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Hypertrophic cardiomyopathy is the most common inherited cardiomyopathy with a 
highly variable phenotype. Penetrance of pathogenic variants is incomplete and age- 
and gender-related. The assessment of arrhythmogenic potential in HCM patients and 
identification of early signs of the disease in relatives of HCM patients is challenging. 
New tools are required to aid the clinician in diagnostics and the decision-making 
process of prophylactic implantable cardioverter defibrillator implantation. The aim of 
this thesis was to characterize the mechanical and electrical changes in the left ventricle 
of carriers of either the MYBPC3-Q1061X or TPM1-D175N mutation for 
hypertrophic cardiomyopathy and to identify novel imaging and electrocardiographic 
parameters with the potential to enhance sudden cardiac death risk stratification and 
follow-up. 

A total of 140 subjects carrying a pathogenic variant for HCM were recruited for 
these studies from three centers in Finland, divided into two groups: those with left 
ventricular hypertrophy (G+/LVH+ n = 98) and those without hypertrophy 
(G+/LVH- n = 42).  

We studied the association of ventricular arrhythmias on 24h ambulatory 
electrocardiograms to 2D strain echocardiographic global longitudinal strain (GLS) 
and mechanical dispersion in conjunction with cardiac magnetic resonance imaging 
(CMRI) with late gadolinium enhancement (LGE) in 31 G+/LVH+ HCM patients. 
GLS was reduced in HCM patients and correlated well to NT-proBNP and other 
markers of advanced disease. Mechanical dispersion was significantly increased in 
HCM patients with episodes of ventricular arrhythmia on ambulatory ECGs and was 
a better predictor of these episodes than GLS or LGE. Mechanical dispersion may be 
a useful marker of arrhythmogenic potential in HCM patients. 

We evaluated a large array of established ECG parameters and novel 
electrocardiographic criteria of RV1<RV2>RV3 and septal remodeling in a cohort of 
140 HCM mutation carriers with and without hypertrophy. An abnormal ECG was 
present in 97% of G+/LVH+ and 86% of G+/LVH- subjects. The major ECG 
criteria were 90% sensitive and 97% specific for differentiating G+/LVH+ HCM 
patients from control subjects. The combination criteria of RV1<RV2>RV3 + Q 
waves and septal remodeling identified G+/LVH- subjects with a 64% sensitivity and 
97% specificity. The proposed novel ECG criteria may increase the efficacy of using 
electrocardiography in identification of G+/LVH- subjects. 

Repolarization abnormalities are common in HCM and may contribute to the 
arrhythmic potential. A group of 46 HCM patients was assessed with a 24h ambulatory 
ECG with comprehensive repolarization analysis and these findings were associated 
to cardiac magnetic resonance and echocardiographic imaging. Rate dependent QTe 
interval was prolonged in HCM patients. Maximal wall thickness was associated with 
longer maximal QTe and median T wave peak to T wave end interval. HCM patients 
with late gadolinium enhancement on CMRI had a steeper QTe/RR slope compared 
to HCM patients without LGE and control subjects. In HCM multiple repolarization 
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abnormalities are present. The presence of LGE may independently affect the 
repolarization dynamics in HCM. This may contribute to ventricular arrhythmias in 
HCM patients with LGE. 

The metabolome of carriers of the MYBPC3-Q1061X mutation was investigated 
with comprehensive laboratory assays. Concentrations of branched chain amino acids, 
triglycerides and ether phospholipids were increased in mutation carriers with 
hypertrophy as compared to controls and non-hypertrophic mutation carriers, and 
correlated with echocardiographic LVH and signs of diastolic and systolic dysfunction. 

In conclusion, the pathophysiological changes of HCM affect myocardial 
mechanical and electrical properties in a multitude of ways. Some of these subtle 
changes can be identified in mutation carriers without hypertrophy and they might be 
useful in the screening and follow-up of HCM families. The mechanical and electrical 
alterations are intertwined and the echocardiographic measure of mechanical 
dispersion might be a marker of arrhythmic potential reflecting the changes in the 
myocardial structure and function. The presence of fibrosis in the myocardium alters 
the dynamics of ventricular repolarization. The use of novel electrocardiographic and 
echocardiographic techniques has increased the understanding of HCM 
pathophysiology and they could be of use in the clinical evaluation HCM. 
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1 

Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiomyopathy, 
with a prevalence of approximately 0.2%. The first known description of HCM was by 
Henri Liouville dating back to 1869 (1). In 1958 Donald Teare published a small 
autopsy case series of young patients and coined the expression “Asymmetrical 
hypertrophy of the heart” (2). Since then the disease has become familiar to 
cardiologists as a genetically transmitted pathology with problems concerning the 
obstruction of the left ventricular outflow tract, exertional symptoms, ischemia, atrial 
fibrillation, and sudden death in the young. 

After decades of investigation, the underlying pathophysiological process remains 
elusive and the road from genotype the phenotype is difficult to predict in individual 
patients. Modern imaging with two-dimensional echocardiographic strain and cardiac 
magnetic resonance imaging (CMRI) has expanded our knowledge of the disease but 
gaps remain. Various preclinical changes have been observed with electrocardiology 
and imaging but the results are varied and inconclusive at this time. 

When a new HCM patient is identified it triggers a cascade of diagnostic measures 
in the family. A pathological gene variant is found in roughly 30-60% of probands 
aiding the diagnostic process of identifying mutation carriers in the same family. As 
the penetrance of HCM is age-related and incomplete the repeated use of imaging and 
electrocardiography in screening and follow-up is required. As an inexpensive method, 
the conventional 12-lead electrocardiogram is a valuable tool in the early diagnostic 
armamentarium but its sensitivity and specificity so far have been rather limited. The 
definition of ECG patterns and echocardiographic imaging parameters to identify early 
disease before the onset of hypertrophy would be of value in both the assessment of 
families with an identified pathological variant and those without. 

HCM is one of the most common causes of sudden cardiac death in the young and 
athletes (3). The prediction of arrhythmic events is based on a number of risk factors 
that have been compiled into a risk calculator by the European Society of Cardiology 
(4,5). Although widely used, there remain gaps in evidence in the evaluation of sudden 
cardiac death risk in individual patients. Modern imaging has come forth with the 
quantification of fibrosis by CMRI late gadolinium enhancement and diagnosing 
segmental and global dysfunction more accurately with strain imaging. Finding the 
right parameters to detect susceptibility to arrhythmias is one of the themes in this 
thesis.  

The pathological process in the myocardium of HCM patients results in 
repolarization abnormalities, that increase the risk for arrhythmias. Ambulatory ECG 
recording is a commonly used method of risk stratification, but there is relatively scarce 
data on the changes in repolarization in HCM.  

The development of metabolomics to study the pathology of diseases has advanced 
rapidly. The methodology allows the analysis of a very large number of metabolites, 
for example amino acids and lipids, from tissue and blood samples.  Metabolomic 
studies in other cardiomyopathies have expanded our knowledge of these conditions 
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and may aid in the identification of new biomarkers for diagnostics. There is limited 
data on the metabolomic changes in HCM. 

Sixty years after Teare successfully described the cornerstone findings in HCM and 
outlined the familial pattern of inheritance in this disease we still face a number of 
diagnostic challenges and uncertainty about the pathophysiological process that results 
in asymmetrical hypertrophy. This thesis is about finding answers to some of these 
questions. 
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2 

 
Hypertrophic cardiomyopathy is defined as abnormal thickening of the ventricular 
wall, that is not explained by other cardiac pathology or abnormal loading conditions. 
The hypertrophy is characteristically asymmetric in nature. The definition of HCM 
encompasses therefore both hypertrophy due to pathological sarcomeric gene variants 
and other non-sarcomeric etiologies. The scope of this dissertation is limited to HCM 
attributable to gene mutations in the sarcomere.  

 
Hypertrophic cardiomyopathy is the most common inherited cardiomyopathy, with an 
approximate prevalence of 1/500 in the general population (6). It is the most common 
cardiomyopathy (61%) encountered in the outpatient clinic, excluding myocardial 
disease relating to coronary artery disease, hypertension, valvular disease and 
congenital heart disease (7). A significant number of subjects with HCM are not 
clinically diagnosed, according to a recent US-based survey (8). 

 
The conventional criteria for diagnosing hypertrophic cardiomyopathy is maximal 

wall thickness (MWT) of at least one segment of the left ventricle (LV) ≥ 15 mm by 
any imaging modality in the absence of abnormal loading conditions (for example 
aortic stenosis or hypertension) (4). In familial HCM, with a known proband (the first 
identified person in a family to fulfill diagnostic criteria for HCM) the diagnosis can be 
made with an MWT of ≥ 13 mm usually in conjunction with supporting ECG findings, 
laboratory tests, and possibly further imaging. The criteria published by McKenna et 
al. may be used to diagnose HCM in families with known probands (Table 1) (9). The 
diagnosis of HCM in a first degree relative can be made with 

o One major criterion 
o Two minor echocardiographic criteria 
o One minor echocardiographic plus two minor electrocardiographic criteria. 

 
Mutations in the genes encoding the contractile apparatus of the myocyte – the 
sarcomere – are responsible for approximately 50% of cases of hypertrophic 
cardiomyopathy (Figure 1) (10-12). Pathological variants in non-sarcomeric genes and 
hypertrophic cardiomyopathy due to other etiologies constitute the rest of the known 
spectrum. Among the most important causes of non-sarcomeric HCM are storage 
diseases such as Pompe, Danon and Anderson-Fabry, mitochondrial diseases such as 
MELAS, malformation syndromes like Noonan and LEOPARD and amyloidosis (7). 
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Treatment of HCM due to non-sarcomeric etiology is targeted at the underlying cause 
and HCM risk stratification models cannot be applied to this patient population. 
 

 

Table  1 Criteria for diagnosing familial HCM, adapted from McKenna et al 
(9). BBB = bundle branch block, LVH = left ventricular hypertrophy, SAM = 
systolic anterior motion of the mitral valve anterior leaflet. 
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Sarcomeric HCM is most commonly transmitted to offspring through dominant single 
gene mutations in an autosomal dominant pattern. To date over 1000 gene mutations 
in at least 13 different genes have been recorded (10). The predominant pathological 
variants resulting in hypertrophic cardiomyopathy in larger population studies are 
located in the myosing binding protein C (MYBPC3 40%), beta-myosin heavy chain 
(MYH7 40%), alpha-tropomyosin (TPM1 5%), and the troponins I (TNNI3 1-5%) 
and T (TNNT2 5%), summarized in Figure 1 and 2 (10,14). Other possible variants 

with lower prevalence and unclear 
significance are found in genes 
encoding alpha-actinin, alpha-actin, 
myozenin, myosin regulatory light chain 
(MYL2) and myosin essential light 
chain (MYL3). Patients with pathogenic 
sarcomeric mutations often in addition 
carry variants in titin, ion channel, and 
desmosomal genes, which may act as 
modifiers of the disease phenotype and 
progression (15). In approximately 5% 
of cases there is more than one 
pathological variant responsible for the 
disease, with usually a more severe 
phenotype as a result (15-17). 

 

Figure 1 Distribution of gene mutations responsible for sarcomeric HCM 
according to published reports. MYH7 = beta-myosin heavy chain, 
MYBPC3 = myosin binding protein C, TPM1 = alpha-tropomyosin, 
TNNT2 = troponin T, TNNI3 = troponin I. 

 
The FinHCM-study, a multicenter trial of over 300 patients on the genetic background 
of HCM in Finland, originally discovered two pathogenic founder mutations in 
Finland - MYBPC3-Q1061X and TPM-D175N, that account for the majority of the 
identified mutations of HCM. The FinHCM study covered a large geographical area 
of central, eastern and western Finland. The myosin binding protein C mutation 
MYBPC3-Q1061X accounts for approximately 11% and MYBPC3 mutations in 
general for 16%, the alpha-tropomyosin mutation TPM1-D175N for 7% and the beta-
myosin heavy chain mutation MYH7-R1053Q for 6% of HCM in the FinHCM study 
(18,19). A large proportion of HCM in Finland seems to be the result of just these 
three mutations, which is a typical finding relating to the common ancestry of the 
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Finnish people. This is known as the founder effect and it is also present in many other 
heritable diseases in Finland. 
 

 

Figure 2 The sarcomere and the most common mutations involved in sarcomeric 
HCM. 

 
Current understanding of the genotype to phenotype pathway has at least two possible 
mechanisms: 1) A missense mutation leads to a dysfunctional protein, a so called 
“poison peptide”, which is incorporated in the sarcomere and results in change of 
function (20). Many pathogenic mutations in HCM, such as beta-myosin heavy chain 
variants, are of this type (11). 2) The other pathway leads to a truncated end-product 
that is not incorporated in the sarcomere. This results in haploinsufficiency: 
sarcomeres partly lacking the proteins in question. This pathway is typical of MYBPC3-
mutations (21-23).  

The penetrance of sarcomeric HCM mutations in general is relatively high, but 
there seems to be variation related to the specific mutation type with MYBPC3 
mutations exhibiting lower penetration ratios compared to, for example, MYH7 (10). 
The penetrance is age- and gender-related and especially MYBPC3 mutations may 
manifest in older age (24,25). The phenotype resulting from sarcomeric mutations is 
also highly variable and is possibly mediated by modifying genetic factors and other 
variables (15). It has been suggested that some mutations in the beta-myosin heavy 
chains and the troponins carry a more significant risk for sudden cardiac death (SCD) 
than others, but these results are somewhat inconsistent (26-28). Thus the road from 
genotype to phenotype is very complex and for the clinician the variation in phenotype 
between individuals is more related to other factors than just the underlying 
pathological variant. In this literature review the expression G+/LVH+ constitutes 
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carriers of pathological gene variants for HCM with left ventricular hypertrophy 
(LVH+) and G+/LVH- subjects are pathological variant carriers without LVH. 

