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Biological patterns emerge through specialization of

genetically identical cells to take up distinct fates according to

their position within the organism. How initial symmetry is

broken to give rise to these patterns remains an intriguing open

question. Several theories of patterning have been proposed,

most prominently Turing’s reaction–diffusion model of a slowly

diffusing activator and a fast diffusing inhibitor generating

periodic patterns. Although these reaction–diffusion systems

can generate diverse patterns, it is becoming increasingly

evident that cell shape and tension anisotropies, mediated via

cell–cell and/or cell–matrix contacts, also facilitate symmetry

breaking and subsequent self-organized tissue patterning. This

review will highlight recent studies that implicate local changes

in adhesion and/or tension as key drivers of cell

rearrangements. We will also discuss recent studies on the role

of cadherin and integrin adhesive receptors in mediating and

responding to local tissue tension asymmetries to coordinate

cell fate, position and behavior essential for tissue self-

organization and maintenance.
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Introduction
Tissues are formed and maintained in an extremely

stereotypic manner. This reproducible patterning neces-

sitates integration of signals that determine cell fate with

adhesive and cytoskeletal cues that control cell shape and

cellular rearrangements. These shape changes and rear-

rangements require tightly controlled force generation

that occurs through coordinated engagement of the con-

tractile actomyosin cytoskeleton with integrin and cad-

herin adhesive complexes. Cadherin-dependent intercel-

lular junctions link intercellular adhesion to the

organization of the cortical actomyosin cytoskeleton as

well as provide landmarks that spatially orchestrate sig-

naling [1,2], thus allowing cells to coordinate their behav-

ior across the tissue [3] (Figure 1). Like cell–cell adhe-

sions, integrin-dependent cell–extracellular matrix

(ECM) adhesions link to and regulate actomyosin orga-

nization and contractility [4]. What distinguishes integrin

adhesions from other adhesive complexes is their ability

to bind and dynamically remodel the ECM into a precise

configuration (Figure 1). The ECM provides cells with

positional and structural information of the surrounding

tissues as well as binds and regulates the availability and

activation of growth factors, thus acting as a topographical

cue and signaling platform [5].

These cell–cell and cell–matrix adhesion receptors can

thus recognize and mechanically respond to local changes

in their microenvironment. However, how forces gener-

ated by adhesion and the cytoskeleton integrate cell fate

with the positioning of cells within tissues is less clear.

The recent evolution in technology and methods to

quantify and experimentally manipulate adhesive and

mechanical properties of cells and tissues has revolution-

ized the field, thus allowing more direct probing of this

question. The role of cadherins, integrins and actomyosin

in mechanotransduction and tissue morphogenesis has

been extensively reviewed, for example in [6–8]. Instead,

this review will focus on highlighting recent data on the

adhesive and force transduction mechanisms that control

cell fate and/or shape to break cellular symmetry within

multicellular assemblies, which then drives tissue self-

organization.

Triggers of cell shape and force anisotropies
Tissue self-organization and patterning requires the coor-

dinated positioning of cells to couple function with tissue

architecture. It is well established that signaling has a key
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Figure 1
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Cell–cell and cell–matrix adhesions are linked to the contractile actomyosin cytoskeleton. Classical cadherin receptors mediate adhesive binding

to cadherins presented on the surfaces of neighboring cells to promote cell–cell adhesion. Integrins bind to extracellular matrix proteins to mediate

cell–matrix adhesion. Both adhesive systems mechanically couple to the actomyosin cytoskeleton through cytoplasmic multi-adaptor complexes

and regulate its organization and contractility.
instructive role in patterning with several models, espe-

cially Turing’s reaction-diffusion model [9], explaining

how these signaling systems generate periodic patterns.

Recent studies have begun to unravel a critical role for

cell shape and tension anisotropies in symmetry breaking

to generate and shape signaling gradients and promote

the self-organization of tissue patterns [10,11].

