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Abstract

Nearly one third of people in developed countries will be diagnosed with cancer
in their lifetime. Colorectal cancer (CRC) is the third most common cancer
worldwide and accounts for 10% of all new cancers. It is considered one of the
most preventable cancers and is often curable if diagnosed early. The risk of
developing [CRC| increases with age and is influenced by both hereditary and
environmental factors. Population screening reduces morbidity and mortality
from the disease, but persons with genetic predisposition may benefit from more
intensive screening and other risk-reducing interventions. However, most of the
heritability of remains unexplained. Therefore, more research is needed to
define the genetic architecture of susceptibility and to develop strategies to
identify individuals with substantial genetic risk.

The first aim of this thesis was to study the diagnostic approach to hereditary
cancer syndromes in patients with early-onset We investigated a series of 38
[CRC patients diagnosed before age 40 years, 15 of whom had been diagnosed with
hereditary syndromes. To assess the practical feasibility and added value
of whole-exome sequencing (WES) as a diagnostic test, we performed [WES] on
23 early-onset [CRC] patients with unknown etiology. Ten high-penetrance [CRC|
predisposition genes (MLH1, MSH2, MSH6, PMS2, APC, MUTYH, SMAD/,
BMPR1A, STK11 and PTEN) were analyzed for nonsynonymous variants, and
family histories were acquired from national population registries. Hereditary
syndromes were diagnosed in 42% (16/38; 95% confidence interval (CI)),
26%-59%) of the early-onset [CRC] patients, including 12 patients (32%) with
Lynch syndrome (LS)), three patients (7.9%) with familial adenomatous polypo-
sis (FAP) and one patient (2.6%) with juvenile polyposis (IP)). WES] revealed
only one additional pathogenic germline variant in MLHI. The majority of non-
syndromic patients had negative family history and microsatellite-stable (MSS])
[CRCl Although the prevalence of hereditary [CRC| syndromes was high in this
population, the diagnostic yield of was not superior to microsatellite insta-
bility (MSI) testing and clinical assessment for gastrointestinal (GIJ) polyposis.

The second aim was to study the contribution of rare germline variants to early-
onset Rare protein-coding variants may have clinical impact and can di-
rectly implicate genes that are involved in the pathogenesis of [CRCl Also, stud-
ies in isolated populations such as Finland may be useful in the identification
of rare disease-causing variants. To identify candidate predisposition genes
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in an unbiased manner, we analyzed data from 22 unexplained early-onset
[CRC patients and studied 95 familial patients as a validation set. Cases
with known hereditary syndromes were excluded. Minor allele frequencies
(MATk) were estimated in 3,374 Finnish and 58,112 non-Finnish controls. In
this series of 22 early-onset cases, we did not find any genes with recurrent loss-
of-function (LoF]) variants with [MAF] <0.1%. This observation, together with
negative family history in 86% (19/22) of the unexplained young patients, sug-
gests that the genetic background of these patients may be complex. Rare [Lol]
variants in three genes - ADAMTS4, CYTL1 and SYNE! - were shared between
early-onset and familial [CRC] cases. Both INTS5 and ACSL5 harbored rare mis-
sense variants in two of the 22 patients, whereas ARHGAP12, ATM, DONSON,
MCTP2 and ROS! showed rare homozygous variants in single early-onset
cases. Further studies are needed to determine whether the identified variants
are associated with risk.

The third aim was to study the genetic basis of common, complex Each
common variant has a small effect on disease risk, but their cumulative and
population-level effects may be substantial. We conducted a genome-wide as-
sociation study (GWAS) of in 1,701 cases and 14,082 cancer-free controls
from the Finnish population. Genotypes for a total of 9,068,015 common and
low-frequency variants were imputed and analyzed, and most promising single-
nucleotide polymorphisms (SNPk) were studied in additional 11,647 cases and
12,356 controls of European ancestry. The recently identified risk SNP
1992157 on chromosome 2q35 was independently replicated (p = 2.08 - 10~%;
odds ratio (OR]), 1.14; 95% [CIl 1.06-1.23), and it showed a genome-wide signif-
icant association in combined analysis (p = 1.50 - 107?). Twelve additional loci
(6p21.2, 8q23.3, 8q24.21, 10q22.3, 10q24.2, 11q13.4, 1123.1, 14q22.2, 15q13.3,
18q21.1, 20p12.3 and 20q13.33) were associated with in the Finnish popu-
lation (false discovery rate <0.1), which replicates the associations of these loci
with and underscores similarities in the genetic architecture of sus-
ceptibility between the Finnish population isolate and outbred populations.



Review of the literature

1 Cancer

Cancer (from Latin: crab) refers to a heterogeneous group of diseases charac-
terized by excessive and uncoordinated cell growth and division (Willis, [1952)).
Cancer may arise from the linings of body surfaces and cavities (carcinoma,
mesothelioma), mesenchymal tissue (sarcoma), blood-forming tissue (lymphoma,
leukemia), neuroectodermal tissue or germ cells. Most cancers are thought to
originate from a single cell that gives rise to successively expanding clones (Now-
ell, [1976). Malignant tumors can invade adjacent tissues and spread to other
parts of the body via lymphatics, blood vessels or direct seeding. Most cancer
deaths are caused by metastases (Mehlen et al., 2006). Benign tumors, by defini-
tion, remain anatomically localized but may become clinically significant if they
exert mechanical pressure on surrounding tissues or secrete excessive amounts
of hormones. Malignant cells are incompletely differentiated, which manifests
as abnormal size and shape, nuclear atypia and disturbed spatial orientation
(Kumar et al., 2014). Fundamental capabilities that most cancer cells possess,
the hallmarks of cancer, include proliferative signaling, evading growth suppres-
sors, avoiding immune destruction, enabling replicative immortality, deregulating
cellular energetics, resisting cell death, inducing angiogenesis and activating in-
vasion and metastasis (Hanahan et al., [2011)). The survival and proliferation of
cancer cells in the body depends on interactions with many other cell types such
as immune cells, fibroblasts, endothelial cells, pericytes and smooth muscle cells
(Hanahan et al., 2011)).

Mutations in cellular [DNAl have a strong influence on the pathogenesis of cancer,
and cancer may thus be considered a genetic disease. Cancer genes are mainly
involved in cellular processes that regulate cell survival, cell fate and genome in-
tegrity (Vogelstein et al., 2013). In addition to protein-coding genes, non-coding
[RNAI genes are relevant to cancer development (Esteller, [2011)). To date, muta-
tions in 567 human genes (approximately 3% of all human genes) have been
causally implicated in cancer (http://cancer.sanger.ac.uk/census). Mutations
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that confer a selective growth advantage are called driver mutations, whereas
those that are neutral or harmful to the cell are called passenger mutations. In
the majority of common cancers, driver mutations are outnumbered by passenger
mutations.

Age is a fundamental risk factor for cancer. Epidemiologic studies by Nordling in
1953 and Armitage and Doll in 1954 suggested that six or seven cellular events
are required for cancer development (Nordling,|1953; Armitage et al.,|1954)). This
conclusion was based on a mathematical model that explained the relationship
between age and cancer-related mortality. Tomasetti et al., |2015b, found that
mutation count data from [CRCk and lung cancers were consistent with only three
driver events. In some cancers, the number of driver events may be only one or
two (Vogelstein et al., 2013]).

Cancer risk is influenced by environmental and hereditary factors. For most
cancer types, environmental and behavioral factors are more important than
hereditary factors (Lichtenstein et al.,|2000]). Nearly 20% of all new cancer cases
can be attributed to tobacco smoking, and another 20% to suboptimal levels of
13 other environmental or behavioral factors: alcohol consumption, processed
and red meat consumption, fruit and vegetable intake, fiber intake, salt intake,
obesity, physical activity, occupational exposures, infections, radiation from the
sun, ionizing radiation, exogenous hormones and breastfeeding (Parkin et al.,
2011). Approximately 5% of common cancers are associated with hereditary
cancer syndromes, whereas the contribution of common genetic variants is less
clearly defined (Fletcher et al., [2010).

1.1 Oncogenes

Oncogenes encode proteins that are capable of promoting tumorigenesis. They
are generally dominant at the cellular level - i.e., monoallelic gain-of-function
contributes to tumorigenesis. Proto-oncogenes, which are normal counterparts of
oncogenes, can be converted into oncogenes by mutation or overexpression. Onco-
genes tend to be mutated at specific hotspots, but gene amplifications, translo-
cations and gain-of-function deletions are also observed (Vogelstein et al., [2013;
Zehir et al., [2017). Oncogenes include growth factors, protein kinases, intracel-
lular signal transducers and transcription factors (Croce, |2008). For example,
KRAS encodes an intracellular signaling protein that controls the Ras-mitogen
activated protein kinase -pathway (Pylayeva-Gupta et al., |2011). KRAS is the
most commonly mutated oncogene in human cancer (Zehir et al., 2017). KRAS
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is frequently mutated in adenocarcinomas of the pancreas, lung and colorectum
(http://cancerhotspots.org/). Germline gain-of-function mutations in onco-
genes are rare because of their embryonic lethality. An exception is the RET
oncogene, which causes hereditary multiple endocrine neoplasia (MEN]) type 2
when mutated (Mulligan et al., [1993; Hofstra et al., 1994)).

1.2 Tumor suppressor genes

Tumor suppressor genes ((ISGE) encode proteins that are capable of prevent-
ing tumorigenesis. They are generally recessive at the cellular level - i.e., bial-
lelic [LoF] contributes to tumorigenesis. Mutations in tumor suppressor genes
are characteristically spread across exons and exon-intron boundaries, and the
proportion of protein-truncating nonsense, splice site or frameshift mutations is
high (Vogelstein et al., 2013). Truncated genes may be functionally impaired
or underexpressed due to nonsense-mediated [RNA] decay (Conti et al., [2005)).
can be divided into gatekeepers that directly limit tumor initiation (e.g.,
RB1, VHL, NF1 and APC) and caretakers that maintain genome integrity (e.g.,
MLH1, BRCA1, BRCA2 and ATM) (Kinzler et al., [1997). Germline mutations
in cause autosomal dominant cancer susceptibility syndromes (Vogelstein
et al.,[2004). Patients who carry germline mutations in[T'SGE are at increased risk
of cancer because only one additional somatic mutation is required for biallelic
[LoFl This two-hit hypothesis was originally proposed by Alfred Knudson who
analyzed a series of 48 cases of retinoblastoma (Knudson, [1971)). Fifteen years
later, it was found that genetic susceptibility to early-onset retinoblastoma (as
well as osteosarcoma) is caused by germline mutations in RBI, which is a neg-
ative regulator of the cell cycle (Friend et al., |1986; Giacinti et al., 2006). The
most common mechanism for the inactivation of the wild-type allele of [ISGE is
loss of heterozygosity (LOH]). [LOHlmay be due to chromosomal deletion, mitotic
recombination or uniparental disomy; the latter two mechanisms preserve the
copy number of the gene (Ryland et al.,|2015). Some are haploinsufficient;
in this case, the loss of one gene copy has a tumorigenic effect (Santarosa et al.,
2004)). Haploinsufficiency is to be distinguished from a dominant-negative effect,
in which mutant proteins interfere with normal copies (Chenevix-Trench et al.,
2002)). Epigenetic silencing of can occur by biallelic promoter hyperme-
thylation, which is known to affect MLHI in[CRC| VHL in renal cell cancer and
CDKN2A in multiple cancer types (Kane et al.,[1997; Merlo et al., 1995; Herman
et al., |1994).
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1.3 Genomic instability

Somatic mutations are generated by [DNA| replication, chemical mutagens, radi-
ation, viruses and retrotransposons. Because of tissue self-renewal and environ-
mental exposures, somatic mutations accumulate in normal tissues during aging
(Martincorena et al., 2015). Genomic instability, which is present in most can-
cers, refers to an elevated rate of point mutations or chromosomal aberrations
(Negrini et al., [2010). It may be caused by impaired chromosome segregation,
homologous recombination, mismatch repair (MMRI), base- or nucleotide-excision
repair or polymerase proofreading (Thompson et al., [2010; Harris, [2013)). Under
normal circumstances, damage signaling prevents genetically damaged cells
from proliferating (Jeggo et al., [2016). The most common defect in [DNA] dam-
age signaling is inactivation of the p53 transcription factor. The corresponding
gene, TP53, is the most frequently mutated gene in human cancer (Zehir et al.,
2017)). The p53 pathway is normally activated in response to [DNA] damage and
oncogenic stress (Reinhardt et al., 2012)). When activated, p53 may trigger cell
cycle arrest, cellular senescence or apoptosis (Reinhardt et al., 2012)). Germline
mutations in TP53 underlie the Li-Fraumeni syndrome, which is associated with
increased risks of breast cancer, sarcoma and multiple other tumor types (Malkin,
2011)).

2 Genetic predisposition to cancer

Clinical signs of hereditary cancer syndromes include familial aggregation, early
age of onset, multiple primary cancers and non-malignant manifestations such
as café-au-lait spots in neurofibromatosis type 1 (Nagy et al., 2004). ”Cancer
families” were first documented in the early 1900s (Peutz, [1921; Warthin, {1931}
Helwig, |1946; Jeghers et al.,|[1949). The corresponding genetic defects, however,
remained elusive until the 1990s when genetic linkage and positional cloning stud-
ies became feasible. To date, mutations in approximately 100 genes have been
implicated in inherited susceptibility to human cancer (cancer.sanger.ac.uk/
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census)). Genetic studies of rare hereditary syndromes have contributed to our
understanding of the pathogenesis of common cancers that lack a strong herita-
ble component (Kinzler et al.,[1996]). On the other hand, have identified
more than 450 common [SNPk that are associated with low-penetrance cancer pre-
disposition (Sud et al.,[2017). In recent years, next-generation sequencing (NGS])
has attracted interest due to its potential for identifying disease-causing variants
that are too rare to be tagged by common [SNPk but too weakly penetrant to be
detected by linkage analysis (Zuk et al., [2014).

2.1 Familial aggregation and heritability

Most cancer types show statistically significant familial aggregation (Goldgar et
al.,[1994; Hemminki et al.,[1998b)). The familial relative risk (RR)) for first-degree
relatives of affected individuals is typically two- to threefold, but some cancers
such as testicular cancer, thyroid cancer and chronic lymphocytic leukemia dis-
play even stronger familial aggregation (Goldgar et al., [1994; Hemminki et al.,
1998b; Goldin et al., 2004). Familial clusters are caused by both environmental
and hereditary factors. To study the relative contributions of these influences,
it is useful to define heritability as the proportion of phenotypic variance that
can be ascribed to hereditary factors. For categorical traits, phenotypic variance
may refer to indirectly observed variance on a normally distributed liability scale
(Visscher et al., |2008). Heritabilities of common cancers have been estimated in
twin studies and [TWASE, and statistically significant hereditary effects have been
found for prostate cancer, breast cancer, [CRC| testicular cancer, kidney cancer,
melanoma and non-melanoma skin cancer (Sampson et al., 2015; Mucci et al.,
2016; Graff et al., |2017).

2.2 Linkage and association studies

Genetic linkage studies

Genetic linkage studies aim to identify polymorphic markers that are physically
linked to a disease susceptibility locus (Dawn Teare et al., [2005). A set of mark-
ers is selected to capture variation across the genome, and a statistical test is
carried out for each marker. No prior knowledge on candidate loci is required.
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Under the null hypothesis of no linkage, the recombination fraction (6) between
a marker locus and a causal locus is % In the case of parametric linkage analysis,
a likelihood ratio statistic is constructed to compare null likelihood (6 = %) with
maximized likelihood (0 < # < 1) (Haldane et al., [1947). The 10-based loga-
rithm of this statistic (the logarithm of the odds (LODI) score) is compared to a
prespecified significance threshold. Under certain assumptions, a score of
3 corresponds to a 90% posterior probability of linkage between the marker and
disease susceptibility locus (Sham, [1998). Non-parametric linkage analysis is a
model-free statistical approach that may be used to avoid restrictive assumptions
on penetrance, mode of inheritance or other parameters (Balding et al., [2007).
Data from multiple families can be combined to increase statistical power, and
sufficiently narrow linkage regions can be analyzed for mutations. An illustrative
example of the application of linkage analysis in cancer research is the mapping
of a[CRC susceptibility locus to chromosome 2p (Peltoméki et al., [1993)). In this
study, a total of 345 microsatellite markers were analyzed in two large kindreds
(family C from North America and family J from New Zealand), which resulted
in the identification of the marker D2S123 with estimated 8 = 0 in both families.
The pairwise [LOD] scores in families C and J were 6.39 and 1.45, respectively,
providing strong evidence of linkage. Both families were subsequently found to
harbor pathogenic germline mutations in MSH2 (Leach et al., [1993).

Genome-wide association studies

Even before became feasible, it was proposed that genetic association
studies would detect small genetic effects with greater statistical power than ge-
netic linkage studies (Risch et al., [1996). In 2005, the International HapMap
Project produced a genomic map of linkage disequilibrium (LCDJ), which showed
that the majority of common variation could be tagged with a relatively small
number of common (International HapMap Consortium, [2005). Data on
genome-wide patterns informed the development of arrays, which, to-
gether with large sample series, led to a surge in the number of published
beginning in 2007 (Visscher et al., 2017). Similar to genetic linkage studies,
require no prior knowledge of the location or biological nature of disease
susceptibility loci and may thus reveal previously unsuspected biological mecha-
nisms.

Most of cancer susceptibility are case-control studies in which hundreds
of thousands to millions of SNPk are genotyped across the genome. To avoid bias,
cases and controls should be sampled from the same reference population, and
[DNAl samples from cases and controls should be genotyped and processed with
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similar biochemical and bioinformatic methods (Wang et al., [2005). Cases may
be selected for high-risk features such as early-onset or familial cancer. Similarly,
controls may be selected for low-risk features such as being cancer-free at old
age. Due to the relative rarity of any particular cancer type, statistical power
can be increased by including cases with premalignant lesions such as colorectal
adenomas in studies of or Barrett’s esophagus in studies of esophageal
cancer (Tomlinson et al., 2007; Gharahkhani et al., |2016]). Pleiotropic effects
on multiple cancer types have been observed for some (e.g., 16983267
near MYC at 8q24 and rs2736100 near TERT at 5p15.33), which supports the
idea of investigating composite phenotypes of multiple genetically related cancers
(Tomlinson et al., 2007; Thomas et al., 2008; Rafnar et al., |2009)). Because of
economic constraints, primary[GWASE may be followed by one or more replication
stages in which smaller numbers of promising [SNPk are investigated in additional
case-control series. To increase statistical power, the primary test for disease
association can be based on combined analysis of discovery and replication sets
(Skol et al., 2006). Because of local correlations between (CD), genome-
wide testing of all common variants is roughly equivalent to 10 independent
statistical tests (Pe’er et al.,[2008)). At a type 1 error rate of 5%, this corresponds
to a Bonferroni-corrected significance threshold of 01-35 = 5.1078. Strategies
for functional characterization of [EWASlderived risk loci include fine-mapping,
resequencing, regulatory annotation, expression quantitative trait locus analysis
and experimental models (Freedman et al., [2011)).

Because the effects of common [SNPk on cancer risk are small, meta-analysis of
multiple primary is a useful strategy for increasing statistical power and
eliminating study-specific false-positive results (Evangelou et al., [2013)). Geno-
type imputation helps to harmonize datasets and to recover genotypes that are
missing in a subset of studies (McCarthy et al., 2016|). Meta-analyses may be
based on fixed-effect or random-effects models (Riley et al.,|[2011). In fixed-effect
meta-analysis, the genetic effect is assumed to be the same in each study. In
many practical settings, however, the genetic effect is somewhat variable because
of differences in study designs, methods and populations. Random-effects meta-
analysis allows the genetic effect to vary from study to study, and it can be
used to estimate the mean genetic effect in a population of studies. In the ab-
sence of study heterogeneity, fixed-effect and random-effects models yield numeri-
cally identical results. Meta-analysis of can be performed with summary
statistics, which improves computational efficiency and protects the privacy of
study participants (Pasaniuc et al., |2017)).

Common [SNPE identified in [GWASE have small effects on cancer risk, but their
cumulative and population-level effects may be substantial. The combined ef-
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fects of multiple risk alleles can be quantified with the use of polygenic risk
scores (PRSk), which, under some assumptions, model the relationship between
genotype combinations (2" for n variants) and disease risk. As compared to the
population median, [RRb for individuals in the highest percentile of have
been estimated at 4.7, 3.2 and 2.9 for prostate, breast and colorectal cancers,
respectively (Eeles et al., 2013; Michailidou et al., 2013; Frampton et al., 2016).
The predictive accuracy of can be improved by adding further risk
and by including information on family history (Chatterjee et al., |2013). Also,
causal [SNDPk (which are often unknown) are likely to be more informative than
tag that are used in [GWASk. An area of ongoing investigation is whether
exponential (log-additive) or linear (additive) models should be used to model
cumulative effects; the exponential model implies higher risks for individuals with
large numbers of risk alleles (Kraft, [2017).

2.3 Next-generation sequencing

is a high-throughput technology that has dramatically reduced the cost and
run time for generating large-scale genomic data. To put this in perspective,
it has been estimated that Sanger sequencing of a human genome on one ma-
chine takes approximately 60 years, whereas [NGSFbased whole-genome sequenc-
ing (WGS) can be performed in one or two days (Bennett et al., [2005; Miller
et al., [2015)). typically begins with library preparation, in which [DNA] is
purified and randomly fragmented (Metzker, [2010). Polymerase chain reaction
(PCRJ)-based amplification can increase signal strength during sequencing but
also introduces polymerase errors and amplification bias (e.g., underrepresenta-
tion of regions with high GC-content; Aird et al.,|2011)). Unless the whole genome
is sequenced, targeted regions are captured with probe hybridization to reduce
sequencing costs. Next, [DNA] fragments are typically immobilized on solid sur-
faces or beads. The prepared [DNA] fragments can be sequenced with a variety of
methods. In sequencing-by-synthesis, fluorescent or otherwise labeled nucleotides
produce base-specific signals when they are incorporated into a complementary
[DNA] strand. The efficiency of is explained by the massive parallelization
of the sequencing process. The sequencing reads are mapped into a reference
genome or assembled de novo to produce variant calls.

Progress in has revolutionized many areas of cancer research and clini-
cal oncology. The Cancer Genome Atlas project has produced data from
thousands of tumors and matched normal tissues, which has enabled the dis-
covery of significantly mutated cancer genes across more than 20 tumor types
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(Lawrence et al., 2014). These results indicate that while some cancer genes
are relatively tissue-specific, others are frequently mutated in a variety of tumor
types. In addition, there is substantial genomic diversity among tumors within
the same histopathologic category. Because exomes contain only part of the in-
formation that may be gained from cancer genomes, the Pan-Cancer Analysis of
Whole Genomes consortium has collected and harmonized data from more
than 2,600 tumors and is beginning to reveal genomic patterns of somatic struc-
tural variants, copy number alterations and non-coding point mutations (https:
//wwu.biorxiv.org/content/biorxiv/early/2017/07/12/162784). In clini-
cal oncology, the MSK-IMPACT panel was used to perform somatic mutation
profiling in a prospective series of more than 10,000 patients with metastatic
cancer (Zehir et al.,[2017). MSK-IMPACT revealed at least one clinically action-
able mutation in 38% of the patients. On the other hand, has revealed a
number of novel tumor susceptibility syndromes, which not only improves genetic
diagnostics but also advances our understanding of general disease mechanisms
(Jamshidi et al.,[2015). Large-scale projects are underway to realize the potential
of in complex disease genetics such as multifactorial cancer susceptibility
(Goldfeder et al., [2017)).

