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            ‘If you don’t know where you are going any road can take you there.’ 
 

Lewis Carroll, Alice in Wonderland
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Cohort studies are an important and powerful tool of epidemiologic research. When based 
on a representative cohort, observational cohort studies provide results of a high external 
validity given that the internal validity is not impaired by bias. Bias can be introduced at 
any stage of research and there are numerous sources of bias. Pharmacoepidemiological 
observational studies are often threaten by selection bias, time-related biases and bias by 
confounding. Bias, however, can be avoided or mitigated by using appropriate research 
methods. 

Diabetes and cancer represent two prevalent, complex, diverse and potentially fatal 
chronic diseases. Among individuals with diabetes, cancer occurs more often than could be 
expected by chance only. Cancer and diabetes share common risk factors, such as obesity 
and smoking. Diabetes is characterized by hyperinsulinemia, hyperglycemia and 
inflammation, which may favour the development and / or progression of cancer. In 
addition, antidiabetic medications may contribute to the association between diabetes and 
cancer. The empirical part of this thesis comprised two pharmacoepidemiological 
observational cohort studies (Studies I and II) which were conducted retrospectively to 
address the relationship between the use of antidiabetic medications and cancer risk. 

Due to their longitudinal nature, cohort studies involve at least one time scale and, 
therefore, allows for studying time-dependent dynamics of a phenomenon. There is often 
more than one relevant time scale, for instance, the risk of long-term complications of 
diabetes may vary with age, duration of diabetes and calendar time. However, the traditional 
statistical methods of survival analysis, such as Cox proportional hazards model, rely on a 
single time scale. In the methodological part of this thesis (Studies III and IV), I addressed 
the issue of multiple time scales in cohort studies. 

In Study I, I studied the risk of cancer in 23 394 individuals from the National FINRISK 
cohorts that were linked to the register data on prescriptions (Prescription Register), cancer 
(Finnish Cancer registry) and death (Statistics Finland). Prevalent users of antidiabetic 
medication and those with history of cancer at baseline were excluded. I assessed the 
variation of the cancer risk along time since initiation of anti-diabetic medication, when 
controlling for several potential confounders, including smoking and body mass index. 
After a median follow-up period of 9 years, 1081 individuals were diagnosed with cancer, 
of which 53 in 1301 users of antidiabetic medication. After adjustment for potential 
confounders, there was no association between the cancer risk and use of antidiabetic 
medication. However, the small number of cancer cases among users precluded firm 
conclusions. 

In Study II on the CARING (CAncer Risk and INsulin Analogues) five-country 
(Denmark, Finland, Norway, Sweden, UK) cohort of 327 112 new insulin users identified 
from the national prescription registers, the risk of ten site-specific cancers and any cancer 
was scrutinized by contrasting the cumulative exposures to human insulin and insulin 
analogues glargine and detemir. A particular emphasis of this work was on mitigating biases 
involved in previous observational studies. During a median follow-up of 3.7 years, 21 390 
individuals were diagnosed with cancer. We found no evidence of consistent differences in 
the studied risks as assessed for insulin glargine or insulin detemir use relative to that of 
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human insulin. The results of this study are of particular clinical relevance because they 
imply that none of the studied insulin treatments should be preferred over others as being 
safer with respect to cancer risk.   

In Study III, I addressed the issue of multiple time scales by introducing and evaluating 
a nonparametric Bayesian model for estimation of intensity on two time scales jointly. 
Evaluation of the method using simulated data demonstrated its superiority over two other 
methods. A better performance of the model arises from the flexibility, which is attributable 
to both Bayesian and nonparametric approaches. In addition, even with the limited data, the 
model yields accurate results due to the built-in smoothing and borrowing of strength in two 
dimensions.  

 In Study IV, I used the Bayesian model to explore the time-dependent dynamics of end-
stage-renal-disease and death without end-stage-renal disease in 11 810 individuals with 
type 1 diabetes from the nationwide FinDM study, which is aimed at monitoring the 
incidence and prevalence of diabetes and its complications in Finland. I modelled the time-
dependent dynamics of these outcomes on two and three time scales jointly, including age, 
diabetes duration and calendar time. I demonstrated that the two-dimensional Bayesian 
model can be easily extended to the model allowing for the multiplicativity of time-scale-
specific hazards and to the model incorporating more than two time scales. These models 
can be used to address both empirical and methodological questions. To facilitate the 
interpretation of results, I used informative graphical outputs, such as surface plots and 
heatmaps, which illustrate the overall time-dependent dynamics at one glance but also allow 
for scanning patterns.  
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Kohorttitutkimukset ovat epidemiologisen tutkimuksen tärkeä ja tehokas väline. 
Edustavaan otokseen perustuvassa havainnoivassa kohorttitutkimuksessa saatujen tulosten 
ulkoinen luotettavuus on korkea edellyttäen, ettei sisäinen luotettavuus ole harhan 
heikentämä. Harha voi syntyä missä tahansa tutkimuksen vaiheessa ja on olemassa lukuisia 
harhan lähteitä. Lääke-epidemiologiassa useat harhat, kuten valintaharha, aikaan liittyvät 
harhat ja sekoittuneisuus, uhkaavat havaintotutkimuksen sisäistä luotettavuutta. Harha 
voidaan kuitenkin estää tai vähentää oikeilla tutkimusmenetelmillä. 

Diabetes ja syöpä ovat kaksi yleistä, kompleksista, monimuotoista ja mahdollisesti 
hengenvaarallista kroonista sairautta. Diabetesta sairastavilla henkilöillä syöpä esiintyy 
odotettua useammin. Syövällä ja diabeteksella on yhteisiä riskitekijöitä, kuten liikalihavuus 
ja tupakointi. Diabetekselle ovat ominaisia hyperinsulinemia, hyperglykemia ja tulehdus, 
jotka voivat edistää syövän kehittymistä ja / tai etenemistä. Lisäksi diabeteslääkkeiden 
käyttö saattaa selittää diabeteksen ja syövän välistä yhteyttä. Tämän väitöskirjan empiirinen 
osa koostui kahdesta havainnoivasta lääke-epidemiologisesta kohorttitutkimuksesta (Työt I 
ja II), jotka tehtiin retrospektiivisesti tarkastellakseen diabeteslääkkeiden käytön ja 
syöpäriskin välistä suhdetta.  

Kohorttitutkimukset perustuvat seurantaan ja näin niihin liittyy vähintään yksi 
aikaskaala, jolla voidaan tutkia ilmiön ajasta riippuvaa dynamiikkaa. Usein ilmiöön liittyy 
useampi kuin yksi relevantti aikaskaala, esimerkiksi diabeteksen 
pitkäaikaiskomplikaatioiden riski voi vaihdella iän, sairauden keston ja kalenteriajan 
mukaan. Perinteiset elinaika-analyysin menetelmät, kuten Coxin suhteellisten hasardien 
malli, perustuvat yhteen skaalaan. Väitöskirjan menetelmällisessä osassa (Työt III ja IV) 
käsittelin kohorttitutkimukselle ominaista aikaan liittyvää moniulotteisuutta. 

Työssä I tarkastelin syöpäriskiä 23 394 yksilön kohortissa, joka perustui kansallisiin 
FINRISK-kohortteihin ja oli yhdistetty syöpä- (Suomen syöpärekisteri) ja kuolematietoihin 
(Tilastokeskuksen kuolemansyyrekisteri) ja diabeteslääkitystä koskeviin tietoihin (KELA:n 
lääkekorvausrekisteri). Poissulkukriteereinä olivat aiempi diabeteslääkkeiden käyttö ja 
aiemmin sairastettu syöpä. Tarkastelin syöpäriskiä suhteessa aikaan diabeteksen 
lääkehoidon aloittamisesta samalla ottaen huomioon sekoittavat tekijät, kuten painoindeksi 
ja tupakointi. Seuranta-ajan mediaani oli 9 vuotta ja tutkimuspopulaatiossa todettiin 1081 
syöpätapausta, joista 53 diagnosoitiin niiden 1301 joukossa, jotka aloittivat 
diabeteslääkkeiden käytön.  Kun otettiin huomioon syövän ja diabeteksen yhteiset 
riskitekijät, mitään yhteyttä ei löytynyt diabeteslääkkeiden ja syöpäriskin välillä. Tulosten 
perusteella ei kuitenkaan voida tehdä varmoja johtopäätöksiä johtuen syöpätapausten 
vähäisestä määrästä diabeteslääkkeiden käyttäjien joukossa.   