 

 
The histopathological findings in HCM can be summarized as cellular hypertrophy, 
increased volume of the extracellular matrix, fibrosis, and  disarray of the myocyte 
arrangement (2,29-31). There are abnormal intramural coronary arteries with narrow 
lumens due to thickening of the intimal and medial layers (32,33). The changes in 
microvasculature and thickening of the myocardial wall results in an abnormal 
perfusion demand and is the substrate for ischemia commonly encountered in HCM 
(34,35). Interstitial collagen expansion has been noted in pathological specimens of 
young HCM patients who died suddenly (36). The hypertrophy encountered in HCM 
is significantly different from the conventional concentric response of the LV due to 
pressure load for example from aortic stenosis or hypertension. The degree of 
hypertrophy is also usually more significant compared to myocardial changes relating 
to athlete’s heart, which is later discussed in detail. In HCM the hypertrophy is 
predominantly asymmetrical, with a predilection for the septum and anterior wall (37). 
In some instances, the hypertrophy in HCM is confined to the apex or the inferolateral 
wall. The entity of concentric hypertrophy is also a possible finding in HCM patients 
but quite uncommon (1%). The pathophysiological process leading to asymmetric 
hypertrophy has been extensively studied but remains unclear. 

 
The action potential (AP), its constituent phases (0-4) and ion channels are presented 
in Figure 3A. The repolarization phase (2-3) is most commonly disturbed in 
hypertrophic cardiomyopathy, resulting from the interplay of ion channel pathology, 
calcium homeostasis and cellular level changes such as reduced T-tubule concentration 
(Figure 3B and Figure 4). The most common finding in single myocyte electrical patch 
clamp studies has been the prolongation of the AP (38,39). Multiple studies have found 
that the prolongation of the AP in HCM is accompanied by a higher occurrence of 
early after depolarizations (EAD), which are generally thought to be a primary trigger 
of ventricular tachycardia (38,40,41). 
The prolongation of the AP results at least from (38,41): 

1. increased INaL, as evidenced by the significant shortening of ADP by 
ranolazine, a selective blocker of INaL. 

2. increase of L-type Ca2+ current density (ICaL)  
3. selective downregulation of the inward rectifying current (Ik1) 
4. reduction in outward rectifying current (IKr) 

The interplay of many factors affecting the net repolarizing current outweighs the 
repolarization reserve and results in significantly prolonged APs prone to EADs. 
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Figure 3 A) The action potential and the relevant ion channels responsible. Phases 
of the AP: 0 = depolarization, 1 = early repolarization, 2 = slow 
repolarization, 3 = fast / terminal repolarization, 4 = diastolic membrane 
potential. B) In HCM, the repolarization is prolonged due to IKr 
reduction and increased ICaL and INa making the phase 3 of AP prone to 
EADs. Altered Ca2+ handling and leaks lead to delayed after 
depolarizations (DAD).  

 
The cellular level pathophysiologic changes relating to arrhythmogenesis in HCM 

are summarized in Figure 4. There is evidence of increased myofilament Ca2+ 
sensitization, increased intracellular Ca2+ concentration, and altered Ca2+ handling from 
multiple studies in animal models and extracted human myocytes (42-46). The delayed 
Ca2+ transient rise and decay in human and mouse models is at least partially due to a 
decrease in T-tubule density resulting from the disproportionate relation in the ratio 
of surface to volume growth (38,45). Ca2+ transients are also delayed locally in the T-
tubule system and there is evidence from mouse models that part of the T-tubule 
system does not propagate the AP properly (45). This leads to prolonged kinetics of 
force development and relaxation. The contractile dysfunction does not seem to be 
dependent on the underlying mutation (44). Ca2+ leakage and uncontrolled release by 
the sarcoplasmic reticulum have been observed, recorded as spontaneous contractions 
(45). During diastole or stimulation pauses in mouse models, HCM myocytes exhibit 
abnormal Ca2+ sparks (45,47). HCM resulting from troponin T mutations has been 
associated with a higher incidence of lethal arrhythmias and this has been attributed to 
the increased Ca2+ sensitivity related to the mutation (39,48). 

Alterations in Ca2+ transients and spontaneous Ca2+ sparks can lead to delayed 
afterdepolarizations (DAD) (38,45). In an iPS model of HCM due to a pathogenic 
variant in MYH7, patch-clamp studies of myocytes demonstrated DAD-like electrical 
activity and time-lapse videos recorded contractile arrhythmia in a significant number 
(12%) of observed cells (43). In an iPS model of the MYBPC3-Q1061X and TMP1-
D175N pathological variants, altered Ca2+ transients and both EADs and DADs have 
been recorded on the cellular level (23). 
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Figure 4 Cellular level pathophysiology of HCM: 1) Reduced T-tubule 
concentration. 2) Increased Ca2+ sensitivity and alteration in Ca2+ 
handling. 3) Abnormal Ca2+ release with Ca2+-leak from the sarcoplasmic 
reticulum (SR) and diastolic sparks of Ca2+. 4) Increase of cytosolic Ca2+. 
5) Reduction in IKr flow. NCX = Na-Ca exchanger, SERCA = 
Sarcoplasmic / endoplasmic reticulum Ca2+-ATPase 

 
The arrhythmia leading to SCD in HCM is ventricular tachycardia (VT) or ventricular 
fibrillation (VF). Malignant ventricular arrhythmias (VA) may be triggered with 
exercise, as is evident in the proportion of SCD in young athletes resulting from HCM 
(3,49). Arrhythmias during the resting hours are quite common as well, with 
approximately 20-27% of appropriate implantable cardioverter defibrillator (ICD) 
discharges happening during the night time (50,51). The individual assessment of risk 
for SCD is one of the major challenges in the diagnostics and follow-up of HCM 
patients. 

The triggers giving rise to ventricular arrhythmias during bradycardia have been 
attributed to the perturbation of the repolarization phase of the action potential and 
manifestation of EADs (39,40,52). DADs are also present in cellular level studies of 
HCM and may play a part in the arrhythmias presenting with increased heart rates 
(38,39).  

In addition to a trigger such as and EAD or a DAD, a clinically significant VA 
usually requires a myocardial substrate to perpetuate the arrhythmia. Ischemia due to 
microvascular changes and diminished perfusion reserve related to significant 
hypertrophy contribute to the arrhythmic potential. In hypertrophic cardiomyopathy 
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the heterogeneous composition of the myocardial wall, disarray of the myocytes, and 
patchy areas of fibrosis, provide a fertile field for the re-entry mechanism of VA 
(47,53).  

 
In the adult heart the energy pool consists of adenosine triphosphate (ATP) and 
phosphocreatine (PCr). ATP is the primary fuel of contraction and ion pump function 
and PCr acts as a buffer and transport system for ATP (54). Cardiac work is dependent 
on efficient ATP generation by oxidative phosphorylation of free fatty acids (FFA) in 
the mitochondria (up to 90% of cardiac ATP). Approximately 10-30% of cardiac ATP 
is produced by the oxidation of lactate and glucose – although this increases after meals 
when levels of plasma glucose rise. In heart failure and hypertrophy FFA oxidation is 
impaired and ATP production is reduced (54). The failing heart uses more glucose and 
lactate as energy substrates. 

The results of metabolism studies in HCM have not been entirely concordant (55). 
The underlying unifying concept in hypertrophic cardiomyopathy, regardless of 
mutation type, is the inefficient energy utilization of the myocyte (42). In a mouse 
model of HCM, a decrease in the free energy of ATP hydrolysis has been demonstrated 
with a reduction in contractile performance upon inotropic challenge (56). Impaired 
energy metabolism has been shown in vivo by a reduction in the PCr/ATP ratio on P-
MRS spectroscopy, a marker of cellular energy status, in HCM gene mutation carriers 
with and without hypertrophy (57). A similar result has been shown in a HCM 
population with a single point mutation for HCM (Arg403Gln) (58). This study also 
demonstrated a significant reduction in creatinine kinase flux - a marker of reduced 
metabolic reserve. Flawed energetics in G+/LVH- subjects have also been 
documented with positron emission tomography (PET) imaging, demonstrating 
reduced myocardial external efficiency in the absence of flow abnormalities, indicating 
energy compromise to be an early finding in the pathophysiologic development of 
HCM (59). Giving perhexiline to improve myocardial carbohydrate utilization 
improved exercise capacity and corrected resting cardiac energetics in a 
pharmacological intervention study on HCM patients, further underlining the 
importance of impaired energy utilization (60). 

Reduced free fatty acid uptake in the myocardium of HCM patients demonstrates 
the energy imbalance from another perspective and seems to precede changes in 
glucose metabolism (61). A Finnish study of patients with HCM attributable to the 
Asp175Asn mutation in the α-tropomyosin gene revealed, using PET imaging, 
increased myocardial oxidative metabolism and free fatty acid uptake in HCM patients 
with mild LVH. This decreased with advanced LV hypertrophy (62). 

Metabolomics, the large-scale study of circulating metabolites for example from 
blood or tissue samples, and their association to cardiac and other diseases, has gained 
momentum in recent years (63). Metabolomics is a systems approach that aims to 
characterize complex metabolic networks in studied tissues or blood samples. The 
methodology yields a very large number of small metabolites, such as amino acids, 
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organic acids and lipids, extracted with high throughput gas and liquid chromatography 
coupled to mass spectrometry. It is sensitive to a large number of affecting factors, 
such as age, immune system status, diet and genetic variation (64-67). In cardiac disease 
the study of metabolomics might potentially identify new biomarkers (63). Current 
methodology allows for extensive quantification of a large amount of different 
metabolites (68). The application of metabolomics in the study of cardiomyopathies 
results in new data and is hypothesis generating (63). The use of metabolite clusters 
can increase the diagnostic accuracy in identifying patients with heart failure and 
preserved ejection fraction (69) and staging heart failure patients (70). In a HCM mouse 
model studying the effects of perhexiline, a metabolomic analysis of cardiac myocytes 
was performed, with indirect findings of reduced fatty acid oxidation and increased 
glucose metabolism (71). 

 
A normal ECG in patients with HCM is uncommon. In most reports the ECG is 
pathological in approximately 95% of HCM patients. Commonly the findings 
constitute abnormal Q waves, ST segment abnormalities and patterns of left 
ventricular hypertrophy (72,73). Some reports also point to the possibility of ECG 
changes in G+/LVH- subjects – a finding of interest in the screening of HCM families 
(74,75). The sensitivity and specificity of these ECG findings in G+/LVH- subjects 
have been limited (74). A possible solution to increase diagnostic accuracy could be 
the use of multiple parameters in combination (76). 

 
Terminal negativity of the P wave in lead V1 or P-terminal force (PTF), determined 
usually as the negative portion the the P-wave in V1 being ≥ 0.04 mmsec, has been 
generally attributed to the dilatation of the left atrium. In a large population based 
study a PTF of ≥ 0.06 mms was independently associated with increased risk of death 
and atrial fibrillation (77). This would seem logical as left atrial dilatation can be 
considered a marker of the burden of many cardiac pathologies. The prevalence and 
significance of PTF in HCM has not been extensively studied, but has been a relatively 
common finding in some studies (72,74).  

 
Abnormal Q waves are usually defined as ≥ 40 ms in duration, or ≥ 25% in depth 

of the following R wave, or ≥ 3 mm in depth, in at least two contiguous leads - except 
avR. They can be found in 30-50% of HCM patients (72,73,78-80). Q waves present 
quite early in the development of HCM in patients. Some reports indicate that they are 
present even before the development of hypertrophy (74,79,80). Q waves in HCM are 
narrow but deep and prominent. They occur most often in the inferior and lateral 
leads.  
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In HCM the mechanism behind Q waves is not clear. The asymmetrically 
hypertrophic left ventricle produces abnormal electrical activation with the prominent 
anterior septum canceling the forces from other areas of the LV and RV (73). In 
manifest HCM, fibrosis in the septum may result in loss of localized electrical forces, 
but even with modern CMR imaging only one study has found evidence of localized 
fibrosis associating to Q waves of the same area (81). These factors do not readily 
explain the Q waves seen in mutation carriers without hypertrophy for which there is 
no clear explanation at this point other than the possible effect of minor subclinical 
changes in the myocardial wall predating overt hypertrophy. 

 
Minor conduction disturbances like left anterior hemi-block  and intraventricular 
conduction delay (QRS 100-120 ms) are present in 20-30% of HCM patients (72). 
Right and left bundle branch blocks are relatively common in HCM, with a prevalence 
of approximately 5-10% depending on the cohort (72,73). They have been associated 
with septal fibrosis and indirectly related to syncope in HCM (73). 

 
Ventricular excitation waveforms (depolarization) form the QRS complex. 
Prolongation of the depolarizing phase in the myocardium results in widening of the 
QRS complex – a common and unspecific finding in many myocardial diseases. The 
uniformity of the depolarizing waveforms in the myocardium may be disrupted by 
pathological processes, resulting in additional notching of the QRS complex called 
fragmentation. The definition of fragmented QRS (fQRS) includes a QRS duration of 
≤ 120 ms and various patterns of notching in the R and/or the S waves or the R’ (a 
second upward deflection immediately following the downslope of the original R 
wave) with or without a Q wave (82). Common bundle branch blocks are exclusion 
criteria for fQRS. Fragmentation has been associated with fibrosis in the myocardium 
in cardiomyopathies (82,83) and may confer prognostic significance in ischemic 
cardiomyopathy probably relating to ventricular arrhythmias (84). In hypertrophic 
cardiomyopathy a connection between fragmentation of the QRS complex and 
malignant VAs has also been observed (85,86). Fragmentation may be one of the 
electrical results of the pathological myocardial process in HCM. 

 
The application of the Sokolow-Lyon voltage criteria and Cornell’s voltage product to 
assess LVH from ECG is ubiquitous in cardiology practice. In brief the Sokolow-Lyon 
voltage is positive when SV1 + RV5 or RV6 ≥ 3.5 mV (87) and Cornell’s voltage 
product is positive when the QRS-duration (ms) x (RaVL [mV] + SV3 [mV] (+6 mV 
for women) ≥2440 (88). Their efficacy in the diagnostics of HCM has historically been 
suboptimal, with sensitivity being in the region of 30% and 40% respectively, even in 
recent publications (72,89,90). The Romhilt-Estes point score is a more complicated 
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system to assess hypertrophy (Table 2), with a better diagnostic yield of approximately 
60% in HCM  (72). 