2.4 Genetic testing for cancer risk

The purpose of genetic testing for cancer risk is to identify individuals who are
genetically predisposed to cancer and may benefit from clinical intervention. Ge-
netic counseling is offered before and after genetic testing to obtain informed
consent, to interpret and explain results, and to give recommendations on clin-
ical management. Assessment of genetic risk is a common clinical challenge in
the management of and breast cancer (https://www.nccn.org/). Family
history is used to estimate mutation probability and to prioritize family mem-
bers for genetic testing. An accurate pedigree should capture all cancer cases
and unaffected relatives in three or four generations, including information on
age at cancer diagnosis and benign conditions associated with hereditary can-
cer syndromes (Rimoin et al., [2013]). Although hereditary syndromes can be
suspected on the basis of family history and tumor features, the sensitivity of
guideline-directed genetic testing is suboptimal (Mandelker et al., 2017)).

Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA])
are cost-effective methods for testing one or a small number of genes, whereas
[NGShbased methods such as [WES| and targeted gene panels can screen
large numbers of genes in parallel. Diagnostic may be useful when a genetic
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disorder is suspected but clinical features do not suggest a specific syndrome
(Robson et al., 2015)). A challenge inherent in multiplex testing is the elevated
frequency of variants of uncertain significance (VUSE) and incidental findings.
can be reanalyzed periodically and reclassified when sufficient evidence
has accumulated (Richards et al., |2015|). According to the recommendations
of the American College of Medical Genetics and Genomics, incidental findings
in all clinically actionable genes should be reported, regardless of the clinical
context (Kalia et al.,[2017)). It has been suggested, however, that especially cancer
patients may have limited time and energy to manage information on incidental
findings, and therefore an opt-out policy may be preferred (Parsons et al., [2014)).
If genetic testing is restricted to firmly established cancer susceptibility genes,
incidental findings are also likely to be related to cancer susceptibility.
can also be used for somatic tumor profiling, which often yields secondary and
incidental information on germline predisposition. This possibility needs to be
discussed with cancer patients prior to tumor profiling (Robson et al., 2015]).

3 Colorectal cancer

3.1 Epidemiologic and clinical aspects

Worldwide, accounts for approximately 10% of the 14 million new cancers
that are diagnosed each year and a similar proportion of cancer deaths. In 2012,
the global age-standardized incidence rate of [CRC| was 21 per 100,000 person-
years for males and 14 per 100,000 person-years for females with wide geographic
variation (Ferlay et al.,[2015)). For example, the incidence of [CRC] was highest in
Australia (44.8 per 100,000 person-years for males and 32.2 per 100,000 person-
years for females) and lowest in Western Africa (4.5 per 100,000 person-years for
males and 3.8 per 100,000 person-years for females). Age is the strongest demo-
graphic risk factor for[CRCl An estimated eleven percent of [CRCk are diagnosed
before age 50 years and 3.2% before age 40 years. In developed countries, the
cumulative risk of by age 75 years was 4.3% for males and 2.7% for females.

18



Environmental and behavioral risk factors for [CRCl include obesity, physical in-
activity, high consumption of red and processed meat, low fiber intake, low intake
of fruits and vegetables, high alcohol consumption and smoking (Bouvard et al.,

2015; Larsson et al., [2007; Lee et al., 2012, Aune et al., |2011a; Botteri et al.,
2008} Aune et al., [2011b; Cho et al., [2004; Koushik et al., [2007]).

There are also medical risk factors for [CRCl Inflammatory bowel disease ([BDI)
is associated with a twofold overall risk of [CRC| but personal risk depends on the
presence of dysplasia, duration of disease, extent of inflammation and anatomical
complications (Jess et al., Lutgens et al., Beaugerie et al., .
Data from randomized clinical trials (RCTE) suggest that non-steroidal anti-
inflammatory drugs and postmenopausal hormone therapy are associated with
decreased risk of [CRC] whereas diabetes mellitus was associated with increased
risk of in a meta-analysis of observational studies including both type 1 and
type 2 diabetics (Bibbins-Domingo et al., Simon et al., Deng et al.,

R012).

Approximately 10% of cases have at least one first-degree relative with
(Salovaara et al., [2000). In a meta-analysis of 26 case-control and cohort
studies, first-degree relatives of patients had a 2.25-fold [RR] of (95%
CI, 2.00-2.53) as compared with those with negative family history (Johns et al.,
. The risk was higher for those with multiple or early-onset [CRC] cases in
the family. A significant part of the familial aggregation of [CR{| is related to
hereditary factors; in a Nordic twin study, the heritability of was estimated
at 40% (95% CI, 33%-48%; Graff et al., 2017).

There is strong evidence that screening for in average-risk adults aged 50
to 75 years reduces disease-specific mortality, and that the benefits outweigh the
harms, which are mainly related to endoscopic complications (Lin et al., .
Screening decisions in those younger than 50 years or older than 75 years should
be made on an individual basis. Persons with affected first-degree relatives may
begin screening at age 40 years or 10 years earlier than the earliest case in
the family (Rex et al., . Among a number of possible screening methods,
two are currently supported by [RCTk: flexible sigmoidoscopy and guaiac-based
fecal occult blood test (gFOBT]). In meta-analyses of [RCTE (four studies on
flexible sigmoidoscopy and five studies on [gFOBT]), flexible sigmoidoscopy re-
duced [CRClspecific mortality with an incidence rate ratio (IRR]) of 0.73 (95%
[CT 0.66-0.82), and [gFOBT] reduced [CRChspecific mortality with a [RR] of 0.91
at 19.5 years (95% [CI] 0.84-0.98) and 0.78 at 30 years (95% [CI] 0.65-0.93) (Lin
et al., . Other screening methods available for clinical use are based on ei-
ther direct visualization (colonoscopy and computed tomographic colonography)
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or stool analysis (fecal immunochemical test (FIT]) and stool [DNA]). In Finland,
population-level screening for was evaluated in a randomized health ser-
vices study during 2004-2016. The study included individuals aged 60-69 and
compared biennial FOBT| with no organized screening. At a median follow-up
of 4.5 years (based on data from years 2004-2012; Pitkéniemi et al., |2015)), the
incidence of [CRC] had increased in the screening arm ([RRL 1.11; 95% [CI], 1.01-
1.23), but there was no significant difference in [CRClspecific mortality between
the screening and control arms ([RR] 1.04; 95% [CI] 0.84-1.28). Longer follow-up
is required to draw more definite conclusions regarding the effect on [CRClspecific
mortality. A new screening program, based on biennial [ETT], is planned to begin
in Finland in 2019 and is expected to expand from volunteering municipalities
into a nationwide program.

Five-year relative survival rates for patients with have improved over the
last decades and already exceed 60% in developed countries (Miller et al., 2016)).
In the United States in 2007-2013, five-year relative survival rates were 90%
for localized disease, 71% for regionally metastatic disease and 14% for distant
metastatic disease, underscoring the value of early diagnosis. In the 8th edition
of the Tumor-Node-Metastasis (TNM]) classification, is staged into eleven
anatomic-prognostic groups (0, I, ITA-C, IITA-C and IVA-C; Amin et al., 2016)).
The older Dukes’ (A-D) and modified Astler-Coller (A, B1-3, C1-3, D) systems
are not recommended for clinical use anymore. In addition to advanced [TNM]
stage, unfavorable tumor characteristics include BRAF p.Val600Glu mutation
(Modest et al., 2016]), lymphovascular invasion (Hogan et al., |2015), perineural
invasion (Liebig et al., [2009), poor differentiation (Chapuis et al., |I985), signet
ring cell histology (Nissan et al.,[1999)) and clinical presentation with obstruction
or perforation (Chen et al., |2000).

The primary treatment for most patients with resectable is surgery with
curative intent. Depending on the risk of recurrent disease and surgical crite-
ria, surgery may be combined with preoperative, perioperative or postoperative
oncological treatment (Van Cutsem et al., 2016). Patients with unresectable dis-
ease who are candidates for systemic therapy may be treated with conventional
chemotherapy (fluoropyrimidines, oxaliplatin, irinotecan), antiangiogenic agents
(bevacizumab, ramucirumab, aflibercept), epidermal growth factor receptor an-
tibodies (cetuximab, panitumumab) or the multi-kinase inhibitor regorafenib
(Van Cutsem et al., [2016). Immunotherapy is being actively investigated in
[MSI[CRC (Le et al., [2017)), whereas anti-HER2 therapy has shown promise in
HER2-positive metastatic (Sartore-Bianchi et al., |2016).
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3.2 Molecular pathogenesis

The molecular pathogenesis of is a multistage process that may take years
or decades. The adenoma-carcinoma sequence describes the stepwise accumu-
lation of genetic events that lead from normal colorectal epithelium to invasive
adenocarcinoma (Fearon et al., [1990; Luebeck et al., |2002). Most driver events
are somatic, but some can be inherited. Early studies showed allelic losses on
chromosomes 5q (containing APC), 8p, 17p (containing TP53) and 18q (contain-
ing a cluster of SMAD genes and DCC), suggesting the presence of in these
chromosomal regions (Vogelstein et al.,|1989). Loss of APC is very common even
in smallest adenomas and initiates tumorigenesis by activating the Wnt-S-catenin
signaling pathway (Powell et al.,[1992)). APC-wild-type[CRCk (20-30%; Muzny et
al.,[2012)) may harbor CTNNBI mutations or R-spondin fusion genes (RSPO2 or
RSPOSY), which provide alternative routes for activating Wnt--catenin signaling
(Morin et al., 1997 Seshagiri et al.,2012)). KRAS mutations are common in larger
adenomas (>1 cm) and invasive adenocarcinomas (Forrester et al., [1987; Boland
et al.,[1995). KRAS mutations, which are present in 40% of [CRCE, are mutually
exclusive with BRAF p.Val600Glu, which is observed in 10% of (Muzny et
al.,|2012). BRAF encodes a serine-threonine kinase downstream of KRAS in the
mitogen-activated protein kinase pathway (Vogelstein et al., |2004)). It remains
poorly understood why BRAF-mutant are clinically more aggressive than
KRAS-mutant [CRCk. BRAF mutations outside codon p.Val600 account for one
fifth of BRAF mutations in [CRC| and seem to be associated with more favorable
prognosis than BRAF p.Val600Glu (http://www.cancerhotspots.org/; Jones
et al., 2017). Loss of TP53 is typically a late event in colorectal carcinogenesis
and correlates with transition from adenoma to carcinoma (Ohue et al., [1994;
Boland et al., [1995). The phosphoinositide-3-kinase and transforming growth
factor (TGE))-S signaling pathways are also frequently dysregulated (Muzny et
al., [2012).

Ten to 15 percent of display [MSI] (Aaltonen et al.,[1998), which is caused
by inherited or somatic defects in [DNAIMMRI genes (MLH1, MSH2, MSH6 and
PMS2). IMSIICRCE are usually diploid or near-diploid but display large numbers
of unrepaired replication errors, which are frequent at mono-, di- and trinucleotide
repeat tracts (Thibodeau et al.,[1998). Underexpression of [MMRI genes has been
observed in aberrant crypt foci that may be early precursors to (Leggett
et al.,[2010; Kloor et al.,[2012)). Inactivation of the [TGEF}3 signaling pathway by
frameshift mutations in TGFBR2 occurs in as many as 90% of [MSIICRCk (Kon-
delin et al., |2017). Mutations in KRAS and TP53, however, are less frequent in
[MSIICRC than in (Sinicrope et al., 2013} Lin et al., [2015). Although

21


http://www.cancerhotspots.org/

global hypomethylation is a common characteristic of [CRC} CpG islands (includ-
ing the promoter region of MLH1) are highly methylated in a subset of
that express the CpG island methylator phenotype (Goelz et al., . The CpG
island methylator phenotype is often associated with BRAF p.Val600Glu, tumor
[MST and serrated histology (Leggett et al., [2010). Somatic BRAF p.Val600Glu
mutation is rare in patients with germline mutations is [MMR] genes (Domingo
et al., , which underlines biological differences between sporadic and
related [MSII[CRCl Clinicopathologic features associated with [MSII[CRC| include
proximal location, mucinous histology, poor differentiation, immune cell infiltra-
tion and lower risk of distant metastases (Kim et al., Kakar et al.,
Malesci et al., [2007)). [MSIICRClis common in female and elderly patients (Kakar

et al., 2003).

In recent years, NGSlbased tumor profiling has advanced our understanding of
the genetic landscape of In exome-wide studies, the median numbers of
nonsynonymous mutations in and [MSI[CRCk have been estimated at 66
(interquartile range ([QR)), 47-92) and 777 494-1,326), respectively (Wood
et al., Muzny et al., . Most of the observed mutations appear to be
passenger events. With the use of recently developed statistical methods, new
driver genes have been identified and linked to incompletely understood biological
processes such as chromatin remodeling (ARID1A), proteolysis (FBXW7) and
processing (PCBP1) (Muzny et al., Lawrence et al., Kandoth
et al., Domingo et al., . In particular, somatic mutations in the proof-
reading domain of POLFE have been found in ultramutated that represent
approximately 1% of all[CRCk (Muzny et al.,[2012). On the other hand, [NGS has
enabled large-scale analyses of somatic mutation processes. Mutation signatures
associated with [CRC include signature 1B (associated with aging), signature 6
(associated with [MSI)), signature 10 (associated with POLE mutations) and sig-
nature 17 (associated with unknown etiology) (Alexandrov et al., 2013; Katainen
et al., 2015). Moreover, gene expression studies have classified [CRCE into four
consensus molecular subtypes that cannot be explained by any single genetic de-
fect alone (CMS1, "[MSI immune”; CMS2, ”canonical”; CMS3, "metabolic”; and
CMS}4, ”mesenchymal”; Guinney et al., .

3.3 Hereditary colorectal cancer syndromes

Cancers of the [GIl tract account for approximately 29% of all incident cancers
and 37% of all cancer deaths globally (Ferlay et al., 2015). Environmental ex-
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posures are considered the principal etiologic factors for most cancers. The
contribution of genetic factors, however, appears to be important especially for
cancers of the colon and rectum (as compared to cancers of the upper [GI tract).
Hereditary syndromes can be broadly divided into hereditary nonpolyposis
colorectal cancer (HNPCC; now termed [[S)) and [GIl polyposis syndromes. These
syndromes are reviewed in this chapter and summarized in Table 3.1 and Figure
3.1.

3.3.1 Lynch syndrome

Genetic basis. is the most common hereditary [CRC] syndrome, which ac-
counts for approximately 3% of new [CRC| cases (Moreira et al., 2012). Its esti-
mated prevalence in North American and Australian populations is 1:279 (95%
[CTl 192-403 Win et al., [2017), whereas the prevalence may be higher in certain
founder populations (Boland et al., [2018). The exact prevalence in Finland is
unknown (Chapelle, [2005). In 1993, tumor [MSIl was detected in families with
autosomal dominant susceptibility, and underlying germline mutations in
[DNAI [MMRI genes were identified soon thereafter (Aaltonen et al., [1993; Pel-
tomaki et al., [1993; Fishel et al., [1993; Leach et al., [1993; Bronner et al., [1994;
Papadopoulos et al., [1994; Nicolaides et al., [1994; Miyaki et al., [1997)). [MMRI
proteins participate in [DNAl repair by forming heterodimers that recognize base-
pair mismatches (Kunkel et al., |2005). An uncommon cause of is deletion
of the 3’ end of EPCAM (chromosome 2p21), which leads to constitutional hy-
permethylation of the promoter region of MSH2 in cis (Ligtenberg et al., [2009;
Kovacs et al., [2009).

Clinical manifestations. The penetrance of depends on the mutated gene
and sex. In a prospective study of 3,119 patients who were followed for 24,475
person-years, the cumulative risk of [CRC] by age 75 years was 46%, 43% and
15% for germline mutations in MLHI! (n=1,473), MSH2 (n=1,060) and MSH6
(n=462), respectively (Mgller et al., 2017)). Patients with mutations in PMS2
(n=124) remained [CRClree during the 524 person-years of follow-up, reflecting
the lower penetrance of this gene defect (Mgller et al., [2017). Women with
appear to be at similar risk of and endometrial cancer. Other [[S}associated
cancers include gastric, small bowel, bile duct, renal, urothelial, ovarian and brain
cancers (Watson et al., [2005). Muir-Torre syndrome refers to the co-occurrence
of skin tumors (keratoacanthomas and sebaceous gland tumors) and internal ma-
lignancies and is often a subtype of (Ponti et al., 2005). The number of
colorectal adenomas in patients with is somewhat higher than in the gen-
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eral population but typically remains below 10 (Kalady et al., 2015)). Biallelic
germline mutations in genes (often in PMS2) cause a syndrome of con-
stitutional [MMRI deficiency, which is associated with [CRC] small bowel cancer,
brain tumors, lymphoma and leukemia that often manifest in childhood (Vasen
et al., 2014).

Diagnosis and management. The revised Bethesda Guidelines and Amster-
dam IT criteria can be used to select patients for [MSIl testing (Vasen et al., [1999}
Umar et al., |2004)). Because of the imperfect sensitivities of these clinical cri-
teria (87.8% and 27.2%, respectively; Moreira et al., |2012), clinical practice has
shifted towards universal [MSI] screening among newly diagnosed patients
(Heald et al., 2013). Somatic BRAF p.Val600Glu mutation excludes with
high confidence, which facilitates universal screening (Toon et al., 2013). [MSI]
testing can be performed with [MMRI protein immunohistochemistry ([HC), di-
rect analysis of the Bethesda markers (BAT26, BAT25, D5S346, D2S123 and
D17S250) or [NGStbased classifiers (Suraweera et al., [2002f Hampel et al., [2005}
Hause et al., 2016). [HC is inexpensive and provides information on which
[MMR] gene is likely to be mutated. Screening for germline mutations in [MMR]
genes is recommended for all patients with [MSI[CRC] and the identification
of a pathogenic germline variant in MLH1, MSH2, MSH6, PMS2 or EPCAM
(https://www.insight-group.org/variants/databases/) establishes the di-
agnosis of Surveillance colonoscopy is recommended every one or two years
beginning at age 20-25 years (or even earlier, depending on family history) to
reduce [CRCHspecific and overall mortality (Giardiello et al., [2014; Syngal et al.,
2015; Jarvinen et al., [2000)). Aspirin (600 mg per day) appeared to reduce the
incidence of [LSlrelated in a[RCT] but further confirmatory studies are re-
quired (Burn et al., [2011). The prognosis of [[Stassociated is favorable
with a 10-year overall survival rate of 91% (Mgller et al., 2017)). Women with
should be offered surveillance for endometrial and ovarian cancers, as well as pro-
phylactic hysterectomy and bilateral salpingo-oophorectomy after child-bearing
age (Giardiello et al., [2014; Syngal et al., 2015).

3.3.2 Gastrointestinal polyposis syndromes

Familial adenomatous polyposis

Genetic basis. [FAP]is the second most common hereditary [CRC| syndrome
(Gardner, 1951). Its incidence is approximately 1 per 10,000 live births, and it
accounts for <1% of newly diagnosed [CRChk (Bjork et al.,[1999; Biilow, [2003). An
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important first clue to the genetic etiology of [EAP] was a 42-year-old man with
colon cancer, colorectal polyposis, congenital malformations and an interstitial
deletion between 5q13-q22 (Herrera et al., [1986). In 1987, the gene underlying
[FAP] was mapped near 5q21-q22 (Bodmer et al.,[1987). In 1991, the simultaneous
efforts of two research groups revealed germline and somatic mutations in APC
(Kinzler et al., [1991; Nishisho et al., [1991; Groden et al., [1991; Joslyn et al.,
1991). As many as 25% of patients with [FAP] present with de novo mutations
and a negative family history (Bisgaard et al.,|1994).

Clinical manifestations. Patients with classical [FAP] begin to develop ade-
nomas in their adolescent years, and the number of polyps is likely to increase
to more than 100 by adulthood. Untreated patients with classical [FAP] are at
90% cumulative risk of developing by age 50 years, but this risk can be
greatly reduced with prophylactic surgery and endoscopic surveillance (Bussey,
1975)). Patients with smaller numbers of polyps (10-100) and later age at presen-
tation (often > 50 years) are classified as having attenuated [FAP] (Knudsen et al.,
2003)). Attenuated [FAP] may be caused by mutations in the 5’ end (proximal to
codon 158) or 3’ end (distal to codon 1,596) of APC (Brensinger et al., |1998;
Heppner Goss et al., |2002)). Extraintestinal manifestations also depend on the
site of mutation (Galiatsatos et al., [2006). In addition to [CRCl [FAT] is associ-
ated with medulloblastoma, hepatoblastoma, papillary thyroid cancer, duodenal
cancer, ampullary cancer, pancreatic cancer and gastric cancer (Galiatsatos et
al., [2006)). An important extraintestinal manifestation of [FAP]is desmoid tumor
(mesenteric fibromatosis), which causes a high degree of morbidity and mortality
(Slowik et al., [2015)).

Diagnosis and management. Genetic testing for APC mutations is recom-
mended in individuals with a personal history of at least 10-20 colorectal ade-
nomas, typical extraintestinal manifestations (desmoid tumor, hepatoblastoma,
papillary thyroid cancer or congenital hypertrophy of the retinal pigment epithe-
lium) or a known mutation in the family (https://www.nccn.org/)). Annual
surveillance with flexible sigmoidoscopy or colonoscopy is usually begun at pu-
berty (Syngal et al.,[2015)). The primary prophylactic treatment for classical [FAT]
is proctocolectomy or colectomy in the second or third decade of life. Rectal en-
doscopy is recommended at least once every year after rectum-preserving surgery.
The approach to surveillance and prophylactic surgery in attenuated [FAP]is less
aggressive; annual colonoscopic surveillance can be initiated at age 25 years, and
all patients may not require prophylactic colectomy.
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MUTYH -associated polyposis

MUTYH-associated polyposis (MAD) is an autosomal recessive syndrome char-
acterized by multiple colorectal adenomas (typically 3-100) and high-penetrance
predisposition (Sieber et al., 2003). [MAPlrelated colorectal tumors
show a high frequency of somatic G>T transversions due to impaired base-
excision repair (Al-Tassan et al., 2002). The two most frequent mutations
in MUTYH are p.Tyrl76Cys (rs34612342) and p.Gly393Asp (rs36053993),
which have a combined allele frequency of 1% in European populations
(http://gnomad.broadinstitute.org). In biallelic mutation carriers, the
cumulative risk of [CRCl by age 70 years has been estimated at 75.4% for males
and 71.7% for females (Win et al., [2014). The risk of [CRC] in monoallelic
MUTYH mutation carriers may be moderately elevated (Lubbe et al.,2009; Win
et al., [2014). Extracolonic manifestations of [MAP] include gastric and duodenal
polyps and duodenal cancer (Nielsen et al., |2005; Vogt et al.,|2009). The clinical
management of is roughly similar to attenuated [FAP] (Syngal et al., [2015)).

Juvenile polyposis

[IPlis an autosomal dominant syndrome that predisposes to[CRC, juvenile polyps
and congenital anomalies (Calva et al., [2008)). Data on its incidence are scarce,
but the incidence is thought to be approximately 1:100,000-1:160,000 (Syngal
et al., [2015). In 1998, Howe et al. mapped a gene for [JP| to chromosome
18g21.1, which led to the identification of a pathogenic frameshift variant in
SMAD/ (Howe et al.,|1998a; Howe et al.,[1998b). In 2001, linkage analysis iden-
tified another [JP] locus near 10q22-q23, and nonsense mutations were detected
in BMPR1A, which, similar to SMAD/, is a component of the [TGEF}3 signaling
pathway (Howe et al., 2001)). Nonetheless, as many as 60% of [JP] cases remain
genetically unexplained (Howe et al.,2004). The estimated risk of in [IP] is
approximately 15% by age 35 years and 68% by age 60 years (Jass et al., [1988;
Murday et al.,[1989)). Juvenile polyps are primarily found in the colon and rectum
but also in the small bowel and stomach and are characterized histologically by
mucous retention, edema and granulation tissue (Rosai, 2011). Solitary juvenile
polyps are sometimes found in the absence of [JP] (Nugent et al.,[1993). Abdom-
inal symptoms are usually noted in childhood or adolescent years. In a series
of 145 cases, mean age at symptomatic onset was 6 years (Veale et al., [1966)).
In a subset of patients, [IP] is associated with hereditary hemorrhagic telang-
iectasia (Osler-Weber-Rendu syndrome; O’Malley et al., [2012]). Surveillance is
recommended for cancers of the colon, stomach and small bowel (Syngal et al.,
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2015).