Työssä II viiden maan (Tanska, Suomi, Norja, Ruotsi, Iso-Britannia) CARING (CAncer 
Risk and INsulin analoGues) rekisteripohjaisessa tutkimuksessa tarkastelin insuliinihoitoa 
aloittaneen 327 112 yksilön kohortissa kokonaissyöpäriskiä ja kymmenen eri syöpätyypin 
riskiä suhteessa ajassa kertyvään insuliinialtistukseen ja vertailemalla insuliinianalogi 
glargiinia ja detemiria ihmisinsuliiniin. Tämän osatyön pääpaino oli aiempien 
havainnoivien tutkimusten harhojen välttämisessä ja pienentämisessä. Seuranta-ajan 
mediaani oli 3,7 vuotta, jonka aikana syöpä diagnosoitiin 21 390 yksilössä. Syöpäriskissä 



 
 
 
 

11 
 
 
 

ei havaittu johdonmukaista eroa eri insuliinityyppien välillä. Tutkimuksen tuloksilla on 
tärkeää käytännön merkitystä, koska kaikki tutkitut insuliinityypit ovat yhtä turvallisia 
syöpäriskiin suhteen. 

Työssä III esitin parametrittoman Bayes-päättelyyn perustuvan mallin 
intensiteettifunktion estimoimiselle kahdella aikaskaalalla. Arvioin menetelmän 
toimivuutta soveltamalla malli simuloituun aineistoon. Vertailujen perusteella Bayes-malli 
osoittautui kahta muuta menetelmää tarkemmaksi. Bayes-mallin parempi toimivuus 
perustuu sen joustavuuteen, joka on sekä bayesiläisen että parametrittoman lähestymistavan 
ominaisuuksia. Lisäksi, koska malli perustuu silotukseen ja voiman lainaamiseen kahdessa 
aikaulottuvuudessa, malli antaa tarkat tulokset myös aineiston ollessa pieni välttäen samalla 
vääriä, satunnaisuudesta johtuvia positiivisia tuloksia. 

Työssä IV tarkastelin ajasta riippuvaa dynamiikkaa loppuvaiheen munuaistaudin 
ilmaantuvuudessa ja kuolleisuudessa soveltamalla Bayes-malli 11 810 tyypin 1 diabetesta 
sairastavan henkilön aineistoon. Aineisto pohjautui maanlaajuiseen FinDM tutkimukseen, 
jonka tavoitteena on diabeteksen ja sen lisäsairauksien esiintyvyyden ja ilmaantuvuuden 
rekisteripohjainen tutkiminen. Mallinsin kummankin vastemuuttujan ajasta riippuva 
dynamiikka kahden ja kolmen aikaskaalaan suhteen (ikä, diabeteksen keston, kalenteriaika). 
Näytin, että kaksiulotteista Bayes-mallia voi laajentaa multiplikatiiviseksi malliksi, jolla on 
mahdollista mallintaa aikaskaalakohtaiset hasardit, että malliksi, jolla voidaan mallintaa 
hasardia useammalla kuin kahdella aikaskaalalla. Näin ollen, soveltamalla eri malleja on 
mahdollista vastata joustavasti sekä empiirisiin että metodologisiin kysymyksiin. 
Havainnollistin tulokset graafisesti riskipintoina ja lämpökarttoina, jotka sekä antavat 
kokonaisvaltaisen kuvan ajasta riippuvasta hasardin dynamiikasta että mahdollistavat myös 
riskiprofiilin tarkastelun. 
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In the developed countries, chronic diseases, such as cardiovascular diseases, cancers, 
diabetes and chronic respiratory diseases, are considered important public health issues, as 
these are the leading cause of illness, disability and premature death (OECD/EU 2016). 
Chronic diseases share common risk factors, such as smoking, obesity, physical inactivity, 
and, therefore, are likely to coexist (Kivimäki et al., 2017; Tu et al., 2017; Klil-Drori et al., 
2017).  

Chronic diseases are often long-lasting, have persistent health effects, require 
continuous treatment and monitoring and induce short- and long-term complications. Use 
of the appropriate, effective and safe medications plays a central role in avoiding and 
postponing complications associated with chronic diseases. However, exposure to 
medications may also be associated with adverse effects, including cancer. 

Among individuals with diabetes, cancer occurs more often than could be expected by 
chance only (Carstensen et al., 2012; Carstensen et al., 2016). Diabetes is also known for 
its long-term complications, which include myocardial infarction, stroke and chronic kidney 
disease (Fowler, 2008; Arffman et al., 2014). In some persons with diabetes, chronic kidney 
disease progress to the end-stage renal disease (ESRD), a life-threatening condition with 
poor prognosis, requiring treatment by dialysis and kidney transplantation. Given a 
constantly increasing incidence and prevalence of diabetes (World Health Organization, 
2016) and the fact that diabetes burdens both an individual and populations, treatment of 
diabetes using effective and safe medications and monitoring and preventing its 
complications are of public health importance. 

Cohort studies – studies tracking a group of individuals over time – have been 
traditionally used for monitoring and studying chronic diseases and their complications, 
assessing impact of known risk factors and interventions as well as identifying novel risk 
factors (Brennan et al., 2017). Observational pharmacoepidemiological studies have been 
used to derive evidence about the drug safety issues after drug marketing (Garbe and Suissa, 
2014).  

When conducted rigorously, observational cohort studies provide a powerful 
epidemiological tool and add valuable real-world evidence (Concato, 2000). One of the 
advantages of observational cohort studies is their external validity, particularly when 
conducted using population-based or nation-wide cohorts (Szklo, 1998). In contrast, internal 
validity of observational cohort studies has largely been viewed as a common concern 
(Grimes and Schulz, 2002). Indeed, observational cohort studies are prone to various types 
of bias, which can occur at any stage of research (Grimes and Schulz, 2002; Delgado-
Rodriguez and Llorca, 2004). Observational pharmacoepidemiolgical studies are subject to 
the specific biases, including prevalent user bias, indication bias and time-related biases 
(Suissa and Azoulay, 2012). 

I will address the limitations and biases involved in previous observational 
pharmacoepidemiological studies on the association between the use of anti-diabetic 
medications, particularly long-acting insulins, and cancer risk (Renehan, 2012; Walker et 
al., 2013; Wu et al., 2016). I will highlight the importance of using the appropriate 
methodological and analytical approaches, including the active comparator new-user design 
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(Ray, 2003, Yoshida et al., 2015) and time-varying exposure definition (Zhou et al., 2005; 
Stricker and Stijnen, 2010).  

A long follow-up time is a prerequisite for studying the effect of exposure on the 
outcome with a long latency, such as cancer, or lifetime complications of chronic disease, 
such as diabetes. Many phenomena exhibit complex time-dependent dynamics, evaluation 
of which may provide additional insights to the underlying mechanisms. 

Data arising in cohort studies are called time-to-event data and involve at least one time 
scale that is time-on-study. The statistical methods of survival analysis are used to describe 
and analyse time-to-event data (Kalbfleisch and Prentice, 2002). Time-to-event data from 
long-term cohort studies often include several relevant time scales, such as age, calendar 
time, time since diagnosis or initiation of treatment. However, the traditional survival 
analysis methods for analysis of time-to-event data, such as Cox proportional hazards 
regression model (Cox 1972), are not suitable for modelling time-to-event data on several 
time scales jointly. 