 

Table  2  A point score system for diagnosing left ventricular hypertrophy, 
adapted from Romhilt and Estes (13). 

 
The time interval from the onset of the Q wave to the end of the T wave (QTe) is a 
measure of the duration of repolarization (91). In HCM the repolarization 
abnormalities on many levels result in prolongation of the QTe interval. As the QTe 
duration is dependent on heart rate, for standardization the QTe interval is often 
corrected for this. This is usually performed with the Bazett formula QTc = QT √RR 
(92). This correction is the most common used in the literature, but even recently has 
been criticized for possibly overestimating the proportion of patients with pathological 
prolongation of the QT interval compared with the Fridericia and Framingham 
formulas (93).  QTe prolongation has been independently associated with increased 
risk of sudden death. In the general population a QTc interval of ≥ 450 ms in men and 
≥ 470 ms in women has been associated with a threefold risk of SCD (94). 
The QTe prolongation in HCM is a complex interplay of different factors: 

1. prolongation of the ADP on the cellular level (38) 
2. delay of repolarization due to hypertrophy (95) 
3. dispersion of repolarization due to asymmetric hypertrophy and myocardial 

wall pathology (96) 
The QTe interval may be a relatively good measure of the pathologic process 

inherent in HCM. In a cohort of nearly 500 HCM patients the measured QTc on a 
resting 12-lead electrocardiogram correlated mildly to maximal wall thickness on 
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echocardiography and the basal gradient in the LVOT (95). The prevalence of a 
pathologic QTc > 480 ms was 13% in HCM patients compared to < 1/200 in the 
general population. In another series a measured QTc of > 440 ms was associated with 
larger left atria, thicker MWT, slightly elevated E/E’ and mechanical dyssynchrony 
(97). Late gadolinium enhancement in addition to conventional measures of advanced 
HCM pathology were more prevalent in HCM patients with prolonged QTc and 
increased temporal lability of repolarization as measured by QT variance index and 
normalized QT variance (98). In a prospective study of 195 HCM patients QTc 
prolongation and fragmented QRS in ≥ 3 territories of the resting 12-lead ECG were 
predictive of malignant ventricular arrhythmias (85). QTc may be prolonged already in 
mutation carriers without LVH (99,100) 

Spatial QTe dispersion, the difference between the smallest and largest values of 
QTe duration from all leads in a 12-lead ECG, is also increased in HCM (101-104). 
The dispersion is a measure of the spatial heterogeneity of repolarization in the LV 
and has been associated with ventricular arrhythmias in ambulatory ECGs (103,105). 
The angiotensin converting enzyme genotype of two deletion alleles (DD) has been 
associated with the most dispersion of QT in HCM patients in a small observational 
series (104). The ACE DD genotype is related to increased collagen content in the 
myocardium. On the other hand, the use of QTe dispersion as a prognostic marker 
has been questioned in a larger population based study (106) 

In a prospective study of 164 HCM patients with implanted ICDs, a prolonged 
QTc was the best independent predictor of ventricular arrhythmias after adjustment 
for gender and left ventricular maximal wall thickness (107). This points to the 
dysfunction in repolarization as one of the key factors in arrhythmia potential in HCM, 
although the analysis did not include CMRI imaging or modern echocardiographic 
deformation techniques. 

 
A multitude of repolarization abnormalities can be found in the ST segment of 
hypertrophic cardiomyopathy patients. Hypertrophy itself alters the gradient 
producing T waves in the ventricle. Myocardial fibrosis results in currents resembling 
ischemia. ST-segment depression or T wave inversion can be seen in approximately 
30% of HCM patients (72) and are associated with late gadolinium enhancement on 
cardiac MRI (LGE) and wall thickness (72,73,108). In a retrospective setting of 173 
HCM patients followed for a mean of 4 years ST-segment depression in the high lateral 
leads (I, aVL) and syncope predicted SCD or appropriate ICD therapy (109). No 
advanced imaging modalities i.e. deformation echocardiography or CMRI were 
employed. 

 
The 24h ambulatory ECG is a commonly used tool in the evaluation of hypertrophic 
cardiomyopathy. Usual applications include assessment of heart rate in response to 
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daily activity, exercise, and medications, analysis of conduction disturbances and atrial 
arrhythmias, optimization of therapy for atrial fibrillation, and the assessment of 
ventricular arrhythmias in relation to SCD risk. Table 3 presents common findings of 
ambulatory ECGs in HCM patients compiled from five separate studies (110-114). 

 

Table  3 Common findings in ambulatory 24h ECG in a total of 1044 HCM 
patients (110-114). SVT = supraventricular tachycardia; AF = atrial 
fibrillation; PVC = premature ventricular contraction; NSVT = non-
sustained ventricular tachycardia; AV = atrioventricular; NSVT = non-
sustained ventricular tachycardia. 

The presence of non-sustained ventricular tachycardia (NSVT), defined as ≥ 3 
consecutive ventricular beats at a rate of ≥ 120/min, has been associated with higher 
incidence of SCD in multiple studies (111,112,115,116). It has a prevalence of about 
20-30% in the general HCM-population. Patients with recorded NSVT-episodes 
demonstrated thicker ventricles, larger left atria and higher incidence of left ventricular 
outflow tract obstruction (LVOTO) indicating a more advanced disease state 
compared to patients without NSVT (111). The use of betablocker therapy does not 
have a major impact on the incidence of NSVT (117).  

 
The QTe values measured from ambulatory ECG recordings are mostly reported in 
trials as median or mean values in patients. Repolarization is a dynamic process and 
the potential for arrhythmias may relate to abnormal lengthening of the QT interval as 
a temporal phenomenon. Therefore, the assessment of maximal QTe interval in 
ambulatory ECGs may more accurately reflect the potential for arrhythmias in 
different cardiomyopathies. Using maximal QTe values measured from ambulatory 
ECGs was more sensitive in differentiating LQT1 and LQT2 patients from control 
subjects than baseline QTc from the ECG (118). 
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A tool to assess QT dynamicity is the QT/RR slope. A QT/RR plot is generated by 
plotting the QTe interval values and their respective preceding RR-intervals from an 
ambulatory ECG recording on the y- and x-axis, respectively. A straight line is fitted 
to the plot to derive the QT/RR slope (Figure 5). The slope is the measure of the 
lengthening of the QT interval in relation to increasing RR-intervals. It is a measure of 
the dynamicity of repolarization in relation to heart rate.  

Several investigators have analyzed the QT/RR slope and its association to 
prognosis in other cardiomyopathies. A reasonable body of evidence exists linking 
steeper QT/RR slopes to malignant arrhythmias or sudden cardiac death in ischemic 
cardiomyopathy. In the GREPI study the steeper QT/RR slopes, measured up to two 
weeks from myocardial infarction, predicted SCD in 7 years of follow-up (119). 
Similarly, in the EMIAT study patients who had a myocardial infarction and later 
experienced cardiac death during 21 months of follow-up had steeper QT/RR slopes 
(120). In heart failure due to varied etiologies the steeper QT/RR slopes have 
associated more with overall mortality, and not specifically to arrhythmic events (121-
123). In HCM patients the QT/RR slope has been found steeper compared to control 
subjects and associated to higher estimated risk for arrhythmia (124), although no 
analysis of the effect of wall thickness or other structural findings of HCM to 
repolarization was performed in that study. 

 
 

 

Figure 5 Schematic of measuring the QT/RR slope. A line is fitted to the QTe-
RR point plot of the form y = ax + b, where a = slope and b = intercept. 
In green an example of a normal QTe/RR slope and in blue a steeper 
QTe/RR slope representing, for example, a patient with ischemic 
cardiomyopathy.  
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The time period from T wave apex to end (TPE) is regarded as a measure of the global 
dispersion of repolarization in the LV (125,126). In a rabbit model of HCM the degree 
of left ventricular hypertrophy increased TPE and induced EADs that could initiate 
“R on T” VT (127). Prolonged TPE in lead V5 of the ECG taken at rest has been 
associated with increased risk of SCD (128). The finding was true also in subjects with 
normal QTc or not measurable QT due to a prolonged QRS. In a small sample of 
HCM patients TPE was prolonged and associated with SCD or VT (129). 

 
Atrial fibrillation (AF) is the most common arrhythmia in HCM and a clinically 
significant problem due to the high incidence of thromboembolic complications and 
exercise tolerance reduction. Left ventricular outflow tract obstruction, mitral 
insufficiency, and diastolic dysfunction all elevate left atrial pressure and predispose to 
AF. An active search for AF should be undertaken in HCM patients, especially if the 
left atrium is enlarged (4). In pooled data of HCM patients the prevalence of AF was 
22%, with a clear increase related to aging (130). The incidence of thromboembolic 
complications in HCM patients is markedly higher compared to the general population 
and the conventional risk calculators for stroke prediction work suboptimally in HCM. 
Therefore the guidelines advocate permanent anticoagulation in HCM patients with 
paroxysmal or permanent AF (4). The 24h ambulatory ECG is an inexpensive tool to 
hunt for AF. The incidence of AF in ambulatory monitoring in nonselected HCM 
populations is approximately 5% (Table 3). Atrial fibrillation is paroxysmal in two 
thirds and permanent in one third of HCM patients with AF (131). HCM patients with 
AF tend to be symptomatic and a more active approach to rhythm control in clinical 
management has been advocated in the form of a lower threshold for initiation of 
antiarrhythmic therapy, including amiodarone (4). 

 

 
Echocardiography is the single most versatile tool in assessing hypertrophic 
cardiomyopathy. In most cases, the diagnosis can be made by demonstration of 
significant hypertrophy of the LV wall and ruling out other possible causes such as 
abnormal loading conditions from aortic stenosis. The distribution of hypertrophy can 
readily be assessed with echocardiography further confirming the usually asymmetric 
nature of the disease. In a small minority of subjects where HCM is suspected, the 
limited acoustic windows make the diagnostics challenging and according to reports 
echocardiography misses the diagnosis of HCM in approximately 6% of cases (132). 
This is true especially in confined apical HCM (133). 
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Left ventricular dimensions are usually normal in HCM, but the LV lumen may be 
reduced due to significant hypertrophy. LV systolic function by conventional ejection 
fraction assessment is usually normal or hyperdynamic. Left atrial volumes can be 
enlarged due to diastolic dysfunction, mitral insufficiency and increased pressure from 
outflow tract obstruction. Diastolic dysfunction is a common finding in HCM. It is a 
result of the pathological process in the myocardial wall and can be further exacerbated 
by pressure load from outflow tract obstruction. Conventional tissue Doppler 
velocities of mitral valve annular motion in early diastole (Em, the beginning of 
ventricular filling) and late diastole (Am, during the atrial contraction) are usually 
reduced and filling pressure estimates elevated (increased E/Em). The mitral valve 
should be carefully assessed in HCM. The papillary muscles and the anterior leaflet of 
the mitral valve can be elongated and morphologically abnormal (134,135). Mild to 
moderate mitral insufficiency is quite common. Assessment of systolic anterior motion 
of the mitral valve (SAM) is important in assessing the possibility of outflow tract 
obstruction. Left ventricular outflow tract obstruction should be sought after at rest 
or with provocation, especially in symptomatic individuals. LVOTO is defined as an 
instantaneous Doppler peak gradient of ≥ 30 mmHg measured at rest or with 
provocation (for example the Valsalva maneuver or standing) or exercise and it carries 
prognostic value (136). The inherent problems with the assessment of LV systolic 
function by LVEF, such as interobserver variation, assessment of function indirectly 
through volume change, and relative insensitivity, has lead to the development of 
deformation imaging, which more comprehensively assesses the motion of the 
chamber. 

 
The myocardial wall is composed of myocytes organized as lamina of typically four 
cells thick and separated by cleavage planes (137). The lamina are arranged in a helical 
fiber geometry which is left-handed in the epicardium and gradually changes to a right-
handed helix in the endocardium for optimal energetics (138) (Figure 6). On the 
principle of larger radius for torque, the contraction of the left-handed helix dominates 
the systolic deformation resulting in a counterclockwise twisting motion as seen from 
the apex (139). During the cardiac cycle the wall of the left ventricle deforms by 
longitudinal and circumferential shortening, radial thickening and twisting along the 
long axis (140,141). This wringing motion is released in diastole almost like a spring 
coil. The three-dimensional nature of the mechanical cardiac cycle interconnects the 
phases of systole and diastole, making them dependent on each other (142,143). As 
can be readily observed from the anatomic arrangement, the process of asymmetric 
hypertrophy in HCM affects the systo-diastolic properties of the three-dimensionally 
contracting left ventricle significantly and the distribution of hypertrophy has a marked 
effect on the mechanics of LV function (144-147). 
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Figure 6 The organization of the myocardial wall of the left ventricle and motion 
during systole. The myocardial wall contracts with longitudinal and 
circumferential shortening and radial thickening during systole. The 
epicardial layer contracts with a left-handed helical arrangement of 
myocytes and the endocardium in a right-handed helix. The net rotation 
in the epicardium is counterclockwise and in the endocardium it is 
clockwise. 

 
Previously the use of echocardiography to quantify myocardial function was 
characterized by problems of subjectivity, inter- and intraobserver variability, and the 
analysis of wall motion based on visual analysis. The need for noninvasive quantitative 
methods to analyze myocardial function has led to the development of two- and three-
dimensional strain and strain rate imaging. Strain is a complex construct, but simplified 
to one dimension it is the lengthening or shortening of an object. Strain rate is the 
velocity of change of strain i.e. the velocity of deformation. Deformation of the 
myocardium measured with strain imaging is inherently relatively free of tethering 
effects and the overall translation of the heart in the chest cavity, making it a valuable 
tool as a sensitive marker of local and global dysfunction in a variety of disease states 
(148). 
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Figure 7 Speckle tracking principle. A) The myocardial wall endocardial and 
epicardial borders are identified. B) The algorithm identifies acoustic 
speckles in the ultrasound data. C) The temporal change of location of 
the speckles (arrows, red to violet) is quantified as movement which is 
measured as strain in 2D. 