Adhesion in forming and maintaining boundaries

Cell sorting is a process in which two or more populations

of cells self-organize to create fate boundaries and spa-

tially defined structures [12] (Figure 2a). In principle, the

outcome of cell sorting can be predicted using models

that consider cell-specific differences in interfacial ener-

gies, resulting in a configuration that maximizes the most

energetically favorable cell interfaces [13]. Historically,

this disparity in interfacial energy was considered to be

driven by differences in adhesive specificity and/or

strength (differential adhesion hypothesis, DAH) with

cadherins as best examples [13]. Later work indicated

that sorting was primarily driven through differential

cortical tension properties of the two populations (differ-

ential interfacial tension hypothesis, DITH) [14,15], with

adhesive receptors required to couple tensile forces to the

cell membrane [16]. In both cases, the action of so-called

repulsive signals, for example of Eph–Ephrin receptors,

at heterotypic junctions (defined as between two differ-

ent cell types [12]) was ignored. In contrast, the Fagotto

group recently identified a major role for Eph–Ephrin

signaling in establishing high heterotypic interface ten-

sion (HIT) that drives the separation of Xenopus ecto-

derm from mesoderm with little to no role for differential

adhesion or cortical tension [17��]. These authors then

proposed a unifying model in which the rapid and stable

formation of sharp tissue boundaries, for example
Current Opinion in Cell Biology 2018, 54:89–97 
Xenopus ectoderm–mesoderm boundary, is highly

dependent on HIT, whereas DAH and/or DITH are

likely more important for situations in which cells sort

out during active cell rearrangements, for example during

convergence extension movements.

Local differences in matrix composition, resulting in a

selective ability of different cell populations to adhere to

this matrix, can also provide a dominant cell sorting cue.

Such a binary interaction signal of presence or absence of

cell–matrix contact may robustly buffer the more

dynamic rearrangements and spectrum of interaction

energies of individual cell–cell interactions. This concept

was recently directly explored using the self-organizing

capacity of mammary or prostate gland primary epithelial

cell aggregates that consist of two different populations.

By combining mathematical modelling and knockdown

of key adhesion proteins these authors found that only

one cell type was able to interact with and spread on the

ECM tissue boundary. This binary interaction was essen-

tial for cell positioning and gland self-organization, and

robustly buffered alterations in key cell–cell adhesion

molecules [18]. The principle of a binary instructive

cue deriving from basement membrane adhesion trigger-

ing self-organization is further beautifully demonstrated

in studies of early mammalian development. During the

first stages of post-implantation morphogenesis, the plu-

ripotent epiblast that later gives rise to all tissues becomes

organized into a rosette-like structure of highly polarized

cells and a central lumen is then formed through hollow-

ing of the apical membranes of these polarized cells. This

symmetry breaking is orchestrated by polarization cues

from the basement membrane and transmitted through

b1-integrin receptors [19] in a manner similar to MDCK

cyst morphogenesis [20]. Interestingly, studies on
www.sciencedirect.com
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Adhesion and cell mechanics-dependent mechanisms of symmetry breaking and patterning. Cell shape and tension anisotropies can be

generated both locally or on the tissue scale to break symmetries and generate tissue patterns. (a) Cell sorting can occur on the basis of

differential cell adhesion, cortical tension or repulsive signaling. A common denominator is that all these mechanisms locally maximize differences

in interfacial energies to generate tissue internal boundaries. (b) Cell division is capable of generating tension asymmetries to promote cell

intercalation, to generate interphases with reduced tension or to specifically position daughter cells based on their differential cortical tension. (c)

Cell repositioning through delamination has been shown to be triggered by tissue-scale stresses such as strain anisotropy, crowding and

topological defects.
micropatterned ECM surfaces have shown that cell–

matrix adhesions can spatially organize intercellular junc-

tions due to the high intercellular forces generated in the

close proximity of these matrix junctions, thus directing

cell–cell adhesions away from the ECM [21]. Conversely,

the formation of cell–cell adhesions prevents the local

formation of cell–matrix adhesions [22], thus coordinating

cell–matrix forces [23]. Collectively, this leads to global

minimization of the total contractile energy and thereby

stabilization of cells in this position, providing a self-

organizing mechanism for matrix adhesion-driven cell

polarization and positioning.