The Bayesian approach to statistical inference offers a coherent and versatile framework, 
which has been increasingly used in epidemiological and medical research (Dunson, 2001; 
Ashby, 2006). I will present the general aspects of using time scales in the analysis of time-
to-event data and I will introduce a nonparametric Bayesian model, which allows modelling 
time-to-event data on two and more time scales jointly. I will also demonstrate the 
applicability of the model by exploring the time-dependent dynamics of end-stage renal 
disease and death without it in individuals with type diabetes. By extending the model, I 
will address both empirical and methodological questions, which may arise in cohort studies 
with multiple relevant time scales. 



 
 
 
 

15 
 
 
 

ADM anti-diabetic medication 
AG Arjas and Gasbarra (prior) 
APC age-period-cohort 
ATC anatomical therapeutic chemical 
BMI body mass index 
CARING CAncer Risk and INsulin analoGues 
CI confidence interval 
CKD chronic kidney disease 
CPRD Clinical Practice Research Datalink 
DDD  defined daily dose 
DIC deviance information criterion 
DM diabetes mellitus 
ENCePP European Network of Centres for Pharmacoepidemiology and 

Pharmacovigilance 
ESRD  end-stage renal disease 
HR hazard ratio 
ICD International Classification of Diseases 
IR incidence rate 
LOO leave-one out (cross-validation) 
MLE maximum likelihood estimation 
NIADM non-insulin antidiabetic medication 
NHPP non-homogeneous Poisson process 
MCMC Markov chain Monte Carlo 
PP point process 
RCT randomized control trial 
RR rate ratio 
SII  Social Insurance Institution 
T1D type 1 diabetes 
T2D type 2 diabetes 
WAIC Watanabe-Akaike (or widely applicable) information criterion 
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Cohort studies are used to track a group of individuals over time to monitor for changes in 
their physical, physiological or other characteristic(s) of interest or change in their (health) 
state as specified by occurrence of the event of interest. In this work, I will focus on the 
latter case, the defining characteristic which is that the outcome of interest is not present in 
the individuals at the start of follow-up (Grimes and Schulz, 2002).  

In cohort studies, individuals are often selected of those with similar backgrounds or 
those who experienced a particular event within a certain timeframe. The common 
determinant can be such as having been born during the same decade (birth cohort), 
practicing the same profession (cohort of nurses), having been exposed to the same risk 
factor (cohort of atomic-bomb survivors or nickel refinery workers) or diagnosed with the 
same disease (cohort of diabetes patients).  

Perhaps the most appreciated feature of cohort studies is preserving the chronological 
order of observations as this allows evaluation of the relationship between exposure to a 
putative causal factor and the outcome of interest. Therefore, cohort studies provide one of 
the major investigative approaches of etiological epidemiology (Goldacre, 2001). For 
instance, cohort studies have played an important role in cancer epidemiology, as these 
allowed to establish link between the risk of cancer and many occupational, lifestyle and 
medicinal factors (Breslow and Day, 1987).  

Measures of frequency

Assessment of frequencies of outcome of interest, often disease or death, is a major aim of 
epidemiological research. In cohort studies, the frequency at which the outcome of interest 
occurs can be quantified by two fundamental measures, incidence rate (IR, force of 
morbidity, incidence density) and risk (cumulative incidence, average risk) of a given 
outcome (Benichou and Palta, 2014). The cumulative incidence is calculated as the 
proportion of individuals of the initially disease-free population, who developed disease or 
other condition of interest within a stated period of time. The cumulative incidence is non-
decreasing and varies between zero and one, and being an overall measure, provides no 
detailed information on changes that potentially occurred during the studied timeframe. In 
contrast, the incidence rate always contains a dimension of time as it measures the number 
of new cases per unit of person-time, which is a combination of the number of people and 
the amount of time they were followed. The incidence based on person-time expresses the 
instantaneous rate of change or the pace at which individuals develop the diseases or other 
condition in the population.  
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Cohort study designs 

Cohort studies can be divided according to the chronology in collection of follow-up data 
into prospective and retrospective studies (Doll, 2001a, 2001b). In a prospective cohort 
study, baseline information is collected from all individuals at the time the study starts, and 
individuals are then followed up from that point over a period of time to identify new events 
of interest. The Framingham Heart Study, which began in 1948 and is still ongoing, 
exemplifies the application of sound, prospective epidemiological design (Mahmood et al. 
2014).  Another well-known prospective cohort study is the British Doctors Study that has 
examined the effect of smoking on mortality over a period of decades (Doll et al. 2004). 

Retrospective cohort studies, which are also known as historical cohort studies, are 
conceived after the baseline information was measured in the past, and some individuals 
have already developed the outcomes of interest. Retrospective cohort studies can be 
completed relatively fast as compared with prospective cohort studies. Among 
disadvantages of retrospective cohort studies, is the use of data, collection and quality 
of which is not under the control of the researcher (Sørensen et al., 1996).  

Examples of the early retrospective cohort studies in medical research include studies 
on tuberculosis spread and mortality (Frost, 1933; Morabia and Guthold, 2007), and studies 
on cancer risk with respect to occupational exposures, such as those involved in chemical 
and nickel refining industry in the first half of the twentieth century (Breslow and Day, 
1987; Doll, 2001b).  

 
Cohort studies are used in both experimental and observational research. Randomized 
clinical trials, also referred as randomized controlled trials (RCT), are experimental by their 
nature. RCTs are often based on cohort of individuals randomly assigned to the 
experimental and control groups, which are then followed up prospectively to see if there 
are any differences between these groups in outcome. Randomization, the corner stone of 
RCTs, is aimed at the random allocation of exposure (treatment, intervention) and balancing 
the groups with respect to the important prognostic factors (Concato, 2000). The most 
fundamental difference between experimental and observational research concerns 
exposure. Whereas in RCTs exposure is randomly assigned, in observational studies it 
should be ascertained. In observational research, there is no control on the allocation of 
exposure and all information is simply recorded (prospective design) or derived from 
already available records (retrospective design).  RCTs are primarily used for demonstrating 
efficacy of a treatment or intervention, whereas observational cohort studies are usually 
aimed at assessing association between exposure and outcome over time (Booth and 
Tannock, 2014). 
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Both RCTs and observational studies have strengths and limitations (Booth and 
Tannock, 2014). Irrespectively of design, each study needs to be evaluated in terms of its 
internal and external validity. The former refers to the ability of study to measure what it set 
out to, the former refers to the generalizability of results to the target population (Grimes 
and Schulz, 2002).  

On the one hand, RCTs are advantageous over observational studies in terms of internal 
validity (Booth and Tannock, 2014) because RCTs are most likely to be free of bias as 
compared to observational studies, which are prone to bias due to their non-experimental 
nature. On the other hand, the external validity of RCTs is considered to be low because 
RCTs are usually conducted using highly selected populations (Booth and Tannock, 2014). 
In contrast, properly conducted observational studies, especially when conducted using 
population-based cohorts, are considered to be of high external validity (Szklo, 1998, Booth 
and Tannock, 2014).  

There are also other differences between RCTs and observational studies. Observational 
studies avoid problems of feasibility and ethical aspects, which are involved in RCTs. 
Evaluation of rare outcome, such as cancer of a specific type, requires a large study 
population and a long follow-up, which are not affordable with RCTs. In addition, 
observational design allows to assess multiple exposures and outcomes using the same 
cohort.  

Bias

Bias refers to the presence of systematic error or deviation from the truth, which can yield 
to the distorted results, undermining therefore internal validity of study (Grimes and Schulz, 
2002). Observational cohort studies are subject to various forms of bias, which can occur at 
any stage of research (Grimes and Schulz, 2002; Sedgwick, 2014a, 2014b; Delgado-
Rodriguez and Llorca, 2004). The biases can be classified into selection bias, information 
bias and bias by confounding (Grimes and Schulz, 2002; Delgado-Rodriguez and Llorca, 
2004). In addition, immortal time bias, time-lag and time-window biases, although being of 
different type, are also referred collectively as time-related biases (Suissa and Azoulay, 
2012). Time-related biases are particularly problematic in the observational studies using 
the data from secondary sources, such as registries and databases. 

