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Abstract. Resources invested in dispersal structures as well as time and energy spent during
transfer may often decrease fecundity. Here we analyse an extended version of the Hamilton-May
model of dispersal evolution, where we include a fecundity-dispersal trade-off and also mortality
between competition and reproduction. With adaptive dynamics and critical function analy-
sis we investigate the evolution of dispersal strategies and ask whether adaptive diversification
is possible. We exclude evolutionary branching for concave trade-offs and show that for con-
vex trade-offs diversification is promoted in a narrow parameter range. We provide theoretical
evidence that dispersal strategies can monotonically decrease with increasing survival during
dispersal. Moreover, we illustrate the existence of two alternative attracting dispersal strate-
gies. The model exhibits fold bifurcation points where slight changes in survival can lead to
evolutionary catastrophes.
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1 Introduction

Dispersal is an elementary driver of ecology and evolution, which fundamentally shapes the
distribution, abundance and diversity of species, and plays a key role in their persistence in
the face of habitat fragmentation, climate change, and other adverse environmental impacts.
Dispersal helps to avoid crowding, kin competition and inbreeding, and to escape from natural
enemies. However, dispersal has multifarious costs (reviewed by Bonte et al., 2012; Travis et al.,
2012): Investments into the ability to disperse (e.g., into flight muscles) imply energetic costs
that are paid prior to dispersal and often concern all individuals, also those who eventually
do not disperse. During transfer, there is typically a high risk of mortality and a risk of not
arriving in any suitable habitat, which affects the individuals who do disperse. The transfer
process itself has extra energetic costs, which may impinge on the condition of the individual,
and it also needs time, whereby priority advantages may be lost. Upon settlement, immigrants
may be affected by various costs related to loss of familiarity and social rank. Many of these
costs depend also on the distance traversed during dispersal.

Despite the great variety and rich biological context of dispersal costs, most models consider
only a fixed mortality cost (combining mortality during transfer and the risk of landing in an
unsuitable habitat), a fixed cost for each dispersal distance (e.g., Rousset and Gandon, 2002), or
a fixed mortality cost per movement step (e.g., Bonte et al., 2010; Poethke et al., 2011). Fixed
mortality costs generate rigid trade-offs between the number of non-dispersed and successfully
dispersed offspring. In reality, however, organisms have evolved many ways to alleviate mortality
during dispersal; but this is unavoidably costly and induces trade-offs elsewhere. For example,
investing resources into better sensory or flight capabilities reduces mortality during dispersal
(Bonte et al., 2012; Travis et al., 2012), but the resources used to this end represent an energetic
cost of dispersal.

More specifically, energetic costs of dispersal (e.g., investment into morphological structures
such as flight muscles or energy spent during transfer) can easily enforce a trade-off with fecun-
dity. Indeed, there is good empirical evidence for fecundity costs of dispersal ability in insects
(Roff, 1977), especially in wing-dimorphic species (Mole and Zera, 1993; Roff, 1984; Stirling
et al., 2001; Wratten, 1977; Zera, 1984; reviewed by Roff, 1986; Zera and Denno, 1997) and in
Lepidoptera (Gu and Danthanarayana, 1992; Gu et al., 2006; Hughes et al., 2003; Karlsson and
Johansson, 2008; but see Hanski et al., 2006). In plants, seed dispersal depends on plant height
more than on seed size (Thomson et al., 2011), and investments into tall stems may cause a
trade-off between dispersal ability and seed number when dispersal is facilitated by wind. Fur-
thermore, dispersal may occur via the production of costly fruits, which also leads to a trade-off
between dispersal and fecundity.

When fecundity is antagonistically interacting with dispersal, it is unclear what shape the
trade-off function should be. Energy allocated to dispersal structures can be measured directly
in terms of lost fecundity (e.g., the number of eggs energetically equivalent to the dispersal
structure). The probability of dispersal is likely an increasing function of the energy allocated
to dispersal structures (Roff and Fairbairn, 1991), but the exact shape of this function is unclear.
Existing models assume some simple function without sufficient justification (e.g., Burton et al.,
2010; King and Roff, 2010; but see Cohen and Motro, 1989). Other models assume that invest-
ment into dispersal-related traits reduces the mortality risk during transfer (Fronhofer et al.,
2011; Travis et al., 2012). This improves the classic assumption of a fixed mortality cost, yet
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the function linking investment and risk is chosen only for its simplicity. Similar choices are
made when seed dispersal is linked to seed size (Ezoe, 1998; Levin and Muller-Landau, 2000).
These choices of functions amount to assuming ad hoc trade-offs between fecundity and (suc-
cessful) dispersal. Importantly, seemingly minor details of the trade-off functions can change the
qualitative predictions of a model (de Mazancourt and Dieckmann, 2004; Geritz et al., 2007).
Hence assuming an arbitrary trade-off function, even if it is a biologically plausible function,
can unjustifiably distort the results.

In this paper, we investigate the adaptive dynamics of dispersal (i.e., emigration) under a
dispersal-fecundity trade-off. In Section 2, we include the trade-off in a generalised version of
the model of Hamilton and May (1977) where some individuals may die before reproduction. In
order to avoid ad hoc choices of trade-off functions, in Section 3 we analyse the model without
committing to any particular trade-off shape.