The presence of a boundary, for example through matrix

deposition and/or through differential interfacial tension,
www.sciencedirect.com 
may control collective organization and behavior of cells

over larger length scales. For example, neuronal stem cells

cultured at high density and provided with an artificial

boundary form aligning migratory patterns. These patterns

show long-range nematic order (behaving like a liquid

crystal phase characterized by the arrangement of the long

axis of the molecules in parallel lines) that mimick the

length scale and organization of the migratory stream of

neuroblast cells in rodent brains, in which collective behav-

ior isdetermined by topological defects [24�]. Interestingly,
a very recent paper indicates that, independent of local

asymmetry in interfacial energy, these long-lived and long-

rangemechanicalpatternsare associatedwith jamming(the

cell layer being in a solid-like state) and contribute to the

formation and maintenance of boundaries [25�].
Current Opinion in Cell Biology 2018, 54:89–97
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Thus, tissues can employ different strategies to sort and

position cells to drive tissue self-organization. A common

denominator is that all these strategies locally maximize

differences in interfacial energies but, depending on the

sorting process, through different molecular mechanisms:

whereas acute and strong boundary formation is likely

driven mainly by repulsive intercellular interactions and/

or differential cell–matrix adhesion, processes that

involve large scale cell rearrangements seem to involve

dynamic changes in cell–cell adhesion,cortical tension,

and the mechanical state of the cell layer. More experi-

mental and theoretical work are, however, required to

validate this concept.

Cell division as a trigger of tension asymmetry and

tissue patterning

Although oriented cell division contributes to patterning

by axial positioning of daughter cells, division itself has

only lately been shown to directly generate local tension

and adhesion anisotropies necessary for changes in cell

shape and rearrangement. Using the gastrulating chick as

a model system Firmino et al. [26] recently reported that

cell division drives intercalation of its neighbors

(Figure 2b). These dividing cells have low cortical acto-

myosin contractility allowing the mitotic cell to remodel

their junctions and establish initial contact between the

two distant neighbors. Recent other reports indicate that

cell division can even locally direct the tension state of its

neighbors. In the Drosophila notum cytokinesis-gener-

ated forces dynamically reorganize junctions at the

mitotic-non-mitotic interface resulting in self-organized

actomyosin flows in neighboring cells [27��] (Figure 2b)

essential to coordinate cellular shape and dynamics. Sim-

ilarly, because the mammalian epidermis displays fea-

tures of a jammed, solid like state, mitosis also locally

reduces interphase tension with its neighbors, which is

necessary for junctional remodeling that then promotes

delamination of these neighboring cells [28�] (Figure 2b).

Vice versa, external forces may instruct orientation of

division and subsequent daughter cell shape, thus con-

tributing to the patterning of tissues along a certain axis,

as demonstrated in Drosophila and Zebrafish [29–31].

Interestingly, mouse blastocysts employ asymmetric divi-

sion to generate two daughters with low and high con-

tractility, which then triggers their sorting into inner and

outer positions (Figure 2b). The inner, more contractile

cell also turns on Yap, thus coupling cell position with fate

determination, allowing self-organization of the 16 cell

stage blastocysts [32,33�].

Cell extrusion in tissue formation and homeostasis

To establish, maintain and restore their functional integ-

rity, tissues, in particular epithelia, have to balance cell

proliferation with cell loss and/or differentiation. To do

so, tissues employ several mechanisms to either prevent

overcrowding or supply new cells upon, for example, cell
Current Opinion in Cell Biology 2018, 54:89–97 
death induction or injury. Increasing evidence indicate

that the dynamic changes in cell shape and tension

anisotropies are directly linked to on the one hand to

local cell density and on the other hand to cell fate

(Figure 2c), and thus play a key role in tissue homeostasis.