Peutz-Jeghers syndrome

Peutz-Jeghers syndrome (PJS) is an autosomal dominant syndrome associated
with [CRC], Peutz-Jeghers polyps and mucocutaneous pigmentations. Its exis-
tence was first suggested by Jan Peutz in 1921 and confirmed by Harold Jeghers
in 1949 (Jeghers et al.,[1949). The reported incidence of [PJS]is 1:8,300-1:200,000
live births (Lier et al., [2010). During 1997-1998, the associated gene was lo-
calized to chromosome 19p, and mutations were detected in the serine-threonine
kinase STK11, which was probably the first example of protein kinase inactivation
underlying cancer susceptibility (Hemminki et al., [1997; Amos et al., [1997; Hem-
minki et al., |1998al). Histologically, Peutz-Jeghers polyps are characterized by
smooth muscle fibers that protrude from the muscularis mucosae (Rosai, 2011)).
may present in childhood with abdominal pain, intussusception, [GI] bleeding
and rectal prolapse. In later years of life, the primary concern is predisposition
to malignant tumors. Cancer risk in is highly pleiotropic and includes can-
cers of the colorectum, pancreas, stomach, esophagus, small bowel, ovary, uterus,
breast and lung (Giardiello et al., 2000). Accordingly, surveillance for multiple
cancer types is recommended (Syngal et al., [2015).

PTEN hamartoma tumor syndrome

PTEN hamartoma tumor syndrome (PHTS) refers to a group of rare clinical
syndromes (Cowden syndrome, Bannayan-Riley-Ruvalcaba syndrome, Proteus
syndrome and Proteus-like syndrome) that are caused by germline mutations in
PTEN, which is a negative regulator of the phosphoinositide-3-kinase pathway
(Hobert et al., 2009). The mode of inheritance is autosomal dominant. Clinical
manifestations are diverse and include intestinal and extraintestinal hamartomas
and a spectrum of benign and malignant tumors. In a cohort of 127 PTEN
mutation carriers, the standardized incidence ratio for was 224 (95% [CIL
119-403; Heald et al., [2010). is also associated with increased risks of
breast, thyroid, endometrial and renal cancers and melanoma (Tan et al., [2012)).
Surveillance for multiple cancer types is recommended (Hobert et al., [2009).
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Polymerase proofreading-associated polyposis

Germline mutations in the proofreading domains of POLE and POLDI1 were
identified with the use of linkage analysis and in families with suspected
autosomal dominant [CRC] susceptibility, colorectal adenomas and endometrial
cancer (Palles et al., 2013|). Further studies have revealed recurrent POLFE
p.Leud424Val mutations in patients with high-risk features (early age of on-
set, colorectal polyps, familial [CRC| or multiple primary [CRCk; Spier et al.,[2015}
Elsayed et al., 2015; Bellido et al.,[2016)). The clinical characterization of POLE-
and POLD1-related phenotypes is complicated by ascertainment bias in the pub-
lished studies. Homologues of POLE p.Leud424Val and POLDI! p.Serd78Asn
cause polymerase infidelity and elevated mutation rates in yeast cells (Palles et
al., [2013).

NTHL1-associated polyposis

NTHL1-associated polyposis was detected in a study of 48 Dutch families
with unexplained adenomatous polyposis. Seven individuals from three families
were found to have biallelic [Lol variants in NTHL1 (p.GIn90Ter; 0.144%;
http://gnomad.broadinstitute.org), compatible with autosomal recessive in-
heritance (Weren et al., [2015). Biallelic loss of NTHL! has been reported in
high-penetrance predisposition to multiple benign and malignant tumor types,
but evidence remains scarce (Weren et al., 2015} Rivera et al., 2015). Similar to
MUTYH, NTHL1 is a component of the base-excision repair pathway, but muta-
tions in these two genes are associated with different somatic mutation patterns
(Weren et al., [2015)).

Hereditary mixed polyposis

GREM1 has been implicated in autosomal dominant hereditary mixed polypo-
sis syndrome in Ashkenazi Jewish families (Jaeger et al., |2012). The disease-
associated locus was mapped to chromosome 15q13.3, and a 40-kb duplication
was detected upstream of GREM1. The duplication was associated with increased
allele-specific expression of GREM1 (Jaeger et al.,|2012).
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3.3.3 Other hereditary syndromes

Li-Fraumeni syndrome

The risk of in Li-Fraumeni syndrome is poorly understood. An association
between early-onset [CRC| and classic Li-Fraumeni syndrome has been suggested
(Wong et al., |2006). In a series of 457 early-onset cases diagnosed before
age 40 years, six patients (1.3%) had missense variants in TP53 (Yurgelun et al.,
2015)). These six patients did not meet clinical criteria for Li-Fraumeni syndrome,
and the pathogenicity of the identified variants could not be confirmed.

Oligodontia{CRC| syndrome

AXIN2 has been implicated as a cause of autosomal dominant [CRC|susceptibility
in rare families with variable numbers of colorectal adenomas with or without
tooth agenesis (Lammi et al., 2004; Rivera et al.,|2014). Based on these studies,
AXIN2 mutations are thought to be highly penetrant.
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Figure 3.1: Genetic architecture of susceptibility. Cumulative risk ratios
were calculated from cumulative risks by age 70-80 years or[ORE from case-control
studies. The cumulative risk of in the general population was assumed to
be 3.4% by age 75 years (Ferlay et al., . *Risk estimate for [JPl
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Table 3.1: Hereditary [CRC| syndromes. MOI, mode of inheritance;
AD, autosomal dominant; AR, autosomal recessive.

Syndrome Chro.m osomal  Mutated MOI Clinical features
location(s) gene(s)
Few colorectal adenomas (usually <10);
3p22.2, 2p21, MLHI1, MSH?2, cancers of the endometrium, stomach,
Lynch syndrome 2pl6.3, 7p22.1, MSH6, PMS2, AD small bowel, pancreas, bile duct, kidney,
2p21 EPCAM urothelium, prostate, ovary and central
nervous system
Constitutional . . . . .
. . As in Lynch As in Lynch Café-au-lait spots; childhood cancer
mismatch repair ‘ AR R .
. syndrome syndrome (especially small bowel, brain, blood)
deficiency syndrome
GI adenomas (>100 in the colorectum);
Familial adenomatous cancers of the brain, liver, thyroid,
olyposis 5q22.2 APC AD small bowel, pancreas and stomach;
POLYPOSI: desmoids, osteoma, adrenal adenoma,
retinal pigment epithelium hypertrophy
. . GI adenomas (<100 in the colorectum);
- As in familial S oy . . . .
Attenuated familial 5 or 3’ end colonic and extracolonic manifestations
. adenomatous AD L . .
adenomatous polyposis . of APC more limited than in familial
polyposis .
adenomatous polyposis
MUTYH—assomated 1p34.1 MUTYH AR GI adenomas (typically <100 in the
polyposis colorectum); duodenal cancer
' ' 18¢21.2, SMAD, Juvel}lle polyps; pancreatic cancer,
Juvenile polyposis AD gastric cancer, duodenal cancer;
10q23.2 BMPR1A . . . .
hereditary hemorrhagic telangiectasia
Peutz-Jeghers polyps; mucocutaneous
Peutz-Jeghers syndrome  19p13.3 STK11 AD pigmentation; GI a d gynccololglcal cancers
(small bowel, gastric, pancreatic,
esophageal, ovarian, breast, endometrial)
. Multiple benign and malignant tumors;
PTEN hamartoma 10g23.31 PTEN AD especially cancers of the breast, thyroid
tumor syndrome .
and endometrium; melanoma
Polymerase proofreading 12q24.33, POLE, AD Multiple and possibly large (>2 cm)
-associated polyposis 19q13.33 POLD1 colorectal adenomas; endometrial cancer
NTHL]T associated 16p13.3 NTHL1 AR Multiple colorectal adenomas
polyposis
. . Colorectal polyps (atypical juvenile
H:)zlr f:d;ts?sry mixed 15q13.3 GREM1 AD polyps, hyperplastic polyps and
polyp adenomas; total number usually <15)
Oligodontia-CRC 17q24.1 AXIN? AD Tooth agenesis; polyposis may or may
syndrome not be present
Li-Fraumeni 17p13.1 P53 AD Breast cancer, sarcomas, brain tumors

syndrome

and leukemia




3.4 Moderate-penetrance variants

Moderate-penetrance variants are associated with two- to fourfold cancer risk
(Sud et al., 2017)). They are thought to be rare because of purifying selection
(MAT < 1%) but may become enriched in isolated populations in which genetic
bottlenecks or founder effects have occurred (Hatzikotoulas et al., 2014; Gibson,
2012)). To date, relatively few such variants have been convincingly associated
with

APC p.Ile1307Lys is present in 7% of Ashkenazi Jewish individuals. In a meta-
analysis, its for was 2.17 (95% [CIl 1.64-2.86) in Ashkenazi Jews, but
the effect size was uncertain in other populations (Liang et al., [2013)). This
level of risk is comparable to having one first-degree relative with [CRC] and
screening recommendations are roughly similar (https://www.ncecn.org/). At
the nucleotide level, APC p.I1le1307Lys causes a hypermutable (A)g tract in exon
15 of APC (Laken et al., |1997)).

Monoallelic MUTYH mutations may also be clinically significant. In the largest
available meta-analysis, the [RR] for by age 70 years was 2.5 (95% [CI] 1.6-
3.9), which suggests that monoallelic mutation carriers would benefit from more
intensive screening than the general population (Win et al.,[2014). Another meta-
analysis, however, did not suggest a substantially increased risk (ORIl 1.14; 95%
[CTl 0.96-1.36), which makes the evidence somewhat inconsistent (Lubbe et al.,
2009).

Meta-analyses suggest that CHEK?2 1100delC and p.Illel57Tyr are associated
with risk. The [ORk for 1100delC and p.Ile157Tyr have been estimated at
2.11 (95% [CTl 1.41-3.16) and 1.61 (95% [CI}, 1.40-1.87), respectively (Liu et al.,
2012; Xiang et al., |2011)). However, the possibility of publication bias needs to
be taken into account when interpreting these meta-analyses. Because CHEK2
variants are associated with susceptibility to breast cancer and other cancer types
(Néslund-Koch et al., [2016)), it is a plausible candidate gene for suscepti-
bility.
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3.5 Low-penetrance variants

To date, have identified at least 48 independent [CRC] risk (Table
3.2). These studies have been conducted in European, East Asian, African and
Middle-Eastern populations. The establishment of international consortia has
enabled meta-analyses of multiple primary (Tomlinson et al., 2010; Jia
et al., [2013)). Main results from published [CRCI[GWASE are reviewed below and
summarized in Table 3.2.

Tomlinson et al., [2007], genotyped 547,647 in 930 British individuals
with familial or high-risk adenoma and 960 matched cancer-free controls
(the UK1 [GWAS). Combined analysis of discovery and replication sets with
7,954 [CRCl cases and 6,206 controls showed a genome-wide significant association
between rs6983267 (8q24.21) and (p = 1-107). In a simultaneously
published study, Zanke et al., 2007, genotyped 99 632 in 1,226
patients and 1,239 matched controls from the Ontario Familial Colorectal Cancer
Registry. After three replication stages, a genome-wide significant association
was found between 8q24.21 (tagged by rs6983267 and rs10505477) and [CRCL
The [CRC risk allele rs6983267-G has an increased binding affinity for the TCF4
transcription factor, which may lead to enhanced Wnt signaling (Tuupanen et al.,
2009). In addition, the MYC oncogene is located within 350 kb from rs6983267
and may be a target of long-range regulatory interaction (Pomerantz et al., 2009).
Broderick et al., 2007, replicated the second-ranked in the UK1[GWAS]
rs4939827 at 18q21.1 intronic to SMAD7; SMAD7 was considered a plausible
candidate gene for this association. In the UK2[TWAS| Tomlinson et al., 2008,
genotyped 42,708 from the UK1 in 7,160 cases and 6,614 controls.
Novel genome-wide significant associations were found at 8g23.3 (rs16892766 near
FIF3H) and 10pl4 (rs10795668 in an intergenic region).

Jaeger et al., 2008 A hereditary mixed polyposis locus had been previously
mapped to 15q13.3-15q14 in Ashkenazi Jewish families, and it was hypothesized
that this locus may also harbor common variants that predispose to [CRC| in
the general population (Tomlinson et al., |1999; Jaeger et al., [2003)). rs4779584
(15q13.3 between SCG5 and GREM1) showed some evidence of association in
the UK1 (p = 4-107%), and genotyping of 7,961 cases and 6,803
controls confirmed a clear association between rs4779584 and [CRC] (p = 4-10714).
GREM]1 is an antagonist of TGF-f signaling that is often expressed in cancer-
associated stromal cells (Sneddon et al., [2006]).

Tenesa et al., 2008, genotyped 541,628 [SNPk in 981 Scottish early-onset

33



[CRC cases (< 55 years at diagnosis) and 1,002 matched controls (the Scotlandl
[GWAS]). Meta-analysis of 17,457 cases and 16,353 controls of different ances-
tries revealed a novel genome-wide significant association at 11¢23.1 (rs3802842,
intronic to COLCA1 and COLCA2). rs3802842 (11g23.1) and the previously
reported SNP| rs4939827 (18q21.1) showed site-specificity for rectal cancer
(p < 0.01).

COGENT Study, 2008. The COGENT consortium undertook meta-analysis
of 38,710 in four studies: UKI1, UK2, Scotlandl and Scotland2. The
total sample size, including replication sets, was 20,186 cases and 20,855
controls. Four novel loci showed genome-wide significant associations with
[CRCE 14q22.2 (rs4444235 near BMP/), 16q22.1 (rs9929218 intronic to CDH1),
19q13.1 (rs10411210 intronic to RHPN2) and 20q12.3 (rs961253 near CASC20).
rs9929218 is located in intron 1 of CDHI. Because mutations in CDHI are
associated with hereditary diffuse gastric cancer (Guilford et al., [1998), it was
hypothesized that CDH1I-related cancer susceptibility may involve a spectrum of
both common and rare alleles. rs4444235 (upstream of BMP/ ) showed specificity

for MSSIICRC] (p = 2-1073).

Houlston et al., 2010, [CRC| patients from the VICTOR and QUASAR2[RCTk
(n = 1,432) and controls from the UK 1958 Birth Cohort (n = 2,697) were
combined to form the VQ58 VQ58 was meta-analyzed with the UKI,
UK2, Scotlandl and Scotland2 [GWASE. Four new susceptibility loci were
identified: 1q41 (rs6691170 near LINC02257), 3q26.2 (rs10936599, a synony-
mous coding variant in MYNN), 12q13.12 (rs11169552 near ATF1) and 20q13.33
(rs4925386, intronic to LAMAS5).

Because the bone morphogenetic protein signaling pathway had been previously
implicated in [CRC susceptibility, Tomlinson et al., 2011, hypothesized that
multiple independent [CRClassociated may exist at 14q22.2 (near BMP/),
15q13.3 (near SCG5 and GREMT1) and 20p12.3 (near BMP2). In an analysis
of 24,910 cases and 26,275 controls of European ancestry, rs1957636 at
14q22.2 (near BMP/) and rs4813802 at 20p12.3 (near BMP2) showed strong
associations with [CRC] despite weak [LD] with the originally reported tag
rs4444235 (14¢22.2) and rs961253 (20p12.3), respectively.

Dunlop et al., 2012 meta-analyzed five previously reported (Scot-
land1, Scotland2, UK1, UK2 and VQ58) and 260 promising in the COIN
and COIN-B [RCTk (Maughan et al., 2011} Wasan et al., [2014). Three new loci
were genome-wide significant in combined analysis of 29,778 cases and 29,204 con-
trols of European ancestry: 6p21.2 (rs1321311 near PANDAR and CDKNI1A),
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11q13.4 (rs3824999, intronic to POLDS&) and Xp22.2 (rs5934683 near GPR143
and SHROOM?2). A plausible target gene for rs1321311 (6p21.2) is CDKN1A,
which encodes p21, a protein that mediates p53-dependent cell cycle arrest and
may have p53-independent tumor suppressor functions (Abbas et al., [2009).
The risk allele of rs5934683 (Xp22.2) was associated with downregulation of
SHROOM?2 in both normal and neoplastic colorectal tissue (p = 1-1077).

Jia et al., [2013], reported a in collaboration with the Asian Colorectal
Cancer Consortium. In the discovery stage, 1,636,380 were imputed and
analyzed in 2,098 cases and 5,749 controls from China, South Korea and
Japan. In joint analysis of Fast Asian and European datasets, three new loci
were significantly associated with [CRC} 5q31.1 (rs64716, intronic to C5orf66
and near PITX1), 20p12.3 (rs2423279 near HAOI1) and 12p13.32 (rs10774214
near CCND2 and CCND2-AS1). CCND2 encodes cyclin D2, which is related to
the cyclin D1 proto-oncogene (Kim et al., 2009).

Zhang et al., [2014b], imputed and analyzed over 2 million [SNPk in 2,038 [CRCl
cases and 6,172 cancer-free controls from China, Japan and South Korea. The
four-stage design comprised a total of 14,963 [CRCl cases and 31,945 controls. Six-
teen genome-wide significant loci were identified, and among these were six novel
[CRQ risk loci: 10g22.3 (rs704017 within ZMIZ-AS1), 10g25.2 (rs11196172, in-
tronic to TCF7L2), 11q12.2 (rs174537 within MYRF and TMEM?258), 12p13.31
(rs10849432 near CDY9), 17p13.3 (rs12603526, intronic to NXN) and 19q13.2
(rs1800469, intronic to B9D2). The risk allele rs11196172-A was associated
with increased expression of both TCF7L2 and VTIIA in colonic tumor tis-
sue (p = 0.003). 1rs1800469 maps to the promoter region of TGFBI1, and the
risk allele (G) has been associated with lower expression and circulating levels of
TGFB1 (Grainger et al., |1999).

Wang et al., 2014, conducted a meta-analysis of 2,627 cases and 3,797 controls
of Japanese ancestry and 1,894 cases and 4,703 controls of African American
ancestry. In the discovery meta-analysis, rs12241008 in intron 3 of VTI1A near
TCF7L2 (10q25.2) showed a novel genome-wide significant association with [CRC|
(p = 2.9-1078). The association was also genome-wide significant in combined
analysis with European studies with 21,344 cases and 26,711 controls (p = 1.5 -
1079).

Zhang et al., 2014al, imputed and tested 1,695,815 in 1,773 [CRC cases
and 2,642 controls of East Asian ancestry. Combined analysis with replication
data (8,675 cases and 10,504 controls) revealed a new genome-wide significant
association between rs7229639 (18q21.1, intron 3 of SMAD7) and The
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association was independent of the previously reported risk[SNP]rs4939827, which
is located 2.5 kb downstream from rs7229639.

Whiffin et al., 2014, meta-analyzed five European-ancestry (UK1,
Scotland1, VQ58, CCFR1 and CCFR2) that comprised 5,626 cases and 7,817
controls. Replication was undertaken in additional 14,037 cases and 15,937 con-
trols. 10g24.2 (rs1035209 near SLC25A28) was implicated as a novel risk
locus. In addition, two loci that had been previously suggested by Peters et al.,
2013 reached genome-wide significance: 1q25.3 (rs10911251, intronic to LAMC1T)
and 12p13.32 (rs3217810, intronic to CCND2) (Peters et al., 2013).

Schmit et al., 2014}, meta-analyzed from Israel (1,616 cases and
1,329 controls) and the CCFR (1,977 cases and 999 controls). Results were
replicated in 1,131 cases and 831 controls. In combined analysis, rs17042479
(4932.2 near FSTLH) was associated with with a relatively large effect size

([OR] 1.53; 95% [CI, 1.39-1.67).

Al-Tassan et al.,[2015], studied 2,244 cases from the COIN and COIN-B[RCTk
and 2,674 controls from the UK Blood Service Control Group (COIN [GWAS]).
The COIN was meta-analyzed with the UK1, Scotlandl, VQ58, CCFR1
and CCFR2 [GWASE. Genotypes for over 10 million variants were imputed in
7,577 cases and 9,979 controls. FEight previously reported loci had a p-value
< 5-1078, and a novel genome-wide significant association was found at 1p36.12
(rs72647484 near WNTY, CDC42 and MIR4418). There was a borderline signif-
icant (p = 5.06 - 1078) association at 16q24.1 (rs16941835 within AC009154.1).
WNT) has been shown to activate the canonical Wnt-/-catenin signaling path-
way (Lyons et al., [2004)).

Schumacher et al., 2015, meta-analyzed 19 studies that comprised 18,299
cases and 19,656 controls from four consortia. Results were replicated
in Asian populations with 4,725 cases and 9,969 controls, and six new
risk loci were identified: 3p22.1 (rs35360328 near CTNNB1 AC099560.1, 3p14.1
(rs812481, intronic to LRIG1), 10¢24.2 (rs11190164 near SLC25AA28), 12q24.12
(rs3184504, SH2B3 p.Trp262Arg), 12q24.22 (rs73208120, intronic to NOS1) and
rs6066825 (20q13.13, intronic to PREX1). rs35360328 is located 320 kb upstream
from CTNNBI, pointing to (-catenin regulation as a candidate mechanism for
the association.

Cheng et al., 2015, hypothesized that common variants may be associated

with both colorectal and endometrial cancers, similar to germline mutations in
[DNAI repair genes. Sixteen datasets with 13,265 cases and 40,245 controls were
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analyzed. 12q24.12 (SH2B3 p.Trp262Arg) was associated with the composite
phenotype of colorectal or endometrial cancer (p = 7.23-10~?). In addition, 1822
(rs12970291 near TSHZ1) was associated with and endometrial cancer with
opposing effects on the two diseases (p = 4.82 - 107%).

Wang et al., [2016], genotyped 691,326 in 1,023 cases and 1,306
controls of Han Chinese ancestry. Combined analysis of discovery and replication
sets with 5,317 cases and 6,887 controls implicated rs2238126 (12p13.2, intron 4
of ETV6) as a novel susceptibility variant.

Zeng et al., [2016], conducted one of the largest of in East Asians
to date. The discovery set comprised 8,027 cases and 22,577 controls from
China, Japan and South Korea. A total of 11,044 cases and 12,047 controls
of Asian ancestry were studied in the replication stage, which led to the identifi-
cation of four novel [CRC risk loci: 6p21.1 (rs4711689, intronic to TFEB), 8q23.3
(rs2450115 near FIF3H), 10q24.3 (rs4919687 within CYP17A1) and 12p13.3
(rs11064437 in a splice acceptor site of SPSB2). rs2450115 is located within
7 kb from the previously reported [CRC] risk rs16892766 (Tomlinson et al.,
2008)), but these variants are essentially independent (r? < 0.05 in both Asian
and European populations).