Strain imaging has been previously used with MRI tagging methods, invasive 
sonomicrometry crystals and tissue Doppler echocardiography (TDI). The TDI 
technique is highly dependent on angle of capture along the scanline - even more so 
than usual Doppler methods and can only measure deformation in one dimension 
(149). To overcome these issues, the method of speckle tracking echocardiography was 
developed (150). The methodology has been described previously (150,151). In brief, 
the software tracks natural acoustic markers known as "speckles" in normal 2D 
echocardiography images from frame to frame (Figure 7 and 8). The deformation of 
these speckles constitutes 2D strain. The benefits are angle independence and the 
ability to measure strain in two or three dimensions using echocardiography. 2D strain 
echocardiography (2DSE) with speckle tracking requires high image quality and 
tracking suffers from dropouts and artifacts. 2DSE has been validated both in vitro 
with tissue-mimicking gelatin blocks (151) and in vivo in animal models by 
sonomicrometry (152) and in humans compared to MRI tagging and tissue doppler 
strain (152,153). 

 
Since the advent of 2DSE the use of longitudinal strain has been most widespread due 
to its relative ease in application and robustness of results. Global longitudinal strain 
(GLS) is usually defined as the mean value of all segmental longitudinal strains in the 
LV. 2DSE was early on applied in HCM patients with results of diminished global 
longitudinal strain and reduction of segmental strain in hypertrophied segments of the 
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LV compared to healthy subjects (154). These results have since been replicated in 
various HCM populations and Table 4 summarizes the results of some of these studies 
mainly focused on assessment of the global LV systolic function in a pooled data of 
750 HCM patients (145,154-159). GLS is usually reduced in HCM compared to control 
subjects and the degree of reduction associates do the degree of hypertrophy (157). 
One of the marked findings in these studies was, that although to the naked eye the 
function of the LV was normal or near normal and the measured LVEF values 
matched those of the control population, there was a clear reduction in segmental 
strain values even in nonhypertrophied segments, implying reduced function in 
seemingly normal myocardium. 

2D strain echocardiography is available from practically all vendors of ultrasound 
equipment in some form or another. GLS overcomes many of the problems 
concerning conventional LVEF measurements (160). Concern over the intervendor 
variability has been an issue that recently was investigated (161). Global longitudinal 
strain proved to be a robust measure of LV function and had better interobserver 
variability than conventional four-chamber LVEF (relative mean error 7.8% vs 13.1% 
for one vendor). The correlation between different vendors was high and the largest 
absolute GLS difference between vendors was 3.7%. For segmental strain the 
differences between vendors was higher and therefore should be serially assessed with 
the same software (162). 

Strain imaging quantifies the pathological process in the myocardium of HCM 
patients in many ways and the segmental values are effected by both hypertrophy and 
fibrosis (163). Saito et al. (164) studied 48 HCM patients with GLS and CMRI. LGE 
was present in 75% of patients and these patients had higher LV mass index and lower 
absolute GLS compared to HCM patients without LGE (-11.8% vs -15.0%). Studies 
by DiSalvo et al. and Almaas et al. both found that septal segmental strain predicts 
NSVT on holter (165,166). The predictive value of strain was superior to septal LGE 
and correlated better to the presence of fibrosis in histopathological specimens of the 
septum in a small population of HCM patients undergoing myectomy (166). 

GLS has also been associated to prognosis in HCM in a study of 119 HCM patients 
with a follow-up of 19 months. A reduced GLS of > -15% and exercise LVOT gradient 
> 50 mmHg were independent predictors of adverse cardiac events (167). Debonnaire 
et al. studied 92 patients prospectively with echo before ICD implantation (159). GLS 
> -14% and left atrial volume index > 34 ml/m2 were independent predictors of ICD 
therapy. In a follow-up of 4.7 years 23% of patients received ICD therapy. 

In a larger cohort of 400 HCM patients followed for a median of 3.1 years a 
reduction in GLS ≥ - 16% was an independent predictor of worse outcome (168). In 
the group with a GLS of ≥ - 10% a total of 33% met the composite end-point of 
ventricular tachycardia or fibrillation, death / cardiac transplantation or heart failure. 
In a similar setting of 427 HCM patients, with a follow-up of 6.7 yrs., both GLS ≥ -
15% and left atrial volume index > 34 ml/m2 independently indicated worse survival 
(169). 
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Figure 8 Example of measuring strain. A) Apical four-chamber view of segmental 
strains. B) Combined segmental strains from all apical views (A4C, A2C, 
A3C) in a bull’s eye plot and global strain measurements.  

 
2DSE enables the measurement of timing of mechanical events of the cardiac cycle. 
Of interest in many cardiomyopathies is the presence of asynchrony in systolic 
contraction. Marked dyssynchrony, from example a left bundle branch block, reduces 
the pump function of the LV. With 2DSE the segmental timing of contraction and its 
delays can be quantified. The dyssynchrony can be measured as the standard deviation 
of the timing of peak longitudinal strain happening around aortic valve closure. This 
measure has been termed mechanical dispersion (MD). In post-myocardial infarction 
patients and DCM subjects (lamin A/C mutation) MD was a significant predictor of 
arrhythmic events and more effective than GLS or LVEF (170-173).  

 
The helical wrap of myocytes around the LV produces a twisting motion. This torsion 
of the LV may link the systolic contraction period to the diastolic forces in a spring 
coil like preservation of mechanical force. The twisting motion of the LV aids in the 
production of vortices of blood flow in both systole and diastole (174). For 2DSE 
measurement purposes the LV is viewed from the apex and twist is quantified as the 
net difference between basal and apical rotation (Figure 9) (175). Torsion is defined as 
twist standardized to the distance between the 2D imaging planes of the apex and base. 
During systole the apex rotates counterclockwise and there is a brief counterclockwise 
rotation of the base at the beginning of systole followed by a clockwise motion. Apical 
rotation is much larger in degrees and is the defining factor in the absolute measure of 
peak systolic twist. During diastole the apex and base reverse rotational direction to 
return to baseline at the end of diastole (Figure 9) (139,176). In HCM the absolute 
twist values are preserved but there is a delay in the completion of twist in systole and 
a corresponding delay in untwist during early diastole linking systolic and diastolic 
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function on the mechanical level (143,177). Age and female gender were associated 
with increased torsion in a CMRI tagging study of nearly 1500 subjects in a community 
based population study (178).  

 

 

Figure 9 Measuring twist. A) The basal level rotates in clockwise direction and the 
apical level in counterclockwise direction as seen from the apex. B) The 
representative twist curves from the apical (blue) and basal (green) level 
and the resulting net twist (black). It is notable, that the majority of 
absolute twist degrees in systole is contributed by the larger rotation (in 
degrees) at the apical level.  

 

 
In the last two decades, cardiac magnetic resonance imaging has moved from an 
academic curiosity to a cornerstone in the diagnostics of cardiomyopathies. In 
hypertrophic cardiomyopathy it is extensively used in the confirmation of diagnosis in 
ambiguous cases and in risk stratification. The hypertrophy in HCM can be very 
confined and its full characterization in some cases is not possible with 
echocardiography (132,179). CMRI has expanded our knowledge of the helical 
patterns and structure of hypertrophy (144). It is advocated as an initial diagnostic tool 
in a recent position paper on multimodality imaging in HCM (180). The main 
diagnostic value of CMRI in risk stratification is the reliable assessment of maximal 
wall thickness especially in patients with suboptimal echocardiographic windows and 
quantification of fibrosis with late gadolinium enhancement. 

 
Gadolinum is an organic chelate compound and administered intravenously 
concentrates in the extracellular space in myocardium. Focal enlarged areas of 
extracellular space concentrate gadolinium to an extent visible in CMR imaging. These 
focal areas represent scar or replacement fibrosis in HCM and can be quantified 



Review of the literature 
 

36 

relative to the mass or volume of the total LV myocardium (181,182). Imaging fibrosis 
with CMR-LGE is extensively used in phenotypic characterization and risk assessment 
in HCM (183). With current methods the prevalence of LGE in unselected HCM 
patient cohorts ranges from 30 to 68% (179,184,185). There is a correlation between 
increased hypertrophy and the amount of LGE (179,186). 

Patients with LGE more frequently have NSVT on holter (184,186) and the extent 
of LGE correlates with a higher risk for adverse events (187,188). In a cohort of 424 
HCM patients studied by Rubinshtein et al. a predictive effect for LGE was found for 
adverse events although the absolute number of events was small (186). In the largest 
CMRI study population to date of 1293 HCM patients, the extent of LGE associated 
independently to increased risk for SCD. The proposed cutoff of LGE ≥ 15% of LV 
mass carried a twofold increase in SCD risk in patients otherwise classified as low risk 
(189). These results have been confirmed in a pooled meta-analysis of LGE studies 
with a total HCM patient population of 2993 and a median follow-up of 3 years (185).  

 
The risk for lethal arrhythmias in young athletes with HCM is significant and current 
guidelines prohibit patients’ participation in competitive sports (4). Professional level 
endurance sports may result in compensatory dilatation of the LV and concentric mild 
hypertrophy of usually ≤ 15 mm. ECG changes are also quite common in professional 
athletes. These changes can be identical to those in HCM. Therefore, the clinical 
differentiation between benign athlete’s heart and HCM can be difficult.  

Recently a position paper by the European Heart Rhythm Association on 
preparticipation screening has elaborated on the issue and is a good guide to the 
clinician (190). Family history and abnormal arrhythmias can be an important clue. 
Naturally, genetic testing is indicated if the pathogenic variant in the family is identified. 
Echocardiographically the hypertrophy in HCM is usually asymmetric compared to the 
concentric LVH of athlete’s heart. The diastolic function in athlete’s heart is usually 
normal with tissue Doppler evaluation, whereas in HCM the hypertrophied myocardial 
segments exhibit reduced diastolic velocities. In difficult cases the use of 2D strain 
echocardiography can aid – with usually reduced strain in the hypertrophied segments 
and possibly reduced GLS (191). CMR findings of asymmetric, localized hypertrophy 
and presence of LGE also strongly favor HCM. Deconditioning should result in 
regression of hypertrophy in athletes. 

 
The clinical course of hypertrophic cardiomyopathy is highly variable due to multiple 
factors such as mutation type and modifying factors, onset of symptoms, degree of 
outflow tract obstruction and susceptibility to arrhythmias. In the unselected HCM 
population, the annual mortality rate is approximately 1%, which is close to the general 
population in Western societies (30). Elderly patients were largely omitted from the 
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early studies of HCM in the 1980s and 1990s. In recent large scale studies the mean 
age of patients is still around 50 years. As the demographics of many developed nations 
are shifting in balance towards an increasing number of elderly citizens, so too will the 
age balance of HCM change. This may affect clinical decision making in the future 
regarding medical and especially ICD therapy. 

In the clinical spectrum of HCM one can appreciate certain subgroups of patients: 
- Younger patients with high risk of SCD. 
- Patients with significant obstruction of the LVOT requiring surgical or 

percutaneous intervention. 
- Patients with debilitating symptoms, such as exertional dyspnea and chest pain, 

and who develop congestive heart failure with preserved EF. 
- Patients with problematic atrial fibrillation and thromboembolic events. 
- A smaller set of patients who progress to the burnt out phase of HCM. 
- The expanding population of G+/LVH- subjects and the continuum from 

healthy mutation carrier to manifest HCM. 
A targeted approach to these subgroups is needed to correctly address the 

problems of this relatively common inherited cardiomyopathy. 

 
Hypertrophic cardiomyopathy is one of the most common causes of sudden cardiac 
death in the  young and young athletes (3,192,193). The risk of SCD in general in HCM 
is more pronounced in the young (194). Current guidelines from the European Society 
of Cardiology delineate a comprehensive risk assessment of sarcomeric HCM resulting 
in an annual SCD risk given by an algorithm (4). The model is based on a large 
retrospective cohort study of SCD in HCM patients (5). The individual risk factors in 
the final model are age, maximal wall thickness, family history of sudden death, left 
ventricular outflow tract gradient, left atrial diameter, unexplained syncope, and NSVT 
recorded on ambulatory ECG.  

As the risk for SCD is more pronounced in the young, the age of the patient has 
an inverse association to the risk (5,195). Maximal wall thickness correlates with 
increased risk for SCD in a non-linear fashion (5). Family history of sudden death 
confers an independent risk for SCD and according to one study the finding of 
multiple sudden deaths in the family increases this risk significantly (196). Although 
exercise testing is not included in the final risk calculator, it is still an integral part of 
the risk assessment in HCM patients. It is used to evaluate the manifestation of 
arrhythmias during exercise and to assess an abnormal blood pressure response, i.e. a 
drop in systolic blood pressure during exercise or failure to increase systolic blood 
pressure during exercise. 

 The guidelines from ESC date back to 2014 and since then significant progress in 
imaging of HCM has been made. Especially the findings of GLS and LGE associating 
independently to prognosis and arrhythmias may in the future influence the risk 
assessment of HCM patients (197). Another small but important subset of patients 



Review of the literature 
 

38 

missing from the risk model are those with apical aneurysm formation, which confers 
a higher risk for arrhythmic events and thromboembolic complications (198). 

On the basis of previous findings, the risk stratification of individual patients and 
decision to implant an ICD requires sound clinical judgment. Implantation of ICDs 
carries approximately a 2% risk for access site complications (pneumothorax, 
haematoma) and a device infection rate of 1.5% according to a meta-analysis with a 
mean follow-up time of 18 months (199). With current programming algorithms the 
rate of inappropriate therapy is in the range of 16-21% in follow-up periods ranging 
from 10 to 46 months (200,201). These factors should be taken into account when 
discussing ICD therapy with HCM patients, who often are young and have a very long 
period of device therapy ahead of them. 

