional 
JSDMs with true parameters values that were used in the 
data simulation. 

A

C D

B

Dataset size 

JS
DM

SD
M

De
vi

an
ce

E
Dataset size Dataset size 

Pr
op

or
tio

n 
(%

)
Pr

op
or

tio
n 

(%
)

NULL DATA FULL DATA

Tj
ur

 

F



30 

between these two approaches, but in terms of the deviance, the HMSC consistently 
overperform SDM. HMSC perform better than SDMs especially for the sparse data. 

As an additional case study, I examine the robustness of the statistical approach by applying 
it to data simulated by an individual-based model, which data may violate the structural 
assumptions made by the HMSC. My results indicate that the proposed enhancement is 
flexible enough to successfully capture how associations vary along the environmental 
gradient also in this example, which attempts to mimic the nature of real-world assembly 
processes (see Supplement part of Chapter Ⅲ). 

Determining whether the outcomes of interspecific interactions depend on the environmental 
conditions is of major interest both for understanding the basic ecology and distribution of 
species, as well as for predicting changes at macroecological scales due to global change 
(Tylianakis et al. 2008, Hagen et al. 2012). The HMSC enhancement introduced in this 
Chapter provides a new tool for ecologists interested in inferring the dependency of 
interspecific interactions on environmental context from non-manipulative observational 
community data. Compared to existing methods, the principal advantage of this novel method 
is that it enables inference about species associations and their changes from sparse data on 
large communities dominated by rare species. 

Numerous spatial data 
In contrast to the Chapter Ⅲ, the Chapter Ⅳ introduces no conceptual modifications to HMSC 
framework but aims to resolve a practical issue of computational challenges that arise in 
modeling numerous spatial observations. Motivated by increasing availability of high-
resolution datasets covering large spatial scales (Graham et al. 2004, Franklin et al. 2017), and 
the demand for numerically superior approaches, highlighted by previous spatial JSDM-
oriented studies (Ovaskainen et al. 2016c), in this Chapter I investigate the advances of spatial 
statistics that have been shown capable to overcome similar issues for univariate or low-
dimensional multivariate modeling, namely Gaussian predictive process and Nearest 
Neighbor Gaussian process (Banerjee et al. 2008, Finley et al. 2009, Finley et al. 2015, Datta 
et al. 2016). I devise a way how these methods could be efficiently exploited in the latent 
factor component of HMSC models, and exemplify my developments with a comprehensive 
set of analyses to assess their performance and utility. 

I use the Australian plant data to (i) test the feasibility to apply the methods presented here to 
data that are large in terms of both the number of sampling sites and the number of species, 
and to (ii) examine their performance in comparison to full spatial and non-spatial models, 
and how the key parameters of the approximate methods (number of knots in GPP and number 
of neighbors in NNGP) influences such comparisons. I selected four environmental covariates 
that are essentially uncorrelated and were considered potentially important to vegetation and 
plant distribution. Further, I included 9 species traits as binary indicator variables, describing 
the potentially relevant properties of the species. I randomly selected a set of 5000 sites that 
were used as test data and were not used for model fitting. I restricted the analysis to those 

 species that were observed at least 5 times both in the test part and in the remaining 
part of the dataset. I randomly selected training datasets of sizes  100, 400, 1600, 6400 
and 25955 sites from the remaining locations. To examine how the performance of the 
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methods depends on the size of the species community, I fitted the model to subsets of  
40, 160 and 623 species. 

The combination of five sample sizes and three community sizes yielded 15 datasets, which I 
used to compare the performance of four kinds of models: non-spatial latent factors (non-
spatial), Gaussian process-based latent factors (GP), Gaussian predictive process-based latent 
factors (GPP), and Nearest Neighbor Gaussian process-based latent factors (NNGP). In the 
GPP model I repeated all analyses with 16, 64, 256 and 1024 knots, and in the NNGP 
model I tested  10 and 20 neighbors. For parity in model comparisons, I fixed the number 
of latent factors to  in each of the models. I fitted all models with equal number of 
MCMC steps, burn-in and thinning, using the same hardware exclusively to enable fair 
comparison, and characterized the performances of the models in terms of their computational 
demand and predictive power on the validation set: Tjur’s R2 and deviance (Tjur 2009). 