Selection bias refers to distortions of the relation between exposure and outcome of 
interest due to the procedures or sources used to select study population or / and due to 
factors, which influence participation (Rothman and Greenland, 2014). As a result, the study 
population is not representative of the target population. Selection bias can be produced by 
an inappropriate definition of the eligible population (ascertainment bias), lack of accuracy 
of sampling frame or uneven diagnostic procedures in the target population (Delgado-
Rodriguez and Llorca, 2004). Among others, selection bias includes healthcare access bias 
and prevalent user bias. 

Information bias can occur due to an inaccurate measurement or, as applied to discrete 
variables, misclassification of exposure, outcome, or confounding variables, when the 
availability, measurement, interpretation or definition of the needed information is distorted 
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(Grimes and Schulz, 2002; Gerhard, 2008; Rothman and Greenland, 2014). Two different 
types of misclassification are distinguished. Differential misclassification arises when the 
proportion of individuals misclassified on outcome depends on exposure or vice versa, 
whereas non-differential misclassification represents an even noise. The effect of 
information bias depends on its type.  Differential misclassification can distort the results in 
either direction, towards or away null, whereas for non-differential misclassification the 
direction is usually towards null, although the latter does not apply universally but 
exceptions occur (Rothman and Greenland, 2014).  

Bias by confounding occurs when the relation between an exposure and an outcome is 
distorted by a third factor, which is associated with both the exposure and the outcome 
without being an intermediate link in the causal pathway between them (Grimes and Schulz, 
2002). Confounding is a problem of non-comparability of groups being studied and leads to 
mixing or blurring of effects (Pearce and Greenland, 2014).  

I will focus on the types of bias, which were addressed in the empirical part of this work. 
In the following paragraphs, I will give definitions of these biases and outline the 
methodological and analytical approaches to disentangle and mitigate them. It should be, 
however, noted that the classification and definitions of these biases are not always 
consistent across the research areas and study designs. I will provide the definitions relevant 
to the field of pharmacoepidemiology and observational cohort design. The majority of the 
biases I will describe are specific to the observational pharmacoepidemiological research 
but some of them, such as healthcare access bias, detection bias and residual confounding, 
are common in the observational research in general. The European Network of Centres for 
Pharmacoepidemiology and Pharmacovigilance (ENCePP) provides a methodological 
guidance in pharmacoepidemiology, which includes also descriptions of many but not all 
biases encountered in pharmacoepidemiological research (ENCePP, 2018). 

Healthcare access bias is a selection bias that occurs when a study population is based on 
healthcare data (hospital discharge registry, primary care records etc.), in which compared 
groups are represented at differing proportions as compared to the target population 
(Delgado-Rodriguez and Llorca, 2004). For instance, as compared to non-users, users of a 
drug can be overrepresented when the study population is selected based on primary care 
records. According Delgado-Rodriguez and Llorca (2004) healthcare access bias arises 
when compared groups are drawn from the healthcare organizations of different level 
(primary, secondary, tertiary care). In addition, some subgroups can be under- or 
overrepresented because of socioeconomic, cultural, geographical and other factors when 
these factors are related to the healthcare access. Healthcare access bias can be avoided by 
selecting the study population based on the nationwide registries.  
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Inclusion of prevalent users can lead to prevalent user bias, often classified as a selection 
bias (Danaei et al., 2012; ENCePP, 2018), leads to a number of forms of bias, including 
depletion of those susceptible to the outcome of interest, immortal time bias, bias due to 
uneven presentation of early and late drug effects (Gerhard, 2008; Yoshida et al., 2015; 
ENCePP, 2018). Moreover, the baseline characteristics of prevalent users can be affected 
by the treatment, distorting the association between the outcome of interest and 
confounders. Thus, mixing prevalent users and new-users distorts the association between 
exposure and outcome and may obscure excess harm because of weighting toward 
continuation of use. Use of new-user design allows to avoid most of the biases involved due 
to inclusion of prevalent users (Ray, 2003; Yoshida et al., 2015). Use of new-user design 
reduces but does not prevent immortal time bias, which can be eluded only by classifying 
the follow-up correctly.  

Detection bias is a form of information bias, also known as surveillance bias, which arises 
when individuals in one group have a different probability of having the outcome of interest 
detected (Haut and Pronovost, 2011; ENCePP, 2018). For instance, comparison of users and 
non-users may be hampered by detection bias. This bias can be mitigated by using active-
comparator design (Yoshida et al., 2015).   

Protopathic bias, also known as reverse causality, refers to a reversal of cause and effect and 
occurs when the symptoms treated by a drug are a manifestation of the yet undiagnosed 
disease (Gerhard, 2008). This type of bias is likely to arise in studies on associations 
between the drug use and cancer risk (ENCePP, 2018). By studying the variation in the risk 
of outcome by duration of drug use, the risk patterns attributable to the protopathic bias can 
be detected (Korhonen et al., 2009; Carstensen et al., 2012). In the presence of risk patterns, 
which cannot be attributed to the drug itself, a specific initial period of use should be either 
excluded by using lag-time (Tamim et al., 2007) or separated analytically from the rest 
follow-up either through stratification or by using time-dependent exposure definition.  

Immortal time bias, sometimes referred to as survival bias or survival treatment bias, occurs 
due to exclusion or misclassification of the follow-up time between cohort entry and date 
of first exposure to a drug when the former precedes the latter (Delgado-Rodriguez and 
Llorca, 2004; Suissa, 2007; Suissa, 2008; ENCePP, 2018). The period between entering the 
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study and starting medication is called immortal time. During this period, to be classified as 
exposed, the individual has to remain alive (and event free if the event of interest is other 
than death) until start of exposure (Suissa, 2007; Suissa, 2008). For example, immortal time 
bias arises when information on the future exposure is used to classify individuals to users 
and non-users already at cohort entry. Observational cohort studies with time-based, event-
based or exposure-based design comparing users and non-users of a drug are particularly 
prone to immortal time bias, which hampers the results in favour of the treatment (Suissa, 
2008).  

Although the immortal time bias was first described in the early 1970s and has been 
repeatedly highlighted in the scientific publications since then it continues to be overlooked 
(Glesby and Hoover, 1996; Suissa, 2008; Lévesque et al., 2010; Lange and Kielding, 2014). 
Potential for immortal time bias can be reduced by using new-user design (Yoshida et al., 
2015). Irrespectively of design, all immortal time should be accounted for (Suissa, 2008). 
Zhou et al. (2005) studied three different approaches to deal with immortal time bias and 
found that matching on time-to-treatment and use of a time-dependent exposure definition 
to be appropriate methods to control for this type of bias.  

Time-lag bias arises when compared treatments are commonly used at the different stages 
of the disease, for example when the first-line therapy is compared to the second- or third-
line therapies (Suissa and Azoulay, 2012). Individuals treated with the second- or third-line 
therapy are unlikely to be at the same stage of disease as compared to those treated with the 
first-line therapy. When the risk of outcome under study varies with duration of disease, 
such a comparison leads to time-lag bias. In the presence of time-lag bias, the results are 
biased in favour of the first-line therapy as compared to a subsequent one when the risk of 
outcome increases with increasing duration of disease (Suissa and Azoulay, 2012). For a 
decreasing risk with increasing duration of disease, the results favour the second- or third-
line therapies over the first-line therapy. This bias can be avoided by matching on diseases 
duration (Suissa and Azoulay, 2012) or by adjusting for its effect. Naturally, studies 
comparing two first-line (or second-line etc.) therapies avoid immortal time bias.  