Orlando et al., |2016, meta-analyzed six previous (UK1, Scotlandl,
VQ58, CCFR1, CCFR2 and COIN) with a Finnish [GWAS]| with 1,172 cases and
8,266 controls. Over 10 million variants were imputed and analyzed in 13,656
cases and 21,667 controls. Ten previously reported [SNPk were genome-wide sig-
nificant, and a suggestive association (p < 1-107°) was found at a novel locus
at 2935 (rs992157, intronic to PNKD and TMBIM1). After replication in 5,061
cases and 3,509 controls of European ancestry (p = 0.023), combined analysis
of 18,717 cases and 25,176 controls showed a genome-wide significant association
between rs992157 and (p = 3.15-107%). Since 15992157 is in strong
with the risk [SNPJ] rs2382817 (r? = 0.90), other risk were also
tested, and 11 additional risk NPk were associated with at ¢ < 0.05.
rs992157 and rs2382817 show opposing effects on and risk, which is
consistent with a pleiotropic rather than [BDlmediated effect on [CRC] risk.

37



Table 3.2: Common risk alleles for [CRC|and nearest genes by date of publication.
Allele frequencies were obtained from the gnomAD browser (http://gnomad.
broadinstitute.org, accessed in November 2018). RAF, risk allele frequency.

Chr. RAF Gene p-value [95% Reference

8q21.24  rs6983267-G  0.62 CASCS8 1-107* 1.21 [1.15,1.27] Tomlinson et al., 2007
18q21.1 rs4939827-T 0.44 SMAD7 1-1071%  1.16 [1.09, 1.27] Broderick et al., [2007
8q23.3 rs16892766-C  0.093  EIFSH 3-107'®  1.25[1.19, 1.32] Tomlinson et al.,[2008
10p14 rs10795668-A  0.24 NA 3-1071 112 [1.10, 1.16] Tomlinson et al., 2008
15q13.3  rs4779584-T  0.35  SCGS 41071 1.26 [1.19, 1.34]  Jaeger et al., 2008
11¢23.1  1rs3802842-C  0.30 COLCA1 6-10710  1.11 [1.08, 1.15] Tenesa et al., [2008
14¢22.2  rs4444235-C  0.42 BMP}4 810710  1.11 [1.08, 1.15] COGENT Study, [2008
16¢22.1  1s9929218-G 0.72  CDHI 1-107%  1.10 [1.06, 1.12] COGENT Study, 2008
19g13.1  1rs10411210-C 0.79  RHPN? 5-107%  1.15[1.10, 1.20] COGENT Study, [2008
20p12.3  1s961253-A 0.32 CASC20 2-10710  1.12[1.08, 1.16] COGENT Study, 2008
1g41 rs6691170-T  0.34  LINC02257 1-107°  1.06 [1.03, 1.09] Houlston et al., 2010
3q26.2 rs10936599-C  0.72 MYNN 3-107%  1.08 [1.04, 1.10] Houlston et al., 2010
12q13.12  rs11169552-C  0.75 ATF1 2-10710  1.09 [1.05, 1.11] Houlston et al., 2010
20g13.33  rs4925386-C  0.58 LAMAS 210710 1.08 [1.05, 1.10] Houlston et al., 2010
14q22.2 rs1957636-A 0.48 BMP/ 4-10710  1.08 [1.06, 1.11] Tomlinson et al.,|2011
20p12.3 rs4813802-G 0.28 LINC01713 5-107'  1.09 [1.06, 1.12] Tomlinson et al.,[2011
6p21.2  1s1321311-A  0.27  PANDAR 1-1071° 1.10 [1.07, 1.13] Dunlop et al.,[2012
11q13.4  153824999-G  0.39  POLD3 41071 1,08 [1.05,1.10] Dunlop et al., [2012
Xp22.2  1s5934683-T 049  GPR143 7-1071° 107 [1.04, 1.10] Dunlop et al., 2012
5q31.1 rs647161-A 0.62  Chorf66 1-107%  1.11[1.08, 1.15] Jia et al., 2013
12p13.32  1s2423279-C  0.28 HAO1 7-107°  1.10 [1.06, 1.14]  Jia et al.,[2013
20p12.3  1s10774214-T 046  CCND2-AS1 3-107%  1.09 [1.06, 1.13] Jia et al., 2013
10922.3 rs704017-G 0.55 ZMIZ1-AS1 2.10°8 1.10 [1.06, 1.13]  Zhang et al., 2014b
10925.2 rs11196172-A  0.14 TCF7L2 1-107'2  1.14 [1.10, 1.18] Zhang et al.,[2014b
11q12.2 rs174537-G 0.70 MYRF 9-1072!  1.16 [1.12, 1.19] Zhang et al., 2014b
12p13.31 1rs10849432-T 0.84 CD9 6-10710  1.14 [1.09, 1.18]  Zhang et al.,|2014b
17p13.3  1s12603526-C  0.032 NXN 3-107%  1.10 [1.06, 1.14] Zhang et al., 2014b
19q13.2 rs1800469-G 0.70 B9D2 1-1078 1.09 [1.06, 1.12]  Zhang et al.,2014b
10925.2 rs12241008-C  0.14 VTI1A 1-107° 1.13 [1.09, 1.18] Wang et al., 2014
18q21.1 rs7229639-A 0.14 SMAD7 3-107'  1.22[1.15, 1.29] Zhang et al.,|2014a
1925.3 rs10911251-A  0.62 LAMC1 2.1078 1.09 [1.06, 1.12]  Whiffin et al., 2014
1024.2  1s1035209-T  0.16  SLC25A28  5-10~'! 1.12[1.08, 1.16] Whiffin et al., [2014]
12p13.32 1s3217810-T  0.093 CCND2 21071 1.19[1.13, 1.25] Whiffin et al., 2014
4q32.2 rs17042479-A  0.77  FSTLS 8-107%  1.53 [1.39, 1.67] Schmit et al.,

1p36.12  rs72647484-T 0.93 MIR4418 1-1078  1.24 [1.15, 1.33]  Al-Tassan et al., |20
16g24.1  1s16941835-C  0.22 AC009154.1  5-107%  1.16 [1.09, 1.22] Al-Tassan et al.,
3p22.1 rs35360328-A  0.12 AC099560.1  3-1079  1.14 [1.09, 1.19]  Schumacher et al
3pld.l rs812481-G 0.67  LRIGI 2-107%  1.09 [1.05, 1.12]  Schumacher et al.,
10q24.2 rs11190164-G  0.21 NKX2-3 4-1078 1.09 [1.06, 1.12]  Schumacher et al.,
12q24.12  rs3184504-C  0.67  SH2BS3 2-107%  1.09 [1.06, 1.12]  Schumacher et al.,
12q24.22  1rs73208120-G  0.069 NOSI 3-107%  1.16 [1.11, 1.23]  Schumacher et al.,
20q13.13  rs6066825-A  0.57  PREX1 4-107%  1.09 [1.06, 1.12]  Schumacher et al.,
12p13.2 rs2238126-G 0.20 ETV6 3-10710  1.17 [1.11, 1.23] Wang et al., 2016
6p21.1  1s4711689-A  0.67  TFEB 4-107%  1.11[1.07, 1.15] Zeng et al.,

8q23.3  1s2450115-T 081  EIF3H 1-107'2 112 [1.09, 1.15] Zeng et al.,

10q24.3 rs4919687-G 0.74 CYP17A1 81072 1.14 [1.10, 1.19] Zeng et al.,

12p13.3  1s11064437-C  0.91  SPSB2 4-107" 1.12[1.08, 1.16] Zeng et al.,

2935 rs992157-A 0.49 PNKD 3-1078 1.10 [1.06, 1.13]  Orlando Ct
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Aims of the study

1. Hereditary cancer syndromes are frequent in patients with early-onset [CRC|
but the optimal diagnostic strategy is unknown. The first aim of the study was to
assess the practical feasibility and added value of in diagnosing hereditary
cancer syndromes in early-onset patients.

2. Rare genetic variants with moderate-to-high penetrance are clinically and
biologically significant and may explain part of the missing heritability of [CRCL
Therefore, the second aim was to study rare protein-coding variants in Finnish
early-onset and familial patients with unexplained etiology.

3. of [CRC have been successful in identifying common with high
population attributable risk and substantial cumulative effects. Also, large haplo-
type reference panels have recently become available, improving the performance
of genotype imputation. The third aim was to conduct a[GWAS]to identify com-
mon and low-frequency that influence risk in the Finnish population
and other populations of European ancestry.
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Materials and methods

4 Study participants (I, I, III)

4.1 The Finnish CRC Collection (I, II, III)

Studies I, IT and IIT were conducted in accordance with the Declaration of Helsinki
and approved by the Finnish National Supervisory Authority for Welfare and
Health, National Institute for Health and Welfare (THL/151/5.05.00

/2017) and the Ethics Committee of the Hospital District of Helsinki and Uusimaa
(HUS/408/13/03/03/09). All participants provided written informed consent.
Nine Finnish central hospitals recruited 1,042 [CRCl patients for the Finnish [CRC]
Collection between May 1994 and June 1998 (the C series). Tumor samples
from these 1,042 patients had been screened for as described previously
(Aaltonen et al., [1998; Salovaara et al., [2000), and MLH1 and MSH2 had been
screened for germline mutations in patients with After June 1998,
sample collection was continued in two of the nine central hospitals (the S series).
Patients recruited after June 1998 were tested for tumor with the Bethesda
microsatellite panel (BAT25, BAT26, D5S346, D17S250 and D2S123; Boland et
al., [1998), and data on germline mutations in [MMR] genes were obtained from
diagnostic laboratories. In studies I and II, we analyzed 1,042 patients from the
C series and the 472 patients from the S series (total, 1,514; 50% male; median
age at diagnosis, 68 years; 59-76 years). Of the 1,514 [CRC] cases, 38 (2.5%)
had been diagnosed before age 40 years. In stage 1 of study III, termed the FIN
[GWAS] we analyzed 765 patients from the C series and 845 patients from the
S series (total, 1,610; 53% male; median age at diagnosis, 69 years; 60-76
years). Medical records were reviewed for relevant clinical phenotypes and results
of genetic testing. Data on first-degree relatives and their cancer diagnoses were
acquired from national population registries and the Finnish Cancer Registry.
The Finnish Cancer Registry has nearly complete coverage of incident cancers in
Finland beginning from 1953 (Pukkala et al., |2018]).
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4.2 The FINRISK Study (III)

The FINRISK Study was initiated in 1972 to study the risk factors of major
noncommunicable diseases in the Finnish population (Borodulin et al., [2017).
Independent population surveys, including biological sample collection, have been
carried out every five years beginning in 1972. [DNAl samples were first collected
in year 1992. The FINRISK Study contributed 91 cases and 14,187 cancer-
free controls to the FIN (stage 1 of study III). These individuals had
participated in sample collection in 1992, 1997, 2002 or 2007. In stage 2 of study
ITI, we performed targeted genotyping in a smaller series of FINRISK Study
participants who had not been included in stage 1 due to unavailable [SNP] array
data (198 [CRC] cases and 172 cancer-free controls; referred to as the FINRISK
series in stage 2 of study III). Data on cancer diagnoses in the FINRISK Study
participants had been obtained from the Finnish Cancer Registry, and [DNA]
samples were provided by the THL Biobank, Finland (https://www.thl.fi/
fi/web/thlfi-en/topics/information-packages/thl-biobank).

4.3 Nordic studies (III)

Nordic studies from Sweden (STHLM2 and Gothenburg), Norway (HUNT)
and Estonia contributed samples to study III. The STHLM2 series con-
sisted of men who had been referred to prostate-specific antigen screen-
ing in Stockholm County, Sweden, between 2010 and 2012. samples
from the STHLM2 series were provided by the Karolinska Institute Biobank
(http://ki.se/forskning/ki-biobank). The Gothenburg series consisted of
cases and controls from the Sahlgrenska University Hospital, Gothenburg, Swe-
den. [DNAlsamples from the Gothenburg series were provided by the Sahlgrenska
Biobank (https://www.gothiaforum.com/sab). The HUNT series consisted of
sample donors from the Nord-Trgndelag Health Study (HUNT) and Biobank
(https://www.ntnu.edu/hunt). The Estonia series consisted of sample donors
of the Estonian Genome Center Biobank (www.geenivaramu.ee/en). When
possible, cases and controls were matched by year of birth and sex.
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5 Methods (I, II, III)

5.1 Exome sequencing (I, IT)

Twenty-three of the 38 early-onset patients had unexplained etiology
and underwent Protein-coding sequences were captured with
SureSelect Human All Exon Kit v.1 (Agilent Technologies, Santa Clara, Cali-
fornia). Paired-end 75 base-pair reads were generated with Illumina Genome
Analyzer II (Illumina, San Diego, California). FASTQC was used for quality
control of the raw data (https://www.bioinformatics.babraham.ac.
uk/projects/fastqc/). The Burrows-Wheeler Aligner was used to map reads
to the Genome Reference Consortium reference genome 37 (https://www.ncbi.
nlm.nih.gov/assembly/GCF_000001405.13/). Duplicate reads were removed
with Picard MarkDuplicates (http://broadinstitute.github.io/picard/).
Genome Analysis Toolkit IndelRealigner (Broad Institute, Cambridge, MA) was
used for local read realignment. Variants were called with Genome Analysis
Toolkit UnifiedGenotyper (v.2.2-16-g9f648cb). Eighty-seven percent of the tar-
geted regions were covered by more than 10 reads, and the mean coverage was
54. BasePlayer was used to visualize and annotate data (Katainen et al.,
2017)). In study I, we excluded variants that were detected in 212 controls
(68 in-house controls or 144 Finnish migraine patients) or the 1,000 Genomes
Project Phase 1 release (www.1000genomes.org) as many them were considered
to represent common polymorphisms or sequencing artefacts. When relevant,
reads were inspected to exclude false-positive variant calls.

To uncover new candidate genes for susceptibility, we searched for rare
protein-coding variants in 22 early-onset patients without known predis-
posing conditions. An independent series of 95 genetically unexplained famil-
ial [CRC] patients, also of Finnish ancestry, were studied as a validation set
(Gylfe et al., 2013). In order to prioritize variants that were most likely to
be pathogenic, we focused on variants with [MAT] < 0.1% (Kryukov et al., [2007}
MacArthur et al.,[2012). In particular, it was hypothesized that [LoF] (nonsense,
splice site or frameshift) variants may contribute to [CRC] susceptibility. Al-
though many genetic disorders are caused by rare [LoF] variants, healthy humans
carry approximately 100 [Lol] variants, which complicates the assessment of their
pathogenicity (MacArthur et al.,|2012). Loss-of-Function Transcript Effect Esti-
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mator (LOFTEE; https://github.com/konradjk/loftee) was used to exclude
protein-truncating variants that were unlikely to abolish gene function (ances-
tral [LoF] alleles, [LoF] variants located in the last 5% of the coding region, splice
site variants in small introns (<15 base pairs) and [LoF] variants surrounded by
non-canonical splice sites). Functional effects of missense variants were predicted
with PolyPhen-2 and SIFT (http://www.ensembl.org). Allele frequencies were
determined in 3,374 Finnish and 58,112 non-Finnish control exomes that were
publicly available in the Exome Aggregation Consortium (ExAC) database (Cam-
bridge, MA; http://exac.broadinstitute.org, accessed in November 2014).
PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/) and SIFT (http://
sift.jcvi.org) were used to predict functional effects of missense variants.

5.2 Sanger sequencing (I, IT)

When relevant, variant calls were validated by Sanger sequencing. Am-
pliTaqGold [DNA] polymerase (Applied Biosystems, Foster City, CA) was used
in [PCRI reactions. [PCRI] products were purified with ExoSAP-IT reagent (USB
Corporation, Cleveland, OH, USA). Big Dye Terminator v3.1 chemistry (Applied
Biosystems, Foster City, CA) was used for [DNAlsequencing. Applied Biosystems
3730x1 [DNA]l analyzer was used for gel electrophoresis. Allelic imbalance was as-
sessed by comparing allele peak heights in normal and tumor samples as
described previously (Tuupanen et al., |2008]).

5.3 SNP array genotyping (III)

To identify common and low-frequency [SNPb that influence [CRC] risk in the gen-
eral population, we conducted a in 1,701 Finnish cases and 14,082
cancer-free controls (stage 1 of study III; the FIN [GWAS]). The Haplotype Ref-
erence Consortium panel was used to impute genotypes across a wide range of
allele frequencies (McCarthy et al.,[2016]). Most promising [SNPk were genotyped
in 4,070 Nordic[CRCl cases and 2,377 controls (stage 2) and analyzed in previously
published of comprising 7,577 cases and 9,979 controls of European
ancestry (stage 3) (Al-Tassan et al., 2015). Finally, data from the three stages
were combined, and 13,348 cases and 26,438 controls were meta-analyzed. The
study scheme is shown in Figure 5.1.
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Figure 5.1: Scheme of study III. The flow of genetic variants is shown as dotted
arrows and the flow of samples as solid arrows.

In the Finnish Collection, [DNAl samples from normal colorectal tissue
or blood were genotyped with the Illumina (San Diego, CA) HumanOmni2.5-
8 array. In the FINRISK Study, blood [DNA] samples were genotyped
with the Illumina HumanCoreExome array. The MassARRAY System by
Agena Bioscience (San Diego, CA) was used to genotype Nordic cases and con-
trols (STHLM?2, 544 cases/541 controls; Gothenburg, 1,903 cases/258 controls;
HUNT, 1,168 cases/1,147 controls; Estonia, 257 cases/259 controls; FINRISK,
198 cases/172 controls), as well as 1,038 individuals from stage 1 for quality con-
trol purposes (925 individuals also genotyped with the HumanOmni2.5-8 array
and 113 individuals also genotyped with the HumanCoreExome array).

PLINK v.1.90b3i was used for quality control of the array data (www.
cog-genomics.org/plink/1.9/). A total of 122 samples (17 genotyped with
the HumanOmni2.5-8 array and 105 genotyped with the HumanCoreExome ar-
ray) were excluded because of close relatedness (identity-by-descent coefficient
> 0.2), sample duplication, discordant sex information or low genotyping rate.
The remaining 1,701 [CRC cases and 14,082 cancer-free controls were included
in the FIN The HumanOmni2.5-8 array contained 2,315,673 au-
tosomal sites, 273,074 of which were also found on the HumanCoreExome
array (https://support.illumina.com/downloads.html). Low-quality
were excluded on the basis of low genotyping rate (< 95%), excess homozygosity
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(rare homozygote frequency exceeding the heterozygote frequency, or any rare
homozygous genotype with minor allele frequency (MAF) < 2%), deviation from
the Hardy-Weinberg equilibrium (p < 1-1078), differential missingness between
genotyping batches (p < 1-107%), differential patterns between cases and
controls or [[DFbased strand inconsistency.

After quality control, 214,705 [SNPk were phased with SHAPEIT v2 (r790). The
Haplotype Reference Consortium reference panel was used to impute genotypes
(McCarthy et al., 2016). After genotype imputation, we excluded variants with
low allele frequency (< 0.4%) or low IMPUTE2 info score (< 0.4).

5.4 Association analysis (III)

The primary analysis in the FIN was based on a linear mixed model ad-
justed for age and sex (BOLT-LMM-inf; https://data.broadinstitute.org/
alkesgroup/BOLT-LMM/). The age covariate was defined as age at [CRC|diagnosis
in cases and age at end of follow-up in controls. Genetic effects were assumed to
be additive. The genomic inflation factor was estimated by dividing the observed
median of the BOLT-LMM-inf test statistic by the median of the x? distribution.
PLINK v.1.90b3i was used for [LDlbased [SNPI pruning and principal component
analysis. Principal component analysis was performed with 13,012 [LDlpruned
with allele frequency > 5% and IMPUTE2 info score > 0.9. To assess
imputation accuracy, we calculated squared Pearson correlation coefficients (r?)
between IMPUTE2 genotype dosage and MassARRAY genotype.

To generate uniform data for meta-analysis, the FIN series was reanalyzed by
unconditional logistic regression under an additive genetic model, adjusting for
sex, log-transformed age and 10 principal components with SNPTEST v.2.5.2.
In the MassARRAY-genotyped Nordic datasets, unconditional logistic regression
was applied with a minimum allele count of 10 using R v.3.3.3. Meta-analysis was
performed with the metafor package v.1.9-9 in R v.3.3.3. Genomic control was
applied by multiplying the standard errors of regression coefficients by the square
root of the study-specific genomic inflation factor. Estimates of log and
standard errors were combined to obtain summary p-values, [ORk and 95% [Clk
under inverse-variance weighted random-effects and fixed-effect models (function
rma.uni in the metafor package). The Benjamini-Hochberg method was used
to control the false discovery rate. The Bonferroni correction was applied when
relevant. The type 1 error rate () was 0.05, and the genome-wide significance
threshold was 5- 1078, All p-values were two-sided.
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Results

6 Exome sequencing of early-onset col-
orectal cancer patients

6.1 Hereditary syndromes in early-onset colorec-
tal cancer patients (I)

Of 1,514 unselected Finnish [CRC] cases, 38 (2.5%) had been diagnosed before
age 40 years. Among these 38 cases, the median age at diagnosis was 35 years
(range, 21 to 39 years). Twenty of the 38 patients (53%) were male. All 38 cases
were tested for tumor [MSIl and 14 tumors (37%) were found to be microsatellite-
unstable. Eleven of the 14 patients with [MSI[CRCI (79%) had been screened
for germline mutations in MLH1 and MSH?2. [GIl polyposis syndromes had been
diagnosed clinically in four patients (three patients with [FAP] and one patient
with [IP)). Testing for tumor [MSI] and evaluation for [GI] polyposis had led to the
identification of hereditary [CRCl syndromes in 15 of the 38 patients (39%; Table
6.2). To assess the added value of as a diagnostic test, the remaining 23
patients were exome sequenced. data were analyzed for nonsynonymous
variants in 10 genes that had been implicated in high-penetrance predispo-
sition (MLH1, MSH2, MSH6, PMS2, APC, MUTYH, SMAD/, BMPRI1A, STK11
and PTEN).
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6.1.1 Added diagnostic value of exome sequencing

identified a splice-site mutation in MLHI (c.454-1G>A; Finnish founder
mutation 2) in a 35-year-old patient with [MSII[CRC] (s171). The mutation was
confirmed by Sanger sequencing. MLH1 ¢.454-1G>A could have been detected
by testing and subsequent Sanger sequencing, but results of genetic testing
were not available for this patient. There were no protein-truncating variants
in other high-penetrance susceptibility genes. Missense variants were iden-
tified, however, and those with low (< 5%) or unknown were queried in
the InSiIGHT mutation database (https://www.insight-group.org/variants/
databases/|). Each missense variant was found in the InSiGHT database, but
none of them had been classified as unambiguously pathogenic.

6.1.2 Prevalence of hereditary cancer syndromes

Sixteen of the 38 patients (42%; 95% [CIl 26%-59%) had highly penetrant
susceptibility syndromes. The most frequent genetic disorder was [[S| which was
present in 12 of the 38 cases (32%). There were seven mutations in MLH1 (7/38;
18%), four in MSH2 (4/38; 11%) and one in MSH6 (1/38; 2.6%). Early-onset
was related to [LSlin 12 of 14 cases (86%). One patient (s49; age at
diagnosis, 33 years) had both [[S]and [MENF. One patient with [MSI[CRC| (c543;
age at diagnosis, 30 years) met clinical criteria for X-linked agammaglobuline-
mia (XLA]), but did not reveal protein-coding variants in BTK, which is
frequently mutated in [XLAl [XTAlis a hereditary immunodeficiency syndrome
associated with incomplete B-cell maturation and decreased immunoglobulin pro-
duction (https://www.omim.org/entry/300755).