Predictive performance generally increases with model complexity, so that the non-spatial 
model performs the worst, and the performance of the predictive process improves with the 
number of knots. Notably, even very coarse approximation of spatial structure with only 16 
knots provides a substantial gain in the predictive performance, as compared to the non-spatial 
model. Quite strikingly, the performances of the GP and both NNGP models are essentially 
equal and considerably outperformed the GPP model when the number of knots is lower than 
number of training points. 

The computational times needed for a single Gibbs update step in the models are consistent 
with the corresponding theoretical expectations: the computational time increases linearly 
with sample size in non-spatial and GPP models, and the cubic scaling in the full Gaussian 
model makes it infeasible for applications with large data. My results indicate that the 
computational burden of NNGP is in line with GPP with 16-64 knots, scaling slightly worse 
than linear. On the other hand, the effective sampling size substantially decreases with 

 
Figure 4. Comparison of non-spatial, GP, GPP and NNGP models. Panels ABC show time elapsed for 
model fitting to small ( =40), medium ( =160), and large ( =623) species communities using HMSC 
Gibbs sampler with 10,000 MCMC iterations. Panels DEF depict those results being adjusted for the 
autocorrelation in the samples and visualize the estimated times to obtain 1000 effectively independent 
samples from the posterior. Panels GHI show predictive performance measured in terms of Tjur R2 for 
models fitted and panels JKL in terms of deviance. The colors indicate non-spatial models (grey), GP 
models (black), GPP models with 16, 64, 265 and 1024 knots (gradation of blue from light to deep), the 
NNGP models with 10 and 20 neighbors (light and dark red). Note that due to very similar results, the red 
lines often overlap. 
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increased number of training sites, which seriously aggravates the computational load in 
practical analysis of large datasets. Nevertheless, my results suggest that this undesired 
behavior is not due to the spatial structure of the models, but known deficiencies of classic 
probit data augmentation scheme that may be circumvented in following developments (Duan 
et al. 2017). 

Overall, my results consistently fall in line with analogous findings of the original studies that 
introduced the GPP and NNGP for modeling spatial low-dimensional outcomes (Banerjee et 
al. 2008, Datta et al. 2016). The results indicate that, among the models compared here, HMSC 
augmented with the NNGP performs the best in terms of the trade-off between computational 
time and predictive performance. However, the fact that NNGP outperforms GPP may be 
partially due to the nature of the data used in this case study: 1) the spatial range of the latent 
factors is estimated to be rather small and 2) the spatial distribution of sampling sites in this 
data is spatially clustered. Both these properties seem to be more in favor of NNGP 
approximation’s nature.  

The novelty of methods developed in this Chapter is that they overcome the computational 
limitations for high-dimensional outcomes using big spatial data, such as the context of 
species-rich ecological communities. This advance facilitates the efficient use of rapidly 
accumulating high-resolution large-scale ecological datasets towards explaining and 
predicting how ecological communities are structured and how they respond to ongoing global 
change. My implementations of GPP- and NNGP-based latent factors to HMSC Matlab 
package also allows researchers to integrate such analyses with information on species traits 
and phylogenetic relationships, providing the potential to address a larger number of 
fundamental and applied questions in community ecology. 

Ecological examples 
Microbiota of M. cinxia and P. lanceolata 
In contrast to other parts of this thesis, Chapter Ⅱ is organized not around methodological 
development, but around an applied study of an ecological system. In this study, my colleagues 
and I pursue to improve the understanding of ecological determinants that influence the 
associations between insect hosts and their gut symbionts. With Melitaea cinxia larvae and 
their Plantago lanceolata host plants sampled across the Åland islands, I aim to assess the 
structure of midgut microbiota variation across the larvae with respect to available 
environmental variables and identify the potential drivers of such variation that shape 
microbiota communities.  