 
Sarcomeric HCM is often genetically transmitted to offspring and therefore it is 
justified to evaluate family members of known HCM probands. Both the ACC/AHA 
and ESC guidelines have comprehensive instructions for the screening process (4,202). 
As HCM is the most common inherited cardiomyopathy the number of individuals 
that require screening is substantial.  

Genetic testing is recommended for probands (4). Usually this is done by applying 
a pre-defined panel of the most common pathological variants responsible for HCM. 
The search may be expanded with larger scale whole exome sequencing in selected rare 
cases, but this is usually not indicated and often yields a number of variants of 
unknown significance. When a pathological variant is found in a family, a process of 
cascade screening starting from first degree relatives is applied.  

In families without an identified pathogenic mutation, the first degree relatives of 
probands need to be clinically screened at regular time intervals. This consumes 
resources and the cost-effectiveness of the approach advocated by the guidelines has 
not been readily established. Therefore, it would be of value to find effective markers 
of early disease presentation to guide the screening process in G- families and assist in 
the evaluation of families with a known pathological variant (G+/LVH- subjects). A 
number of small scale studies have been performed to this effect in the G+/LVH- 
subjects with varied results. 

Early studies on the subject found reduced diastolic TDI velocities in G+/LVH- 
individuals (203-205). With the advent of 2DSE there have been reports of reduced 
segmental strain (206,207) and diastolic abnormalities (208) in gene mutation carriers 
without hypertrophy. Recently a delay and decrease in untwisting has also been 
observed in G+/LVH- subjects (209). The problem with these studies on G+/LVH- 
subjects has been one of replication and somewhat contradictory findings. It is possible 
that mutation type plays a role in the preclinical phases of the disease. The effectiveness 
of 2DSE and TDI imaging in differentiating G+/LVH- subjects from healthy 
noncarriers requires further study. 
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In general, the objective was to assess the mechanical and electrical alterations in the 
myocardium of carriers of pathogenic gene variants for HCM with modern imaging 
and repolarization analysis, evaluate the use of standard 12-lead ECG in the assessment 
of G+/LVH- subjects and study the metabolome in HCM. 
 
More specifically the aims of this study were: 

I. Investigate the association of global longitudinal strain, mechanical 
dispersion, and late gadolinium enhancement in HCM patients to 
recorded ventricular arrhythmias in 24h ambulatory ECGs. 

II. Explore the distribution of ECG parameters in HCM mutation carriers 
and evaluate the diagnostic value of the ECG for detecting G+/LVH- 
subjects and to correlate the ECG findings with comprehensive 
imaging data. 

III. Quantify the repolarization abnormalities in hypertrophic 
cardiomyopathy using ambulatory ECG recordings and elaborate their 
association to imaging in HCM. 

IV. Investigate the metabolomic profile of carriers of the MYBPC3-
Q1061X mutation and its association to echocardiographic findings. 
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Genotyped families carrying either the MYBPC3-Q1061X or TPM1-D175N 
pathogenic variant for HCM were recruited from the Helsinki, Kuopio and Jyväskylä 
hospital districts between 2000 – 2012. Mutation carriers (G+) with documented 
maximum wall thickness ≥ 13 mm on echocardiography (LVH+) were classified as 
G+/LVH+ and nonhypertrophic individuals as G+/LVH-. The control population 
subjects were noncarriers of either of the variants from the same families (studies I, II, 
IV) and unrelated noncarriers (study III), without hypertrophy and structurally normal 
hearts on echocardiography. 

In study I prospectively recruited 31 G+/LVH+ patients with the MYBPC3-
Q1061X variant were divided into HCM/NSVT+ (n = 11) and HCM/NSVT- (n = 
20) groups depending on the presence of NSVT on 24h ambulatory ECG and a control 
group of 20 noncarriers from the same families from the Helsinki and Kuopio 
University Hospital districts. The phenotypic status was confirmed with CMRI.  

In study II the groups consisted of carriers of either the MYBPC3-Q1061X or 
TPM1-D175N variant recruited retrospectively from all three districts, with a total of 
G+/LVH+ n = 98, G+/LVH- n = 42 and control group n = 40 subjects.  

Study III patient groups were prospectively recruited carriers of MYBPC3-Q1061X 
or TPM1-D175N mutations forming the patient group G+/LVH+ (n = 46). The 
control group subjects (n = 35) were noncarriers from the same families. Six 
G+/LVH+ patients were excluded from the original 52 screened due to non-sinus 
rhythm or bundle branch block. 

In study IV patients from families with the MYBPC3-Q1061X mutation were 
recruited prospectively, the study groups were G+/LVH+ n = 34, G+/LVH- n = 19, 
and the control group n = 20. 

 
Conventional blood samples were collected in a fasting state (12 hours) and 
immediately centrifuged at 3200 G for 10 minutes at 4°C. Plasma was separated and 
stored at -70°C (Kuopio) and -80°C (Helsinki). The plasma concentrations of NT-
proBNP were determined with immunoassays utilizing antisera directed to NT-
proBNP, as described previously (210). 

 
All genetic analyses were performed at the University of Eastern Finland. The initial 
identification of the TPM1-D175N and MYBPC3-Q1061X mutations and technical 
aspects of the analyses have been described previously (19,211). In brief, extracted 
DNA from peripheral blood leukocytes was amplified with polymerase chain reaction. 
Genotyping of the TPM1-D175N and MYBPC3-Q1061X mutations was performed 
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using either the TaqMan Allelic Discrimination Assay (ABI PRISM 7000 Sequence 
Detection System, PE Applied Biosystems, Foster City, CA, USA) or direct sequencing 
(ABI PRISM 3100 Genetic Analyzer, PE Applied Biosystems, Foster City, CA, USA).  

 
All standard 12-lead ECGs were recorded with 50 mm/s speed and measured 
manually. Conventional ECG parameters of heart rate, QRS duration, maximal QT 
interval and corrected QT (with the Bazett formula) were assessed for studies I and 
III.  

In study II the ECGs were further analyzed by an array of previously described 
parameters by one investigator blinded to the clinical data: 

1. R and S wave amplitude from all 12 standard ECG leads  
2. ST segment depression or elevation, with a minimum of 0.5 mm change from 

the baseline drawn between consecutive PR segments  
3. Negative T wave, at least 1 mm below the isoelectric line.  
4. Pathological Q waves: any Q wave ≥ 40 ms in duration, or ≥ 3 mm deep, or 

qR-ratio ≥ 0.25, in ≥ 2 parallel leads except lead aVR (73) 
5. Absence of normal Q wave in V5-V6 (212) 
6. Highest R wave in the precordial leads outside of leads V4-V6 (213) 
7. Left ventricular hypertrophy (LVH) according to the Sokolow-Lyon criteria,  
8. LVH according to the Cornell voltage-duration product (defined as QRS-

duration (ms) x (RaVL [mm] + SV3 [mm] ≥ 2440), for women +6 mm) 
9. QRS duration >100 ms 
10. RI+SIII > 25 mm (214) 
11. RI+SIII-RIII-SI > 17 mm (215) 
12. S > R V4 (216) 
13. Romhilt-Estes point score ≥ 4 suggesting LVH (13) 
14. P-terminal force (negative portion of the P wave in lead V1 ≥ -0.04 mmsec) 
15. ST segment depression ≥ 0.5 mm in ≥ 2 parallel leads 
16. T wave inversion ≥ 1 mm in ≥ 2 parallel leads, except for leads aVR and V1 
17. Frontal plane left, right or superior axis deviation 
18. Fragmented QRS (82) 
19. Poor R wave progression (PRWP) (217) 
20. Reverse R wave progression in leads V1-V3 (217) 
21. Rhythm other than sinus 
22. Prolonged PR interval ≥ 200 ms.  
23. Prolonged QTc interval ≥ 440 ms.  
 

In study II the McKenna major ECG criteria were assessed in the diagnostics of HCM 
(9). Composite ECG criteria were analyzed to aid in clinical identification of 
G+/LVH+ and LVH- subjects (II). 

Two novel ECG parameters were also measured and analyzed in study II based on 
clinical practice findings and previously published ECG examples of HCM. The 
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RV1<RV2>RV3 sign defined as the abnormal distribution of R wave amplitudes in 
leads V1-V3, with R wave in V2 being largest.  

The other ECG parameter was a composite labeled septal remodeling. We have 
shown this to have discriminatory power in the assessment of LMNA mutation carriers 
with and without the phenotype of dilated cardiomyopathy (218). Septal remodeling 
was positive with at least one of the following findings in the leads V1-V3:  

1. pathological Q waves in ≥ 2 parallel leads 
2. QRS fragmentation in ≥ 2 leads 
3. PRWP accompanied by QRS fragmentation 
4. disorderly distributed R-wave amplitudes, either RV2 > RV3 or RV1 > RV2 

 
Data from digitally recorded 24-hour ambulatory ECGs from Marquette commercial 
AECG systems were collected and post-processed with a custom software built in 
collaboration with Aalto University. All data was processed and measured from the 
modified precordial lead V5. Data processing and algorithms for determining QRS 
trigger points, onset and offset of QRS and T wave apex and end have been described 
previously (118). Overall quality of the recording was assessed visually using all the 
available channels. 

T wave apex was identified as the peak of the parabola fitted to the highest 
amplitude change after the QRS. The time instant when the steepest tangent after the 
T wave apex intersected the baseline was defined as T wave end.  

Data was edited by excluding non-sinus beats, beats with low amplitude T waves 
(-0.1 - 0.1 mV) and beats where either the T wave apex or end was not identified by 
the algorithm. All beats with a noise level > 0.02 mV and beats with an RR interval 
change from the preceding beat of > 30% were excluded. Visual confirmation of the 
data was performed by plotting time interval values of Q - T apex (QTa), QTe and 
TPE against the preceding respective RR intervals and using linear limits set manually 
to remove outliers. To assess the rate dependence of QTe intervals, we calculated heart 
rate adapted values of median QTe interval using periods of stable heart rate for 60 
seconds (beat-to-beat RR interval variation ≤ 10% in RR steps of 10 ms) as described 
previously (118). 

QTe-RR and TPE-RR plots were obtained by plotting time intervals of QTe and 
TPE (y-axis) against their preceding RR intervals (x-axis). Median and maximum QTe 
and TPE interval values were measured at 100 ms RR intervals from 600 – 1200 ms. 
Three separate measurements of maximal value were taken to minimize outliers, with 
a requisite of variance of no more than 5% between the measured data points and 
visual confirmation of data quality and stability of at least 5 consecutive beats around 
the measured beats. QTe/RR slope was measured using data from the QTe-RR plots 
between RR intervals from 600 to 1200 ms. 



 

43 

 
All echocardiographic measurements in studies I, III and IV were performed according 
to planned study protocol by experienced cardiologists (MJ, PJ, JK) using Vivid 7 and 
9 ultrasound equipment (GE Vingmed, Norway). This data was collected for post-
processing and measured centrally with dedicated EchoPac software (GE Vingmed, 
version 10.0.1, Norway) by one observer (MJ) blinded to clinical and genetic data. In 
study II approximately 30% of the echocardiographic data performed by experienced 
cardiologists was collected retrospectively from patient data records and not measured 
centrally.  

All anatomical and functional measurements were performed using accepted 
guidelines (219). Maximal wall thickness in the LV was measured using 2D short axis 
imaging, except with apical hypertrophy the use of apical 2D views was accepted. LV 
ejection fraction was calculated using the biplane Simpson’s method. Left ventricular 
outflow tract obstruction was defined as a resting gradient of ≥ 30 mmHg measured 
with a continuous wave Doppler from the apical windows through the LVOT with 
pulsed wave Doppler used for differentiating the level of obstruction. Tissue Doppler 
measurements were performed using pulsed wave Doppler at the mitral valve annulus 
level. TDI frame rate values of 150 - 250/s were considered acceptable. 

 
2DSE measurements of segmental and global function were performed on 

echocardiographic loops (3 cycles) of adequate quality (50-70 frames per second) as 
described previously (150,154). Global longitudinal strain was measured as the average 
of all analyzed segments in each patient. Mechanical dispersion was measured as the 
standard deviation of time from R-wave to peak longitudinal strain in all 16 measured 
LV segments in each patient (170). 2DSE measurements were feasible in 87% of all 
segments recorded in study I. 

 
2D short axis images from the basal and apical level were used to calculate twist. Twist 
and twisting velocity were calculated as the difference of apical to basal rotation and 
rotation rate respectively, measured from parasternal short axis views at the basal and 
apical levels with 2DSE (176). The cardiac cycle was normalized to systolic duration 
(time from R wave peak to aortic valve closure) to adjust for different heart rates 
comparing the apical and basal planes. The rotation curves were interpolated by the 
cubic spline method with 300 time points for the whole cycle. The measurements were 
performed using Matlab software (version R2010a, The MathWorks Inc., MA, USA). 
Peak twist, twisting velocity, untwisting velocity and their time points relative to 
systolic duration were measured. Recoil and recoil rate were calculated as: Recoil (%) 
= (Peak twist - Twist at mitral valve opening) / Peak twist and Recoil rate (%/s) = 
Recoil / Time from peak twist to mitral valve opening (220). 
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Cardiac magnetic resonance imaging was performed in both Kuopio and Helsinki 
University hospitals. A 1.5-T MR imaging unit (Magnetom Avanto; Siemens Medical 
Solutions, Erlangen, Germany) and a body-array coil were employed. After scout MR 
images were obtained, 8-mm sections with an ECG gated steady-state, free precession 
(SSFP) breath-hold cines in 3 standard long-axis planes (4-, 3-, and 2-chamber views) 
and sequential 8-mm short axis slices from atrium to apex, with an intersection gap of 
20%, were acquired. The parameters used to perform cine MR imaging were as follows: 
48/1.1 (repetition time ms / echo time ms), a 65° flip angle, a 192 x 256 matrix, and a 
280 – 360-mm field of view. Contrast-enhanced MR imaging was performed after 
administration of gadoterate meglumine (Dotarem® 0.2 mmol/kg, injection rate 5 
ml/sec) to generate sufficient contrast between the normal and abnormal myocardium. 
Delayed-enhancement images for detection of hyperenhancement were obtained 10 
minutes after injection of contrast agent using segmented inversion recovery turbo 
fast-low angle shot (FLASH) sequence in short axis orientation and in two long axis 
orientations (4- and 2-chamber views). The imaging parameters were 700 / 1.08 ms 
(TR / TE), flip angle 50°, acquisition matrix 192 x 144 and 340 x 340 field of view. 
Slice thickness was 8 mm and intersection gap 20%. Inversion time was optimized to 
null the signal intensity of normal myocardium. 