In Section 3.1, we employ the technique of critical function analysis (de Mazancourt and
Dieckmann, 2004; Kisdi, 2006, 2014). In critical function analysis, we identify the conditions
under which various evolutionary outcomes are possible in terms of the local properties (such as
the slope and the curvature) of the unspecified trade-off function. This technique differs from a
traditional bifurcation analysis in treating the slope and the curvature of the trade-off function
directly as bifurcation parameters, instead of first fixing a parameterised trade-off function and
then analysing the model in terms of the parameters. In the present model, we show that
all generic types of evolutionary singularities can occur, provided that there is some mortality
between establishment and reproduction. In particular, dispersal may evolve to an evolutionarily
stable level, may undergo evolutionary branching, or there may be a repelling singularity leading
to multiple attractors of dispersal evolution. For comparison, we analyse the model also without
the dispersal-fecundity trade-off (i.e., assuming constant fecundity; see Appendix A) and show
that in this case, no evolutionary branching and no multiple attractors can occur.

In Section 3.2, we investigate how the evolutionary singularity changes with survival before
reproduction and with survival during dispersal. For the latter, we find a novel pattern of dis-
persal evolution demonstrated in the example of Section 4: dispersal can monotonically decrease
with increasing survival during dispersal over its entire range, or else (as found earlier, see Dis-
cussion) it may also increase or vary non-monotonically. In the example of Section 4, we also
illustrate evolutionary branching, show an example for the co-evolution of divergent dispersal
strategies after evolutionary branching, present examples for multiple attractors, and highlight
the possibility of evolutionary catastrophes due to slight changes in survival probabilities at fold
bifurcation points.

2 Model

Consider a semelparous population with non-overlapping generations that reproduces asexually
and lives in a fragmented landscape. After competition between juveniles, each site is occupied
by one individual that survives until reproduction with probability s > 0. We refer to s as adult
survival (but note that this precedes the only time when the individual reproduces). At the time
of reproduction a fraction 1− s of sites is empty. All individuals who survived to reproduction
give birth to B(xi) offspring and die. The offspring disperse with probability xi, join a global
dispersal pool and survive dispersal with probability p > 0. The dispersers land on an empty site
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with probability 1− s, or on an occupied site with probability s, where non-dispersed offspring
are present (i.e. higher competition). After dispersal, one individual establishes at each site
(fair competition) and survives until reproduction with probability s.

The production of offspring with dispersal morphologies is costly. Since resources are limited
and energy finite, individuals who invest more into the dispersal apparatus of their offspring
produce fewer offspring than individuals who invest little into dispersal structures. Hence, the
number of offspring of the latter individuals is high compared to the former, but comes at a cost
of reduced dispersal probability, which increases kin competition and decreases the chances of
colonising new sites. We include such a fecundity-dispersal trade-off in the form B(xi) = κb(xi),
where b(xi) describes the trade-off between the dispersal probability and fecundity. The function
b(xi) is non-negative and decreasing for all xi ∈ [0, 1].

Let ni(t) be the fraction of M sites that adults with dispersal trait xi occupy at time t.
Assuming that both the number of individuals born in every patch and the number of patches
is large (M,κ→∞), we can neglect stochastic effects. We then obtain ni(t+ 1) as the number
of offspring produced (ni(t)sb(xi)) times the probability that the offspring wins a site. Offspring
compete for sites in three ways: First, an offspring stays in the natal site and competes for the
natal site; second, the offspring successfully disperses (i.e., emigrates and survives dispersal) and
lands in a site where offspring have been born; and third, the offspring successfully disperses
and lands in a site that was empty before immigration. In each case, the probability of winning
the site is one over the number of competitors, but the number of competitors varies in different
sites. This leads to the three terms of the discrete-time population model

ni(t+ 1) = ni(t)sb(xi)

(
(1− xi)

spE1 + (1− xi)b(xi)
+ sxipE2 +

(1− s)xip
spE1

)
, (1)

where E1 and E2 are the environmental feedback variables given by E1 =
∑k

j=1 nj(t)b(xj)xj and

E2 =
k∑

l=1

nl(t)
(1−xl)b(xl)+spE1

and k is the number of dispersal strategies. E1 is the average number

of individuals that disperse from a site, and E2 gives the probability that a disperser establishes
upon landing at an occupied site. Since feedback variables, of which we have two, set an upper
limit to the number of coexisting strategies (Geritz et al., 1997) we conclude that at most two
dispersal strategies coexist.

This model is an extension of the Hamilton-May model (Hamilton and May, 1977) with a
trade-off between dispersal and fecundity (Cohen and Motro, 1989) and the possibility of death
before reproduction.

3 Adaptive dynamics of dispersal

To determine the long-term evolution of dispersal we investigate a series of invasion-fixation
events. We assume that (i) the ecological time-scale is faster than the evolutionary, (ii) mu-
tations have small effects on the evolving dispersal trait, and (iii) the mutant population is
initially small compared to the resident population. These assumptions allow us to use the
adaptive dynamics toolbox (Geritz et al., 1998). The invasion fitness of a mutant population
with trait y into an environment inhabited by a resident population with trait x is derived from
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Eq. (1) for k = 2 and given by the following function:

w(x, y) = sb(y)

(
(1− y)

b(x)xps+ b(y)(1− y)
+

yps

b(x)xps+ b(x)(1− x)
+
yp(1− s)
b(x)xps

)
. (2)

Directional selection ceases at the singular strategy x∗, where D(x∗) = ∂w/∂y|y=x=x∗ = 0. This
is equivalent to:

b′(x∗) =
b(x∗)

x∗

[
ps2x∗

(1− s)(1− x∗)2 + p2s2x∗2 + 2ps(1− x∗)x∗
− 1

]
. (3)

Note that when s→ 0 or p→ 0 (with sM →∞ and spκ→∞), the singular dispersal strategy
is the solution to

b′(x∗) = −b(x
∗)

x∗
.