I analyzed the data with HMSC model that provides simultaneously species- and community-
level inference on how species occurrences and/or abundances relate to environmental 
covariates, how these relationships are structured with respect to species traits and 
phylogenetic relationships, and additionally determines those co-occurrence patterns among 
the species that can’t be attributed to responses of the species to the measured covariates. The 
modeled response variable was the vector of rarified sequence counts of the microbial OTUs. 
I employed a hurdle approach, in which I first used a probit model for OTU presence-absence, 
and then a log-normal model for OTU abundances conditional on the presence. In the larval 
model, my aim was to examine how the OTU composition depended on the properties of the 
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focal larva, and on the OTU and metabolite compositions of the host plant. I included as fixed 
effects (1) the sex and (2) the infection status of the individual, (3) the abundance of the focal 
OTU in the host plant where the individual was residing, (4) the plant OTU community 
composition, and (5) the plant metabolite composition. I incorporated plant OTU abundance 
as log-transformed sequence count and described OTU community composition and plant 
metabolite composition by the first three principal components. To determine to what extent 
the responses of the species to the explanatory variables show a phylogenetic signal, I included 
in the analysis a phylogenetic correlation matrix among the OTUs. To examine residual co-
occurrence patterns among the OTUs that cannot be attributed to the fixed effects, I further 
included in the model the level of the larval nest (corresponding to host plant level) as a spatial 
random effect, and the level of the individual larvae as a non-structured random effect.  

I quantified how much of the variation in OTU occurrences can be attributed to the fixed 
effects and to associations among the OTUs, by evaluating the predictive power of the model 
in three different ways. All those accounted for the fixed effects but differed on how the 
random effects were accounted for. Prediction P1 aimed at measuring the predictive power 
based solely on fixed effects, prediction P2 aimed at measuring the predictive power that can 
be gained by accounting for species-to-species associations, prediction P3 aimed at measuring 
the full explanatory power of the model. Thus, the performance of P1 measures the importance 
of fixed effects, and the difference between P2 and P1 (respectively, between P3 and P1) gives 
a minimum (respectively, maximum) estimate for the importance of species-to-species 
associations. I measured predictive powers by Tjur’s R2 (Tjur 2009) for the probit models and 
standard R2 for the log-normal models. 

Overall, the measured larval microbiota is highly variable both across the larvae individuals 
and assigned OTUs, with the dominant taxa being Uruburella, Cloacibacterium, Moraxella, 
Acinetobacter, Dermacoccus, Hymenobacter, Corynebacterium, Paracoccus, Wolbachia, 
Methylobacterium as well as unclassified Actinobacteria, Enterobacteriaceae and 
Corynebacteriaceae. The highest prevalence is recorded for an OTU identified as Uruburuella 

 
Variable Running name  Variable Running name 
Presence of the Hyposoter horticola parasite  Plant OTU composition otu pc 1-3 
The sex of the larvae sex  Plant metabolic composition  met pc 1-3 
Focal OTU abundance in the plant self abun.    

Figure 5. Influence of measured covariates on larval microbiota. Regression coefficients that are 
estimated to be positive (respectively, negative) with 95% credibility level are shown by red (respectively, 
blue). The OTUs (columns) are ordered according to their taxonomical classification. The covariates 
included in the model are listed in the legend alongside with their running names used in axis labelling. 
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which is detected only in 58.8% of 
the larval samples. Therefore, no 
core microbiota is evidenced across 
the larvae.  

The presence-absence part of the 
larval model has only little 
predictive power through its fixed 
effects. Accounting for the residual 
species-to-species associations 
drastically increases the predictive 
power, such that it got close to the 
explanatory power of the fitted 
HMSC model. This provides 
evidence that the modeled 
associations among OTUs represent 
a true biological signal instead of 
mere model overfitting. However, 
the predictive performance is highly 
variable across the OTUs and 
remains poor for many species. 
Contrasting, in the abundance 
model, both the fixed effects and the 
species-to-species associations 

contribute roughly equally. The variance partitioning among the explanatory effects based on 
the variation of latent variable closely follows the results based on predictive power. 