6.1.3 Clinical characteristics

By the time of diagnosis, most patients had developed either regional or distant
metastases (Dukes’ stage C or D, 61%, 23/38). The distribution of Dukes’ stages
was as follows: stage A, 6 cases (16%); stage B, 9 cases (24%); stage C, 17 cases
(45%); and stage D, 6 cases (16%). No significant difference in Dukes’ stage
was found between syndromic and nonsyndromic cases (p = 0.88 by Wilcoxon’s
rank sum test). Due to the prevailing clinical practices at the time of sample
collection, [TNM] stages were not available for most patients. Tumor grades had
been recorded in the pathology reports of 35 of the 38 patients; 8.6% (3/35)
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of the tumors were well-differentiated (grade 1), 74% (26/35) were moderately
differentiated (grade 2) and 17% (6/35) were poorly differentiated (grade 3).
Seventy-four percent (28/38) of the primary tumors were distal to the splenic
flexure. According to the pathology reports, none of the 38 patients had
One patient (s124; age at diagnosis, 34 years) presented with two synchronous
and one patient (c138; age at diagnosis, 39 years) had been diagnosed with
metachronous two years before sample collection; both s124 and ¢138 had
LS|

6.1.4 Family history

Complete family histories of cancer in first-degree relatives were obtained shortly
after surgery by linking data from official population registries and the Finnish
Cancer Registry. Eleven patients (11/38, 29%) had familial [CRCI Among
those with familial early-onset [CRCl 73% (8/11; 95% [CIl 39%-94%) had a high-
penetrance mutation, including seven patients with[[LSland one patient with[FAPL
Of those with negative family history, 30% had a hereditary [CRClsyndrome (8/27;
95% [CIL 14%-50%). In contrast, only 14% (3/22) of those without well-defined
predisposition syndromes had familial [CRC] and none of them had synchronous
or metachronous One patient with [FAP] (c231; age at diagnosis, 34) had
two first-degree relatives with [CRC] while the first-degree relatives of the other
two patients with [FAP] did not have

6.2 Rare variants in early-onset colorectal cancer
patients (II)

Twenty-two of the 38 early-onset [CRC] patients (58%) had not been diagnosed
with known predisposing conditions. Because of their young age, we suspected
that these patients may carry undiscovered protein-coding variants that influence
[CRC risk. It was also hypothesized that the genetic homogeneity of the Finnish
population isolate may facilitate the identification rare disease-causing variants.

After quality control procedures, a total of 856,325 protein-coding variants
were called in the 22 early-onset patients. Of these, 203,699 (24%) were
nonsynonymous and 6,120 (0.71%) were protein-truncating. Among the protein-
truncating variants, the numbers (proportions) of nonsense, splice site and
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frameshift variants were 1,920 (31%), 1,613 (26%), and 2,587 (42%), respectively.
Allele frequencies in 3,374 Finnish individuals and 58,112 non-Finnish individ-
uals were obtained from the Exome Aggregation Consortium (ExAC) database
(Cambridge, MA; http://exac.broadinstitute.org, accessed in November
2014). We hypothesized that early-onset [CRC| patients may carry rare variants
that predispose to [CRC] in a dominant manner. Therefore, we searched for
variants with < 0.1% in both Finnish and non-Finnish controls. The
possibility that early-onset [CRC] patients may have recessive predispositions was
also considered. To this end, we examined rare homozygous genotypes that were
not present in any of the 61,486 controls. To find further evidence of variant
pathogenicity, we analyzed a validation set of 95 nonsyndromic familial
cases who were also of Finnish ancestry and had undergone in a previous
study (Gylfe et al., [2013). The majority (85/95, 89%) of the familial [CRC] cases
had one first-degree with Main results are summarized in Tables 6.1 and
6.2.

Table 6.1: Rare protein-coding variants in the 117 [CRC| patients with unknown
etiology. GRCh37, Genome Reference Consortium human genome build 37;
YCRC, young [CRQ patients; FCRC, familial [CEQ patients.

Gene Variant GRCh37 YCRC FCRC ExAC

ADAMTS) c.1618delG 1:161163547 1/22 1/95 2/61,486 (0.0033%)
CYTL1 c.327+2T>A 4:5018561 1/22 1/95 19/61,486 (0.031%)
SYNE1 ¢.1941dupT 6:152784643 1/22 0/95 2/61,486 (0.0033%)
SYNE1 ¢.5568delC 6:152738004 0/22 1/95 0/61,486 (0%)
ACSLS p-Pro71Leu 10:114154748  2/22 0/95 15/61,486 (0.024%)
INTSS5 p-Pro922Leu 11:62414787  2/22 0/95 2/61,486 (0.0033%)
MCTP2 c.1488+1G>C  15:94911021 1/22 5/95 123/61,486 (0.20%)
ARHGAP12 p.Cys199Ser 10:32197188 1/22 0/95 30/61,486 (0.049%)
ATM p-Ser333Phe 11:108117787 1/22 1/95 156,/61,486 (0.25%)
DONSON p-Glud71Lys 21:34951808 1/22 2/95 159/61,486 (0.26%)
ROS1 p-Ser370Pro 6:117715381 1/22 0/95 203/61,486 (0.33%)

6.2.1 Recurrent loss-of-function variants

In this series of 22 early-onset cases, we did not find genes with recurrent
[Lol] variants with < 0.1%. Therefore, we examined rare [LoF] variants that
were observed in one early-onset patient and at least one of the 95 familial
patients. Three genes displayed rare [LoF] variants in both sample sets:
ADAMTS4 (c.1618delG), CYTLI (c.327+2T>A) and SYNE! (c.1941dupT and
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¢.5568delC). Each of these three genes harbored rare [LoF] variants in one early-
onset[CRC|case and one familial[CRC|case. The variants were validated by Sanger
sequencing. The familial [CRC| patients with [LoF] variants in ADAMTS/, CYTL1
and SYNFE1 had been diagnosed at 75, 86 and 84 years of age, respectively.

6.2.2 Recurrent missense variants

Next, we analyzed the 22 early-onset [CRC| patients for recurrent missense vari-
ants with [MAT] < 0.1%. Two rare missense variants, each present in two of the
22 early-onset patients, were identified: ACSL5 p.Pro71Leu and INTS5
p-Pro922Leu. Both variants were validated by Sanger sequencing. Neither of the
variants was found in the validation set of 95 familial [CRCl cases. PolyPhen-2 clas-
sified INTS5 p.Pro922Leu as possibly damaging and ACSL5 p.Pro71Leu as be-
nign, whereas SIFT classified both INTS5 p.Pro922Leu and ACSL5 p.Pro71Leu
as deleterious. Neither of these missense variants were found in the validation
set of 95 familial [CRC] patients.

6.2.3 Biallelic loss-of-function and missense variants

After quality control procedures, we observed a total of 69,503 nonsilent ho-
mozygous variants in the 22 early-onset patients. Excluding variants with
homozygous genotypes in the 61,486 controls, we identified four genes with
rare homozygous missense variants: ARHGAP12, ATM, DONSON and ROS1.
One early-onset case had a homozygous splice site variant in MCTP2
(c.1488+1G>C), which was validated by Sanger sequencing. All of these vari-
ants were rare in the Finnish population (MAEF <1% in the 3,374 Finnish
controls). None of the 95 familial patients were homozygous for these
variants. However, five of the 95 familial cases (5.3%) were heterozygous
for MCTP2 c.1488+1G>C. Using similar exclusion criteria as for homozygous
variants, we did not find genes with compound heterozygous [LoF] variants. Com-
pound heterozygous missense variants could not be analyzed in a comprehensive
manner due to the lack of haplotype-resolved data.
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6.2.4 Allelic imbalance

We hypothesized that some of the identified [LoF]or missense variants may display
somatic [LOHl similar to classical [[SGk. Paired cancer samples from each patient
were analyzed for allelic imbalance by Sanger sequencing, which did not suggest
allelic imbalance for any of the variants.
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Table 6.2: Clinical and molecular characteristics of the 38 early-onset [CRC pa-
tients. Mutation 1 is a 3.5 kb deletion comprising exon 16 of MLH1 (Nystrom-
Lahti et al., [1995). BMPR1A g.391C>G has been shown to result in skipping
of exon 1 of BMPRIA (Zhou et al., [2001)). Age, age at diagnosis (years); FH,
family history of [CRQ.

D Age Dukes MSI FH Syndrome/gene(s) Variant(s)

c79 23 C - - BMPRI1A 2.391C>G

s30 27 A + - MLH1 ¢.1975C>T

s17 27 C + + MLH1 c.677+1G>T

s124 34 C + + MLH1 Mutation 1

s171 35 B + - MLH1 c.454-1G>A

c430 36 B + + MLH1 Mutation 1

s1108 38 C + + MLH1 Mutation 1

c615 39 B + + MLH1 c.454-1G>A

s49 33 C + - MSH2; [MENI1 Deletion of exons 1-7 (MSH2)
ch4 35 D + - MSH?2 c.1387-1G>T

s108 38 A + + MSH2 Deletion of exons 7-8
cl138 39 D + - MSH2 c.1807G>A

s95 31 C + + MSHG6 ¢.3013C>T

c520 29 C - - [FAPI (clinical dx) -

231 34 A - + APC ¢.739C>T

5200 37 C - - [FAP] (clinical dx) -

s907 21 B - - - -

s1152 28 D - - SYNE1 ¢.1941dupT

c386 30 C - + - -

c592 30 A - - - -

543 30 B + - KA -

c1066 31 C - - ACSL5;MCTP2;ROS1  p.Pro71Leu; ¢.1488+1G>C; p.Ser370Pro
s1137 31 D - - CYTL1;INTS5 ¢.3274+2T>A; p.Pro922Leu
c768 32 C + - ACSL5;ATM p.Pro71Leu; p.Ser333Phe
s160 33 C - - - -

907 34 A - - ADAMTSY ¢.1618delG

s1167 35 B - - - -

c206 36 C - + - -

c414 36 C - - - -

c690 36 B - - - -

s1151 36 D - - INTSS p.Pro922Leu

$281 37 B - - ARHGAP12 p.Cys199Ser

s1165 37 C - - - -

938 38 C - - - -

cl055 38 C - - - -

5154 38 A - - - -

c270 39 D - + DONSON p.Glud71Lys

c837 39 B - - - -
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7 Genome-wide association study and
meta-analysis of colorectal cancer

7.1 Multi-stage genome-wide association study
(I11)

7.1.1 Stage 1

In stage 1, 9,068,015 single-nucleotide variants were imputed and tested for asso-
ciation with in the FIN series. The genomic inflation factor was 1.12, and
genomic control was applied accordingly. rs73121704 at 12q14.3 (MATE] 0.860%)
displayed the smallest p-value in stage 1 (p = 4.07 - 10~?). p-values for all other
in stage 1 were above the genome-wide significance threshold of 5 - 1078,
A Manhattan plot is shown in Figure 7.1.

7.1.2 Stage 2

Most promising from stage 1 were genotyped in five Nordic case-control
series (STHLM2, Gothenburg, HUNT, Estonia, and FINRISK) comprising a total
of 4,070 cases and 2,377 controls. Genotyping assays were designed for 40 variants
from 20 loci - two variants per locus. rs992157 (2q35) was also genotyped in stage
2 because it had been recently reported as a[CRCJrisk[SNP] (Orlando et al., [2016]).
Eleven of the 41 variants could not be genotyped because of difficult sequence
context (seven variants) or assay failure (four variants). Therefore, 30 variants
from 20 loci were genotyped successfully. The allele count of 6:73457627G>C was
low in all five Nordic series (< 10). Pearson correlation coefficient (r?) between
IMPUTE2 genotype dosage and MassARRAY genotype was used to evaluate the
accuracy of genotype imputation in 1,038 individuals from the FIN series. 72
values for the 30 variants ranged from 0.816 to 1.00 with a median of 0.978.
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7.1.3 Stage 3

To increase statistical power, we extracted summary statistics from previously
published (Al-Tassan et al.,[2015)). These studies comprised 7,577
cases and 9,979 controls of European ancestry (Al-Tassan et al., 2015). Data
were available for 27 of the 30 variants that had been successfully genotyped
in stage 2. The with missing data were rs150509351, rs186867472 and
6:73457627G>C.

7.1.4 Combined analysis

Combined analysis of stages 1-3 comprised 13,348 cases and 26,438 controls.
Because of possible study heterogeneity, the primary meta-analysis was based
on a random-effects model (Evangelou et al., [2013)). Standard errors from each
study were corrected according to the respective inflation factors (FIN, 1.11;
COIN, 1.10; UK1, 1.03; Scotland1, 1.04; VQ58, 1.04; CCFRI1, 1.03; and CCFR2,
1.08). Three NPk from two loci showed genome-wide significant associations
with [CRCE 1510505477 (8q24.21, p = 7.63 - 10~1), 156983267 (8q24.21, p =
7.45 - 10713) and rs992157 (2935, p = 1.50 - 107?). One SNP} 1s6589219 at
11¢23.1, showed a suggestive association with (p = 9.14-107%). Each of
these four [SNPk represented previously published loci. The results of combined
analysis are summarized in Table 7.1.

Table 7.1: Results of meta-analysis of 39,786 European-ancestry individuals.
Chr. Gene p-value Dhet I? Reference

8q24.21 rs10505477-A  CASCS 7.63-1071% 0.144  34.4% Tomlinson et al., [2007
8q24.21 rs6983267-G CASCS8 7.45-1071%  0.0985 37.7% Zanke et al.,[2007
2435 1s992157-A  PNKD 1.50-107°  0.777 0% Orlando et al., 2016
11g23.1  rs6589219-G COLCA1 9.14-107%  0.153 36.5% Tenesa et al., 2008
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7.2 Replication of published colorectal cancer
risk SNPs (III)

7.2.1 Replication of 38 colorectal cancer risk SNPs

In stage 1, there was suggestive evidence of association (p < 1-107%) for the
known risk 10505477 (p = 5.29 - 1078), 156983267 (p = 1.38 - 1079)
and 156589219 (p = 4.34 - 10~7). 156589219 was considered a known [CRC] risk
because it is in strong with 13802842 (Tenesa et al., 2008; 72, 0.942 in
1,000 Genomes Phase 3 European populations). To replicate published disease
associations more systematically, we analyzed a set of 38 that have been
previously reported as risk [SNPk in European populations (Frampton et al.,
2016; Orlando et al.,[2016)). Fourteen of the 38 (37%) were associated with
[CRC in the Finnish population with false-discovery rate (¢) < 10%, and all of
these 14 showed the same direction of effect as previously reported. The
results are summarized in Table 7.2.

Table 7.2: Replication of published [CRCI risk [SNPk in the FIN series.

Chr. Gene g-value Reference

11g23.1  1s3802842-C  COLCA1 1.77-107° Tenesa et al., 2008
8q24.21  1s6983267-G = CASCS 1.77-107° Tomlinson et al., 2007
8q24.21  1s7014346-A  CASCS 1.77-107® Tenesa et al., 2008
20p12.3  1rs961253-A CASC20 6.92-107> COGENT Study, 2008
15q13.3  1rs4779584-T  SCGSH 1.29-1073  Jaeger et al., [2008
10922.3  rs704017-G ZMIZ1-AS1 1.91-1073 Zhang et al., 2014b
18q21.1  1rs7229639-A  SMAD7 7.96-1072 Zhang et al., 2014a
235 rs992157-A PNKD 7.96-10~2 Orlando et al., [2016
8q23.3 rs16892766-C EIF3H 0.0113 Tomlinson et al., 2008
14¢22.2  1s4444235-C  BMP/ 0.0231 COGENT Study, 2008
6p21.2 rs1321311-A  PANDAR 0.0231 Dunlop et al., 2012
20q13.33  1rs4925386-C  LAMAS 0.0501 Houlston et al., 2010
10g24.2  1rs1035209-T  SLC25A28  0.0536 Whiffin et al., [2014
11q13.4  1rs3824999-G ~ POLDS3 0.0604 Dunlop et al., 2012

56



7.2.2 Independent replication of rs992157 (2q35)

Because a subset of the FIN series had contributed to the original discovery
of the association between 1s992157 (2935) and [CRC| (Orlando et al., [2016)),
rs992157 was independently replicated in 4,439 cases and 15,847 controls
from five Nordic case-control series (STHLM2, Gothenburg, HUNT, Estonia and
part of the FIN series) that had not been previously studied for this associa-
tion. Genomic control was applied in the FIN series (inflation factor, 1.11), but
inflation factors could not be estimated in other Nordic series because only 30
had been genotyped. Regression coeflicients from logistic regression mod-
els were combined with the use of random-effects meta-analysis. There was no
notable study heterogeneity (pper = 0.462, I? = 0%). After Bonferroni correc-
tion for the 30 variants that were genotyped in the MassARRAY experiment
(o = 0.05/30 ~ 0.00167), rs992157 was significantly associated with [CRC| with
an[ORlof 1.14 (p = 2.08-10~%; 95%[CI}, 1.06-1.23). Consistent with prior results,
the alternative allele (A) conferred a higher risk of [CRCl than the reference allele
(G). There was near-perfect correlation between MassARRAY genotype and IM-
PUTE2 genotype dosage in the FIN series (72, 1.00). A Forest plot for 1s992157
is shown in Figure 7.2.
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Figure 7.2: Forest plot for rs992157 (2435).
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Discussion

8 Genetic background of early-onset col-
orectal cancer (I, IT)

[CRO is the fifth most common cancer type in young adults aged 20 to 39 years
after breast cancer, cervical cancer, thyroid cancer and leukemias (Fidler et al.,
2017). Although the overall incidence of has declined over the last decades,
[CRC and especially rectal cancer have become more common in young adults
(Siegel et al.,[2017). The causes of these epidemiologic changes are unknown, but
they may be related to modifiable risk factors such as diet, physical inactivity,
obesity and lack of screening for [CRC]in young adults (Siegel et al.,[2009; Bailey
et al., 2015).

The rising incidence of [CRC]in young adults has drawn interest into genetic risk
assessment, which could help to identify individuals who may benefit from earlier
screening (The Lancet Oncology, 2017;18(4):413). The prevalence of hereditary
syndromes in early-onset [CRC] cases is high; it has been estimated at 34.7% (95%
[CTl 28.1%-41.9%) in those younger than 35 years at diagnosis and at 16.0% (95%
[CT 12.8%-19.8%) in those younger than 50 years at diagnosis, with [[S] being the
most frequent genetic disorder (Mork et al., 2015; Pearlman et al.,[2017). In con-
trast, less than 5% of unselected patients have underlying high-penetrance
syndromes (Aaltonen et al.,[2007)). [GIl polyposis syndromes are usually diagnosed
on the basis of clinical and histopathologic criteria, whereas tumor [MSllidentifies
patients with possible Hereditary syndromes may, however, present atypi-
cally and may lack characteristic clinicopathologic features (Sweet et al., 2005)).
In these cases, syndrome identification may depend on direct genetic testing.
In recent years, diagnostic has become widely available and may help un-
cover pathogenic germline variants in patients without clear clinical features of
hereditary cancer syndromes.

We studied an unselected series of 1,514 Finnish [CRC] patients, 38 of whom had
been diagnosed before age 40 years. Twenty-three patients with unexplained
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etiology were analyzed for nonsynonymous variants in 10 high-penetrance [CRC]
predisposition genes (MLH1, MSH2, MSH6, PMS2, APC, MUTYH, SMAD/,
BMPRI1A, STK11 and PTEN). revealed only one additional pathogenic
variant in MLHI. Therefore, provided little added value in diagnosing the
underlying conditions as compared with standard diagnostic methods. did,
however, identify missense [V USk. may complicate genetic counseling and
clinical management but can be reclassified when sufficient evidence accumulates.
has limited sensitivity for structural variants, which can be detected more
reliably with [MLPAL or panels. may be more cost-efficient
than [WGS] and the diagnostic yield of panels depends on which genes are

targeted (Sun et al., [2015).

Consistent with prior literature, the prevalence of hereditary [CRC| syndromes
was high (42%; 95%[CI] 26%-59%). The most prevalent syndrome was [LS] which
was diagnosed in 12 of the 38 patients (32%). Correspondingly, the proportion
of [MSII [CRCk was high (37%, 14/38), and [LS] was present in 86% (12/14) of
patients with early-onset [MSIICRCl Therefore, early-onset [MSI[CRC|should raise
strong suspicion of [FAT] had been diagnosed in three patients (7.9%) and
[IPlin one patient (2.6%), reflecting the lower incidence rates of these syndromes.
These estimates may be influenced by referral bias because 31% of the patients
(472/1,514) were not part of the population-based sample collection (May 1994
- June 1998).

By the time of diagnosis, most patients (61%) had developed either local or
distant metastases, but there was no notable difference in tumor stage between
syndromic and nonsyndromic patients. Previous studies support an association
between early age at diagnosis and advanced stage, which may be due to diagnos-
tic delay or aggressive tumor biology (O’Connell et al., Taggarshe et al.,
. Both provider- and patient-related factors may delay cancer diagnoses
in young adults (Bleyer et al., . Early age of onset does not seem to be
independently associated with poor [CRClspecific outcomes, however (O’Connell
et al., Hubbard et al.,[2012). Poor differentiation and mucinous histology,
both of which are associated with aggressive clinical course, are more common

among early-onset [CRC] patients (Griffin et al., [1991]).

Official population registries and the Finnish Cancer Registry were used to obtain
accurate data on family history. In this series, familial early-onset was
associated with a high proportion of hereditary cancer syndromes (73%; 8/11),
but these syndromes were also common in patients with negative family history
(30%; 8/27). Registry-based family histories are generally less liable to false-
positive and false-negative reports than self-reported family histories (Murff et
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al., [2004).

One patient with [MSI[CRC] (c543; age at diagnosis, 30 years) met clinical cri-
teria for [XLAl It has been previously proposed that [XLA] is associated with an
increased risk of (Meer et al., [1993)). [MSI gives rise to a large number of
neoantigens, and an intact immune system may be particularly important for the
elimination of [MSII[CRCk or their precursors. This hypothesis is consistent with
[MST being a strong predictive marker for benefit from cancer immunotherapy
(Le et al., . Another patient (s49; age at diagnosis, 33 years) had both
and [MEN}. This patient had been diagnosed with [CRC], pituitary adenoma,
hyperparathyroidism and breast hypertrophy, but there was no clear evidence of
interaction between these two gene defects.

Among the 22 early-onset patients, there were no genes with recurrent [LoF]
variants with < 0.1%. The lack of such genes, together with negative
family history in the majority of the patients (86%) suggests that the genetic eti-
ology of early-onset [CRCl in the absence of known hereditary cancer syndromes
is relatively complex. Possible etiologies include rare variants with intermediate
penetrance, de novo mutations, recessive inheritance, polygenic inheritance and
environmental risk factors. Part of the risk is naturally explained by replicative
mutations and other stochastic events (Tomasetti et al., 2015a). We also con-
sidered genes with [Lol] variants in one early-onset patient and at least one
familial [CRC] patient. Three genes - ADAMTS4, CYTL1 and SYNE]I - displayed
rare [LoF] variants in one early-onset [CRC] patient and one familial patient.
All three familial patients with [LoF] variants in these genes had late-onset
[CRC (age at diagnosis > 75 years). The known functions of SYNE1, CYTL1 and
ADAMTS) are related to intracellular spatial organization, CD34+ mononuclear
cells and cartilage homeostasis, respectively (Tortorella et al., Zhang et al.,

2001; Liu et al., |2000).

Lek et al., derived the probability of [LoF] intolerance (pLI) score by com-
paring observed and expected numbers of protein-truncating variants in human
genes. Genes with [pL]| score > 0.9 were classified as [LoF] intolerant and those
with [pL] score < 0.1 as [LoF] tolerant. [pLI] scores for ADAMTS4, CYTL1 and
SYNE1 were 0.01, 0.00 and 0.00, respectively. Although many high-penetrance
cancer genes have high [pLI] scores (e.g., [pLI| scores for APC and MLH1 are 1.00
and 0.74, respectively), some cancer susceptibility genes are [LoF tolerant (e.g.,
both BRCA1 and BRCA2 have a [pL]| score of 0.00).