Two radiologists blinded to clinical and genetic data performed all of the anatomic 
measurements on MR images data by using dedicated software (Argus, Siemens, 
Erlangen, Germany), which was provided with the MR imaging system. The maximal 
end-diastolic wall thickness of the LV was measured in the short-axis orientation in 
each 17 segments according to American Heart Association (AHA) guidelines. 
However, the thickness of the true apex was measured on long-axis images. To 
evaluate LVEF, left ventricular end-diastolic volume (LVEDV), left ventricular end-
systolic volume (LVESV) and left ventricular mass, the endo- and epicardium of the 
LV was manually traced at the end of diastole and systole, with the papillary muscles 
and the trabeculations excluded. LGE areas were traced with QMass® late-
enhancement analysis software (QMass® 7.2, Medis Medical Imaging Systems, 
Netherlands) in short axis images and quantified segmentally as absolute and relative 
mass in a standard 16-segment model. A threshold of +6SD was used for detection of 
LGE. 

 
Peripheral blood samples were used to analyze the metabolomic profile with two 
analytical platforms at VTT Technical Research Centre of Finland (Espoo, Finland) 
described previously in study IV (221,222). Small, polar metabolites were profiled with 
two-dimensional gas chromatography coupled to time-of-flight mass spectrometry 
(GC×GC-TOFMS). This covered sugars, sterols, amino acids and various organic 
acids, including free fatty acids and ketoacids. The lipidomics platform used ultra 
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performance  coupled to quadrupole time-of-flight mass spectrometry (UPLC-
QTOFMS). The spectrum of molecular lipids such as phospholipids, triglycerides, 
sphingolipids and neutral lipids were analyzed. GC×GC-TOFMS raw data was 
processed with the Guineau software (221) and data from UPLC-QTOFMS with 
MZmine 2 (223). 

In total 699 molecular lipids and 1603 small polar metabolites were detected, from 
which 238 lipids and 215 metabolites were identified in study IV. Identified metabolites 
and lipids found in at least 70% of the samples were used in the statistical analysis. The 
data were scaled with zero mean and unit variance to make the profiles comparable 
with each other. Bayesian model-based clustering was applied on the scaled data to 
group metabolites with similar profiles across all samples. Clustering was performed 
with the Mclust package in R (R Development Core Team (2014), R Foundation for 
Statistical Computing, Vienna, Austria) (224). Optimal model selection and data 
partitioning was determined accordingly by the clustering process. 

 
Variables are presented as mean and standard deviation (SD) for normally distributed 
data, median and interquartile (IQR) range for non-parametric data, and count and 
percentage for categorical data. Differences between groups were analyzed with 
independent T-tests for two groups and one-way analysis of variance (ANOVA) and 
post-hoc pairwise tests using Bonferroni correction for > 2 groups for normally 
distributed data, Kruskal-Wallis test for nonparametric data with pairwise comparisons 
by Mann-Whitney U-test using Bonferroni correction, and Fisher’s exact test for 
categorical data. In study I bivariate Spearman rank correlations of mechanical 
dispersion with echocardiographic and CMRI variables were performed in the HCM 
subjects. Significant predictors of NSVT on 24h ambulatory ECG were analyzed with 
binary logistic univariate regression. A multivariate logistic regression model with a 
forward stepwise likelihood ratio selection method to assess independent predictors of 
NSVT was built using the statistically significant variables from the univariate analysis. 
Receiver operating characteristics curves were used to assess the effectiveness of 
different variables from the regression analysis to discriminate HCM patients with and 
without NSVT. Area under the curve (AUC), sensitivity and specificity were calculated. 
The AUCs of different variables were compared with the U-statistic derived 
nonparametric (the DeLong) method in R using the package pROC (225). In study III 
we assessed the effect of different variables to the QTe/RR slope using multivariate 
linear regression. In study IV the analysis of covariance was used to adjust the ANOVA 
for age and gender. Individual metabolite levels were visualized using beanplots (226). 
In all statistical tests a two-way significance level of < 0.05 was considered significant. 
All statistical analyses were performed with SPSS IBM SPSS Version 21.0 (IBM Corp. 
Released 2012. IBM SPSS Statistics for Windows, Version 21.0. Armonk, NY: IBM 
Corp.) and R statistical software. 
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The Ethics Committees of the Kuopio (25/99, 82/2001 and 96/2008) and Helsinki 
(307-13-03-01-2011) University Hospitals approved the study protocol. The study 
conforms to the principles outlined in the Declaration of Helsinki. 
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In study I we evaluated HCM patients (n = 31) and a group of control subjects (n = 
20) for the association of 2DSE and CMRI findings to non-sustained ventricular 
tachycardias recorded on ambulatory 24h ECGs. The HCM patients had mild 
symptoms, with 90% being in New York Heart Association (NYHA) I-II functional 
class. Mean age was 49±11 years and 68% were male. Three patients were in 
permanent atrial fibrillation. Left ventricular end diastolic dimensions and LVEF 
values were normal and similar in HCM and control patients. Mean LVEF in HCM 
patients was 60 ± 10% with echocardiography and 63 ± 9% on CMRI. Maximal wall 

thickness was, by definition, larger in the 
HCM patients (21 ± 6 mm). The location of 
maximal wall thickness on echocardiography 
and CMRI was mostly in the septum and basal 
anterior segments, with one patient having 
maximal wall thickness in the inferobasal 
segment (Figure 10). Even though the thickest 
segments were in the septal apex in two 
patients, no isolated apical hypertrophy was 
present because these patients had 
hypertrophy extending to the basal septum as 
well. Mild mitral valve insufficiency (grade 1-
2/4) was noted in 8 HCM patients. One 
patient had significant LVOT obstruction at 
rest. 

 

Figure 10 The distribution of maximal wall thickness measured with CMRI in 
HCM patients. 

Diastolic function was reduced in HCM patients overall (Table 5). A marked 
reduction in septal Em was observed resulting in a lower mean Em (mean of septal 
and lateral Em values). 
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MV E (m/s) 0.8 ± 0.1 0.7 ± 0.2 0.062 
MV A (m/s) 0.6 ± 0.2 0.5 ± 0.2 0.630 
MV DT 210 ± 56 213 ± 80 0.886 
Mean Em 11.8 ± 3.8 8.7 ± 3.2 0.002* 
E / Em 6.9 ± 1.8 8.5 ± 2.7 0.039* 
Septal Em (cm/s) 11.3 ± 3.8 7.2 ± 3.4 < 0.001* 
Lateral Em (cm/s) 12.2 ± 4.6 9.8 ± 3.9 0.046* 

Table  5 Diastolic function parameters in HCM and control subjects. MV = 
mitral valve, DT = deceleration time, Em = early diastolic TDI PW velocity of 
mitral valve annulus. 

 
Global strain was reduced in HCM patients compared to controls, even though systolic 
function assessed with conventional LVEF was similar. Mean GLS in HCM was -16.4 
± 4% in comparison to – 20.2 ± 2.4% in control subjects. GLS was a robust measure 
of the extent of HCM, with correlation to maximal wall thickness and increased 
NTproBNP (Figure 11). Mechanical dispersion was higher in HCM patients; 65 ± 34 
compared to 41 ± 16 in the control group.  
 

 

Figure 11 GLS correlation to A) Maximal wall thickness and B) NTproBNP. 

 
Left ventricular hypertrophy was most prominent in the anteroseptal area. Segmental 
strain values were most depressed in the basal septal and anterior wall segments 
coinciding with the location of hypertrophy (Figure 12). In control subjects the mean 
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segmental strain values were in the range of -18 – -25% whereas in the hypertrophied 
segments of HCM patients the mean values were -10 – -15%. 

 

 

Figure 12 Segmental strains in HCM and control subjects grouped by location: A) 
Septal B) Anterolateral and C) Inferoposterior.  

 
Twist was measured from rotations of the basal and apical 2D short axis images with 
2DSE (unpublished results). Rotation at the basal level was briefly counterclockwise 
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followed by a clockwise motion to the peak of systole. The apical rotation was 
counterclockwise as viewed from the apex and was the dominant force in generating 
twist. Overall peak systolic twist and timing values were similar in HCM and control 
patients (Table 6 and Figure 13). Twisting rate, i.e. the speed of change of twist values 
was similar during systole but the curves separated during early diastole resulting in a 
delay of peak untwisting rate in HCM patients (marked with * in Figure 13).  

 

 

Figure 13 Twist and twist rate in HCM and control subjects. * p < 0.05 for 
difference between groups for time to peak untwist rate (unpublished 
results). 
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  Control HCM p -value 
Peak Twist (deg) 14.5 ± 5.4 16.9 ± 9.4 NS 
Peak twisting rate(deg/s) 96 ± 30 94 ± 40 NS 
Time to peak twist (ms) 55 ± 19 55 ± 26 NS 
Peak untwisting rate (deg/s) -94 ± 39 -101 ± 59 NS 
Time to peak untwisting rate (ms) 116 ± 11 137 ± 16 < 0.001 
Recoil 32 ± 19 55 ± 41 NS 
Recoil rate 1.3 ± 0.4 1.5 ± 0.7 NS 

Table  6 Values of twist and twisting rate in HCM and control subjects 
(unpublished results). 

 

 
Late gadolinium enhancement was 
found in 68% of HCM patients 
(21/31). No LGE was present in 
control subjects. HCM patients with 
LGE had similar maximal wall 
thickness (21 ± 5 mm), LV mass index 
(74 g/m2) and LVEF (62 ± 10%) to 
HCM patients without LGE. The 
relative extent of LGE in the LV was 
18 ± 16%. The location of maximum 
relative LGE on the segmental level 
followed the distribution of 
hypertrophy with largest values in the 
basal anteroseptal wall (Figure 14). An 
example of quantification of LGE is 
presented in Figure 15. 

Figure 14 Location of maximal LGE in HCM patients. 
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Figure 15 Example of quantifying LGE mass with dedicated software, giving the 
relative and absolute mass of the scar tissue and relative segmental extent 
from the cross-sectional CMR image. 

 
In Study I there were 11 HCM patients with at least one recorded NSVT episode on 
24h ambulatory ECG (HCM/NSVT+ group) and the remainder constituted the 
HCM/NSVT- group. The HCM/NSVT+ patients had a median of 2 (range 1-19) 
NSVT episodes at a maximum rate of 141 (120 – 192) bpm with a duration of 5 (3-13) 
beats. The imaging variables associated with NSVT episodes are summarized in Figure 
16. Maximal wall thickness, global longitudinal strain and mechanical dispersion were 
significantly different between HCM+/NSVT+ and HCM/NSVT- groups. In 
addition, QRS duration was associated with NSVT. In univariate binary logistic 
regression analysis to differentiate between HCM/NSVT+ and HCM/NSVT- these 
four variables were statistically significant. Entered into a multivariate regression 
analysis only mechanical dispersion was independently associated with NSVT. The 
discriminatory power of MWT, GLS, QRS duration and MD were assessed with 
receiver operating characteristics curves. MD performed best, with an AUC = 0.81 
and a relatively effective cutoff of MD = 72 ms yielding a sensitivity 0f 64% and 
specificity of 90% to identify HCM/NSVT+ from HCM/NSVT- patients. 
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Figure 16 Imaging variables associated with NSVT episodes on 24h ambulatory 
ECG.  

 

 

 
In study II we investigated the 12-lead ECG findings of 98 G+/LVH+, 42 G+/LVH- 
and 40 control subjects. Age and gender distribution were similar in the G+/LVH- 
and control groups. The G+/LVH+ patients were slightly older and more often male. 
G+/LVH- subjects were asymptomatic and 78% of the G+/LVH+ group were also 
in NYHA class I. LVEDD and LVEF were similar between study groups. The mean 
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maximal wall thickness in G+/LVH+ group was 18.7 ± 4.5 mm compared to 10.2 ± 
1.1 mm in the control and 9.9 ± 1.4 mm in the G+/LVH- group (p < 0.001). 
Betablocker therapy was taken by 23% of the G+/LVH+ patients. Five percent of 
HCM (G+/LVH+) patients had left ventricular outflow obstruction at rest.  

The 12-lead ECG findings of Study II are summarized in Table 7. A normal ECG 
in G+/LVH+ HCM patients was a rarity (3% G+/LVH+ vs 47% control group, p < 
0.001). Common ECG findings in HCM patients were abnormal Q waves, 
repolarization abnormalities such as ST segment depression and T wave inversion and 
prolonged QT interval. Q waves were present usually in the inferior II, III and aVF 
leads (16%) and anterolateral V2-V6 leads (15%). Terminal negativity of the P-wave ≥ 
0.04 mms (P-terminal force) was also common. The QRS complex was often 
fragmented and widened.  

Identification of hypertrophy with conventional Sokolow-Lyon criteria or Cornell 
voltage product was suboptimal. The more complex Romhilt-Estes score was positive 
in 55% of HCM patients with echocardiographically verified LV hypertrophy. ECG 
criteria published by McKenna et al. used to identify possible HCM patients in families 
with identified probands were positive in 90% of HCM patients (9). 