Despite the relatively small contribution of the fixed effects to variance partitioning, 
substantial proportion of OTUs shows a positive or negative response to many of the fixed 
effects (Figure 5). The occurrence probabilities of many OTUs decrease with the presence of 
parasitoid infection and are higher for females than males. Only a minority of the OTUs shows 
a positive link between the abundance of the focal OTUs in the host plant and the presence of 
the same OTU in the larvae. In the abundance model a much a smaller proportion of the OTUs 
shows responses that gains high statistical support (Figure 5). The fitted model estimates a 
very high phylogenetic signal in how the OTUs respond to the fixed effects for both parts of 
the model. Hence, closely related OTUs are found to have similar niches and respond similarly 
to the fixed effects included in the model. The occurrence of the microbial OTUs are 
phylogenetically structured not only with respect to the measured covariates, but also in their 
variation that is not attributed to the covariates: the OTUs split into two groups in a markedly 
pronounced manner (Figure 6). One of these two groups consists, with minor exceptions, of 
the Enterobacteriaceae family, the other group consists of the remaining OTUs. Given that the 
majority of explained variation in the presence-absence model is attributed to the random 
effect at the level of the individual, this pattern is the strongest signal related to OTU 
occurrences variation in the modeled dataset. In contrast to the strong patterns recorded in the 
presence-absence model, only few statistically supported associations are found in the 
abundance model. Concerning the random effect defined at the level of host plants, only few 

 
Figure 6. Residual associations among larval microbiota. 
The figure illustrates the larval-level random effects for the 
presence-absence part of the larval hurdle model. OTU-
pairs for which the residual correlation was estimated to 
be positive (respectively, negative) with 95% credibility 
level are shown by red (respectively, blue) color. The 
ordering of OTUs is identical to that of Figure 5. 
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statistically supported associations are found both for the presence-absence and abundance 
models. 

My findings suggest that the natural midgut microbial community of M. cinxia larvae is 
variable, and that only a small proportion of the variation can be attributed the host plant 
characteristics that the individual is feeding on. On the other hand, I discovered a strong co-
occurrence pattern of OTUs at the level of larval individual that could not be attributed to any 
of the covariates included to the analyses (Figure 6). These co-occurrence patterns were 
strongly phylogenetically structured, suggesting two mutually exclusive groups of bacterial 
communities. One of these groups consisted of mainly Enterobacteriaceae, whereas the other 
group consisted of the remaining taxa. Even though resident microbes may be rare in 
Lepidoptera, the dominance of co-occurring taxa, such as Enterobacteriaceae in this study, 
may be driven by priority effects (dominance of a group of microbes that were the first to 
colonize the gut), the specific association of bacteria involved in mutualistic interactions, or 
by a niche overlap among the co-occurring bacteria that grow under similar conditions 
(Kennedy and Bruns 2005, Sprockett et al. 2018). However, due to the limitation in the 
available biological material, no absolute quantification (e.g. qPCR) is incorporated in this 
study. Therefore, the abundances that have been measured are relative and it is not possible to 
exclude the possibility that the individuals have a uniform microbiota that can be additionally 
colonized by a very highly-abundant Enterobacteriaceae under certain circumstances. 

The microbial variation in neither the presence-absence nor the abundance model could be 
consistently attributed to the larval or host plant characteristics assessed in a way that would 
be synchronous across the OTUs. Instead, the effects of the explanatory variables differ greatly 
among the OTUs, with a high proportion of the variation being explained by the phylogenic 
relationship between the OTUs (Figure 5). Hence, taxonomically related OTUs responds 
similarly to the explanatory variables. The occurrence of OTUs belonging to Rhodobacterales 
and Neisseriales orders is generally higher in female rather than male larvae. The parasitoid 
infection is also found to be associated with lower occurrence probability of many taxonomical 
groups, including Clostridia, Rhizobiales, Neisseriales and Burkholderiales. Parasitoid 
infection may be modifying host’s immune/metabolic homeostasis that may further influence 
the intestinal microbial community. This is possibly because parasitoid infection may modify 
host’s immune or metabolic homeostasis that can further influence the intestinal microbial 
community (Potter and Woods 2012, Mrinalini et al. 2015). Wolbachia sp., on the contrary, 
are more likely to occur in parasitized individuals. Previous screening of M. cinxia adults have 
not found presence of Wolbachia, whereas the parasitoid, H. horticola, is naturally infected 
by a Wolbachia strain wHho (Duplouy et al. 2015). Thus, the obtained results suggest that 
Wolbachia could be horizontally transferred by the parasitoid. However, the high mortality of 
those individuals due to the parasitoid infection might lead to extremely rare infected adults.  