Confounding by indication appears when the reason of prescription is associated with the 
outcome of interest (ENCePP, 2018). In such a situation, compared groups differ with 
respect to the individual’s condition or characteristics related to condition, which determine 
the choice and initiation of a specific drug (Gerhard, 2008). Confounding by indication can 
be avoided comparing groups of individuals sharing similar indications, including condition 
(disease) itself, its severity and presence of comorbidities (Gerhard, 2008). An active-
comparator design, which refers to the comparison of two active drugs with the same or 
similar indications, increases the overlap in important characteristics between the compared 
groups (Yoshida et al., 2015).   
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Both residual and unmeasured confounding can mix the effects between the exposure being 
studied and the outcome of interest (ENCePP, 2018). The former refers to confounding that 
remains after controlling for confounders due to their misclassification, the latter arises 
when important confounders cannot be controlled because they are not measured (Fewell et 
al., 2007). In the pharmacoepidemiological register-based studies, important confounders, 
such as clinical parameters and lifestyle factors are often not measured. Unmeasured 
confounding can be reduced by applying active-comparator design (Yoshida et al., 2015).   

Register-based studies

In a retrospective study, the information necessary to determine exposure and disease status 
is often obtained from the secondary data sources, such as national health and administrative 
registers. Such data have been proved as having a great value and utility beyond the purpose 
for which they have been originally established (Gissler and Haukka, 2004).  

There are several reasons behind the increasing popularity of conducting studies based 
on secondary data sources. First, data are readily available as well as relatively fast and 
inexpensive to acquire. Second, there exists a wide range of essential and reliable 
information often collected on large populations and over long periods. Gathering 
information from secondary data sources allows for the use of broader inclusion criteria and 
fewer exclusion criteria. This allows constructing comprehensive real-life cohorts and, 
therefore, leads to studies with greater generalizability. For instance, in 
pharmacoepidemiology, the majority of studies today are performed as observational 
research using the secondary data sources to obtain information on both drug exposure and 
health outcome (Andersen, 2014).   

Use of secondary data sources implies, however, translation of administrative and 
clinical questions into exposures and outcomes that can be reliably measured using the 
available information (Sund, 2003). The definitions of study subjects, exposure, and 
outcome measures are, therefore, guided not only by specific questions of interest, but also 
by characteristics of the available data. In such settings, it is important to evaluate accuracy 
and completeness of the available data and to take into account other important aspects, 
such as information retrieving processes, the size of the data sources, registration periods 
(Sørensen et al., 1996). 

Nordic countries, including Denmark, Finland, Iceland, Norway and Sweden, have a long 
tradition of registry-based epidemiological research (Gissler and Haukka, 2004; Furu et al., 
2010; Schmidt et al., 2014; Ludvigsson et al., 2016). All five Nordic countries have National 
Health and Administrative registries, most of which are of high completeness and contain 
data of good to high quality. Moreover, in the Nordic countries, each resident is issued a 
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personal identity number. Using personal identity numbers, information from different 
registries can be linked. 

The Nordic National registries cover very similar periods of data collection as well as 
have similar design and contents (Maret-Ouda et al., 2017; Pukkala et al., 2018). At present, 
these registries cover 26 million people making it possible to form large and statistically 
powerful cohorts. Such settings create opportunities for conducting nationwide cohort 
studies of high external validity and for studying rare exposures as well as outcomes with 
long latency.  

In cancer research, there is a long history of using the register data from several Nordic 
countries to form the cohort as well as to evaluate the exposure and outcome (Andersen et 
al., 1999; Pukkala et al., 2009; Engholm et al., 2010; Kvåle et al., 2017; Andersson, 2017). 
Although multi-country register-based cohort studies have been proved useful, data sharing 
initiatives are still rare in many research areas, including pharmacoepidemiology. For 
instance, a systematic literature review found that among pharmacoepidemiological 
register-based studies from the Nordic countries only four of 515 published during 2005–
2010 used data from more than one country (Wettermark et al., 2013). 

There are, however, some challenges that should be taken into account when planning a 
Nordic register-based cohort study, including differences in coding systems, requirements 
and procedures regarding ethical vetting, acquisition, management and sharing of the data 
(Ludvigsson et al., 2015; Maret-Ouda et al., 2017; Pukkala et al., 2018). For instance, In 
Denmark no data retrieved from the registries are allowed to leave the country (Maret-Ouda 
et al., 2017). In the Nordic countries, different versions of the International Classification 
of Diseases (ICD versions 7–10; ICD-O for oncology, versions 1–3) have been used across 
the countries and over time. Therefore, recoding of the data variables into the same coding 
system is usually an unavoidable step, which can be facilitated by compilation of coding 
dictionaries. 

The Clinical Practice Research Datalink (CPRD) of the UK is another well-known source 
of secondary data. The clinical practice research database was established in 1987 for 
routine recording of the patient-level information from the participating general practices. 
Currently, 4.4 million individuals, 6.9% of the UK population, meet the quality criteria and 
are broadly representative of the entire population with regard to demographic 
characteristics (Herrett et al., 2015). The CPRD database contains anonymized patient-level 
data from primary care, including demographics, prescriptions and cancer diagnoses. The 
data on cancer diagnoses are considered to be in general of good quality (Boggon et al., 
2013). Extensive use of the CPRD in the observational research has yielded over 1000 
studies across a broad range of health outcomes (Herrett et al., 2015).  
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Survival analysis refers to the application of statistical methods to the time-to-event data 
that arise from cohort studies when the occurrence of a specific event is of interest. Survival 
statistical methods include methods for summarizing data, hypothesis testing as well as 
modelling the survival times and incidence statistics, hazard rate and risk. Survival analysis 
methods account for the features, such as censoring, which are often encountered in time-
to-event data. 

Survival analysis is a statistical discipline with the history dating back to demography 
and actuarial science (Dickman, 2014). The development of demographic and actuarial 
techniques started already in the seventeenth century, and in the mid-twentieth century there 
existed a well-established methodology. However, the methods of actuarial statistics were 
based on life tables, in which birth and mortality data are aggregated by 1- or 5-year age 
and calendar time intervals and precise event times are not necessarily known nor are of 
interest.  

In the 1950’s, clinical trials, an emerging research area, called for techniques for the 
analysis of data on much smaller numbers of individuals followed on day by day basis 
yielding detailed observations. These data included exact event times but were also subject 
to censoring due to which some event times remained unobserved. In clinical trials, the 
major interest was in the differences between studied groups in terms of survival time, and 
therefore the exact event times provided valuable information. In 1958, this demand for new 
analytical techniques was addressed by Kaplan and Meier who introduced a non-parametric 
tool for estimation of survival function from incomplete observations (Kaplan and Meier, 
1958). This method, today known as the Kaplan-Meier estimator, opened a new research 
area that advanced rapidly during the following decades. 

Major advances in analytical techniques, among which was a model proposed by Cox 
for estimation of the hazard function (Cox, 1972), created a need for a unifying theoretical 
basis. The development of the underlying theory started in 1975 with the PhD thesis by 
Aalen, who studied the basic nonparametric statistical problems for censored data in terms 
of the conditional intensity of a counting process. This was followed by the formal 
introduction of martingales, i.e. differences between the counting process and the integrated 
intensity process, into survival theory (Aalen, 1978). The martingale concept and viewing 
time-to-event data as a result of an underlying stochastic process turned out to be a useful 
framework for the general theory. Further developments in the area resulted in an elaborate 
theory presented along with its mathematical details in the textbook by Andersen et al. 
(1993). A non-homogeneous Poisson process (NHPP) is a generalization of homogeneous 
Poisson process, in which the average intensity of arrivals is allowed to vary with time. 