The majority (86%) of G+/LVH- subjects also exhibited ECG pathologies that 
reflect those found in G+/LVH+ patients. Q waves and novel ECG parameters of 
RV1<RV2>RV3 and septal remodeling were quite common in LVH- carriers of 
pathogenic variants and notably uncommon in the control group. Interestingly also 
the terminal negativity of the P wave and fragmented QRS were common findings in 
G+/LVH- subjects.  
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 Control G+/LVH- G+ / LVH+ 

p-value   (n = 30) (n = 42) (n = 98) 
At least 1 ECG pathology 53% 86% 97%*† <0.001 

     
Novel ECG criteria         
RV1<RV2>RV3 3% 33%* 26%* 0.005 
Septal remodeling 3% 45%* 49%* <0.001 

     
Q-waves and repolarization 0 33%* 82%*† <0.001 
Q wave 0 21%* 38%* <0.001 
ST depression 0 7% 51%*† <0.001 
T wave inversion 0 2% 44%*† <0.001 
Prolonged QTc 0 7% 18%* 0.006 

     
Hypertrophy         
Sokolow-Lyon 10% 2% 15% 0.079 
Cornell voltage product 0 7% 40%*† <0.001 
Romhilt-Estes score ≥4 3% 14% 55%*† <0.001 

     
Other ECG features         
P-terminal force 3% 17% 45%*† <0.001 
QRS >100 ms 0 5% 22%*† <0.001 
Fragmented QRS 27% 21% 46%† 0.011 

Table  7 ECG findings in Study II. * = significant difference between indicated 
group and the control group. † = significant difference between 
G+/LVH+ and G+/LVH- groups. 

 
The median absolute number of ECG pathology in the G+/LVH+ patients was 5 
(range 0-9). The number of identified ECG findings correlated with disease severity 
parameters, such as GLS, extent of LGE, MWT and NT-proBNP, in the imaging 
substudy (n = 65 mutation carriers, all ρ > 0.55 and p < 0.001 for bivariate Spearman 
rank correlation). The correlation of MWT to ECG pathology in all mutation carriers 
is presented in Figure 17. 
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Figure 17 Spearman rank correlation of ECG pathology (0-15) to maximal wall 
thickness in all mutation carriers (n = 140).  

 
Novel ECG criteria RV1<RV2>RV3 and septal remodeling were specific findings for 
mutation carriers. The RV1<RV2>RV3 finding was more prevalent in the G+/LVH- 
subjects and G+/LVH+ patients with milder left ventricular maximal wall thickness. 
In Figure 18 the distribution of novel ECG parameters and Q waves and repolarization 
abnormalities according to maximal wall thickness quartiles is summarized. In Figure 
18 B an example of RV1<RV2>RV3 is presented. No local measurements of maximal 
wall thickness, distribution of hypertrophy, 2D strain or gadolinium late-enhancement 
correlated to the finding of RV1<RV2>RV3 or septal remodeling on ECG. 

 
Using ECG criteria for screening of HCM requires both good sensitivity and 
specificity. The ECG major criteria (9), used in screening of relatives of HCM 
probands, exhibited both good sensitivity of 90% and specificity of 97% to 
discriminate between G+/LVH+ patients and control subjects, with a positive 
predictive value of 99%.  

Notably the major ECG criteria were quite insensitive in discriminating between 
G+/LVH- subjects and the control group (sensitivity 36% and specificity 97%. The 
RV1<RV2>RV3 and septal remodeling findings had individually moderate sensitivity 
(33% and 45%, respectively).  Used in combination with Q waves and repolarization 
abnormalities the sensitivities rose to acceptable levels for clinical practice (Table 8). 
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Figure 18 A. The distribution of RV1<RV2>RV3, septal remodeling and Q waves 
and repolarization abnormalities (QR) according to maximal wall 
thickness quartiles in HCM patients (n = 98). QR and septal remodeling 
prevalence increase with wall thickness whereas RV1<RV2>RV3 
decreases. B. An example of RV1<RV2>RV3 in a young G+/LVH- 
female subject (18 years). Red lines indicate height of R wave in leads 
V1-V3 for illustration. 

G+/LVH- (n=42) Sensitivity (%) Specificity (%) PPV (%) NPV (%) 
Major criteria (≥1) 36 % 97 % 94 % 52 % 
RV1<RV2>RV3 + QR 52 % 97 % 96 % 59 % 
Septal remodeling + QR 64 % 97 % 96 % 66 % 

Table  8 Combination criteria for discriminating between G+/LVH- and control 
groups. PPV = positive predictive value, NPV = negative predictive 
value. QR = Q waves and repolarization abnormalities. 
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We studied the repolarization parameters of 46 HCM patients (G+/LVH+) carrying 
either the MYBPC3-Q1061X (52%) or the TPM1-D175N (48%) variant. The HCM 
patients and the control group (n = 35) were well balanced in baseline attributes such 
as age and gender. Mean maximal wall thickness on CMRI was 20.6 mm in the HCM 
group. LGE was present in 37% of HCM patients. There was no difference in heart 
rate or QRS duration on 12-lead ECG. The ambulatory ECG recordings were of 
adequate quality. Betablocker therapy was taken by 48% of HCM patients but we 
verified with a repeated measures ANOVA that this had no effect on the repolarization 
parameters (all tests p > 0.5). The mean heart rates in ambulatory ECG recordings 
were not different.  

In HCM patients 26% had at least 1 NSVT episode on ambulatory ECG. No 
significant correlations of NSVT to measured repolarization parameters were found. 
The measured maximal QTe at 1000 ms RR interval (i.e. at a heart rate of 60 bpm) was 
439 ms in HCM patients with NSVT episodes compared to 373 ms in HCM patients 
without NSVT.  

 
QTe interval was significantly prolonged in HCM patients. The heart rate adapted 
median QTe and maximum QTe results are summarized in Figure 19. Maximal wall 
thickness correlated to the maximum QTe interval. The effect of MWT on QTe was 
also assessed by comparing the maximum QTe values between HCM patients with 
mild hypertrophy (MWT < 20.6 mm) and moderate hypertrophy (MWT > 20.6 mm) 
which is summarized in Figure 19 B. 

 
Time interval from T wave peak to T wave end was not different between HCM 
patients in general and the control group, although a trend of increase in all TPE values 
in the HCM patients was observed. There was an effect of hypertrophy on TPE, which 
represents global dispersion of repolarization. HCM patients with MWT > 20.6 mm 
had significantly higher TPE values on the TPE-RR plot compare to HCM patients 
with milder hypertrophy. 

 
HCM patients with LGE had steeper QeT/RR slopes compared to HCM patients 
without LGE and control subjects. There was no difference in age, gender or maximal 
wall thickness between HCM patients with and without LGE. In multivariate linear 
regression LGE was the only independent predictor of QTe/RR slope. 
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Figure 19 A) Rate adapted and maximum QTe in HCM (light blue and dark blue 
lines) and control subjects (light green and dark green lines). The area 
between the curves represent the difference between rate adapted and 
maximum QTe. B) Effect of maximal wall thickness (MWT) on maximal 
QTe interval values in HCM patients.  

 
In study IV we analyzed the metabolomic profile of MYBPC3-Q1061X mutation 
carriers to assess the possible changes of cardiac metabolism due to the mutation 
reflected in the peripheral blood metabolome. Blood samples were analyzed with 
comprehensive metabolomics profiling and resulted in a total of 86 polar metabolites 
and 238 molecular lipids identified and included in the analysis of data. The individual 
metabolites are co-regulated and interdependent and thus were analyzed with a 
Bayesian clustering method. The array of metabolites was grouped into seven lipid 
clusters (LC1-LC7) and four polar metabolite clusters (MC1-MC4). The lipid clusters 
were divided by the clustering method on the basis of structural and functional 
similarities. The metabolites clustered into one large cluster (MC1) and three smaller 
ones (MC2-4). The contents of clusters are summarized in Table 9.  
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Cluster Size (n) Description 
LC1 46 Mainly PCs, but also PEs and TGs 
LC2 86 Mainly PCs with ether-linkages and PEs, but also ChoEs, SMs, TGs 

LC3 36 PUFA-containing PC and PE (plasmalogens) and PUFA-containing 
TGs 

LC4 10 LysoPCs 
LC5 21 Mainly saturated TGs and 1-3 double bonds, longer chains than LC6 

LC6 19 Saturated TGs and TGs with 1-3 double bonds, shorter chains than 
LC3, LC5 and LC7 

LC7 20 PUFA-containing TGs, long chains 
MC1 69 Diverse 
MC2 11 Carboxylic acids 
MC3 4 Carboxylic acids 
MC4 2 Branched-chain amino acids leucine and isoleucine 

Table  9  Description of metabolite clusters. PC = phosphatidylcholine, PE = 
phosphatidylethanolamine, TG = triglyceride, PUFA = polyunsaturated 
fatty acid. 

In Study IV the clusters were compared between G+/LVH+, G+/LVH- and 
control groups. Here we present the cluster analysis performed in two groups 
(unpublished data): Gene mutation carriers (pooled G+/LVH+ and G+/LVH- 
mutation carrier data, n = 53) and the control group (n = 20). In an analysis of 
covariance adjusted for age, gender, BMI, hypertension and diabetes the clusters MC4 
and LC3 were significantly different between the mutation carrier and control groups 
(Figure 20). Cluster MC1 was also different but the difference in absolute values is 
rather small and deemed clinically not significant. The results of the two group analysis 
presented here are similar to the published results in study IV. 

In addition to the cluster analysis we compared the difference of individual 
metabolite levels between G+/LVH+, G+/LVH- and control groups. The results 
followed the overall direction of the cluster analysis. Of the polar metabolites, valine, 
leucine, and ketoleucine had higher concentrations in the G/LVH+ group. A number 
of long-chain polyunsaturated triglycerides and two ether phospholipids were 
increased in the G+/LVH+ group. 

In Spearman rank correlation of individual metabolites, we found some 
lysophospholipids, phospholipids and triglycerides correlating with increased MWT 
and LV mass and decreased measures of diastolic function such as TDI septal and 
lateral Em. The same was true, although with modest correlation coefficients, of the 
metabolite clusters MC4 and LC3 (Figure 21). 
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Figure 20 Metabolite clusters presented as mean values with error bars as ± SE. 
Significant differences between mean values of clusters MC4 and LC3. 
Groups are divided into mutation carriers (n = 53) and control subjects 
(n = 20). 

Cluster Control 
(n=20) 

Mutation 
carriers (n=53) p-value 

MC1 -0.04 ± 0.34 0.01 ± 0.37 0.025 
MC2 -0.04 ± 0.90 0.02 ± 0.68 0.211 
MC3 0.04 ± 1.16 -0.01 ± 0.87 0.222 
MC4 -0.43 ± 0.91 0.16 ± 0.96 0.027 
LC1 -0.15 ± 0.55 0.06 ± 0.54 0.163 
LC2 -0.02 ± 0.49 0.01 ± 0.47 0.803 
LC3 -0.27 ± 0.73 0.10 ± 0.78 0.034 
LC4 -0.03 ± 0.80 0.01 ± 0.89 0.253 
LC5 -0.24 ± 0.62 0.09 ± 0.98 0.056 
LC6 -0.28 ± 0.45 0.11 ±1.06 0.145 
LC7 -0.19 ± 0.82 0.07 ± 0.91 0.067 

    

Table  10 Analysis of metabolite clusters. P-value for analysis of covariance 
adjusted for age, gender, BMI, hypertension and diabetes. 
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Figure 21 Correlation of mean metabolite cluster levels LC3 and MC4 with 
maximal wall thickness. 
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The aim of this thesis was to investigate the alterations in myocardial mechanical and 
electrical function and metabolism associated with hypertrophic cardiomyopathy. We 
sought to assess the possible use of these findings in the diagnostics of suspected HCM 
patients and family members without hypertrophy and to develop more accurate tools 
for SCD risk assessment. Metabolomic profiling was employed to identify the subtle 
changes in HCM and enhance our knowledge of the pathophysiological process in 
HCM.  

In Study I we demonstrated that 2D strain echocardiography is a powerful tool in 
the assessment of hypertrophic cardiomyopathy and mechanical dispersion is 
increased in HCM patients with NSVT episodes.  

Conventional and novel ECG parameters were at the heart of Study II and the 
proposed new ECG criteria of RV1 < RV2 > RV3 and septal remodeling were quite 
specific in the identification of G+/LVH- subjects from nonhypertrophic control 
subjects. The use of ECG combination variables provided a reasonable sensitivity and 
specificity to help in this differentiation. Secondly we extrapolated on the idea of the 
degree of ECG pathology correlating to more advanced disease state in HCM and the 
possibility of temporal development of the ECG in HCM.   

In Study III the repolarization abnormalities in HCM were comprehensively 
assessed and we found multiple alterations in repolarization in HCM patients and that 
fibrosis assessed with late gadolinium enhancement affects repolarization parameters 
in addition to hypertrophy. 

Study IV presented results of metabolomic profiling in hypertrophic 
cardiomyopathy. We found a number of lipids and a few polar metabolites significantly 
different in HCM patients and they correlated with the degree of hypertrophy and 
diastolic dysfunction.  

 

 
Risk assessment of SCD in HCM is mainly based on variables not directly linked to 
the pathophysiological process in the myocardium, such as age, family history, 
unexplained syncope or presence of NSVT. These variables have been gathered from 
prospective and retrospective cohorts of HCM patients and are mostly indirect 
measures of the possibility of arrhythmia. Yet the substrate for lethal arrhythmias lies 
in the myocardial pathology itself with hypertrophy, disarray, fibrosis and increased 
perfusion demand being key players of arrhythmia vulnerability. Modern imaging with 
CMRI LGE and 2DSE enable us to quantify these changes in the myocardium.  
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2D echocardiographic strain imaging quantifies the local and global dysfunction in 
HCM accurately and robustly. Reduced longitudinal strain in the septum of HCM 
patients has been associated with the incidence of ventricular arrhythmias 
(165,166,227). In our study the global longitudinal strain and segmental strains in the 
septum and anterior wall were significantly reduced. The reduction in GLS associated 
to the presence of NSVT on ambulatory ECG. This is in line with the findings of a 
larger cohort of HCM patients studied by Debonnaire  et al. where a reduction in GLS 
predicted ICD therapy (159).  