Arctic plants 
In Chapter Ⅲ I reanalyze the plant cover data from Mod et al. (2014). In the original study, 
the authors modeled separately the cover of 17 plant species, including the logarithm of 
geomorphological disturbance, soil moisture, logarithm of the dominant species’ cover 
(Empetrum), and interaction terms as predictors, assuming that soil disturbance and moisture 
represent stress factors for plant growth. 
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I modeled all 18 species jointly with a HMSC that included soil moisture, geomorphological 
disturbance and their interaction as predictors, and allowed the species associations at the 
sampling unit level to vary with both variables. As the data was collected by hierarchical 
sampling design, with sampling units located within sites, the model included two levels of 
random effects to estimate 1) random variation in species occurrences and 2) co-occurrences 
also at the site level, at which level the associations were assumed to be constant. I predicted 

the associations  at 
different combinations of 
disturbance and soil moisture 
(low and high) and computed the 
level of statistical support of 
difference in species associations 
along the disturbance and soil 
moisture gradients.  

The HMSC-based statistical 
analysis of the Arctic plant data 
provides partial support to 
previous findings of that the plant 
species associations can be 
dependent on multiple 
environmental factors: for many 
species pairs, the association 
differed at different combinations 
of environmental factors, but only 
for 30% of the species pairs there 
was high statistical support for a 
change in the associations along 
at least one of the environmental 
gradients. Furthermore, the 
numbers of species pairs that 
changes towards more positive 
and more negative associations 
are approximately similar for 
both environmental gradients. 

This example demonstrates that 
the HMSC enhancement 
proposed in Chapter Ⅲ can be 
used to test the SGH using plant 
community data in an integrated 
manner. The existing SDM-based 
method, as in Mod et al. (2014), 
allows to see only part of the 
whole picture. However, while 
SDM method enabled the authors 

 
Figure 7. Ecological inference with GPP (left column of 
panels) and NNGP (right column of panels) models fitted to 
the maximum training dataset. Panels AB show species 
association patterns, with red (respectively, blue) depicting 
species pairs that co-occur more often (respectively, less 
often) based on the latent factor part of the model. Panels CD 
visualize predicted spatial distribution of species richness, EF 
– predicted proportion of wind-pollinated species, GH – 
predicted occurrence probability of Acaena novae-zelandiae, 
IJ – predicted regions of common profile, with nodes of 5x5 
self-organizing map mapped to YUV color space. 
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to relate their results on effect of dominant species to the SGH, considering the species 
associations among all species within the community, the evidence for SGH based on this data 
was not clear. I believe that future applications of the method presented in Chapter Ⅲ, or some 
related JSDM-based technique, will help to provide more synthetic insights into the SGH in 
natural communities. 

Australian plants 
To illustrate the kind of ecological inference that can be derived from the modeling approach 
presented in Chapter Ⅳ, and to highlight the key differences between GPP and NNGP, I use 
the GPP model with the largest number of knot points ( ) and the NNGP model with 
the largest number of neighbors ( ) fitted to the entire training partition of Australian 
plant data ( , ). I visualize the estimates of species associations matrices, 
predictive distribution maps for individual species, species richness and community weighted 
mean traits, and divide the study area into regions of common composition profile. 

The GPP and NNGP provide essentially identical estimates of species association matrices, 
revealing numerous positive and negative residual associations (Figure 7). The GPP and 
NNGP models however differ in their predicted spatial quantities. The NNGP model predicts 
more fine-scaled patterns and exhibits discontinuities, especially visible in the areas distant 
from training sites. The GPP model predicts smoother patterns that resembled in some regions 
the structure of the grid of knots used. Hence, despite its predictive superiority, the NNGP 
approximation could be criticized by ecologists, since it violates the common understanding 
that spatial distributions of ecological phenomena are archetypically continuous with potential 
discontinuities only aligned with distinct habitat edges. 