To construct time-to-event data, one must have a clear definition of the event of interest as 
well as clearly defined start- and endpoints at which the individuals enter and exit the study. 
Time-to-event or survival data include at least one time origin that is the start of follow-up, 
which creates time scale known as time-on-study. In addition, time-to-event data 
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incorporate event times, which are often recorded as time since the start of follow-up. In 
case of recurrent event, such as epileptic seizure, more than one event can be observed for 
each individual. In this work, I consider events that can occur only once. The classic 
example of such an event is death. For some individuals, the event of interest remains 
unobserved. This situation is referred to as censoring. 

A key characteristic that distinguishes time-to-event data from data arising in other study 
designs is the occurrence of censoring. Censoring means that event times are incompletely 
observed and, to avoid bias, analysis should be then performed by taking into account 
censored event times.  

There are three general scenarios leading to censored times: right-censoring, left-
censoring, and interval-censoring (Kalbfleisch and Prentice, 2002, p. 12-14). The most 
common type of censoring is right-censoring, which occurs when the individual leaves the 
study before the occurrence of the event of interest or study ends before the event has 
occurred. The follow-up time is left-censored when the event occurred before some lower 
time bound and the actual event time is unknown. Interval-censoring refers to a situation 
where the event time is known to lie within an interval instead of being observed exactly. 
In addition, there can be delayed entry or left truncation, in which the exposure or other 
defining event, after which the individual is considered at risk, precedes the entry to the 
study.  

Beside the censoring types described above, several underlying censoring mechanisms 
are distinguished. In survival analysis, standard analytical techniques consider right-
censored data assuming an independent and non-informative censoring. Independent 
censoring means that at any time the event process is not altered by censoring experience. 
In other words, the event process is independent of the censoring process. The assumption 
of non-informative censoring means that the censoring mechanism contains no information 
about the distribution of the event times.  

A mathematical definition of censoring mechanisms along with some intuitive examples 
of different censoring types and mechanisms is provided by Andersen et al. (1993, pp. 135–
152 on right-censoring). 

The basic methods of survival analysis are designed for independent right-censored 
observations, but methods for interval and left-censored data are also available. In the 
following sections, I consider the basic concepts and some survival analysis methods for 
right-censored time-to-event data, when assuming that the incompleteness of observations 
is caused by independent and non-informative censoring. In such a scenario, there is no need 
to model censoring because the parameters of process causing incompleteness in 
observations can be viewed as nuisance parameters and the event process can be entirely 
described in terms of hazard and survival functions.     
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Let  denote the random variable representing time to event of interest, with the probability 
density function and cumulative distribution function , such that 

. The distribution of the time to event is mostly described by the survival 
function , whereas statistical models for time-to-event data are 
often based on the hazard function  for  defined as 
 

 

The hazard function describes the conditional probability that the event of interest will occur 
in the interval , given that it has not occurred before time . The hazard function 
is both a theoretical and descriptive tool. The hazard function can be seen as a statistical 
definition of an instantaneous incidence rate (density) used by epidemiologists and is also 
called theoretical rate, hazard rate or instantaneous conditional incidence.  

Many statistical models for time-to-event data are based on the hazard function, whereas 
the distribution of the event times is mostly described by the survival distribution function. 
If one of the three functions, the probability density, survival and hazard function, is known, 
the other two can be derived using known relations between them including  
 

 

and   

 , 

where  is the cumulative hazard function. 

Since the work of Aalen (1978) the statistical theory of survival analysis has been based on 
the probabilistic theory of counting processes. Describing the of the occurrence of random 
events in terms of counting processes and martingales unified the previously scattered 
results and provided a basis for both parametric and nonparametric estimation and 
hypothesis testing in the setting of survival analysis. In a simple survival analysis, 
individuals can experience event of one type only. Counting process on some fixed 
continuous-time interval  
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is then counting the number of discrete events as they occur among  individuals at the time 
,  . For any  ,   

Many counting processes can be split into a random or martingale process , and a 
systematic or predictable process  
 

. 

The systematic part of the counting process , also called as the cumulative intensity 
process (Andersen et al., 1993), can be represented by an intensity function of time 
 

. 

 
The intensity  represents the rate at which the events are expected to occur at the time 
 or soon after it, conditional on the history before this time point. The relation between the 

intensity function and the hazard function is given by 
  

, 
 
where ,  is the number at risk (the size of risk set) just before time t for failing in the 
time interval . Obviously, the intensity functions equals zero when the risk set 
includes no individuals. 

One of the most important point processes is Poisson process. A homogeneous Poisson 
process describes a sequence of events over time and is specified by a non-negative intensity 
function of time. In the homogenous Poisson process, the interarrival times, the intervals 
between the consecutive event times, are independent and obey the exponential distribution 
with the same parameter .  

A non-homogeneous Poisson process is a generalization of homogeneous Poisson 
process. In the NHPP, the average intensity of arrivals is allowed to vary over time and the 
process is specified by a non-negative intensity function  of time (Figure 1). The 
process generates no events when the intensity parameter equals zero and the number of 
event times generated by the process per time unit increases with the increasing value of 

.  
A counting process  is a NHPP process with intensity function  for all , if 
1. The counting process  has independent increments and 

2.  for all , 
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Where the second condition means that in any interval, the expected number of events is 
calculated as the area under the intensity curve bounded by the time axis and the end points 
of the interval (Figure 1). 
 

 

Figure 1 The increments of the non-homogeneous Poisson process  which 
is specified by the intensity function . T1 , T2, …,  T9 are event times. 

Most often, data comprise information on a set of covariates  and it is generally of interest 
not only to estimate the hazard, but also to describe the relationship between a factor of 
interest and the time to event, when controlling for a set of other potentially confounding 
factors. Regression modelling of time-to-event data is commonly used to study the 
relationships of interest and is based on either the density or hazard function. A number of 
survival models are available to analyse right-censored survival data. 

The likelihood function is a key element of statistical inference. The likelihood function 
describes a statistical model given observed data , which can be a scalar, vector or matrix. 
When assuming some model , where  is a density function with parameter , 
the likelihood function  is any function of  proportional to . The likelihood 
function, therefore, does not obey the laws of probability but it is proportional to the 
probability of the observed data. In case of time-to-event data, there are seldom settings in 
which censoring is not encountered. To account for the effect of censoring on inference, 
censoring must be considered as a random variable contributing to the likelihood function. 
This means that the relationship between two random variables, time to event and time to 
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censoring, may affect inference about event time mechanism. This is why the assumptions 
of independent and non-informative censoring are essential. 

Maximum likelihood estimation (MLE) is one way to use the likelihood function to 
extract the information on the model parameters (Tanner, 1994, p. 9–18). The method of 
maximum likelihood selects the set of values of the model parameters that maximizes the 
likelihood function. MLE provides estimators that have many desirable statistical properties 
allowing calculation of standard errors and statistical tests. The natural logarithm of , 
which is called log-likelihood function, is typically used to derive the maximum likelihood 
estimator of the parameter, because working with the log-likelihood  is more 
convenient. 

The proportional hazards model proposed by Cox (1972) for the analysis of data from 
clinical trials is the most commonly used method to analyse time-to-event data in medical 
research. Based on the Cox model, the hazard at time  is defined as product of baseline 
hazard  and exponential transformation of a linear combination of covariates Z and 
corresponding coefficients β 
 

, 
 

where the baseline hazard  is a function of time  and  is independent of time.  
The baseline hazard function is not requested to obey any preset statistical distribution and 
is then the nonparametric component of the semi-parametric Cox model. The parametric 
part of the Cox model includes coefficients β, which are the model parameters to be 
estimated. At any point in time, the covariates Z act multiplicatively on the baseline hazard 

. The hazard ratio (HR) associated with a covariate is given by the exponent of its 
coefficient. 

The estimation of the model parameters β is performed by maximizing the likelihood 
function. In case of the Cox model, MLE is based on a partial likelihood, also called a profile 
likelihood for the model parameters β (Clayton and Hills, 1993), which was introduced by 
Cox (1975). In the Cox model, the baseline hazard  is allowed to vary continuously over 
time by dividing the follow-up time into clicks, the intervals with no more than one event, 
and by assigning each click the hazard parameter for the corresponding hazard level. In the 
partial likelihood, these parameters are treated as nuisance parameters and are substituted 
by their most likely values. 