For example, crowding and/or apoptosis induces local

actomyosin contractions in the future extruded cell and

subsequently in its neighbors, which promote adhesion

rearrangements that are essential for its apical extrusion

[34,35]. Interestingly, altered actomyosin tensile activity

in apoptotic cells can also actively remodel tissues by

promoting tissue folding [36].

In the developing Drosophila Notum crowding induces

delamination of living cells that is necessary for pattern-

ing the tissue. Delamination correlates with increased cell

shape anisotropy, and modeling data suggests that this

anisotropy is in fact sufficient to induce delamination [37]

(Figure 2c). Crowding-induced cell shape anisotropies

also trigger differentiation and delamination in the epi-

dermis [28�]. On the molecular level, E-cadherin-medi-

ated mechanical signals instruct nearest neighbors to

remodel junctional actomyosin necessary to drive cell

extrusion or delamination [28�,38,39].

Cell density, fate, and extrusion may not only be con-

trolled by local cellular interactions, but also coordinated

through tissue-level mechanics. Using monolayers of

MDCK cells Saw et al. [40��] found that epithelial mono-

layers, unlike fibroblasts, behaved like active nematic

crystals, in which spontaneous stress-induced topological

defects occur. These topological defects induce local

isotropic compression resulting in apoptosis and extrusion

of the compressed cell (Figure 2c). Interestingly, knock-

down of a-catenin increased the number of defects as

well as extrusion rate, indicating that intercellular junc-

tions are essential to dissipate mechanical compression,

and, as a consequence, control the number of apoptotic,

extruding cells [40��].

Tissues may furthermore employ increased contractility at

the interface of differentially fated cell clones as a mechan-

ical force to shape and maintain tissues. Interestingly, a

combination of experimental and computer simulations

using a 3D vertex model indicated that the ultimate out-

come of this increased interface contractility depends on

the clone size of the newly (potentially mis-) specified fate.

Whereas a single cell with an aberrant cell fate will be

extruded, intermediate sized clones will form a cyst

through abscission, thus becoming potentially tumorigenic.

In contrast, large size clones are predicted to create a

smooth boundary, as also seen in development [41�].

Collectively, tissues thus utilize force and shape anisotro-

pies to control homeostatic cell density and to couple cell

fate with position to generate tissue patterns (Figure 2).

How mechanical changes integrate with known signal
www.sciencedirect.com
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pathwaysessential for tissue formationandfunction and, on

the other hand, how cell fate boundaries might remodel

contractile forces at these interfaces to regulate/reinforce

patterning, are key remaining questions.

Adhesion-dependent mechanics, signaling
and cell fate
Local integration of cadherin mechanotransduction and

signaling

Genetic studies have long implicated cell adhesion com-

plexes as modulators of tissue growth and cell fate, pre-

dominantly through regulating Erk, SHH, Wnt/b-catenin
and/or Yap signaling (e.g. [42–45]). However, whether

these changes in signaling and cell fate are directly linked

to cadherin-dependent mechanotransduction has only

recently been addressed. Yap is a mechanosensitive key

transcription factor important to coordinate growth and

organ size [46,47]. In the epidermis aE-catenin interacts

with and inhibits the nuclear activity of Yap in a non-cell

autonomous manner that requires adherens junctions [48].

Further support for cadherin-dependent force transduction

came from studies in MDCK cells in which external force

application promotes nuclear entry of Yap and b-catenin,
resulting in cell cycle re-entry [49]. E-cadherin force trans-

mission also activates AMPK, a key metabolic enzyme,

which was essential to generate energy for force resistance

and transmission [50�]. Activation of AMPK may poten-

tially alter the metabolic state of cells, with implications for

cell fate [51].