As this example demonstrates, the methods developed in Chapter Ⅳ open a great array of 
possibilities for ecologists working on problems related to fundamental or applied community 
ecology, conservation biology and macroecology. Most importantly, it is now possible to use 
spatially extensive data to examine how species occurrences and co-occurrences are associated 
to environmental variation, how species traits and phylogenies influence such variation, and 
to generate and validate predictive maps at the levels of species, community composition, and 
functional traits. 
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Synthesis, perspectives and conclusions 

The ongoing global change, caused by expanding anthropogenic pressure on the environment 
and biosphere, makes it increasingly important for the humanity to carefully design strategies 
for sustainable interaction with nature in the upcoming years. To devise robust and successful 
strategies, we need to acquire a way more comprehensive and integral understanding of the 
processes and rules that shape the living systems around us. Such understanding at a global 
scale requires deciphering these underlying processes from the patterns they impose on data 
that we observe and collect. Currently, due to technical advances of data collection techniques, 
the amount and quality of scientific data annually obtained keep increasing, and therefore, the 
availability of analytical methods to exploit the full potential of this data is highly prioritized. 

In the last decades, the community ecology has been shifting its aims from the mere 
description of observed patterns towards a mechanistic perspective, which seeks to understand 
the processes that shape the observed species communities. These new aims have led to the 
increased interest in statistical ecology and the development of approaches that jointly model 
the dynamics and distributions of entire species communities or ecosystems. In particular, 
joint species distribution models have emerged as efficient tools for modeling data on large 
numbers of species (Clark et al. 2014, Pollock et al. 2014, Warton et al. 2015a, Ovaskainen et 
al. 2016a). 

This thesis contributes to the ongoing methodological development of analytical tools for the 
joint species modeling. It combines both practical perspective of an ecologist and 
methodological/theoretical perspective of a statistician. It starts with synthesis of the recent 
advances in joint modeling and produce a unifying statistical framework that enables scientists 
to easily address multiple most common questions in community ecology. Later it provides 
two important extensions – one more conceptual and on more technical, which considerably 
expand the potential of the unifying framework. All methodological development is 
accompanied by examples that use real-world data and demonstrate how these methods can 
be used in practice. 

During my research I’ve extensively discussed HMSC-related topics both with researchers 
representing various applied fields and hardcore statisticians (a.k.a. probabilistic machine 
learning researchers). The following perspectives are based on these discussions and reflect 
my current vision of the current state of joint species distribution modelling area in general, 
as well as existing specific challenges for the actual HMSC framework. 

The first perspective relates to the need to explicitly account for the observation process when 
modeling the data, thus allowing one to separate the processes of interest from biases 
introduced by the observer (Guillera-Arroita et al. 2014, Warton et al. 2016). While currently 
there are several distributions supported in HMSC framework through known data 
augmentation schemes, a general approach is still lacking. The four observation functions 
most desired for ecological research are 1) the ones that would enable to appropriately model 
presence-only data, 2) multinomial distribution, 3) ordered categorical distribution, and 4) 
occupancy modeling for repeated samples. Similarly, for the HSMC framework to be robustly 
applicable for opportunistic spatial ecological data, such as resulted in citizen science projects, 
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the further development should exploit the advances of statistical literature on modelling non-
ignorable sampling designs (Diggle et al. 2010, Gelfand et al. 2012). 

The second perspective relates to the need for more versatile treatments of association 
networks. One of the key strengths of the HMSC approach is that it allows us to estimate 
species association networks at different spatial or temporal scales, and to utilize the inferred 
associations in predictions and simulated scenarios. Accompanied by the enhancement of the 
Chapter Ⅲ, these associations could additionally vary with respect to environmental factors. 
However, in all the examples in this Thesis, association matrices were estimated solely from 
the abundance/occurrence data, even though community ecologists often possess certain a 
priori knowledge on potential interactions, obtained from direct observations in the field, 
controlled experiments, or information on how species traits are expected to influence species 
interactions (Wootton and Emmerson 2005, Schöb et al. 2013). The current HMSC 
formulation assumes that species traits T and phylogenetic correlations C may directly 
influence the species responses to the abiotic environment, but ignores the link from these data 
to prior beliefs on association matrices. Finding sound statistical approaches to incorporate 
such dependencies in the HMSC framework remains a challenge. A related open question 
remains on the utilized methodology for variance partitioning – currently HMSC is calculating 
relative importance of its components based on the latent Gaussian predictor, and therefore it 
is a subject to the choice of observation model and does not necessarily have an intuitive 
meaning in the natural scale of observations. To test the sensitivity of such variance 
partitioning with respect to observation models and link functions, extra numerical 
experiments are required, which would also preferably be backed up with a qualitative study 
on how these numerical results correspond to community variation assessment and 
understanding by ecologists working with various natural systems.  