In this limit, the number of immigrants arriving at the natal site becomes negligible and com-
petition vanishes. In this case, any non-dispersed offspring can retain the natal site and the
favoured strategy, i.e., the singular strategy, maximises the number of dispersers xb(x).

A singular strategy is evolutionarily stable if

E =
∂2w(x, y)

∂y2

∣∣∣∣
x=y=x∗

< 0 (4)

and attracting (convergence stable) if

E +M =
∂2w(x, y)

∂y2
+
∂2w(x, y)

∂x∂y

∣∣∣∣
x=y=x∗

< 0 (5)

(Christiansen, 1991; Eshel, 1983). In Appendix A we analyse the evolutionary dynamics without
a trade-off (i.e., assuming that b is constant). In this case, the model always has a unique singular
strategy that is both attracting and evolutionarily stable, i.e., a CSS.

3.1 Critical function analysis

Here we use critical function analysis (de Mazancourt and Dieckmann, 2004; Kisdi, 2006, 2014)
to analyse evolutionary scenarios without pre-defining a specific trade-off shape. Let bcrit(x)
be a solution of the differential equation in (3) (note that there are infinitely many solutions
with different initial values). The function bcrit(x) is called the critical function and any point
along the critical function can be made singular by choosing a trade-off tangential to the critical
function at that point.

We obtain the critical function analytically with Mathematica (Wolfram Research, version
8.0.4.0):

bcrit(x) =
b0x0
x

exp (f(x0)− f(x))
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for the initial condition b(x0) = b0, where

f(x) =
√
sArcTanh

(
x[(1− ps)2 − s]− [(1− ps)− s]

p
√
s3

)
.

If the argument of the ArcTanh lies outside of (−1, 1), the function value is complex. For some
parameter values of s and p the argument can be smaller than −1 for all x (see Appendix
B.1). Then the imaginary part of f(x) cancels with the imaginary part of f(x0) and the critical
function remains real (see Appendix B.1). In Appendix B.2 we show that the critical function is
convex. Singular strategies of trade-offs with local curvature smaller than b′′crit(x) are attracting,
and repelling if the opposite holds (de Mazancourt and Dieckmann, 2004).

Additionally, we determine the critical curvature for evolutionary stability. Since E (see
inequality (4)) depends on the curvature of the trade-off function, we rewrite E as b′′(x∗)−e(x∗),
where x∗ is the point of tangent between the trade-off and a critical function. A singular strategy
is an ESS if E < 0, i.e. the curvature of the trade-off function is smaller than the critical
curvature of evolutionary stability e(x∗). In Appendix B.3 we prove that e(x∗) is positive.

The second term of inequality (5), M , is independent of the trade-off curvature but depends
on the slope of the trade-off at x∗, which is determined by the slope of the critical function. If
M is negative, evolutionary branching is possible by choosing the trade-off curvature such that
E is positive but E + M is negative, i.e., the singularity is an attractor (inequality (5) holds)
but not evolutionary stable (the opposite of (4) holds; see details below). We find that M is
negative if

p2x∗2

(1− x∗)2
<

1− s
s2

(6)

and positive if the opposite holds. Note that for s = 1, inequality (6) is never fulfilled and
evolutionary branching is impossible (see Hamilton and May, 1977). Since M can be of both
signs depending on the parameters s, p and on x∗, the point of tangent between the trade-off
and a critical function (which can also be chosen freely by choosing an appropriate trade-off), it
is possible to construct trade-offs that lead to any type of singularity. If x∗ is chosen such that
inequality (6) holds, then e(x∗) < b′′crit(x

∗), and hence trade-offs with an intermediate curvature,
i.e., with e(x∗) < b′′(x∗) < b′′crit(x

∗), lead to evolutionary branching, whereas trade-offs with
b′′(x∗) < e(x∗) yield an attracting evolutionary stable strategy and trade-offs with b′′(x∗) >
b′′crit(x

∗) yield an evolutionary repellor. If x∗ is chosen such that the opposite of inequality (6)
holds, then e(x∗) > b′′crit(x

∗), and trade-offs with an intermediate curvature (i.e., with b′′crit(x
∗) <

b′′(x∗) < e(x∗)) lead to so-called Garden of Eden (GoE) points (Geritz et al., 1998; Hofbauer
and Sigmund, 1990). A Garden of Eden point is an evolutionarily stable singularity, i.e., if
the population is exactly at this point, then it stays there forever; but it is not attracting,
i.e., starting with a dispersal strategy near but not exactly at the Garden of Eden point, the
population evolves away from it.
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Figure 1: The grey regions show where M < 0, i.e., inequality (6) is satisfied and where
the critical function is decreasing. The shades of grey indicate the width of the interval
(b′′crit(x

∗)/b(x∗), e(x∗)/b(x∗)), where evolutionary branching (BP) occurs. In white regions
b′′crit(x

∗)/b(x∗) < e(x∗)/b(x∗) holds and trade-offs of intermediate curvature make singular strate-
gies Garden of Eden points (GoE ). In the dashed region, the critical function is increasing so
that x∗ could be singular only with an increasing trade-off function, which is not of biological
interest. Parameters: (a) s = 0.1, (b) s = 0.5, (c) s = 0.9.