The Cox proportional hazards model allows for modelling the baseline hazard function 
on a single time scale only. This underlying time scale, also called a primary time scale, 
determines the sequence of event times as well as the size of risk population for each click 
in the partial likelihood, and, therefore, affects the shape of the baseline hazard.   
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Poisson regression model for event rates is an important alternative to the Cox proportional 
hazards model (Frome, 1983; Breslow and Day, 1987; Clayton and Hills, 1993, pp. 227–
229). Hereafter, I will refer to such a model simply as the Poisson regression. To recall, the 
event rate (mortality, incidence rate) is an empirical quantity used in epidemiology to 
describe the density of the event occurrences in a prespecified population followed over 
some period of time, during which each individual contributed some amount of person-time. 
Therefore, the incidence rate is the density measure in an accumulated amount of person-
time (Benichou and Palta, 2014).  

Time-to-event data can be organized according to the categorical covariates into a format 
similar to that of a life-table with cells including the total numbers of events and the total 
amount of person-time. The Poisson regression model, when applied to the tabulated time-
to-event data, builds on the assumption of a constant hazard rate  for each cell. The 
incidence rate represents a valid estimate of the hazard rate when the assumption of the 
constant hazard rate can be done (Benichou and Palta, 2014). Such an assumption is often 
realistic when considering the hazard in a short time interval.  

The individual follow-up time can be divided into  small intervals, which contribute  
events and person-time  to the corresponding cell of life-table. At its simplest, these 
intervals can be of the same length  and the individual contributions to the cells can be 
treated as independent observations from the Bernoulli distribution with probability of event 
(i.e. success) . The log likelihood of observing independent empirical rates is given by 

 

, 

where  and ,  when assuming that the empirical rates have the same 

hazard rate . Carstensen (2005) provides a detailed derivation of the above log likelihood. 
Except a constant , the resulting log likelihood is equivalent to the Poisson log-likelihood 
that would arise if the event counts in the cells were independent Poisson observations 

. Actually, contributions provided by an individuals to the cells and, hence, to 
the log-likelihood, are not independent but can be treated as conditionally independent. 
Importantly, the Poisson likelihood for a set of empirical rates equals the likelihood from 
the Cox regression model (Clayton and Hills, 1993, pp. 298–299). 

The Poisson regression model can be specified as an additive or multiplicative model. 
The additive and multiplicative models are used to quantify an excess risk in terms of  
absolute and relative risks, respectively. The multiplicative Poisson regression model 
including the covariates Z is fitted as log-linear regression  

 

, 

where coefficients β are the model parameters and the natural logarithm of person-time  
as an offset term, for which the coefficient is set to one. The model parameters β are 
estimated using MLE for generalized linear models (Frome, 1983) and the exponents of β 
give rate ratios (RR).   
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Epidemiologic cohorts usually constitute individuals who are the subject of multiple and 
varying biological and environmental circumstances, such as aging, diseases, exposure to 
some medications, toxins or interventions. For some of the involved factors, the time origin 
can be determined and represents the point at which an individual experiences a defining 
event, such as birth, disease or smoking onset or initiation of treatment. Each of the time 
origins creates a time scale, which represents the time elapsed since its defining event. In 
considering time-to-event data, both time origins and time scales play an important role. 
The time origin determines the time scale and should be defined in a clear and unambiguous 
way (Kalbfleisch and Prentice, 2002). Event times are recorded along one time scale and 
the sequence of event times depends on the scale that is used to measure time. 

In cohort studies, there are usually several time scales and these may be relevant when 
considering the variation in the hazard of the event of interest. Although measuring time is 
a common feature for all time scales, their importance pertains not only in their chronology-
preserving character. Many time scales are appealing because they can serve as a proxy 
measure of some exposure or experience. For instance, progression on the age scale 
corresponds to aging, proceeding with calendar time is often associated with changes in 
treatment methods and time elapsed from the onset of diabetes reflects a cumulative 
glycaemic burden.  

The survival analysis methods allowing for graphical representation of time-to-event-
data on more than one time scale include descriptive tools such as a Lexis diagram and Lexis 
surface plot. Analytical approaches of dealing with multiple time scales include the use of 
time scales as covariates in the Cox or Poisson regression model and age-period-cohort 
(APC) models. In the following chapters I overview these alternatives. 

An inevitable involvement of the age and calendar time in demographic research created a 
need for a simple chart to represent the underlying population dynamics. Around the 1870’s, 
this need was addressed by various graphical techniques that were developed by several 
German scientists in the field of population statistics, primarily by Knapp, Zeuner and Lexis 
(Vandeschrick, 2001; Keiding, 2011). A German statistician, economist, and social scientist 
Wilhelm Lexis introduced a diagram as a solution to the problem of locating deaths on one 
plane according to three demographic co-ordinates: the moment of death; the age of a 
deceased and the moment of birth of the deceased (Lexis 1875). Although the modern age-
period-cohort chart is nowadays known as the Lexis diagram, it is not exactly the same plot 
as introduced by Lexis, suggesting that there probably were several scientists who 
contributed to the development of the tool (Vandeschrick, 2001; Keiding, 2011). 

The Lexis diagram is a two-dimensional graphical representation of individual follow-
up times on a plane formed by two time scales, originally by age on the vertical axis and 
calendar time on the horizontal axis (Figure 2). Each individual’s trajectory is represented 
by a diagonal line, a life line, which allows for keeping track of the individual progressing 
through time. Moreover, the life line preserves the correspondence between the two time 
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scales: as the life line proceeds, the same amount of time passes on both time scales. The 
Lexis diagram is used to visualize the experience of an entire cohort or its subgroup.   

Nevertheless, plotting life lines is not meaningful for large populations, of which 
aggregated data, such as data on counts and person-years, are used to represent the raw and 
smoothed death rates and ratios and other demographic parameters by means of the Lexis 
surface plots, contour maps and heatmaps (Arthur and Vaupel, 1984; Vaupel et al., 1987; 
Schöley and Willekens, 2017; Rau et al., 2018). In demography, these graphical tools are 
used for detection of patterns and trends at the population level. As such, these approaches 
are not applicable in epidemiology, where the focus is in evaluating the individual-level 
observations. Moreover, time-to-event data from cohort studies are often limited in the 
number of events and the size of risk population, and, therefore, the evaluation of 
uncertainty is essential.  

 

Figure 2 The Lexis diagram depicts by life lines the follow-up of a sample of women from the 
gbcs dataset (Hosmer et al., 2008) who were diagnosed with breast cancer at the age 
of 64–69 years and were followed up until recurrence (dot) or censoring due to death.  
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The Cox regression model relies on a single time scale, but multiple time scales can be dealt 
with by introducing time scales other than a primary one to the Cox model as fixed baseline 
or time-dependent covariates and / or by stratifying on one or more time scales. Though 
these solutions seem to be straightforward, their implementation is not a simple task in 
practice. First, in the presence of multiple time scales, the modelling with the Cox method 
involves the choice of primary time scale, an aspect that is not routinely considered in 
epidemiological studies (Cologne et al., 2012). Second, questions arise regarding the 
modelling of the effect of the time scales other than the primary one. In the Cox model, the 
baseline hazard is modelled nonparametrically. This implies a flexible modelling of the 
relationship between the primary time scale and the baseline hazard.  In contrast, modelling 
of the effect of time scales that enter the parametric part of the Cox model requires a careful 
consideration of the relationship between these time scales and the baseline hazard. 

The Cox model was originally proposed for the analysis of time-to-event data from 
clinical trials. In such settings, time-on-study as the primary time scale is an appropriate 
choice both in the biological (clinical) and analytical sense. The Cox model has been 
routinely used in the analysis of time-to-event data from observational cohort studies, where 
time scales other than time-on-study may be of biological relevance. However, there is no 
well-established procedure for choosing the primary time scale of several relevant time 
scales.  