Two recent papers provide direct evidence that cadherin

dependent cell mechanics control cell fate in mammalian

tissues. Neurogenesis requires the abscission of an apical

cell-process from the ventricular surface. This abscission

is driven by apical actomyosin constrictions induced by a

reduction in N-cadherin. Detachment of this apical pro-

cess then results in loss of cilia and SHH signaling that

promote cell cycle exit and neuronal differentiation [52].

In the epidermis, E-cadherin dependent control of corti-

cal tension is necessary for basal cell delamination and

subsequent differentiation, thus allowing this tissue to

couple cell position to cell fate [28�].

Recent in vivo evidence further indicates an intimate bi-

directional cross-talk between cadherin adhesion and

signaling to regulate cell fate. In early Zebrafish embryos

only prolonged cadherin-dependent contacts initiate

nodal signaling, which then through a positive feedback

loop further increased cadherin contact duration. This

loop resulted in a deterministic bi-stability of the system

in which old contact times are ‘remembered’ to control

mesoderm versus endoderm cell fate [53]. Thus, asym-

metries in adhesive contact duration may determine cell

fate, with the caveat that it is not clear whether differ-

ences in contact duration and signaling strength requires

mechanical changes.
www.sciencedirect.com 
More direct evidence for direct feedback mechanisms

between force perception and signaling comes from recent

studies in vascular endothelial cells and keratinocytes.

Shear stress triggers a non-canonical, transcription-inde-

pendent Notch signal in endothelial cells. Subsequently,

the Notch transmembrane domain recruits a complex of

VE-cadherin, the transmembrane phosphatase LAR and

the Rac nucleotide exchange factor Trio that activates Rac

to promote adherens junctions and vascular endothelial

barrier function [54��]. In the epidermis different mechani-

cal states of adherens junctions secure the restricted posi-

tioning of barrier-forming tight junctions only to the upper-

most viable layer through a feedback mechanism that

integrates actomyosin activity and EGFR signaling. Adhe-

rens junctions are in a low-tension state in layers that do not

form a barrier, resulting in increased EGFR activity, which

in turn lowers cortical tension as well as increases internali-

zation of a key tight junctional protein occludin. Through as

yet unknown mechanisms, adherens junctions in the upper-

most viable layer of the epidermis switch to a tension high

state that inhibit EGFR activity, which subsequently fur-

ther reinforces cortical tension and stabilizes tight junctions

in the appropriate position [55]. As Notch and EGFR have

key roles in differentiation and proliferation, these studies

provide a potential mechanism how signaling receptors may

integrate the differentiation status of cells with mechanical

adhesive and cytoskeletal cues to control their position.

Local matrix remodelling and mechanics

Several recent studies indicate that the heterogeneity in

ECM composition and stiffness provide important posi-

tional cues for cell fate and patterning. The basement

membrane composition within the hair follicle stem cell

niche is distinct from the surrounding epidermis and

critical for regulating stem cell activation [56]. These

stem cells further secrete the basement membrane pro-

tein nephronectin, which acts as a specific niche factor for

smooth muscle cells, to guide the anchoring of the arrec-

tor pili muscle to the niche [57]. Upon injury, this specific

ECM patterning may be lost as is, for example, observed

in the injured mouse intestinal epithelium. Injury-driven

production of various ECM proteins leads to intestinal

stem cell reprogramming to facilitate repair. This repro-

gramming is driven by the increased stiffness of the

provisional injury-associated ECM that activates a

mechanosensitive signaling pathway involving focal

adhesion kinase (FAK) and the mechanosensitive tran-

scription factor YAP [58]. This study highlights the

importance of not only the molecular but also the

mechanical properties of the local ECM in cell fate

determination. The actomyosin contractile stresses

exerted on cell adhesions are essential for mechanosen-

sing, but the molecular mechanisms of this are still being

worked out. One hypothesis is that responses to changes

in rigidity are triggered by local contractile forces that

exceed a certain threshold [59].
Current Opinion in Cell Biology 2018, 54:89–97
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As for cadherins, the YAP pathway has a prominent role in