The grey regions of Fig. 1 show where inequality (6) is fulfilled and the critical function is
decreasing; i.e., where evolutionary branching is possible for realistic trade-offs. The different
shades of grey indicate the normalised range of curvature b′′crit(x

∗)/b(x∗) − e(x∗)/b(x∗), where
the trade-off yields evolutionary branching. For low adult survival s, this range is narrow
(Fig. 1a). Increased adult survival only slightly increases the range in which the trade-off
must lie for branching to occur (Fig. 1b). High adult survival and medium to high survival
during dispersal increase the range further, but diversification of dispersal strategies remains
unlikely (Fig. 1c). Further evolutionary branching can be excluded, since there exist only two
environmental feedbacks (see Section 2).

Note that sufficiently convex trade-offs (b′′(x∗) > b′′crit(x
∗)) always yield evolutionary repel-

lors. The boundary strategy x = 0 is always repelling because of kin competition (see Appendix
C). The strategy on the upper boundary x = 1 is also always repelling (see Appendix C). At the
upper boundary kin competition vanishes and all sites are equal (whether offspring have been
born on the site or not), which means no selection is favouring dispersal. Dispersal is however
selected against both because a dispersed offspring has a chance of dying and because of the loss
of fecundity through the dispersal-fecundity trade-off, so that x = 1 is repelling. Because the
boundary strategies are repelling, a repellor in the interior implies that at least two attracting
singularities exist in (0, 1), one on each side of the interior repellor. Convex trade-offs therefore
readily lead to alternative stable dispersal strategies. Concave trade-offs always lead to CSSs
since b′′(x∗) is negative and smaller than e(x∗) and b′′crit(x

∗), which are both positive.
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3.2 Effect of adult survival and survival during dispersal on dispersal strategy

To study the effect of adult survival on the attracting singular strategy x∗, we implicitly dif-
ferentiate the singularity condition D(x∗) = ∂w/∂y|y=x=x∗ = 0 with respect to s. Rearranging
terms leads to

dx∗

ds
= −

∂D
∂s
∂D
∂x∗

. (7)

For attracting singular strategies the denominator on the right hand side is always negative.
Therefore, the numerator determines whether the singular strategy is increasing or decreasing
with changing adult survival. In Appendix D.1 we show that ∂D

∂s < 0 and therefore the attracting
dispersal strategy always decreases with adult survival (note that this holds also for the special
case where we assume that b(x) = b is constant, i.e., for the model without a trade-off). When
more adults survive until reproduction, more patches are occupied, which selects for a decrease
in dispersal, since it is harder to conquer new patches. Furthermore, more competitors arrive at
a natal patch which increases competition locally with strangers and selects for less dispersal to
increase the chance of retaining the natal patch (Gandon and Michalakis, 1999). In other words,
kin competition becomes weaker when more immigrants dilute the non-dispersed siblings, and
therefore dispersal decreases.

Next, we study the effect of survival during dispersal p on the attracting singular strategy
x∗. Analogously to Eq. (7), x∗ decreases with increasing p if ∂D

∂p < 0. In Appendix D.2 we

show that the attracting strategy decreases with p if p2x∗2

(1−x∗)2 <
1−s
s2

. This condition is the same

as inequality (6). When the probability of survival during dispersal increases, the dispersal
strategy can decrease, increase or vary non-monotonically. As p increases, individuals’ prospects
to survive dispersal ameliorates, which selects for x∗ to increase with p; but more competitors
arrive at the natal site, selecting for x∗ to decrease with p. Depending on the relative weight
of these effects, one is dominating the other which makes all three scenarios possible (see the
next section for examples). Without the trade-off (i.e., if b is constant), the attracting dispersal
strategy is always a non-monotone function of p for s < 1 (see Appendix D.2), whereas for
s = 1, we recover the result x∗ = 1/(2− p) of Hamilton and May (1977), which is an increasing
function of p.

4 Example

In this section we illustrate our general results with a numerical example. We choose the trade-
off function b(x) = αx3 + βx2 + γx + δ with parameters such that the trade-off function is (i)
decreasing, (ii) non-negative and with s = 0.8 and p = 0.2 it is (iii) tangential to a critical
function at x∗ = 0.5 with (iv) intermediate convexity such that e(x∗) < b′′(x∗) < b′′crit(x

∗) (Fig.
2a). Hence, x∗ is an evolutionary branching point. Note that for the chosen values of s and p,
branching is impossible in the grey region of Fig. 2a, because inequality (6) is violated.
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Figure 2: (a) The trade-off function b(x) = −369.3x3 + 667.9x2 − 430.915x + 132.314 (black)
with a singular strategy at x∗ = 0.5 (dot). Dashed curves are critical functions for different
initial values b0. In the grey region, inequality (6) is violated so that evolutionary branching
cannot occur with any trade-off (In this figure, the edge of the grey region seems to be at the
minima of the critical functions, but this is a mere coincidence; see Fig. 1). Parameters: s = 0.8,
p = 0.2. (b) The pairwise invasibility plot with parameters as given in (a). Abbreviations: CSS:
attracting ESS (also known as continuously stable strategy); Rep: repellor; BP : branching
point. Parameters as in (a). (c) The mutual invasibility plot with arrows indicating the direction
of dimorphic coevolution. Without loss of generality, we assume x1 < x2, hence the lower half of
this figure is greyed out. The lines within the white area (the area of coexistence) are isoclines
at which the selection gradient is zero in either the x1-direction or x2-direction (dashed); colour
indicates whether isoclines are evolutionarily stable (black) or not (grey). The intersection of
lines correspond to the dimorphic evolutionary singularity. Parameters as in (a).