It is also necessary to note that the estimated association networks are conditional on species 
occurrence – even once two species are estimated to have a strong positive co-occurrence, the 
association is not truly realized in areas where at least one of the species does not occur at all. 
This calls for a conceptual revision of how to evaluate species association strengths in a way 
that would consider variation of species marginal abundances or occurrence probabilities. The 
shift from the parametric dependence of association matrices on environmental factors as in 
Chapter Ⅲ to non-parametric dependence with local shrinkage towards lack of associations 
(Fox and Dunson 2015) seems to be an attractive option, although could result in excessively 
cumbersome practicalities.  

The third perspective corresponds the ecologists’ desire to merge the information on the level 
of individuals to the framework, as e.g. traits are often measured at the individual level 
(McGill et al. 2006). A related challenge is to adopt a more micro-evolutionary perspective, 
e.g. by asking if and how the amount and type of genetic variation influences variation in 
species occurrence, either among species, or in space or through time. 

Forth, for the HMSC to become a robust tool for versatile spatial analysis of species 
communities, further work is required to expand the available spatial priors for latent factors. 
While the implemented exponential covariance already provides a substantial improvement 
compared to the independence assumption, its statistical properties may be undesirable and 
oversimplistic in many practical applications. First, the anisotropy becomes relevant when the 
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direction of spatial distances matters, e.g. fish densities can be more correlated with respect to 
the direction parallel with shore compared to the direction perpendicular to shore (Thorson et 
al. 2015b). The need for non-stationary covariances arise when the modelled phenomena 
exhibits various statistical behavior in different parts of the study area/period. As an intuitive 
example, the species abundance can vary smoothly in flatlands, but very rapidly in mountains. 
If such variation is not properly captured by fixed effects, the random effects component with 
stationary assumption for latent factor spatial distribution will fail to properly capture the 
observed variation. 

The fifth and final perspective consists of a broad mixed set of challenges, related to 
computational and numerical enhancements of the HMSC framework, especially regarding 
analysis of larger and more comprehensive datasets. The numerical analysis in the Chapter Ⅳ 
indicated that for large datasets HMSC’s Gibbs MCMC sampling algorithm does not properly 
converge within the amount of time that most ecologists consider reasonable to spend on 
fitting a single statistical model. The exact reason for such misbehavior is not clear yet, 
although some of the HMSC Gibbs scheme components are known to be potential bottlenecks, 
e.g. the probit data augmentation scheme of Albert and Chib (1993) has been shown to perform 
inefficiently for heavily unbalanced presence/absence data (Duan et al. 2017). An appealing 
solution would be to replace the exact, but slow full-Bayesian MCMC parameter estimation 
approach with an alternative that would exploit certain approximate solutions in favor of speed 
and robustness. For example, certain observation models could be efficiently approached with 
approximate methods (Minka 2001, Rasmussen and Williams 2006, Cunningham et al. 2011). 
While several JSDMs that exploits these principles has been recently introduced to ecologists 
(Niku et al. 2017, Thorson 2019), they are based on the maximal likelihood point estimation 
for the model’s fixed effects, which may lead to high sensitivity to model misspecification. 
However, given the ongoing breakthrough in efficient Bayesian sampling algorithms for 
seeking solutions to generic probabilistic programming problems with high-dimensional 
parameter space (Gelman et al. 2013, Hoffman and Gelman 2014, Betancourt et al. 2017), it 
is worth to investigate whether the combination of approximate methods and proper Bayesian 
treatment of hyperparameters could be fruitfully exploited in JSDM context.  

To conclude, I stress that while the research, presented in this thesis is self-consistent, 
completed and has already got several applications, is should be seen primarily as a solid 
starting point for further developments in the field of joint species modeling. Some of these 
potential developments are related to how more comprehensive ecological questions could be 
answered with statistical models, while other correspond to the numerical challenges that are 
posed by new emerging types and amounts of ecological data. I believe that advances and 
results of my study will enable future research to tackle these challenges and that the JSDM 
framework will become generally applicable and insightful for a wide array of real-world 
problems. 
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