The heterogeneity and local nature of changes in HCM have lead investigators to 
study the effect of dyssynchrony as a predictor of arrhythmia. Previously an association 
of intraventricular dyssynchrony, quantified with tissue Doppler imaging, to SCD in 
HCM patients was demonstrated (228). In ischemic and dilated cardiomyopathy and 
arrhythmogenic right ventricular dysplasia the mechanical dispersion measured with 
2DSE has been an independent predictor of malignant arrhythmias (171,172,229,230). 
Mechanical dispersion associated to episodes of NSVT on ambulatory ECG in our 
study, possibly highlighting the importance of the asymmetrical nature of myocardial 
changes in HCM on myocardial mechanics and arrhythmic potential.  

 
The ECG is an inexpensive tool to screen for cardiomyopathies like HCM. We 
demonstrated that the major ECG criteria for HCM are an effective tool to identify 
G+/LVH+ patients in families with HCM. A multitude of repolarization 
abnormalities characterize the ECG phenotype of HCM patients. These changes 
reflect the disturbances of repolarization due to changes on the ion channel level and 
alterations in Ca2+ handling as well as the structural changes of hypertrophy and 
fibrosis.  

The origin of abnormal Q waves in HCM has been debated. The Q waves of HCM 
patients in this study were mostly located to the inferior and anterolateral wall of the 
LV. No correlations of the location of Q waves and late gadolinium enhancement were 
demonstrated in our study which corroborates the previous findings in larger CMRI 
cohorts of HCM patients (72,73). The G+/LVH- subjects also had Q waves on ECG 
but no LGE confirming that scar is not the only explanation for this rather common 
finding. 

The suspicion of HCM based on the 12-lead ECG is raised by a combination of 
findings. Conventional criteria for LV hypertrophy (Sokolow-Lyon and Cornell 
voltage product) were rather insensitive for the identification of HCM in this study, as 
well as in previous reports, possibly due to the asymmetric nature of the hypertrophy. 
The use of the Romhilt-Estes point score was more effective but it is quite complicated 
to apply in clinical practice. 

Terminal negativity of the P wave in lead V1 was common in both G+/LVH+ 
and G+/LVH- subjects. The mechanism for this is elusive as the G+/LVH- subjects 
had normal sized atria and diastolic function. 
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In general, for the practicing clinician our finding of increased HCM pathology, i.e. 
increased wall thickness, reduction in GLS and increase in LGE extent, correlating to 
absolute increase in the number of identified ECG pathology may provide additional 
information in the follow-up of these patients (72).  

 
The ECG was abnormal in > 85% of G+/LVH- subjects. We demonstrated novel 
ECG criteria RV1<RV2>RV3 and septal remodeling to be quite specific for HCM 
mutation carriers. The RV1<RV2>RV3 sign was more prevalent in the young 
mutation carriers and in those with milder hypertrophy suggesting that the abnormal 
R wave distribution in V1-V3 leads may be an early sign of the disease which later is 
reduced due to increasing hypertrophy and other structural changes in the myocardial 
wall. 

The proposed novel ECG criteria have an additive role in identifying G+/LVH- 
subjects when used in conjunction with other ECG criteria. Combining Q waves and 
repolarization disturbances and the RV1<RV2>RV3 results in an ECG criteria that 
can be used in clinical practice and yields a specificity of 52% and sensitivity of 97% 
for detection of G+/LVH- from control subjects.  

 
We demonstrated a number of changes in repolarization measurements in HCM 
patients. The rate adapted QTe is prolonged in HCM patients and increases relative to 
the control subjects at longer RR intervals of 1000 – 1200 ms. The median QTe was 
measured from stable heart rates to minimize the effect of sudden changes in RR 
intervals to the duration of repolarization. The prolongation of rate adapted QTe 
resembles that found in LQTS patients (118). The common denominator on the 
cellular level in both LQTS and HCM is the reduction in potassium current, especially 
IKr. 

The interval from T wave apex to end on the surface ECG may be a measure of 
global dispersion as previously postulated (125,126). In this study median TPE was 
significantly prolonged in HCM patients with at least moderate hypertrophy (MWT > 
20.6 mm). This may reflect the effect of increased hypertrophy and changes in the 
myocardium on the dispersion of global repolarization. Maximum QTe was also longer 
in these patients. In HCM the prolonged TPE has been associated with increased risk 
for arrhythmias (129). 

In HCM patients with LGE we showed that the QTe/RR slope is steeper 
compared to HCM patients without LGE and control subjects. Overall QTe/RR 
slopes have been found steeper in higher risk HCM patients, but in a previous study 
the effect of wall thickness or other structural measurements on the steepness of the 
slope was not analyzed (124). The presence and especially the extent of LGE confers 
an independent risk for SCD (185). Some of this risk manifests from the arrhythmic 
substrate that fibrosis entails. It is also possible that LGE affects the repolarization 
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dynamics in general in HCM patients through the asymmetric changes in myocardial 
structure resulting in steeper QTe/RR slopes. This may add to the arrhythmic 
potential. 

The risk for arrhythmias in HCM has usually been pronounced in exercise, as in 
the case of SCD in athletes with HCM. Yet in studies on the circadian distribution of 
ICD therapy approximately 20-27% of ventricular arrhythmias occur during rest 
(50,51). The repolarization abnormalities in our study increase with lower heart rates 
and may play a role in those malignant tachycardias that present during bradycardia in 
HCM patients. 

 
In our study on the metabolomic profile of HCM mutation carriers we found elevated 
levels of branched chain amino acids, phospholipids and several triglycerides. The 
levels of these metabolites correlated to imaging parameters of HCM disease progress 
such as hypertrophy and diastolic function. The decrease in glutamate and increase in 
threonine levels resemble the metabolomic changes found in DCM (231).  

Myocardial energy utilization in HCM is impaired, as discussed in the literature 
review. Free fatty acid uptake is reduced and glucose metabolism is increased in HCM 
myocytes. Although speculative, the finding of elevated levels of circulating lipid 
metabolites, mostly TGs, in our study may indirectly reflect the changes in energy 
substrate utilization in HCM.  

The increased levels of branched chain amino acids leucine and isoleucine in HCM 
mutation carriers mirror the findings in heart failure patients (232). In a metabolomic 
study of pressure overloaded mouse hearts an increase branched chain amino acids in 
explanted heart myocytes was observed (233). Branched chain amino acids enter the 
citric acid cycle via conversion to propionyl-CoA by the branched chain α-keto-acid 
dehydrogenase complex (BCKD). In hypertrophic and failing hearts the expression of 
PP2C, a phosphatase that dephosphorylates the BCKD, is reduced. This reduction has 
been shown to lead to elevated levels of branched chain amino acids in plasma in a 
murine model (234). The mammalian target of rapamycin mTOR is efficiently 
activated by branched chain amino acids and local elevations in concentration may lead 
to chronic induction of mTOR resulting in pro-hypertrophic effects via changes to 
insulin sensitivity (235).  

 

 
The design of studies I, III and IV were prospective and cross-sectional. The sample 
size of these studies is limited, which must be taken into account when assessing the 
statistical results. On the other hand, by restricting the number of studied pathological 
variants we have tried to minimize the possible effect of different genotypes on the 
results. In data collection we have not fully evaluated the conventional risk factors in 
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assessing SCD risk and missing data on family history and unexplained syncope have 
limited this approach.  

Study II was retrospective in design, which poses inherent limitations and 
questions on the effect of possible confounding factors we may not have taken into 
account. The trial was designed to maximize available patients for analysis thus 
reflecting more the real life setting where patients are met. This may be also seen as a 
merit in the generalizability of results.  

 
Most of the > 1000 mutations in HCM are limited to small patient groups, families 

or geographic areas. The effect of mutation type has been debated in HCM and for 
the most part the phenotype of individual patients is affected in large parts by the 
modifying factors and other yet poorly characterized factors that result in the very 
variable phenotypic expression of mutations. In HCM the difference between 
individuals is largely explained by these other factors than the causative mutation (236). 
Therefore, we advocate that the studies in this thesis represent pathophysiological 
changes mostly relating to HCM in general and the results are generalizable to HCM 
resultiing form MYBPC3 and TPM1 mutations as a whole. 

 
Echocardiographic investigations were limited due to the natural limitations of 

available acoustic windows. No patients were excluded due to suboptimal visibility, 
which affects especially 2D strain echocardiography, where acoustic windows need to 
be of optimal quality. Yet it speaks firmly of the robustness of this newer technology 
that the segmental feasibility rate of strain measurements was nearly 90%.  

The assessment of LGE on CMRI was not done with the same methodology and 
software in all patients in study III and therefore LGE was encoded as just visually 
present or absent. No reliable quantification of LGE was possible in study III, in 
contrast to study I where LGE measurements were performed with the same software 
platform from CMR images done with the same protocol.  

24h ambulatory ECG data quality was somewhat suboptimal due to the long data 
collection period. Modern digital ECG recorders provide better quality data, which 
may help in the future if the initial findings of repolarization abnormalities are 
investigated further in a larger cohort.   

Metabolomic platforms have the advantage of producing large amounts of data. 
The analysis of big data is challenging and certain guidelines must be followed. In study 
IV identification and acceptance of metabolites for analysis was performed according 
to generally agreed good practice and to minimize the possibility of type I error. Cluster 
analysis was used to assess data on a larger scale to find patterns and take the 
intercorrelatedness into account. 
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We identified novel ECG criteria for the identification of G+/LVH- subjects. The 12-
lead ECG is an inexpensive tool to apply in the screening of relatives of HCM 
probands. A chance finding of one of the more specific ECG pathologies in previously 
healthy subjects could prompt the search for HCM. The use of combination criteria 
like RV1<RV2>RV3 and Q waves and repolarization abnormalities could significantly 
enhance the predictive value of electrocardiography. The criteria are also relatively 
simple to use in clinical practice. In addition, a change in a HCM patient’s ECG over 
time may be a marker of worsening disease state as our results imply. In general, the 
value of the 12-lead ECG in the diagnostics of HCM patients should not be forgotten.  

The problem of screening is especially evident in HCM families without a known 
pathogenic variant. If screened individuals do not present with the HCM phenotype 
they have to be clinically assessed at regular intervals due to the age related penetrance 
of the disease. It would seem logical to combine an array of different imaging, 
electrocardiographic and laboratory parameters, such as NT-proBNP, in the screening 
process. This could aid in the allocation of resources and concentrate diagnostic efforts 
to individuals more at risk of developing the disease. In the future a trial to assess a 
combination of measurements that result in the best possible sensitivity and specificity 
to identify family members at risk of developing manifest HCM would be of value. It 
is also possible that current efforts to develop pharmacological therapies for HCM 
may result in drugs that significantly delay the development of pathological changes. 
At that point the identification of at risk individuals to target therapies would be of 
even greater importance. 

 

 
The assessment of risk for SCD in HCM has always been difficult for the clinician. 
Prior to the 2014 ESC Guidelines the conventional risk factors missed approximately 
30% of HCM patients who developed lethal arrhythmias (5).  With the current risk 
factor calculator endorsed by the ESC the predictive power of overall risk assessment 
has probably increased, but is still not optimal (4,197). Novel parameters that quantify 
the arrhythmic potential in the structural changes of the myocardium may in the future 
aid in the risk assessment of individual patients.  

Ultimately the risk assessment protocol aims to identify individuals who would 
benefit from an ICD. Recent larger scale CMRI studies and a meta-analysis pooling 
this data together have implicated that an LGE mass of ≥ 15% of the LV confers 
significant risk for SCD (185,189). The areas of LGE in the LV seem to be the localized 
substrate for ventricular arrhythmias (237). GLS has also been found to predict proper 
ICD therapy and outcomes (159,168,169). Our finding of the association of 
mechanical dispersion to recorded NSVT is a preliminary finding and, if confirmed in 
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a larger HCM patient cohort, may in the future be studied as an additional risk factor 
for arrhythmia. The recent findings from modern imaging techniques will most likely 
be incorporated in the risk assessment of HCM patients in the future. 
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7 

1. Mechanical dispersion measured with 2DSE significantly correlates to episodes 
of NSVT on ambulatory ECGs of HCM patients and is an independent 
predictor for these arrhythmias. With further study the use mechanical 
dispersion might be of value in the SCD risk stratification of HCM. 

2. The conventional 12-lead ECG is abnormal in 97% of G+/LVH+ and 86% 
of G+/LVH- subjects. Q waves and repolarization changes, QRS 
fragmentation, terminal negativity of the P wave in lead V1 and criteria for 
hypertrophy are common findings in ECGs of mutation carriers. The 
proposed novel ECG criteria of RV1<RV2>RV3 and septal remodeling are 
quite specific for mutation carriers and have additional value in the 
identification of G+/LVH- subjects. The RV1<RV2>RV3 sign is more 
prevalent in the young mutation carriers and in those with milder hypertrophy 
whereas repolarization abnormalities, signs of hypertrophy and PTF are more 
prevalent with increasing age and hypertrophy. The use of ECG in screening 
of HCM families can be a specific and cost-effective tool. 

3. A number of repolarization abnormalities were found in the 24h ambulatory 
ECGs of HCM patients. Notably the rate adapted median QTe is prolonged 
in HCM patients and hypertrophy and fibrosis affect repolarization 
significantly. LGE independently associates to steeper QT/RR slopes in HCM 
patients. These abnormalities in ventricular repolarization may contribute to 
the arrhythmogenic potential in HCM. 

4. A number of branched chain amino acids, triglycerides and phospholipids were 
elevated in HCM patients and their levels correlated to imaging variables 
related to HCM, such as hypertrophy and diastolic dysfunction. 
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