Fig. 2b shows the pairwise invasibility plot for the above example, obtained as a sign plot
of the logarithm of the invasion fitness in Eq. (2). There are three evolutionary singularities:
an attracting and evolutionarily stable strategy (CSS), an evolutionary repellor (Rep), and the
branching point x∗ (BP ). The first two singularities correspond to points where the trade-off
function is tangent to other critical functions not shown in Fig. 2a.

The adaptive dynamics after evolutionary branching is shown in Fig. 2c. Within the area
of coexistence, the two resident dispersal strategies x1 and x2 evolve in the direction of their
respective selection gradients (arrows). Evolution stops at the dimorphic singularity, the inter-
section of the isoclines of the selection gradients. The isoclines indicate the lines where the local
fitness gradients vanish with respect to the x1- or x2- direction. We obtained the evolution-
ary isoclines by deriving the dimorphic invasion fitness w(x1, x2, y) (Geritz et al., 1998). The
dimorphic singularity is locally attracting (Leimar, 2009) and also evolutionarily stable. Since
this model has two environmental feedback variables, branching into more than two strategies
is impossible. Notice, however, that in the example of Fig. 2c, the evolutionary trajectory may
easily leave the area of coexistence if x1 (the strategy with lower dispersal) evolves faster than
x2. In this case, the strategy with higher dispersal goes extinct, and the remaining monomorphic
population evolves to the CSS. Although the example in Fig. 2a,b,c demonstrates evolutionary
branching, this appears to be an infrequent outcome. Fig. 3a shows the bifurcation diagram
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Figure 3: (a) The two parameter bifurcation diagram of evolutionary singularities assuming
the trade-off function as given in Fig. 2a. Abbreviation: GoE: Garden of Eden (convergence
unstable ESS). Note that the areas ”CSS,Rep,BP” and ”CSS,GoE,CSS” are exceedingly
narrow. (b) & (c) The bifurcation diagrams for s and p, respectively. Dotted lines indicate
repellors. At the upper bifurcation points GoEs exist and at the lower BP s; the attractors
are CSSs elsewhere. The lighter the lines, the higher the p and s value, respectively (p varies
between 0.2 and 1 with steps of 0.2; s varies between 0.1 and 1 with steps of 0.1).

of evolutionary singularities under the trade-off in Fig. 2a, obtained by solving D(x∗) = 0 and
evaluating the stability criteria in (4) and (5) numerically. For most values of s and p, the model
exhibits a single convergence and evolutionarily stable dispersal strategy (CSS), but there is
also a sizeable area of the parameter space with two CSSs separated by a repellor. In the latter
area evolution leads to either of the two CSSs depending on the initial trait value. The light
grey area of Fig. 3a is a very narrow region where one singularity is an evolutionary branching
point. In a similarly narrow region (dark grey in Fig. 3a), the repellor between the two CSSs
is a Garden of Eden strategy, i.e., a repellor that is evolutionarily stable. Fig. 3b shows that
the attracting singularity always decreases with increasing adult survival, s (as proven in the
previous section). In accordance with Fig. 3a, there may be alternative attractors of dispersal
evolution when adult survival is relatively high. Fig. 3c demonstrates that the attracting dis-
persal strategy may increase or decrease with the probability of survival during dispersal (p),
and in this example dispersal is monotonically decreasing over the entire range 0 < p < 1 when
adult survival is either low or high but still sufficiently smaller than 1. In Fig. 3b,c the dotted
lines indicate repellors. Where a repellor collides with an evolutionary attractor, i.e., at fold bi-
furcation points, slight changes in the survival probabilities lead to an evolutionary catastrophe,
whereby the former attractor disappears and the population evolves to another attractor at a
very different dispersal probability.

5 Discussion

We have investigated the evolution of dispersal in an extended version of the Hamilton-May
model (Hamilton and May, 1977), with a fecundity-dispersal trade-off and with mortality be-
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tween competition and reproduction (i.e., a factor of adult survival in the semelparous life
cycle). Here dispersal helps offspring to avoid kin competition and potentially escape to a site
with fewer competitors (i.e., where there was no surviving parent and thus only immigrants
compete), whereas the costs are reduced fecundity and a chance of mortality during dispersal.
We have found that in this extended model, all generic types of evolutionary singularities can
occur, including evolutionary branching and evolutionary repellors; the latter leads to multi-
ple attractors of dispersal evolution. In contrast, when there is no trade-off (i.e., fecundity is
constant), there is always a single attractor which is evolutionarily stable (Appendix A).

Evolutionary branching requires multiple dispersal strategies to coexist near an evolutionary
singularity. Such coexistence is impossible in the Hamilton-May model, but becomes possible
with adult mortality (see inequality (6)). Many metapopulation models of dispersal evolution
assume that catastrophes may extinguish local populations (e.g., Comins et al., 1980; Gandon
and Michalakis, 1999; Olivieri et al., 1995; Parvinen et al., 2003; Ronce et al., 2000a,b). Adult
survival in our model is analogous to surviving such a catastrophe, where the local ”population”
that survives the catastrophe is a single individual. Olivieri et al. (1995) showed that two
dispersal strategies can coexist in a metapopulation model with catastrophes, although in their
model the singular dispersal strategies are always ESSs.