matrix-rigidity driven signaling [60]. Other key develop-

mental and stem cell pathways, such as Wnt/b catenin and

Oct 3/4, also respond to mechanical properties of the

matrix to instruct cell fate decisions [61�,62]. In contrast,

for neuronal stem cells matrix remodelling but not stiff-

ness seems a key determinant for stemness [63]. Inter-

estingly, some of the effects of matrix stiffness and

remodelling may be relayed indirectly by regulating

the stability of cell–cell contacts and thereby the avail-

ability of b-catenin [61�,63]. Moreover, additional

engagement of cadherin adhesion reduces the contractile

state of mesenchymal stem cells resulting in less nuclear

Yap signaling. This reduction allows these stem cells to

perceive matrix stiffness differently, with direct effects

on lineage commitment [64]. These studies thus high-

light the intimate cross-talk and interdependency of the

two adhesive machineries. However, how these local

contractile actomyosin rigidity sensors are mechanisti-

cally coupled to the biochemical signaling machinery

remains one of the key open questions in the field.

Local modulation of substrate viscoelasticity has recently

emerged as a further potential key determinant of cell

fate. Using alginate, a polymer non-degradable to mam-

malian cells, in combination with PEG spacers to engi-

neer gels that underwent stress relaxation, it was observed

that fast stress relaxation that increased cell spreading and

proliferation also promoted osteogenic differentiation of
Figure 3
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mesenchymal stem cells [65]. Thus, mechanical forces

that acutely alter cell shape may impact cell fate. Indeed,

modulation of cell adhesion and confinement is sufficient

to drive a phenotypic fate switch from mesenchymal to

ameboid type of migration [66��]. By experimentally

controlling integrin ligand density and cell confinement,

the authors observed that a combination of low adhesion,

which in general reduced migration speed, and cell con-

finement, which increased cell contractility, triggered a

switch to an ameboid migration mode in a wide range of

different cell types [66��]. Analogously, confinement in

low adhesion environments was shown to regulate the

matrix-producing phenotype of chondrocytes [67]. These

results indicate that dynamic changes in the microenvi-

ronment that control three fundamental parameters —

adhesion, confinement, and contractility — can trigger

substantial phenotypic and functional alterations in cell

behavior.

The molecular mechanisms by which the three mod-

ules — adhesion, confinement, and contractility —

locally co-operate and integrate with signaling to control

cell fate is still largely unclear. An intriguing recent report

described force-driven nuclear flattening to induce open-

ing of nuclear pores, leading to increased nuclear import

YAP [68��]. Owing to the direct effect of force on the

nuclear pore, this mechanism might apply to nuclear

import more generally, and thereby provide a very rapid

and efficient mechanism for cellular adaptation to
 changes
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different mechanical environments. Alternatively, direct

effects of mechanical forces on the nuclear lamina and

thereby chromatin, have been shown to alter gene expres-

sion through epigenetic mechanisms [69–71] (Figure 3).

Concluding remarks
Taken together, a model is beginning to emerge from

these recent studies: Adhesions integrate mechanical

signals from local differences in matrix ligand density,

the topographical features of the environment, cellular

crowding state, as well as in the contractile state of the

cytoskeleton to regulate cell shape and interactions nec-

essary for tissue patterning and remodeling. At the same

time these junction-mediated cell shape changes also

control nuclear shape and signaling to drive changes in

gene activity that affect cell fate (Figure 3). Together,

these biomechanical signaling networks thus integrate

cell fate and function with the position of cells within the

tissue. Future work is required to understand how these

very broad mechanisms are converted into specific gene

expression changes to control precise and stable cellular

fates and how these mechanical pathways interface with

classical biochemical signals to mediate tissue self-orga-

nization and patterning.
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