Most genes identified in this study (ADAMTS4, CYTL1, SYNE1, ACSL5, INTS),
MCTP2, ARHGAP12 and DONSON ) have not been previously implicated in hu-
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man cancer as defined by the Cancer Gene Census (http://cancer.sanger.ac.
uk/cancergenome/projects/census/, accessed June 2018). There are a num-
ber of plausible explanations. First, because of the exploratory nature of the
study, we cannot firmly conclude whether the variants are pathogenic or not.
Random chance may have played a role. Second, previous linkage studies and
have not been ideal for identifying rare moderate-penetrance variants,
and adequately powered studies are only beginning to emerge. Therefore,
the genes shortlisted here are early candidates for incompletely penetrant
susceptibility. Third, some of the variants may be relatively population-specific,
making them difficult to discover in non-Finnish populations. Two of the identi-
fied genes, ATM and ROS1, do have established roles in human cancer. Biallelic
[LoF mutations in ATM, a damage response kinase, are associated with
autosomal recessive ataxia telangiectasia (Savitsky et al.,[1995)). Candidate gene
studies and suggest that monoallelic carriers of ATM mutations are at
increased risk of breast, gastric, pancreatic and prostate cancers (Thompson et
al., |2005; Renwick et al.,[2006; Helgason et al., 2015)), but evidence of association
with is insufficient (Thompson et al., [2005). ROSI is a tyrosine kinase
and a proto-oncogene, which makes it a somewhat unlikely candidate gene for
cancer predisposition. ACSL5 has been shown to inhibit Wnt signaling in in-
testinal surface epithelia through palmitoylation of the Wnt2B protein (Klaus
et al.,|2014). Therefore, impaired function of ACSLS may have proliferative and
antiapoptotic effects. INTS5 encodes a subunit of the integrator complex, which
regulates [RNA] polymerase II -mediated transcription. The integrator complex
has multiple functions - especially [RNA] processing and genome maintenance -
that may be relevant for cancer (Federico et al., |2017)). One early-onset
patient had a biallelic splice site variant in MCTP2 (c.14884+1G>C), and five fa-
milial [CRC patients (5/95, 5.3%) were heterozygous for MCTP2 ¢.1488+1G>C.
Complete gene inactivation is rare in human genomes, and the reported function
of MCTP2 in cardiac development questions the nature of ¢.1488+1G>C as a
[CoF] variant (Lalani et al.,[2013} Sulem et al., [2015). However, MCTP2 appears
to be [LoF tolerant (pLI} 0.00).

In conclusion, syndromic early-onset was characterized by [MSI], [GIl polypo-
sis and positive family history. The etiology of nonsyndromic early-onset [CRC]
remains poorly understood - these patients were characterized by [MSSI[CRC] lack
of [GIl polyposis and negative family history. has become widely available in
clinical practice, but here it provided little additional clues for genetic diagnosis
as compared with the current standard strategies of [MSIl testing and workup for
[GT polyposis. of the 22 unexplained early-onset [CRC cases did not sug-
gest any single genetic defect that would explain a major part of cancer risk in
this patient group, but the identified rare variants may be of interest in future
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genetic studies on multifactorial [CRC] susceptibility. Larger studies are needed
to further define the diagnostic value of [WES| and to elucidate the contribution
of rare variants to early-onset [CRC]

9 Common variants in colorectal cancer
predisposition (III)

Beginning in 2007, have provided convincing evidence that common vari-
ants explain part of the variation in risk, thereby supporting the common
disease-common variant hypothesis (Reich et al., 2001). Each common variant
has a modest additive or multiplicative effect on disease risk, and most individ-
uals in the general population carry multiple alleles with opposing effects (Holst
et al., |2010). Common variants have been estimated to explain between 7.4%
and 19% of the heritability of [CRC] but currently known risk NPk explain only
around 10% of the heritability that can be ascribed to common variants (Jiao
et al., |2014; Frampton et al., 2016)). Therefore, efforts to identify additional
[CRC risk remain relevant. Furthermore, have identified disease
associations in unexpected regions of the genome, overcoming the limitations of
candidate gene studies (Houlston et al.,|2001)). For example, few genes involved in
[DNAl repair have been identified by [GWASE, although they are mutated in mul-
tiple hereditary [CRC] syndromes. Finally, studies in isolated populations may be
of interest (Kristiansson et al., [2008)) because most of have been
conducted in outbred populations.

We conducted a of [CRC in the Finnish population (stage 1), replicated
results in other European-ancestry populations (stages 2-3) and meta-analyzed a
total of 13,348 cases and 26,438 controls. The recently identified risk [SNPI
1$992157 (2935 near PNKD and TMBIM1) and 37 other [SNPb that have been
associated with in European populations were analyzed in samples that
were independent of previous studies.

The association between rs992157 (2q35) and [CRC| was replicated in five inde-
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pendent Nordic datasets (STHLM2, Gothenburg, HUNT, Estonia and an inde-
pendent subset of the FIN series) that had not been previously studied for this
association (p = 2.08 - 10~%; [OR] 1.14; 95% [CIL 1.06-1.23). The effect size was
consistent with that reported by Orlando et al., 2016, and the association was
genome-wide significant in combined analysis (p = 1.50-10~%; [OR] 1.12; 95% [CI
1.08-1.16). The risk allele for [CRC| rs992157-A, is correlated with rs2382817-C,
which confers protection from [BDJ (r2, 0.826 in 1,000 Genomes Phase 3 Euro-
pean populations; Jostins et al.,|2012)). Considering that is a risk factor for
[CRC these observations suggest genetic pleiotropy and point to a complex rela-
tionship between inflammatory pathways and cancer. Interestingly, rs992157-A
is also associated with increased adult human height (Wood et al., 2014).

In addition to 2q35, twelve other loci were associated with [CRClin the FIN series
(6p21.2, 8q23.3, 8q24.21, 10q22.3, 10q24.2, 11q13.4, 11¢23.1, 14q22.2, 15q13.3,
18¢21.1, 20p12.3 and 20q13.33; for the original discovery studies, see Table 3.2),
which suggests that the genetic architecture of complex[CRClsusceptibility is sim-
ilar between the Finnish population isolate and outbred populations. Replication
of findings from is important because it reduces the risk that proposed
disease associations are due to random error or uncontrolled bias (Kraft et al.,
2009). The lack of novel genome-wide significant risk in this study
may reflect the small effects and/or low allele frequencies of the variants that
remain undiscovered.

This study has several limitations. Samples from the Finnish[CRC| Collection and
the FINRISK Study were genotyped with different arrays, which is a poten-
tial source of bias. rs73121704 at 12q14.3 (MAT] 0.860%) was strongly associated
with in the FIN series (p = 4.07 - 107?) but not in other studies (random-
effects p = 0.466, fixed-effect p = 0.122), which raises concern on imputation
accuracy. Of note, 63% (24/38) of the previously published [CRCI[SNDk failed
to replicate in this study. A main reason for non-replication may have been in-
sufficient statistical power (http://csg.sph.umich.edu/abecasis/cats/gas_
power_calculator/), but also possible are genotyping error, different pat-
terns across populations and spurious associations (Kraft et al., 2009)). Because of
financial constraints, a relatively small number of variants were studied in stages
2 and 3.

In conclusion, we replicated the associations of 14 previously published [SNPk with
in the Finnish population, but novel risk were not identified.
These results validate findings from previous studies and inform the design of
future in isolated populations.
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Concluding remarks and future
prospects

The genetic basis of is an extensively studied topic. Even so, the majority
of the heritability of remains unexplained. Upcoming with larger
sample sizes are likely to reveal a long tail of additional [CRC] risk loci that each
explain smaller and smaller proportions of the total heritability. On the other
hand, new hereditary syndromes may be found in families with very rare
genetic defects. As the cost of genome sequencing continues to decline,
based association studies will clarify the contribution of moderate-penetrance
variants to susceptibility. The expanding use of clinical in cancer
patients will produce vast amounts of genomic data as a byproduct of clinical
practice, which will provide a valuable resource for research in cancer genomics.
Over time, the focus of research may shift towards understanding the biological
mechanisms of genetic associations, as well as developing clinical applications.

The functional characterization of loci is a challenging but important
goal. Despite the modest effect sizes of common [SNPk, the underlying biologi-
cal mechanisms may be conceptually important for developing pharmacological
interventions with clinically significant effects (Nelson et al.,|2015). Even in the
absence of detailed biological knowledge, genetic associations offer direct oppor-
tunities for clinical applications. Although risk-reducing interventions have been
successful in patients with hereditary cancer syndromes, it is not known if
alone will be clinically useful. Instead, polygenic effects can be incorporated into
more comprehensive risk models that may also include family history and envi-
ronmental and behavioral risk factors (Torkamani et al., [2018). Such statistical
models may allow the identification of individuals whose multifactorial risk of
[CRO is sufficiently high to warrant clinical intervention.
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Abstract

Objective. Early-onset colorectal cancer (CRC), defined here as age of onset less than 40 years, develops frequently in
genetically predisposed individuals. Next-generation sequencing is an increasingly available option in the diagnostic workup of
suspected hereditary susceptibility, but little is known about the practical feasibility and additional diagnostic yield of the
technology in this patient group. Materials and methods. We analyzed 38 young CRC patients derived from a set of
1514 CRC cases. All 38 tumors had been tested in our laboratory for microsatellite instability (MSI), and Sanger sequencing
had been used to screen for MLHI and MSH2 mutations in MSI cases. Also, gastrointestinal polyposis had been diagnosed
clinically and molecularly. Family histories were acquired from national registries. If inherited syndromes had not been
diagnosed in routine diagnostic efforts (n = 23), normal tissue DNA was analyzed for mutations in a comprehensive set of high-
penetrance genes (MLH1, MSH2, MSH6, PMS2, APC, MUTYH, SMAD4, BMPR1A, LKB1/STK11, and PTEN) by exome
sequencing. Results. CRC predisposition syndromes were confirmed in 42% (16/38) of early-onset CRC patients. Hereditary
nonpolyposis colorectal cancer was diagnosed in 12 (32%) patients, familial adenomatous polyposis in three (7.9%), and
juvenile polyposis in one (2.6%) patient. Exome sequencing revealed one additional MLH1 mutation. Over half of the patients
had advanced cancers (Dukes C or D, 61%, 23/38). The majority of nonsyndromic patients had unaffected first-
degree relatives and microsatellite-stable tumors. Conclusions. Microsatellite instability positivity or gastrointestinal poly-
posis characterized all patients with unambiguous highly penetrant germline mutations. In our series, exome sequencing
produced little added value in diagnosing the underlying predisposition conditions.

Key Words: age of onset, colorectal neoplasms, exome, genetic predisposition to disease, mutation

Introduction cancer (HNPCC), familial adenomatous polyposis

(FAP), juvenile polyposis (JP), Peutz-Jeghers syn-
Early age of onset is a central characteristic of hered- drome (PJS) and MUTYH-associated polyposis
itary predisposition to cancer. Highly penetrant syn- (MAP). These syndromes can be classified into those
dromes that predispose to colorectal cancer (CRC) at with gastrointestinal polyposis (FAP, JP, PJS, and
an early age include hereditary nonpolyposis colorectal MAP), usually identified clinically, and those with a
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more subtle, nonpolypotic phenotype (HNPCC, occa-
sionally MAP) [1]. High penetrance is likely to explain
less than 5% of all CRCs [2]. However, young patients
are affected disproportionately.

The diagnosis of HNPCC was classically based on
family history, but the introduction of immunohisto-
chemical and molecular analyses has led to a consid-
erable improvement in diagnostic accuracy [3,4].
Mismatch-repair (MMR) protein immunohistochem-
istry, testing for microsatellite instability (MSI), and
Sanger sequencing of MMR genes are routine clinical
practice in selected cases. Family history is formally
assessed by the Amsterdam I, Amsterdam II, or
Bethesda criteria [5-7].

It has been suggested that early-onset CRC tends to
present at an advanced stage, probably reflecting a
delay in presentation or diagnosis, or biological
aggressiveness [8]. Also, several authors have
observed adverse histopathological characteristics
compared to older patients [9,10]. Other features
associated with early age of onset are primary tumor
location in the proximal colon, microsatellite insta-
bility, and family history of CRC [8,11,12].

Epidemiologically, the incidence of CRC in young
adults, particularly that of rectal tumors, has increased
in the last decades. This emphasizes environmental
factors such as diet, obesity and low physical activity,
acting independently or in concert with hereditary
factors [11,13].

Colorectal cancer is one of the most preventable
malignancies, and there is continuous debate on opti-
mal screening strategies [14,15]. Screening programs
have been devised for specific syndromes, but their
effective implementation requires, among other fac-
tors, timely genetic diagnosis. The prevention of non-
syndromic early-onset CRC is a difficult task, since
many of these young individuals might lack currently
recognized risk factors such as personal or family
history of colorectal neoplasia, or inflammatory bowel
disease. Important unresolved questions concern the
spectrum of germline mutations and the role of next-
generation sequencing in their detection. Whole-
genome and exome sequencing are rapidly becoming
feasible options in the diagnosis of hereditary sus-
ceptibility, but little information is available on the
usefulness of these approaches in early-onset CRC.
The clinical application of next-generation sequencing
would involve analyzing the protein-coding sequences
of known CRC susceptibility genes in high-risk indi-
viduals. A conceptually similar, although technically
different, approach was used by Sweet et al. [16] to
analyze the genes SMAD4, BMPR1A, STK11/LKBI,
and ENG in 49 patients with unexplained gastrointes-
tinal polyposis. In this study, we aim at addressing
these issues and provide an analysis of the molecular
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genetic, histopathological, clinical, and family history
features of early-onset CRC, defined as age of onset
less than 40 years.

Materials and methods

A previously described population-based material of
normal and tumor tissue from 1042 CRC patients was
used [4,17]. This material was collected between May
1994 and June 1998 in nine central hospitals covering
southeastern Finland. The samples were studied for
MSI, and in positive cases MLH1 and MSH?2 Sanger
sequencing was performed as described previously
[4,17]. This series contributed 20 patients to the
current study. Less systematic sample collection of
unselected CRC cases was continued uninterruptedly
in two of the nine central hospitals in 1998, and is still
ongoing. An additional material of 472 CRCs and
respective normal tissue samples was available from
this additional series, and this series contributed
18 carly-onset CRC cases. In these 18 tumors MSI
testing was performed using the Bethesda panel of
microsatellite markers (BAT25, BAT26, D5S346,
D17S250, and D2S123), and MMR gene mutation
data were obtained from diagnostic laboratories.
Data on all first-degree relatives and their cancer
diagnoses were acquired from official population
registries and the Finnish Cancer Registry. Both the
population registries and the Finnish Cancer Registry
have almost complete coverage, and the Finnish Can-
cer Registry has been established in 1953. Medical
records were used to obtain results from genetic
testing and to investigate phenotypic features. This
enabled us to take into account the clinical and
molecular diagnoses of hereditary cancer readily
available.

If a germline mutation had not been identified in
the previous efforts (23 of 38 patients), germline
protein-coding regions were sequenced by exome
sequencing. SureSelect Human All Exon Kit
v.1 (Agilent Technologies, Santa Clara, California)
was used to capture exomic sequences, and prepared
samples were sequenced by Illumina Genome Ana-
lyzer II (Illumina, San Diego, California) to obtain
paired-end short read sequences. Read length was
80 base pairs and average coverage was 53.7.
A comparative analysis tool (RikuRator, manuscript
under preparation) was used to interpret exome
sequencing data and call variants. Variants were fil-
tered against 212 exome sequencing controls (68 in-
house control exomes and 144 Finnish migraine
patient exomes), and data from the 1000 Genomes
Project (Phase 1 release, www.1000genomes.org), to
exclude common polymorphisms. Subsequent anal-
yses focused on the known high-penetrance CRC
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Figure 1. Age distribution of the entire CRC patient series (n = 1514).

genes, MLHI1, MSH2, MSH6, PMS2, APC, MUTYH,
SMAD4, BMPRI1A, LKBI1/STK11, and PTEN.
Sanger sequencing was used to validate the relevant
exome sequencing variants in these genes. All nonsilent
variants in these genes with unknown or low (<5%)
minor allele frequency were searched for in the
InSiGHT mutation database (www.insight-group.org).

Results

The entire unselected CRC patient series comprised
1514 cases (Figure 1). Of these, 38 (2.6%) were

diagnosed before the age of 40 years, ranging from
21 to 39 years. The median and mean ages of onset
were 35 and 33.7, respectively. There were 18 females
and 20 males.

Initially, all 38 young patients underwent testing for
tumor MSI. If tumor tissue was microsatellite-unsta-
ble, germline mutations were screened for in the
genes MLH1 and MSH2. Diagnostic evaluation
and clinical genetic testing revealed gastrointestinal
polyposis syndromes and additional germline muta-
tions. By these approaches, hereditary CRC was diag-
nosed in 15 of 38 patients. To examine the power of

Table I. Molecular, histopathological, clinical, and family history features of 38 early-onset CRC patients in an unselected Finnish series of

1514 CRC cases.

Any CRC predisposition HNPCC No CRC predisposition MSI All patients
syndrome (n = 16) (n=12) syndrome diagnosed (n = 22) (n=14) (n = 38)
Median age of onset 34.5 35 35.5 34.5 35
Mean age of onset 33.4 34.3 33.9 33.9 33.7
Gender
Female 8 (50%) 7 (58%) 10 (45%) 7 (50%) 18 (47%)
Male 8 (50%) 5 (42%) 12 (55%) 7 (50%) 20 (53%)
MSI 12 (75%) 12 (100%) 2 (9.1%) 14 (100%) 14 (37%)
Syndromes
HNPCC 12 (75%) 12 (100%) 0 12 (86%) 12 (32%)
FAP 3 (19%) 0 0 0 3 (7.9%)
P 1 (6.3%) 0 0 0 1 (2.6%)
Primary location
Proximal 5 (31%) 4 (33%) 4 (18%) 4 (29%) 9 (24%)
Distal 11 (69%) 8 (67%) 18 (82%) 10 (71%) 29 (76%)
Dukes stage
A 3 (19%) 2 (17%) 3 (14%) 2 (14%) 6 (16%)
B 3 (19%) 3 (25%) 6 (27%) 4 (29%) 9 (24%)
C 8 (50%) 5 (42%) 9 (41%) 6 (43%) 17 (45%)
D 2 (13%) 2 (17%) 4 (18%) 2 (14%) 6 (16%)
First-degree relative with CRC 8 (50%) 7 (58%) 3 (14%) 7 (50%) 11 (29%)
Metachronous CRC 1 (6.3%) 1 (8.3%) 0 1 (7.1%) 1 (2.6%)
Synchronous CRC 1 (6.3%) 1 (8.3%) 0 1 (7.1%) 1 (2.6%)
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Table II. Germline mutations in known CRC susceptibility genes in 16 CRC patients with age of onset less than 40 years. Mutation 1 is a
Finnish founder mutation, a 3.5-kb genomic deletion comprising exon 16 of MLH1. The BMPRI1A mutation g. 391C>G has been shown to

result in skipping of exon 1 [30].

Patient Age of onset Gene Mutation Mutation type
s171 35 MLH1 c.454-1G>A Splice site

s1108 38 MLHI Mutation 1 Genomic deletion
s30 27 MLH1 c.1975C>T Nonsense (R659X)
s17 27 MLH1 c.677+1G>T Splice site

s124 34 MLHI Mutation 1 Genomic deletion
c430 36 MLHI Mutation 1 Genomic deletion
c615 39 MLH1 c.454-1G>A Splice site

s49 33 MSH2 Deletion of exons 1-7 Genomic deletion
s108 38 MSH2 Deletion of exons 7-8 Genomic deletion
cl138 39 MSH?2 c.1807G>A Missense (D603N)
c54 35 MSH?2 c.1387-1G>T Splice site

s95 31 MSHG6 c.3013C>T Nonsense (R1005X)
c520 29 FAP (clinical diagnosis)

c231 34 APC c.739C>T Nonsense (Q247X)
$200 37 FAP (clinical diagnosis)

c79 23 BMPRIA g2.391C>G Splice site

exome sequencing in diagnosing additional cases of
hereditary CRC in the series, the remaining 23 cases
were analyzed utilizing this approach. The subsequent
analysis focused on all the genes that have been
implicated in high-penetrance CRC predisposition.
This set comprised MLHI1, MSH2, MSH6, PMS2,
APC, MUTYH, SMAD4, BMPR1A, LKB1/STK11,
and PTEN.

In exome sequencing, a splice-site mutation in
MLH]I (c.454-1G>A, the Finnish founder mutation
2) was found. The mutation was validated by PCR
amplification and Sanger sequencing. The patient
(s171, age of onset 35) had a microsatellite-
unstable tumor, and thus it could have been possible
to detect this mutation by MSI testing followed by
MLH1 Sanger sequencing. Variants leading to a trun-
cated gene product were not found in other genes in
this set. However, missense variants were found, most
of them with dbSNP reference IDs (rs#). Missense
variants with unknown or low minor allele frequencies
(<5%) were searched for in the InSiGHT mutation
database. All of these missense variants were found in
the InSiGHT database, but none were classified as
unambiguously pathogenic.

The main results are summarized in Tables I and II.
A high proportion of the young cases display inherited
CRC predisposition syndromes. Altogether, 42% (16/
38) of the patients had clearly defined genetic
susceptibility. The most frequent syndrome was
HNPCC, which accounted for 12 cases (32%, 12/
38). There were seven mutations in MLH1 (18%, 7/
38), four in MSH2 (11%, 4/38) and one in MSH6
(2.6%, 1/38). Incidentally, one patient (s49, age of
onset 33) had HNPCC and multiple endocrine neo-
plasia type 1 (MEN-1).

Familial adenomatous polyposis was clinically diag-
nosed in three patients, and JP in one patient with a
mutation in the gene BMPRIA. There was one case
with X-linked agammaglobulinemia (XLA) and a
microsatellite-unstable tumor. Exome sequencing
did not reveal variation in the X-chromosomal BTK
gene that most commonly causes XILLA [18].

The majority of cancers had metastasized either to
regional lymph nodes or to more distant tissues by the
time of diagnosis (Dukes stage C or D, 61%, 23/38).
The distribution of Dukes stages was as follows:
stage A, 6 cases; stage B, 9 cases; stage C, 17 cases;
and stage D, 6 cases. No difference in Dukes stage
was seen between syndromic cases (Dukes C or D,
63% or 10/16) and nonsyndromic cases (Dukes C
or D, 59% or 13/22). Tumors grades were available in
the pathology reports of 35 of 38 tumors; 8.6% (3/35)
were well differentiated (grade I), 74% (26/35) were
moderately differentiated (grade II), and 17% (6/35)
were poorly differentiated (grade III). Overall, 24%
(9/38) of tumors were proximal to the splenic flexure,
whereas 76% (29/38) were located in the distal colon
or rectum. Based on pathology reports, inflammatory
bowel disease was not present in any of the 38 young
patients.

Of 38 tumors, 14 (37%) were microsatellite-unsta-
ble. MSI tumors correlated well with germline MMR
gene mutations, since 86% (12/14) of these indivi-
duals had such mutations. Only 7.7% (2/26) of those
without germline MMR gene mutations displayed
MSI. Twenty-nine percent (4/14) of MSI tumors
were located in the proximal colon, whereas 21%
(5/24) of MSS tumors were proximal.