When coexistence near an evolutionary singularity is possible, then the shape of the trade-
off function determines whether evolutionary branching occurs. The importance of the trade-
off shape was highlighted by Ronce and Olivieri (1997), who found an evolutionarily stable
dimorphism in fecundity when it stands in a trade-off with parental survival according to a
convex-concave trade-off function (similar to our example in Fig. 2) in a population with over-
lapping generations. Dispersal was linked to reproduction and branching in fecundity amounted
to branching in dispersal, resulting in a strategy with a high fecundity, high dispersal and low
parental survival and a strategy characterised by low fecundity, low dispersal and high parental
survival. Many other models, however, assume only a fixed mortality cost of dispersal, which
amounts to a linear trade-off between the number of dispersed and non-dispersed offspring; this
rigid trade-off explains, for example, why evolutionary branching does not occur in the model of
Olivieri et al. (1995). When the trade-off is flexible, as in case of a fecundity-dispersal trade-off,
then given coexistence, one can always find trade-off functions that yield evolutionary branch-
ing (Kisdi, 2006, 2014). Whether these trade-offs are biologically realistic can be evaluated by
empirical studies. In Fig. 3a, we show that any evolutionary outcome is possible in the present
model with a decreasing trade-off function, which is a minimal requirement for biological realism
when the trade-off derives from resource allocation between dispersal-related investments and
fecundity.

Two previous models have been used to study the evolution of dispersal with arbitrary
shapes of trade-offs. Cohen and Motro (1989) assumed a trade-off between dispersal and fecun-
dity as in our model, but assumed 100% adult survival, such that coexistence was impossible
in their model. They found that there is always at least one attracting singularity, and since
dispersal implies a cost in fecundity, all singular dispersal strategies must be lower than the
Hamilton-May solution. Note that this does not hold when there is adult mortality, since the
empty sites generate an extra selective force promoting dispersal. Levin and Muller-Landau
(2000) investigated the evolution of seed size, assuming that small seeds are more likely to dis-
perse but are competitively inferior to large seeds. Varying seed size thus generates a trade-off
between dispersal and potency, a combined measure of the number of seeds and their com-
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petitive weight. Four types of evolutionary singularities without coexistence can occur in this
model (including the Garden of Eden scenario), but since 100% adult survival is assumed, coex-
istence and evolutionary branching is impossible. Asymmetric competition is known to facilitate
evolutionary branching of seed size when some sites are empty before dispersal (Geritz et al.,
1999).

Evolutionary branching of dispersal has been found in a number of models, but has not
been linked to the shapes of trade-offs involved. Most of these models assume no trade-off
(Doebeli and Ruxton, 1997; Mathias et al., 2001) or only the linear trade-off implied by a
fixed mortality cost of dispersal (Massol et al., 2011; Parvinen, 1999, 2002; Parvinen and Metz,
2008). The simulation study of Fronhofer et al. (2011) found evolutionary branching in sexually
reproducing populations under a fixed trade-off between fecundity and survival during dispersal
in a model where temporal variability selects for dispersal. With the exceptions of Parvinen
and Metz (2008) and Massol et al. (2011), models with evolutionary branching of dispersal also
assumed large local populations where kin competition does not play a role.

The multiple attractors of dispersal evolution predicted by our model are intimately linked to
the shape of the underlying trade-offs. One numerical example for multiple attractors was found
by Levin and Muller-Landau (2000), when they assumed an ad hoc non-monotone relationship
between dispersal and potency (the total competitive weight represented by the offspring). In
our model, potency is given by b(x)[1 − (1 − p)x], which is a monotone decreasing function of
x whenever b(x) is non-increasing (note, however, Levin and Muller-Landau (2000) assumed
that small seeds disperse better; in their model b(x) is an increasing function of x). Our model
demonstrates that the existence of an evolutionary repellor, and hence of multiple attractors,
depends not on the monotonicity but on the curvature of the trade-off: when the trade-off is
more convex than the critical function at the point of tangent, the singularity is a repellor (Fig.
2a; de Mazancourt and Dieckmann 2004).

A fundamentally different mechanism leads to multiple attractors in the model of Billiard
and Lenormand (2005). They assume genetic polymorphism in a locus involved in local adap-
tation to contrasting habitats in a heterogeneous landscape. When dispersal is low, the locally
favoured allele is frequent in each local population, which selects against immigrants carrying
the ”wrong” allele and thereby stabilises low dispersal. In contrast, high dispersal homogenises
the allele frequencies and thus reduces the disadvantage of dispersal, so that kin competition
can maintain high dispersal. Also the joint adaptive dynamics of dispersal and a local adapta-
tion trait readily leads to multiple attractors, but here selective forces on the trait under local
adaptation play a major role (Kisdi, 2002; Nurmi and Parvinen, 2011).

Multiple attractors can also arise such that one attractor is an evolutionarily stable dispersal
strategy and another is an evolutionarily stable dispersal dimorphism. The simultaneous exis-
tence of a monomorphic ESS and a dimorphic ESS is a generic feature of adaptive dynamics
(Geritz et al., 1999). In our example, the region where a dimorphic ESS exists is small (see Fig.
5 in Appendix E), yet somewhat larger than the region where evolutionary branching occurs
(Fig. 3a). In the part where a dimorphic ESS exists but branching does not occur, a population
can evolve to the dimorphic ESS only if it starts dimorphic (e.g., by immigration).

In our model, the attracting dispersal strategy always decreases with adult survival. This
is different from how dispersal changes with the catastrophe rate in structured metapopulations
(Parvinen et al., 2003; Ronce et al., 2000a,b), but agrees with metapopulation models that
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assume saturated local populations (Comins et al., 1980; Olivieri et al., 1995). Our model is
analogous to the latter case since a site is saturated with one individual.