Complete family and personal cancer histories were
obtained shortly after tumor resection by linking data
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from official population registries and the Finnish
Cancer Registry. Eleven patients (29%, 11/38) were
familial, i.e., at least one first-degree relative (parent,
sibling, or child) was affected. Among patients with
familial early-onset CRC, 73% (8/11) had a predis-
posing germline mutation (seven patients with MMR
gene mutations and one patient with an APC muta-
tion). In one patient with HNPCC (c138, age of onset
39), another CRC had been diagnosed at the age of
37 years (i.e., the patient had metachronous CRC),
and synchronous CRC was diagnosed in the patient
s124 (age of onset 34 years). In contrast, only 14% (3/
22) of those without well-defined predisposition syn-
dromes were familial, and none had synchronous or
metachronous disease. One patient with FAP (c231)
had two first-degree relatives with FAP-associated
CRCs. However, the first-degree relatives of the other
two patients with FAP were free of CRC.

Discussion

Our aims were to characterize the molecular, clinical,
pathological and family history features of young
CRC patients, and to evaluate the power of exome
sequencing in diagnosing the underlying conditions.
In an unselected Finnish series of 1514 CRC patients,
only 2.6% (38 of 1514) of cases were early-onset,
defined here as age of onset less than 40 years. In
previously published data, estimates have ranged from
1.6% to 7.4% [8,11,19,20].

Mendelian disorders are notably common in early-
onset CRC patients. In our series, the frequency of
highly penetrant syndromes (42%, 16/38) was 10-fold
higher compared to unselected CRC cases (<5%) [2].
HNPCC was the most prevalent form of predisposi-
tion, but there were also a smaller number of patients
with gastrointestinal polyposis syndromes — three with
FAP and one with JP —in line with the lower incidence
rates of these syndromes.

Despite scrutinizing a comprehensive high-
penetrance CRC gene set (MLHI, MSH2, MSHG6,
PMS2, APC, MUTYH, SMAD4, BMPRI1A, LKB1/
STK11, and PTEN), exome sequencing revealed only
one additional mutation. However, it would have
been possible to find this MLHI mutation by MSI
testing followed by MLH1 Sanger sequencing alone,
since the tumor displayed MSI, but genetic testing
data were not available from this patient. After screen-
ing for specific syndromes by established clinical and
molecular approaches, the additional diagnostic yield
of exome sequencing was low in our patient series,
mainly producing missense variants of uncertain path-
ogenic significance. Exome sequencing has technical
limitations in detecting insertions and deletions, copy
number variants, mosaic mutations, and epigenetic

alterations, which could at least partially explain the
scarcity of detected mutations.

The fraction of MSI tumors was high (37%, 14/38).
Germline MMR gene mutations were identified in the
vast majority of young individuals with microsatellite-
unstable tumors (86%, 12/14). On the contrary, only
7.7% (2/26) of those without germline MMR gene
mutations had microsatellite-unstable tumors. Thus,
tumor MSI was highly specific to germline MMR
gene mutations in this patient population, and a
careful search for MMR gene mutations is warranted
in every early-onset patient with MSI CRC. Other
authors have reported various frequencies of MSI and
germline MMR gene mutations in patients under age
40 or 45 years, ranging from 4% to 31% for MSI and
5% to 19% for MMR gene mutations [9,21-24].
Single-center studies should be interpreted with cau-
tion, because there is an increased risk of distortion
depending on local health policies and the expertise of
different centers [25]. Our material was collected
initially in nine central hospitals, but collection was
limited to two central hospitals after 1042 samples,
which is a potential source of bias, and could con-
tribute to the relatively high number of patients with
inherited syndromes. Indeed, the proportion of young
cases was lower in the first, more systematic, phase of
sample collection.

In line with a large body of evidence, a high pro-
portion of advanced stage cancers were found (Dukes
C or D, 61% or 23/38). We did not notice a corre-
lation between tumor stage and CRC predisposition
syndromes. The proportions of Dukes C or D stage
cancers were 61%, 50%, 59% and 57% in syndromic,
HNPCC, nonsyndromic, and MSI tumors, respec-
tively. This highlights the need for early diagnosis,
regardless of etiology. The primary location of MSI
tumors showed only a slight predilection to the prox-
imal colon compared to MSS tumors, since the frac-
tion of proximal tumors was 29% (4/14) in MSI
tumors, and 21% (5/24) in MSS tumors.

Our approach to family history was robust, since
official population registries and the Finnish cancer
registry were used to acquire accurate data shortly
after surgical tumor resection to represent the family
history at the time of diagnosis. Interview-based
family histories are liable to omissions and misreport-
ing, and often the reported cancers cannot be verified
histopathologically. Familial early-onset CRC should
raise high suspicion of inherited predisposition, as
73% (8/11) of these patients had predisposing muta-
tions, seven with HNPCC and one with FAP. Among
patients with HNPCC, affected first-degree relatives
were present in 58% (7/12), and previous metachro-
nous CRC in 8.3% (1/12). Similar histories were
seen rarely in nonsyndromic individuals, as only



14% (3/22) had affected first-degree relatives, and
none had metachronous disease.

Intriguingly, one patient (c543, age of onset
30 years) with XILA had developed microsatellite-
unstable CRC. van der Meer et al. proposed that
XIA causes a high risk of CRC [26]. This fits into
the idea that immune deficiencies can disrupt cancer
immune surveillance, leading to insufficient immune
responses against tumor cells [27]. Microsatellite-
unstable tumors are hypermutated, which gives rise
to a large diversity of tumor antigens, and therefore an
intact immune system might be essential in elimi-
nating these neoplasms. The MSI pathway of colo-
rectal tumorigenesis could be exceptionally effective
in the context of immune deficiency, leading to the
manifestation of CRC at an early age.

Two different hereditary tumor susceptibility syn-
dromes, HNPCC and MEN-1 syndrome, had been
diagnosed in the patient s49 (age of onset 33). Med-
ical records were reviewed, and the most prominent
clinical features were CRC, pituitary adenoma, hyper-
parathyroidism, and breast hypertrophy. This does
not seem to indicate clear additive effects of the two
gene defects.

In our series, syndromic early-onset CRC displayed
autosomal dominant inheritance, typically there was
personal or family history of CRC, and either gastro-
intestinal polyposis or microsatellite instability were
present. In contrast, the etiology of nonsyndromic
cases is obscure, first-degree relatives are mostly
unaffected, polyposis is not a feature, and tumors
are microsatellite-stable. Age of onset did not seem
to differ between these two types. Possible etiologies
for the nonsyndromic type include polygenic or reces-
sive inheritance, rare variants with intermediate pen-
etrance, and environmental factors, but further
investigation is needed to discover risk factors in
this poorly understood subset. A critical finding is
that a genetic diagnosis could be feasible in as many as
40% of early-onset CRC patients. Testing for MSI
and taking a family history of CRC can provide
valuable clues that help to distinguish patients with
HNPCC. Next-generation sequencing, including
whole-genome and exome sequencing, is likely to
become a key diagnostic technique in the near future
[28,29]. Nevertheless, in our series, this approach
provided little additional clues for genetic diagnosis
as compared with testing for MSI and information on
clinical features, in particular polyposis.
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data from 95 familial CRC patients were available as a validation set. Cases with known CRC
syndromes were excluded. All patients were from Finland, a country known for its genetically ho-
mogenous population. We searched for rare nonsynonymous variants with allele frequencies
below 0.1% in 3,374 Finnish and 58,112 non-Finnish controls. In addition, homozygous and com-
pound heterozygous variants were studied. No genes with rare loss-of-function variants were
present in more than one early-onset CRC patient. Three genes (ADAMTS4, CYTL1, and
SYNET) harbored rare loss-of-function variants in both early-onset and familial CRC cases. Five
genes with homozygous variants in early-onset CRC cases were found (MCTP2, ARHGAP12,
ATM, DONSON, and ROS1), including one gene (MCTP2) with a homozygous splice site variant.
All discovered homozygous variants were exclusive to one early-onset CRC case. Independent
replication is required to associate the discovered variants with CRC. These findings, together
with a lack of family history in 19 of 22 (86%) early-onset patients, suggest genetic heterogeneity
in unexplained early-onset CRC patients, thus emphasizing the requirement for large sample
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Colorectal cancer (CRC) accounts for 10% of new cancers
worldwide (GLOBOCAN Project, http://globocan.iarc.fr), and
its incidence rises rapidly after 45 years of age. The lifetime
risk of CRC is approximately 5%, whereas the risk of
developing CRC before the age of 40 years is only 0.08%
(SEER database, http://seer.cancer.gov). The etiology of
most CRCs is complex and multifactorial, involving interplay
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between multiple genetic and environmental factors. Inheri-
ted factors contribute to CRC risk considerably, but a sig-
nificant fraction of heritability in CRC patients remains
incompletely understood (1).

An estimated 5% of CRC patients, including many of
those with early-onset disease or multiple affected family
members, are highly predisposed to CRC because of rare
single-gene defects in MLH1, MSH2, MSH6, PMS2, APC,
MUTYH, SMAD4, BMPR1A, STK11/LKB1, or POLE (2).
Because of large effect sizes, family-based linkage analysis
was instrumental in mapping these genes. On the other
hand, several low-penetrance CRC susceptibility loci have
been discovered through genome-wide association studies
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(3), but the allelic architectures and causative variants un-
derlying these associations are mostly undefined.

Next generation sequencing (NGS) has uncovered pat-
terns of human genetic variation in unprecedented detail.
Because exome sequencing captures a substantial part of
functional and disease-causing genomic variation, it is a
promising approach to deciphering the role of rare variants in
complex disease predisposition (4). Interest in the patho-
genic potential of rare variants has emerged from evolu-
tionary theory (5), as well as the fact that much of the
heritability of complex diseases remains unexplained (6).

Despite the potential of NGS in the identification of com-
plex trait genes, success has been limited. Part of the reason
is genetic heterogeneity, which increases the sample size
required for the identification of culprit genes. In this regard,
population isolates could offer unique advantages. The
population history of Finland has been characterized in
detail. Population bottlenecks and genetic founder effects, as
well as geographic isolation, have shaped the genetic
structure of the population, leading to reduced genetic het-
erogeneity (7).

Early age of onset is a key feature of hereditary suscep-
tibility to CRC and other common cancers (8), and early-
onset CRC patients might be enriched for undiscovered
susceptibility variants. In this study, we exome sequenced a
discovery set of 22 unselected Finnish CRC patients who
were diagnosed before the age of 40 years, and we used
exome sequencing data from 95 Finnish familial CRC pa-
tients as a validation set. None of the patients displayed
known predisposition syndromes that could account for early
age of onset or a positive family history. To identify new
potential CRC susceptibility genes, we analyzed rare non-
synonymous variants, and considered both dominant and
recessive modes of inheritance.

Materials and methods
Samples

We studied a discovery set of 22 nonsyndromic early-onset
CRC cases diagnosed before the age of 40 years, and we
used 95 familial CRC cases (with at least one affected first-
degree relative) as a validation set. Both sample sets were
published previously (9,10) and were derived from a series of
1,514 unselected CRC patients, which was collected in nine
central hospitals in southern and eastern Finland between
May 1994 and June 1998 and in two of these hospitals from
year 1998 to present (9,10). The population-based phase of
sample collection in nine hospitals contributed 1,042 CRC
patients, and 472 additional CRC patient samples were
collected in two hospitals after June 1998. All patients gave
informed consent to genetic studies on tumor susceptibility,
and the study was approved by the appropriate ethics review
board.

Both normal and tumor DNA samples were available from
each patient. All tumors had been tested for microsatellite
instability (MSI), and known CRC susceptibility syndromes
had been diagnosed clinically or molecularly. Data on first-
degree relatives and their cancer diagnoses had been ac-
quired from official population registries and the Finnish
Cancer Registry (9,10). Of 1,514 CRC patients, 38 (2.5%)
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had been diagnosed before the age of 40 years. Of 38 early-
onset CRC patients, 16 (42%) had known genetic CRC
susceptibility syndromes, including hereditary non-polyposis
colon cancer (12 of 38, 32%), familial adenomatous polyp-
osis (3 of 38, 7.9%), and juvenile polyposis (1 of 38, 2.6%).
Based on pathology reports, there was no evidence of in-
flammatory bowel disease in any of the 38 early-onset pa-
tients. Of the 22 early-onset CRC patients with unknown
etiology (Table 1), 10 were female (45%), 12 were male
(55%), 2 displayed MSI (9.1%), 18 had cancers of the distal
colon or rectum (82%), 13 presented with advanced-stage
cancer (Dukes stage C or D, 59%), and 3 had a family his-
tory of CRC (14%). Median and mean ages of onset were
35.5 and 33.9 years, respectively, ranging from 21—39 years.
Germline DNA samples of these 22 nonsyndromic CRC
patients were exome sequenced.

Exome sequencing

Exome sequences were captured with the SureSelect
Human All Exon Kit v.1 (Agilent Technologies, Santa Clara,
CA). Paired-end 75 base pair reads were obtained with an
lllumina HiSeq 2000 (lllumina, San Diego, CA). Exome
sequencing data quality was confirmed with FastQC (http://
www.bioinformatics.bbsrc.ac.uk/projects/fastqc). Reads
were mapped to the human reference genome GRCh37 with
the Burrows-Wheeler Aligner, v.0.5.9-r16. The Picard
MarkDuplicates tool (http:/broadinstitute.github.io/picard/)
was used to remove duplicate reads. Reads were realigned
locally with the Genome Analysis Toolkit IndelRealigner, and
single-nucleotide variants and indels were called with the
Genome Analysis Toolkit UnifiedGenotyper, v.2.2-16-
g9f648cb  (https://www.broadinstitute.org/gatk/). Average
coverage was 54, and 87% of the targeted regions were
covered by more than 10 reads. An in-house developed
comparative analysis tool (RikuRator, unpublished) was
used to determine allele frequencies in control exomes and
to compare variant calls between CRC cases. When rele-
vant, sequencing reads were manually inspected to exclude
false-positive variant calls. Loss-of-function (LoF) variants
were annotated with the LOFTEE (Loss-Of-Function Tran-
script Effect Estimator, https://github.com/konradjk/loftee).
Accordingly, we excluded ancestral LoF alleles, LoF variants
located in the last 5% of the coding region, splice site vari-
ants in small introns (<15 base pairs), and LoF variants
surrounded by non-canonical splice sites. Functional effects
of missense variants were predicted with PolyPhen-2 and
SIFT, using the Ensembl Variant Effect Predictor (http://
www.ensembl.org).

Exome sequencing controls

Allele frequencies of all variants were determined in 3,374
Finnish and 58,112 non-Finnish control exomes that were
publicly available in the Exome Aggregation Consortium
(ExAC) database (http://exac.broadinstitute.org). These
individuals had been sequenced in various medical and
population genetic studies.
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Table 1  Clinical characteristics of the 22 exome sequenced early-onset CRC patients

Patient no. Age of onset Dukes stage Primary location MSI status CRC in first-degree relatives
c206 36 C Distal MSS Sibling, age 53
c270 39 D Proximal MSS Parent, age 76
c386 30 C Distal MSS Parent, age 56
c414 36 C Proximal MSS —

c543 30 B Distal MSI —

c592 30 A Distal MSS —

c690 36 B Distal MSS —

c768 32 (¢} Distal MSI —

c837 39 B Distal MSS —

c907 34 A Distal MSS —

c938 38 (¢} Distal MSS —

c1055 38 C Distal MSS —

c1066 31 (¢} Distal MSS —

s154 38 A Distal MSS —

s160 33 C Distal MSS —

5281 37 B Proximal MSS —

s907 21 D Distal MSS —

s1137 31 D Proximal MSS —

s1151 36 D Distal MSS —

s1152 28 D Distal MSS —

s1165 37 C Distal MSS —

51167 35 B Distal MSS —

Sanger sequencing and genotyping

Relevant exome sequencing variant calls were verified by
Sanger sequencing. The AmpliTag Gold enzyme (Applied
Biosystems, Foster City, CA) was used in PCR reactions,
and PCR products were purified with the ExoSAP-IT PCR
purification kit (USB Corporation, Cleveland, OH). Big Dye
Terminator v3.1 chemistry (Applied Biosystems) was used in
the DNA sequencing, and capillary electrophoresis was
performed on an Applied Biosystems 3730xI DNA analyzer at
the Institute for Molecular Medicine Finland (FIMM). All novel
variants were submitted to dbSNP (http://www.ncbi.nlm.nih.
gov/SNP). Allelic imbalance was scored by comparing
Sanger sequencing peak heights in normal and tumor DNA
samples as described previously (11).

Results

We exome sequenced 22 unselected, nonsyndromic CRC
patients with disease onset before the age of 40 years
(Table 1). Median and mean ages of onset were 35.5 and
33.9 years, respectively. Most patients (19 of 22, 86%) had
no first-degree relatives with CRC.

In the exome sequencing, a total of 856,325 protein-
coding variants were called, 652,626 of which were synony-
mous and 203,699 nonsynonymous. Of the nonsynonymous
variant calls, 6,120 were classified as protein-truncating
(nonsense, splice site, and frameshift variants), and the
numbers of nonsense, splice site, and frameshift variants
were 1,920, 1,613, and 2,587, respectively. Allele fre-
quencies were determined in two exome control sets, the first
consisting of 3,374 Finnish controls and the second of 58,112
non-Finnish controls. We hypothesized that early-onset CRC

patients may carry rare, dominant CRC predisposing
variants, and thus we searched for rare variants with allele
frequencies of <0.1% in both control sets. The possibility
that early-onset CRC patients carry recessive susceptibility
variants was also considered. To this end, we excluded
variants that were homozygous in any of the 3,374 Finnish or
58,112 non-Finnish controls. Finally, we shortlisted two
sets of genes: 1) genes with heterozygous LoF or missense
variants (Table 2), and 2) genes with homozygous
nonsynonymous variants (Table 3).

Initially, protein-truncating variants were analyzed
(Table 2). We found no genes with rare LoF variants in two or
more early-onset CRC cases. Next, we identified all genes
with a rare LoF variant in a single early-onset CRC case.
Data from 95 familial CRC cases were then analyzed for rare
LoF variants in these genes, and three genes harbored po-
tential LoF variants in both sample sets (ADAMTS4, CYTL1,
and SYNET). All three LoF variants found in familial CRC
patients were exclusive to one family. Familial CRC patients
with LoF variants in ADAMTS4, CYTL1, and SYNE1 had
been diagnosed at ages 75, 86, and 84, respectively.

Next, we searched for rare missense variants shared by
two or more early-onset CRC patients (Table 2). ACSL5
p.Pro71Leu and INTS5 p.Pro922Leu were both found in two
early-onset CRC patients. Neither of these missense variants
was found in 95 familial CRC cases. PolyPhen-2 and SIFT
scores are shown in the Supplementary Table. INTS5
p.Pro922Leu was classified as damaging by both prediction
methods.

To see whether loss of the wild-type allele of heterozy-
gous variants had occurred in the respective, paired cancer
samples, allelic imbalance was analyzed by Sanger
sequencing. Sanger sequencing did not suggest allelic
imbalance for any of the variants.
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Table 2 Rare LoF and missense variants in early-onset CRC patients
CRC cases Finnish controls Non-Finnish controls

Gene cDNA Amino acid Young® Familial® Frequency® Coverage Frequency® Coverage
ADAMTS4  ¢.1618delG Frameshift 1 of 22 1 of 95 2 of 3,374 100.0% 0 of 58,112 99.4%
CYTL1 c.327+2T>A Splice site 1 of 22 1 of 95 0 of 3,374 100.0% 19 of 58,112 99.9%
SYNE1 c.1941dupT Frameshift 1 of 22 0 of 95 0 of 3,374 95.7% 2 of 58,112 90.6%
SYNE1 ¢.5568delC Frameshift 0 of 22 1 of 95 0 of 3,374 100.0% 0 of 58,112 99.8%
ACSL5 c.212C>T p.Pro71Leu 2 of 22 0 of 95 5 of 3,374 99.9% 10 of 58,112 100.0%
INTS5 c.2765C>T p.Pro922Leu 2 of 22 0 of 95 0 of 3,374 99.9% 2 of 58,112 99.7%

@ Age of onset <40 years.

® Familial CRC cases had at least one affected first-degree relative.

Finally, we investigated possible recessive inheritance.
In exome sequencing, 69,503 homozygous non-
synonymous variants were called. All variants found ho-
mozygously in any of 61,486 exome controls were
excluded. This resulted in the identification of four genes
with homozygous missense variants (ARHGAP12, ATM,
DONSON, and ROS1) and one with a homozygous splice-
site variant (MCTP2 c.1488+1G>C). Allele frequencies of
all homozygous variants were <1% in 3,374 Finnish con-
trols. MCTP2 c.1488+1G>C was homozygous in one early-
onset CRC case and heterozygous in five familial CRC
cases. Using the same filtering strategy as for homozygous
variants, we did not find genes with compound heterozy-
gous LoF variants. The analysis of compound heterozygous
missense variants was complicated by haplotype-phase
ambiguity and lack of individual-level control data, and
was not pursued further.

Discussion

Understanding the genetic architecture of CRC susceptibility
is of considerable interest clinically, since morbidity and
mortality from the disease can be effectively reduced in pa-
tients known to be at high genetic risk (12). Early age of
onset, along with familial aggregation, is a hallmark of
inherited cancer susceptibility. In the general population, the
median age for the diagnosis of CRC is 69 years, and only
approximately 3% of CRCs occur in patients <40 years old
(SEER database, http://seer.cancer.gov). Undiscovered
disease-predisposing variants could be several-fold enriched
in such extreme-phenotype populations, making it possible to
identify rare causal variants even in relatively small sets of
carefully selected cases (13), although it is challenging to
demonstrate statistically significant enrichment in a genome-

wide context. To test this approach, we searched for poten-
tially disease-related rare variants in 22 exome sequenced
CRC patients diagnosed before the age of 40 years,
leveraging the homogenous population structure of Finland
and a validation set of 95 familial CRC patients.

The majority (19 of 22, 86%) of the early-onset CRC pa-
tients had no first-degree relatives with CRC. At least to
some degree, this argues against highly penetrant, dominant
inheritance in many of the cases. More plausible genetic
models include polygenic inheritance, gene-environment in-
teractions, de novo mutations, and recessive inheritance.
Also, coincidence is likely to play a role in a subset of cases.

We studied heterozygous variants with allele frequencies
<0.1%. This relatively strict threshold was chosen to in-
crease the proportion of functionally significant variants,
although investigating more common low-frequency variants
would also be relevant. In general, setting a low allele fre-
quency threshold could allow efficient prioritization of vari-
ants, but this also results in higher estimated relative risks for
variants found at notable frequencies among cases, making
it unlikely to discover pathogenic variants with low
penetrance.

Undiscovered LoF (nonsense, splice site, or frameshift)
and missense variants are likely to contribute to CRC sus-
ceptibility, since they often cause direct alterations in gene
function and are associated with a multitude of clinical con-
ditions. It appears that healthy humans typically carry
approximately 100 LoF variants, many of which are mildly
deleterious and often found at low frequencies (14). The
large number of deficient alleles per person complicates the
functional interpretation of individual variants. We used
LOFTEE as part of the filtering strategy to exclude predicted
LoF variants that are unlikely to abolish gene function. To
quantitatively evaluate how well human genes tolerate
functional variation, Petrovski et al. estimated intolerance

Table 3 Homozygous variants in early-onset CRC patients
CRC cases Finnish controls Non-Finnish controls

Gene cDNA Amino acid Young® Familial® Frequency” Coverage Frequency” Coverage
MCTP2 c.1488+1G>C  Splice site 1 of 22 5 of 95 52 of 3,374 98.5% 71 of 58,112 98.3%
ARHGAP12  ¢.596G>C p.Cys199Ser 10of22 0of 95 14 of 3,374 99.9% 16 of 58,112 99.8%
ATM €.998C>T p.Ser333Phe 1 of 22 1 of 95 31 of 3,374 99.7% 125 of 58,112 99.6%
DONSON c.1411G>A p.Glu471Lys 1of22 20f95 37 of 3,374  100.0% 122 of 58,112 100.0%
ROS1 c.1108T>C p.Ser370Pro 10of22 0of 95 5 of 3,374 99.4% 198 of 58,112 99.0%

@ Age of onset <40 years.