Contrastingly, the attracting dispersal strategy of our model may either increase or decrease
with increasing survival during dispersal. Higher survival selects for dispersal as dispersal is then
safer, but also selects against dispersal because more immigrants arrive at the natal site of the
offspring and therefore more offspring need to stay in the natal patch in order to protect the
site against competitors. These conflicting forces can lead to a non-monotonic relationship
between dispersal and survival during dispersal (Comins et al., 1980; Gandon, 1999; Gandon
and Michalakis, 1999; Heino and Hanski, 2001; Kisdi, 2004). Interestingly, in the example of
Fig. 2, we also find a monotone decreasing relationship, i.e., here increasing the probability of
survival during dispersal leads to even lower (and not higher) dispersal, which is a novel pattern
in dispersal evolution.

Close to fold bifurcation points, i.e., at points where an attractor disappears via colliding
with a repellor, slight changes in the probability of adult survival or in survival during dispersal
may cause major shifts in the evolved dispersal strategies (see Figs 2e,f). At such points,
‘evolutionary catastrophes’ occur and the population evolves rapidly to another attractor (Rand
and Wilson, 1993).

The present results highlight the importance of the shape of trade-off in generating disruptive
selection and hence polymorphisms or multiple attractors in dispersal evolution. However, we
have made just one step in exploring the rich trade-off structure that determines the evolution
of dispersal (Bonte et al., 2012; Travis et al., 2012). Most importantly, models should go beyond
considering a single trade-off linking only two life-history parameters, and incorporate multiple
trade-offs between interacting traits.

In the present model, we assumed that the probability of dispersal is a purely genetically
determined trait. Even though dispersal is indeed a heritable trait (see Ronce, 2007; birds:
Doligez et al., 2009; Hansson et al., 2003; plants: Clay, 1982; Venable and Burquez, 1989),
in reality other factors such as the quality of the natal habitat, local population density, the
strength of kin competition, and the competitive ability of the individual also influence dispersal
(Benard and McCauley, 2008; Clobert et al., 2009). Function-valued dispersal strategies have
been investigated in the context of density-dependent dispersal (e.g., Gyllenberg and Metz 2001;
Parvinen et al. 2012), kin competition (Ezoe and Iwasa, 1997; Kisdi, 2004; Ronce et al., 1998),
and dispersal in relation to body condition (Gyllenberg et al., 2011a,b; Kisdi et al., 2012), but
these models make only the simplest assumptions about the costs of dispersal. Integrating im-
proved modelling of dispersal-related trade-offs with plastic dispersal strategies is an important
step in exploring the role of plasticity and genetic diversification in the evolution of dispersal.
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Appendix

A Adaptive dynamics of dispersal without a trade-off

In this section we analyse the model assuming no trade-off, i.e., assuming constant fecundity
(b(x) = b). The fitness function is then independent of fecundity and is given by:

w(x, y) = s

(
(1− y)

xps+ (1− y)
+

yps

xps+ (1− x)
+
yp(1− s)
xps

)
. (8)

We derive the singular strategy by solving D(x∗) = 0 and get:

x∗ =
2− s

(
p(2− s) + 2 +

√
p
√

4 + s(ps− 4)
)

2− 2s(p(2− ps) + 1)
. (9)

When s = 1, the singular strategy simplifies to 1/(2− p), which has been obtained by Hamilton
and May (1977). The singular strategy is evolutionarily stable if

∂2w(x, y)

∂y2

∣∣∣∣
x=y=x∗

= − 2ps2x∗

(1− x∗ + psx∗)3
< 0,

which is always true. The singular strategy is convergence stable if

∂2w(x, y)

∂y2
+
∂2w(x, y)

∂x∂y

∣∣∣∣
x=y=x∗

= −1− s
x∗2

− ps2(ps(1− x∗) + x∗(2(1− ps) + p2s2))

(1− x∗ + psx∗)3
< 0,

which is always true and therefore the singular strategy is a CSS when the trade-off function is
constant.

B Critical functions and curvatures

B.1 Imaginary part of ArcTanh

When the argument of ArcTanh lies outside of (-1,1) the function value is complex. If z ∈ R
with z2 > 1, then we can write

ArcTanh(z) = α+ iβ,

where α = 1/2Ln[(z + 1)/(z − 1)] and β = ±π/2. Note that the imaginary part of the ArcTanh
is positive if z < −1 and negative if z > 1. The argument of ArcTanh(z) is

z =
x[(1− ps)2 − s]− [(1− ps)− s]

p
√
s3

,

which is linear in x. Let us look at the values of z when x = 0 and x = 1. When x is at the
lower boundary of trait space z simplifies to

z|x=0 =
s(1 + p)− 1

ps3/2
(10)
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and when x = 1, z is

z|x=1 =
ps− 1√

s
. (11)

The righthand sides of Eq. (10) and Eq. (11) are always less than 1. If p > 1/s −
√

1/s, then
both (10) and (11) are greater than −1, so that the ArcTanh function evaluates to real numbers
for all x. If the reverse inequality holds, then both (10) and (11) are less than −1, so that the
ArcTanh function evaluates to a complex number with imaginary part β = π/2. Therefore when
f(x) is complex, then f(x0) is also complex and the imaginary parts cancel in f(x0)− f(x).