® Frequency of heterozygous variant carriers. Familial CRC cases had at least one affected first-degree relative.
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scores (Residual Variation Intolerance Score, RVIS) for
16,956 human genes (15). Seven of the ten genes found in
this study had RVIS values between the 25th and 75th per-
centiles (Supplementary Table). However, INTS5 (RVIS
—0.972, 8.95 percentile) and ARHGAP12 (RVIS —0.819,
11.9 percentile) were estimated to be intolerant to functional
variation, whereas ATM seemed remarkably tolerant (RVIS
1.53, 95.5 percentile).

Three genes (ADAMTS4, CYTL1, and SYNET) harbored
rare LoF variants in one early-onset CRC patient and one
familial CRC patient. Instead of undertaking joint analysis, we
used the 95 Finnish familial CRC cases as a validation set.
This was because rare LoF variants had been previously
studied in the 95 familial CRC cases, resulting in the identi-
fication of 11 candidate CRC susceptibility genes (16). The
vast majority (85 of 95, 89%) of familial CRC cases had only
one affected first-degree relative, compatible with a multi-
factorial etiology. In contrast to early-onset CRC cases, fa-
milial CRC patients who carried LoF variants in ADAMTS4,
CYTL1, and SYNET had relatively late ages of onset (75, 86,
and 84, respectively). None of the variants displayed an
allelic imbalance in tumor tissue.

Most of the genes found in this study have not been
previously implicated in human cancer. Exceptions were
ATM and ROS1, which have well-established roles in
tumorigenesis (The Cancer Gene Census, http:/cancer.
sanger.ac.uk/cancergenome/projects/census/). However,
the large variety of rare missense variants in ATM is a known
complication in medical genetic studies (17), and since
ROS1 is a dominant oncogene (18), it would not be clear-cut
to hypothesize that the homozygous variant p.Ser370Pro in
ROS1 predisposes to cancer, although this cannot be
excluded. In MCTP2, we found a homozygous splice site
variant in one early-onset CRC patient, possibly indicating
complete gene inactivation, which is relatively rare in human
genomes (19). Heterozygous MCTPZ2 c.1488+1G>C was
also found in 5 of the 95 familial CRC patients. In one study, it
was suggested that MCTP2 is a dosage-dependent gene
required for cardiac development (20), which may contradict
the interpretation that homozygous ¢.1488+1G>C causes
complete inactivation of the gene.

Recently, there has been intense interest in using exome
sequencing to investigate the genetic underpinnings of
common diseases. Optimal study design depends heavily
on the underlying genetic architecture, which can only be
determined experimentally. In this analysis, we provide
empirical data suggesting genetic heterogeneity in unex-
plained early-onset CRC patients in the Finnish founder
population. The main findings supporting this conclusion
are: 1) lack of rare, shared LoF variants between young
CRC patients, 2) exclusiveness of discovered homozygous
variants to single early-onset CRC cases, and 3) incon-
spicuous registry-based family histories, revealing affected
first-degree relatives in only 3 of 22 early-onset CRC pa-
tients. Although the sample size was small, we attempted to
enrich for causal variants by extreme-phenotype sampling
in an isolated population, and protein-coding genes were
systematically analyzed to prioritize variants that are bio-
logically most plausible. The variants found in this study
may be of interest in forthcoming genetic studies on multi-
factorial CRC susceptibility, but unless independent vali-
dation provides clear statistical evidence to support them, a
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high degree of caution must be taken to avoid biased
interpretation. Based on these observations and recent
developments in statistical methods (21), it would be
compelling to test for an association between rare variants
and complex CRC exome-wide. This would require large
sample sizes, but would also produce data that is amenable
to meta-analysis.
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Genome-wide association studies have been successful in elucidating the genetic basis of colorectal cancer (CRC), but there
remains unexplained variability in genetic risk. To identify new risk variants and to confirm reported associations, we conducted
a genome-wide association study in 1,701 CRC cases and 14,082 cancer-free controls from the Finnish population. A total of
9,068,015 genetic variants were imputed and tested, and 30 promising variants were studied in additional 11,647 cases and
12,356 controls of European ancestry. The previously reported association between the single-nucleotide polymorphism (SNP)
15992157 (2q35) and CRC was independently replicated (p = 2.08 x 10™%; OR, 1.14; 95% Cl, 1.06-1.23), and it was genome-
wide significant in combined analysis (p = 1.50 x 10~%; OR, 1.12; 95% Cl, 1.08-1.16). Variants at 2q35, 6p21.2, 8q23.3,
8q24.21, 10q22.3, 10q24.2, 11q13.4, 11q23.1, 14q22.2, 15q13.3, 18q21.1, 20p12.3 and 20q13.33 were associated with CRC
in the Finnish population (false discovery rate<0.1), but new risk loci were not found. These results replicate the effects of mul-
tiple loci on the risk of CRC and identify shared risk alleles between the Finnish population isolate and outbred populations.

What’s new?

Genetic studies in isolated populations help characterize monogenic diseases and are being used more and more for the
genetic analysis of complex diseases. Here, the authors performed a genome-wide association study with Finnish individuals
afflicted with colorectal cancer. They confirm a previously reported association of a single-nucleotide polymorphism
(rs992157) on chromosome 2q35, a finding independently replicated in a meta-analysis of European-ancestry individuals.
Although no new risk loci were identified, the study underscores the importance of founder populations in the genetic evalua-
tion of disease susceptibility.

Colorectal cancer (CRC) is the third most common cancer
worldwide and accounts for approximately 10% of global
cancer incidence and mortality (http://globocan.iarc.fr/).
Numerous genetic loci have been associated with CRC in
genome-wide association studies (GWASs; https://www.ebi.ac.
uk/gwas/), but much of its heritability remains unexplained,
which limits personalized risk assessment and biological

Int. J. Cancer: 142, 540-546 (2018) © 2017 UICC

understanding of the disease."” Discovery of new loci and
replication of previously reported associations is thus
important, and recent studies have continued to reveal novel
CRC risk variants.”” The genetic architecture of CRC varies
between populations, and studies in isolated founder
populations can offer valuable insights into disease
susceptibility.®
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We conducted a GWAS of CRC in the Finnish population
(the FIN cohort) using a large publicly available reference
panel to impute genotypes and thus increase the odds of
identifying disease-associated alleles across a wide range of
allele frequencies.” Thirty promising variants were investi-
gated further in 11 European-ancestry studies (STHLM2,
Gothenburg, HUNT, Estonia, FINRISK, COIN, UKI, Scot-
landl, VQ58, CCFRI and CCFR2), adding to a total of
13,348 CRC cases and 26,438 controls.

In a recent meta-analysis of GWASs, the single-nucleotide
polymorphism (SNP) rs992157 at 2q35, intronic to PNKD
and TMBIMI, was found to be associated with CRC
(p=3.15 X 1075 odds ratio (OR), 1.10; 95% confidence
interval (CI), 1.06-1.13).° To replicate this finding, we geno-
typed and analyzed rs992157 in 4,439 CRC cases and 15,847
controls from five Northern European cohorts (STHLM2,
Gothenburg, HUNT, Estonia and a subset of the FIN cohort)
that had not been previously studied for the association
between rs992157 and CRC.

Material and Methods

This study was conducted in accordance with the Declaration
of Helsinki and approved by the Finnish National Supervi-
sory Authority for Welfare and Health, National Institute for
Health and Welfare (THL/151/5.05.00/2017) and the Ethics
Committee of the Hospital District of Helsinki and Uusimaa
(HUS/408/13/03/03/09). We derived 1,627 cases with colorec-
tal adenocarcinoma from the ongoing Finnish CRC collection
and genotyped normal tissues (colorectal tissue or blood)
with Illumina (San Diego, CA) HumanOmni2.5-8 SNP
arrays.'”"" Illumina HumanCoreExome SNP array data for
additional 91 CRC patients and 14,187 Finnish cancer-free
controls were obtained from the National FINRISK Study
(https://www.thLfi/fi/web/thlfi-en/research-and-expertwork/
population-studies/the-national-finrisk-study). Data on diag-
nosed cancers in the FINRISK study participants were col-
lected from the Finnish Cancer Registry. PLINK v.1.90b3i
(www.cog-genomics.org/plink/1.9/) was used for quality con-
trol.'> A total of 122 samples (17 genotyped with the
HumanOmni2.5-8 array and 105 genotyped with Human-
CoreExome array) were excluded on the basis of close relat-
edness (identity-by-descent coefficient >0.2), duplication,
discordant sex information or low genotyping rate. The FIN
cohort consisted of the remaining 1,701 CRC cases and
14,082 cancer-free controls. By design, the HumanOmni2.5-
8 SNP array contained 2,315,673 autosomal sites, 273,074 of
which overlapped with the HumanCoreExome SNP array
(https://support.illumina.com/downloads.html). Exclusion cri-
teria for SNPs were genotyping rate <95%, excess homozy-
gosity (frequency of rare homozygotes exceeding the
frequency of heterozygotes or any rare homozygous genotype
with minor allele frequency (MAF) <2%), deviation from the
Hardy-Weinberg equilibrium (p<1 X 107%), differential
missingness between genotyping batches (p<1 X 10~%), dif-
ferential patterns of linkage disequilibrium (LD) in cases

GWAS and meta-analysis of CRC

versus controls and LD-based strand inconsistency. After
quality control, 214,705 SNPs were pre-phased with
SHAPEIT v2 (r790), and genotypes were imputed with a
publicly available reference panel (https://imputation.sanger.
ac.uk/; http://www.haplotype-reference-consortium.org/).”
Variants with low allele frequency (<0.4%) or low IMPUTE2
info score (<0.4) were excluded prior to association analysis.
In Stage 1, disease associations were tested with a linear
mixed model (BOLT-LMM-inf; https://data.broadinstitute.
org/alkesgroup/BOLT-LMM/), adjusting for log-transformed
age and sex."” A linear mixed model was used because it can
control for population structure and cryptic relatedness."*
The age covariate was defined as age at CRC diagnosis in
cases and age at right censoring (end of follow-up or death)
in controls. An additive genetic model was assumed. The
genomic inflation factor was estimated by dividing the
observed median of the BOLT-LMM-inf test statistic by the
median of the chi-squared distribution with one degree of
freedom. The Benjamini-Hochberg method was used to
adjust for false discovery rate.

In Stage 2, the MassARRAY System by Agena Bioscience
(San Diego, CA) was utilized at the Institute for Molecular
Medicine Finland (FIMM) to genotype single-nucleotide var-
iants in Nordic cohorts (STHLM2, 544 cases/541 controls;
Gothenburg, 1,903 cases/258 controls; HUNT, 1,168 cases/
1,147 controls; Estonia, 257 cases/259 controls; and FINRISK,
198 cases/172 controls), as well as 1,038 individuals from the
FIN cohort who had also been genotyped with SNP arrays
(925 with the HumanOmni2.5-8 array and 113 with the
HumanCoreExome array). The STHLM2 cohort consisted of
men who had been referred to prostate-specific antigen
screening in Stockholm County, Sweden between 2010 and
2012; DNA samples were provided by the Karolinska Insti-
tute Biobank (http://ki.se/forskning/ki-biobank). The Gothen-
burg cohort was formed from CRC patients who had been
operated at the Sahlgrenska University Hospital, Gothenburg,
Sweden; DNA samples from cases and controls were pro-
vided by the Sahlgrenska Biobank (https://www.gothiaforum.
com/sab). DNA samples from the HUNT cohort were pro-
vided by the Norwegian Nord-Trendelag Health Study
(HUNT) and Biobank (https://www.ntnu.edu/hunt). The
Estonia cohort was derived from the sample collections of
the Estonian Genome Center (www.geenivaramu.ee/en). The
FINRISK cohort consisted of participants of the National
FINRISK Study (198 CRC cases and 172 cancer-free controls)
who had not been included in the FIN cohort due to unavail-
able SNP array data; DNA samples were provided by the
THL Biobank, Finland (https://www.thlfi/fi/web/thlfi-en/
topics/information-packages/thl-biobank). ~ When  possible,
cancer-free controls were matched to CRC cases on year of
birth and sex. To assess imputation accuracy, squared Pear-
son correlation coefficients (r*) between IMPUTE2 genotype
dosage and MassARRAY genotype were calculated.

To enable standard meta-analysis, data from the FIN
cohort were reanalyzed by unconditional logistic regression
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under an additive genetic model, adjusting for sex, log-
transformed age and 10 principal components (SNPTEST
v.2.5.2). In the MassARRAY-genotyped Nordic cohorts,
unconditional logistic regression was applied using R v.3.3.3,
provided that at least 10 minor alleles were observed. Details
of the previously published GWASs (COIN, UKI, Scotlandl,
VQ58, CCFR1 and CCFR2) can be found in Ref. 15. Geno-
mic control was applied by multiplying the standard errors
of regression coefficients by the square root of the inflation
factor of the respective study. PLINK v.1.90b3i was used for
LD-based SNP pruning and principal component analysis
(PCA). PCA was performed using 13,012 LD-pruned SNPs
with allele frequency >5% and IMPUTE2 info score > 0.9. R
v.3.3.3 was used for meta-analysis. Estimated log ORs and
standard errors were combined to obtain summary p-values,
ORs, and 95% Cls under inverse-variance weighted random-
effects and fixed-effect models (function “rma.uni” in the
metafor package v.1.9-9). All reported p-values are two-sided.
The type I error rate (o) was 0.05, corresponding to a
genome-wide significance threshold of 5 X 107%.

Results

In Stage 1, we used a linear mixed model (BOLT-LMM-inf)*?
to test 9,068,015 single-nucleotide variants for association
with CRC in the FIN cohort, which comprised 1,701 Finnish
CRC cases and 14,082 population-matched, cancer-free con-
trols. The median of the BOLT-LMM-inf test statistic was
0.512, corresponding to an inflation factor of 1.12, which was
used for genomic control. A quantile-quantile (Q-Q) plot is
shown in Supporting Information Figure 1, PCA plots in
Supporting Information Figures 2 and 3 and a Manhattan
plot in Supporting Information Figure 4. A low-frequency
variant at 12q14.3 (rs73121704; MAF, 0.860%) displayed the
smallest p value in Stage 1 (p=4.07 X 10~°). Among the
highest-ranking SNPs were the known CRC risk variants
1510505477 (p =529 X 107%), rs6589219 (p=4.34 X 1077;
7 with 13802842, 0942 in 1,000 Genomes Phase 3
European populations) and rs6983267 (p=138 X
107%).""'8 Thirty-eight previously published CRC risk SNPs
were tested for association with CRC in the FIN cohort, and
14 of the 38 SNPs showed associations with false discovery
rate < 0.1. Directions of effects were consistent with earlier
publications for each of the 14 SNPs, which were located at
11q23.1 (rs3802842, g =1.77 X 107°), 8q24.21 (rs6983267,
g=177 X 107% rs7014346, q=177 X 107°), 20pl12.3
(rs961253, ¢ =6.92 X 107°), 15q13.3 (rs4779584, ¢ = 1.29 X
107%), 10q22.3 (rs704017, qg=191 X 10°), 18q2l.1
(154939827, q=7.96 X 107%), 2q35 (rs992157, q=7.96 X
1072), 8q23.3 (rs16892766, q = 0.0113), 14q22.2 (rs4444235,
q=00231), 6p21.2 (rs1321311, ¢=0.0231), 20q13.33
(rs4925386, q = 0.0501), 10q24.2 (rs1035209, g = 0.0536) and
11q13.4 (rs3824999, q = 0.0604). Stage 1 results and Locus-
Zoom plots (http://locuszoom.org/) are shown in Supporting
Information Tables 1 and 2 and in Supporting Information
Figures 35-102, respectively.
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Figure 1. Study scheme. Sources of genetic markers are shown on
the left, analytic stages in the center and sources of samples on
the right.

From 20 loci that were ranked highest in Stage 1, we
selected 40 variants for MassARRAY genotyping in five Nor-
dic cohorts (STHLM2, Gothenburg, HUNT, Estonia and
FINRISK; Stage 2). Two variants were selected from each
locus. rs992157 (2q35) was also selected for Stage 2 because
it had been recently reported as a CRC risk factor. We were
unable to design genotyping assays for seven variants because
of sequence context, and four variants failed genotyping.
Consequently, 30 variants representing 20 loci were success-
fully genotyped in a total of 4,070 Nordic CRC cases and
2,377 controls. The MAF of 6:73457627G>C was low in all
five Nordic cohorts, ranging from 0.000923 to 0.00954 (allele
count, 2-7). To evaluate imputation accuracy, 1,038 individu-
als from the FIN cohort were directly genotyped with the
MassARRAY platform. Squared Pearson correlation coeffi-
cients (r*) between IMPUTE2 genotype dosage and MassAR-
RAY genotype for the 30 variants ranged from 0.816 to 1.00
(median, 0.978).

In Stage 3, we obtained summary statistics from previously
published GWASs that comprised 7,577 CRC cases and 9,979
controls of European ancestry.'” Summary-level data were
available for 27 of the 30 variants that were genotyped in Stage
2 (data for rs150509351, rs186867472 and 6:73457627G>C
were missing).

To increase statistical power, datasets from Stages 1 to 3
were combined (Fig. 1), totaling 13,348 CRC cases and
26,438 controls."” The FIN cohort was reanalyzed by logistic
regression to obtain log ORs and corresponding standard
errors; the inflation factor was 1.11. The post-imputation
inflation factors for the COIN, UKI1, Scotlandl, VQ58,
CCFR1 and CCFR2 studies were 1.10, 1.03, 1.04, 1.04, 1.03
and 1.08, respectively.'”” Genomic control was applied for
each of these studies. Inflation factors for the STHLM2,
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Figure 2. Study cohorts, sample sizes and estimated odds ratios for rs992157. The vertical line corresponds to the null hypothesis (odds
ratio = 1). The horizontal lines and square brackets indicate 95% confidence intervals. Areas of the boxes are proportional to the weight of
the study. Diamonds represent combined estimates. FE, fixed-effect. RE, random-effects.

Gothenburg, HUNT or Estonia studies were not estimated
because of the small number of genotyped markers. Fixed-
effect meta-analysis was performed, but to account for possi-
ble study heterogeneity, we considered the random-effects
model (Supporting Information Table 3). Under the random-
effects model, rs10505477 (8q24.21), rs6983267 (8q24.21) and
rs992157  (2q35) were genome-wide significant  (for
1510505477, p=7.63 X 107", pu=0.144, I* = 34.4%; for
16983267, p=7.45 X 107", py = 0.0985, I* =37.7%; for
18992157, p=150 X 107°, ppe=0.777, P =0%), and
rs6589219 (11q23.1) displayed suggestive evidence of associa-
tion (p=9.14 X 1076, Phet = 0.153, I? = 36.5%). Combined
effect size estimates and directions of effects for these four
SNPs were consistent with prior studies.®**™*

Next, we studied rs992157 (2q35) in a replication dataset
comprising 4,439 CRC cases and 15,847 controls (STHLM2,
Gothenburg, HUNT, Estonia and a subset of the FIN cohort)
who had not been previously studied for the association
between rs992157 and CRC (Fig. 2). In the FIN cohort,
992157 had been directly genotyped with SNP arrays in
both cases and controls, and the other Nordic cohorts were
genotyped with the MassARRAY platform. Logistic regression
models were fit within each cohort. In the independent sub-
set of the FIN cohort (567 CRC cases and 13,642 cancer-free

controls), the inflation factor was 1.11, and genomic control
was applied accordingly. Estimated log ORs were combined
under random-effects and fixed-effect models, the results of
which were highly similar without notable study heterogene-
ity (phet = 0.462, P =0%). Applying Bonferroni correction
for the 30 variants that were genotyped in the MassARRAY
experiment (¢ = 0.05/30 ~0.00167), rs992157 was signifi-
cantly associated with CRC with an OR of 1.14 (95% CI,
1.06-1.23; p=2.08 X 10~ *). Consistent with prior results,
the alternative allele (A) conferred a higher risk of CRC than
the reference allele (G). For rs992157, r* between IMPUTE2
genotype dosage and MassARRAY genotype was 1.00 in the
FIN cohort.

Discussion

The identification of CRC susceptibility alleles and quantifica-
tion of their effects is biologically and clinically meaningful. The
genome-wide statistical analysis of tag SNPs has highlighted
new genes and regulatory mechanisms in the pathogenesis of
CRC while concurrently allowing more accurate estimation of
the personalized risk of colorectal neoplasms.***' We conducted
a GWAS of CRC in the Finnish population (Stage 1), geno-
typed 30 promising variants in five Nordic cohorts (Stage 2)
and analyzed corresponding summary statistics from previously
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published GWASs (Stage 3). A total of 39,786 individuals
(13,348 CRC cases and 26,438 controls) were analyzed in Stages
1-3. New genotype data generated in this study were used to
analyze the recently reported effect of rs992157 (2q35) on CRC
risk.

The association between rs992157 and CRC was indepen-
dently replicated (p=2.08 X 10°*), and its effect size was
~1.1 (OR, 1.14; 95% CI, 1.06-1.23). In the combined analysis
of 13,348 CRC cases and 26,438 controls, the p value and OR
for rs992157 were 1.50 X 10~ and 1.12 (95% CI, 1.08-1.16),
respectively, with no indication of study heterogeneity
(Phet = 0777, P =0%). In addition to CRC, rs992157 has
shown pleiotropic effects on adult human height and inflam-
matory bowel disease.%**

In Stage 1, we found evidence supporting multiple previ-
ously published SNPs as risk factors for CRC in the Finnish
population with false discovery rate <0.1. The corresponding
chromosomal regions and nearby genes were 2q35 (PNKD and
TMBIMI), 6p21.2 (TRNAI25), 8q23.3 (LINC00536 and EIF3H),
8q24.21 (CCAT2 and LOCI01930033), 10q22.3 (ZMIZI-ASI),
10q24.2 (NKX2-3 and SLC25A28), 11q13.4 (POLD3), 11q23.1
(COLCAI and COLCA2), 14q22.2 (RPS3AP46 and MIR5580),
159133 (SCG5 and GREMI), 18q21.1 (SMAD?), 20pl2.3
(FGFR3P3 and CASC20) and 20q13.33 (LAMA5).

We did not find Finnish population-specific CRC risk var-
iants, which may reflect limitations in replicating them in other
populations, their rarity or small contributions to inherited
risk. A low-frequency variant at 12q14.3 (rs73121704; MAF,
0.860%) displayed a notable association in Stage 1 (p =4.07 X
1077, but the finding was not supported by meta-analysis
(random-effects p = 0.466, fixed-effect p = 0.122). Bias due to
genotype imputation or population stratification remains a con-
cern, and further data is needed.

545

A limitation of the study is that the number of variants
selected for Stages 2 and 3 was relatively small, and disease-
associated variants may have been omitted from further
investigation because of low rank in the primary analysis. It
is also difficult to assess whether there was residual con-
founding due to population stratification or different geno-
typing platforms. For 1s992157, r* between IMPUTE2
genotype dosage and MassARRAY genotype was 1.00, mak-
ing technical bias unlikely. Genomic control was applied for
all primary GWASs to avoid type I error.

In conclusion, we replicated the association between
rs992157 (2q35) and CRC in Northern European studies and
found it to be genome-wide significant in a meta-analysis of
12 European-ancestry studies. SNPs at 2q35, 6p21.2, 8q23.3,
8q24.21, 10q22.3, 10q24.2, 11ql34, 11q23.1, 14q22.2,
15q13.3, 18q21.1, 20p12.3 and 20q13.33 were associated with
CRC in the Finnish population, which validates findings
from previous studies and reveals shared genetic architecture
of CRC between the Finnish population isolate and outbred
populations.
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