B.2 Curvature of the critical function

Here we investigate the curvature of the critical function bcrit(x
∗). We derive the second deriva-

tive and get

b′′crit(x) =
bcrit(x)

d(p, s, x)2x2

[
2(1−s)2(1−x)4+2ps(1−s)x(1−x)A+p2s2x2(4(1−x)2(1−s)+B)

]
,

(12)

where

d(p, s, x) = p2s2x2 + (1− s)(1− x)2 + 2spx(1− x), (13)

which is positive. The term in square brackets on the right hand side of Eq. (12) has three
terms, of which the first one is positive. The second term is positive whenever

A = (4(1− x)2 − s(1− 2x)) > 0. (14)

This always holds when x > 1/2. If x < 1/2, then A is decreasing in s. When taking the worst
case s = 1, inequality (14) simplifies to 4x2 − 6x+ 3, which is positive for all x. Hence, also the
second term of Eq. (12) is positive. The last term of Eq. (12) is positive if B is positive, where

B = 8− 6s+ s2 + C

and

C = 2x(2− ps)((2− ps)x− 4 + 2s). (15)

Only C depends on x, in particular it is quadratic in x. The coefficient of the quadratic term of
Eq. (15) is positive. The minimum value of C is reached when x = (2−s)/(2−ps). Substituting
the minimum into B gives (2 − s)s > 0, which is positive. Therefore Eq. (12) is positive and
hence bcrit(x) is convex.

B.3 Critical curvature for evolutionary stability

Here we show that e(x∗), defined as the minimal value of b′′(x∗) that violates the evolutionary
stability condition in Eq. (4) for the singularity x∗, is always positive. From its definition, we
obtain

e(x∗) =

(
d(p, s, x∗)− ps2x∗

x∗d(p, s, x∗)

)2

+
ps2[x∗ − 1 + s(1− x∗(1 + p))]2(1− x∗ + psx∗)

x∗d(p, s, x∗)3
, (16)
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where d(p, s, x) is given by Eq. (13). Since the first term of Eq. (16) is strictly non-negative
and the second term is positive, e(x∗) is positive.

C Stability on the boundary

The strategy located at the lower boundary of the trait space, x = 0, is repelling if D(0) > 0,
which is equivalent to 1− s > 0. The strategy located at the upper boundary of the trait space,
x = 1, is repelling if

D(1) < 0 ⇔ 1− 1

p
+
b′(1)

b(1)
< 0,

which is also true for decreasing trade-offs.

D The effect of s & p on the attracting singular strategy

D.1 The effect of s on the attracting singular strategy

Here we investigate how the attracting singular strategy changes with increased adult survival.
From Eq. (7) we have

∂D

∂s
= −

ps(1− x∗)
[
2psx∗ + (1− x∗)(2− s)

]
d(p, s, x∗)(1− x∗ + psx∗)2

. (17)

Since d(p, s, x∗) as given in Eq. (13) is positive, the right-hand side of Eq. (17) is negative for
attracting singular strategies. Hence Eq. (7) is negative and dispersal decreases with survival.

Next consider the case when the trade-off function is constant. In this case we can explicitly
derive the singular strategy (see Eq. (9)). The singular strategy increases with adult survival if

dx∗

ds
=

√
p(6s(1− ps) + 4(p2s2 − 1) + s(s2p− 2))

2
√

4 + s(ps− 4)(1 + s(p(ps− 2)− 1))2
+
p((2− s)s+ 2(1− ps)2)
2(1 + s(p(ps− 2)− 1))2

< 0. (18)

With the command Reduce of Mathematica, we prove that inequality (18) is always fulfilled.
Hence, the singular strategy decreases with increasing adult survival.

D.2 The effect of p on the attracting singular strategy

As shown in the main text, the sign of dx∗/dp coincides with the sign of

∂D

∂p
=
s2(p2s2x∗2 − (1− s)(1− x∗)2)
d(p, s, x∗)(1− x∗ + psx∗)2

. (19)

We can see that the denominator is always positive. Therefore Eq. (19) is negative if p2s2x∗2−
(1− s)(1− x∗)2 < 0, which is equivalent to

p2x∗2

(1− x∗)2
<

1− s
s2

. (20)
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In particular, when s = 1 then Eq. (20) simplifies to p2x∗2 < 0 which is never satisfied. Hence,
the attracting singularity increases with p when all adults survive until reproduction. When
inequality (20) is fulfilled dispersal decreases with increasing survival during dispersal.

Next, we analyse the change of the singular strategy as survival during dispersal increases
in the case where the trade-off function is constant. The singular strategy as given in Eq. (9)
decreases with increasing p if

dx∗

dp
=
s
(
s− 2− ps2+4+s(ps−4)

2
√
p
√

4+s(ps−4)

)
2(1− s)− 2ps(ps− 2)

−
s(ps− 1)(2− s(2− p(s− 2) +

√
p
√

4 + s(ps− 4)))

(1 + s(p(ps− 2)− 1))2
< 0.

(21)

Instead of analysing the sign change of Eq. (21), we show in Fig. 4 that the dx∗/dp changes
sign for all s < 1. Then, we can conclude that the singular strategy changes non-monotonically
for all s < 1.

0 1
0

1

p

s dx*

dp
< 0

dx*

dp
> 0

Figure 4: A sign plot of dx∗

dp when the trade-off function is constant.
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p

Figure 5: The black region indicates the existence of a dimorphic ESS assuming the trade-
off function as in Fig.2. We numerically obtained the dimorphic ESS by setting the selection

gradients ∂w(x1,x2,y)
∂y

∣∣∣
y=x1

and ∂w(x1,x2,y)
∂y

∣∣∣
y=x2

equal to zero. We then evaluated the stability

criteria (analog to (4)) at the singular strategy numerically and checked if the equilibrium
population densities were positive at that point.
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