Farewell and Cox (1979) defined the primary time scale as one that accounts for as much 
of the variation in hazard as possible and suggested that in some contexts the most 
informative time scale is equivalent to the one on which event times form a Poisson process.  
Clayton and Hills (1993, pp. 311) suggested the choice to be done based on the way the 
baseline hazard vary along each time scale. If a rapid and irregular variation is expected 
along one of the time scales this should be used as the primary one. If variation is smooth 
along all the time scales it is better to use the time scale with the strongest relationship to 
the baseline hazard. According to Pencina et al. (2007), the choice of primary time scale 
can be addressed by considering both mathematical equivalence and correctness of models 
resulting from different choices, by comparing the estimated regression coefficients and/or 
predicting accuracy as well as by searching for the time scale better capturing the nature of 
the data. 

In addition to time-on-study, also age (attained age, age at risk) has been used as the 
primary time scale. Commenges et al. (1998) pointed out that using age as the primary time 
scale may be of particular epidemiologic interest when studying the disease incidence, 
because with this choice the baseline hazard is equivalent to the age-specific incidence. In 
observational studies, individuals enter the study at different ages rather than at their birth 
that is the time origin for age.  

Entering the study after the time origin is called late entry or left truncation if individuals, 
while being at risk for the event of interest, remain unobserved and have to survive until 
some point of time to be sampled. When those entered the study and those who precluded 
from entering differ in their risk, left truncation may introduce bias (Matsuura and Eguchi, 
2005; Cain et al., 2011). In many situations, the assumption of independent and non-
informative left truncation can be done. It is, however, necessary to account for late entry 
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itself by using the software that provides procedures capable to incorporate both entry and 
exit times in the Cox model formula (Clayton and Hills, 1993, pp. 302; Cain et al., 2011).  

Several studies compared the Cox regression models that were based either on time-on-
study or age and were applied to simulated and/or empirical data (Korn et al., 1997; 
Thiébaut and Bénichou, 2004; Pencina et al., 2007; Cologne et al., 2012; Chalise et al., 
2016). Some of the compared models were based on attained age, whereas other models 
were based on time-on-study and used age at entry as a fixed covariate or stratified on it 
(Table 1). Altogether, ten different models were investigated but the variety of possible 
alternatives can be further extended by the models with age as the primary time scale and 
time-on-study as a time-dependent covariate and vice versa, and models that allow for 
capturing the functional form of the time scale that is used as a covariate. Obviously, in the 
presence of more than two relevant time scales, there are many more models to consider 
and choose of. Accounting for multiple time scales with the Cox model is further 
complicated by contradictory recommendations regarding the choice of the primary time 
scale.  

Table 1 The Cox proportional hazards models (Weibull proportional hazards models in 
Pencina et al) fitted to the empirical and/or simulated data using two alternative 
time scales, time-on-study and attained age (age at risk), as the primary time 
scale, with and without adjustment for age at entry as a fixed covariate or with 
stratification on birth cohort or age at entry. 

 Primary time scale 

 Time-on-study Attained age 

 Unadjusted  Adjusted 
for entry 

age  

Stratified 
on birth 

cohort or 
entry age  

Unadjusted  Adjusted  
for entry 

age 

Stratified on 
birth cohort 

Korn et al. 
(1997):  
empirical data 

Fitted  Fitteda)  Fitted  

Thiébaut and 
Bénichou 
(2004):  

simulated and 
empirical data 

Fitted Fittedb) Fittedc) Fitted   

Pencina et al.  
(2007): 

simulated and 
empirical data 

 Fittedd) Fitteda) Fitted Fittede) Fitted 

Cologne et 
al., (2012): 
empirical data 

 Fitted   Fittede)  

Chalise et al. 
(2016):  
empirical data 

 Fitted  Fitted Fittede)  

a) Stratified on birth cohort; b) Two models, one adjusted for continuous and one adjusted for categorical 

age at entry; c) Stratified on age at entry; d) Two models, one adjusted for linear and one for quadratic 

age at entry; e) Accounted for left truncation by conditioning on age at entry. 
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All studies presented in Table 1 recommended to use age rather time-on-study as the 
primary time scale when analysing time-to-event data from epidemiological cohort studies. 
The studies disagreed on the conditions upon which the age-at-entry-adjusted Cox model 
with time-on-study as the primary time scale provides approximately unbiased estimates in 
situations when the Cox model based on age is the correct one. Korn et al. (1997) found the 
estimated regression coefficients to be different in the model that was based on time-on-
study and adjusted for age at entry, when compared to results from two other models that 
were based on age with and without stratification on birth cohort (these two latter models 
provided similar results). Korn et al. suggested that at least one of two conditions should be 
satisfied to ensure that the Cox model based on time-on-study provides approximately 
unbiased results: an exponential age-specific baseline hazard and statistical independence 
between covariates and age at entry.  

Thiébaut and Bénichou (2004) and Pencina et al. (2007) performed simulation studies 
to investigate the effect of the choice of time scale on the estimated regression coefficients 
when the conditions postulated by Korn et al. (1997) are satisfied. Thiébaut and Bénichou 
found that the unadjusted Cox model with age as the primary time scale performed without 
large bias regardless of the distribution of the age-specific baseline hazard and that any of 
the four Cox models with time-on-study as the primary time scale performed similarly when 
the age-specific baseline hazard was exponential. In contrast, Pencina et al. observed an 
inferior performance of the unadjusted Cox model with age as the primary time scale as 
compared to any of the five other models, which were based either on age or time-on-study 
and were either adjusted for age at entry or stratified on birth cohort. Chalise et al. found 
the Cox model based on time-on-study and adjusted for age at entry and the Cox model 
based on age to provide significantly different results in 40 cohorts of 54 studied when 
accounting for left truncation was ignored in the later model. These differences appeared 
independently of the magnitude of correlation between the covariate and age at entry. When 
left-truncation was accounted for, two models agreed in 51 cohorts of 54.  

Table 1 lacks models with the time scale as a time-dependent covariate. In the Cox 
model, time proceeds on the primary time scale but not on the time scale included into the 
model as a fixed (baseline) covariate. The relation between the baseline hazard and the time 
scale included in the Cox model as a fixed (baseline) covariate is taken to be log-linear and 
the relative change in hazard is assumed to be the same and for a single time unit increase 
and the effect of such a covariate is assumed to be constant over time. Moreover, the baseline 
hazard is assumed to vary over time (as measured on the primary time scale) similarly for 
all the baseline values of the time scale included as a fixed covariate.   

Violation of the parametric assumptions may result in an inappropriately modelled effect 
of the covariates included in the model, and, therefore may introduce bias (Thiébaut and 
Bénichou, 2004; Cologne et al., 2012). It is possible to relax the aforementioned 
assumptions by modelling the effect of time scales included into the parametric part of the 
Cox model as time-dependent covariates (Fisher and Lin, 1999; Lehr and Schemper, 2007) 
and by using polynomial functions, which are the flexible mathematical functions defined 
by piecewise polynomials. (Durrleman and Simon, 1989; Gray, 1992; Berger et al., 2003). 
Modelling of the covariate effect in a time-dependent manner and / or modelling its 
functional form provides greater flexibility and allows for capturing the changes in the effect 
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over time but also implies an additional level of methodological complexity and increases 
the number of parameters to be estimated.  

Also stratification by age at entry or other relevant baseline time determinant can be 
used to account for the potentially different baseline hazard functions. However, the relevant 
controlling for the differences may require a fine stratification that may result in strata with 
the sparse data, and therefore, may yield inadequate estimates of both the baseline hazard 
and covariate estimates (Cologne et al., 2012) . 

In the Poisson regression model, there is no need to choose the primary time scale but all 
the relevant time scales can be included in the model as covariates. The time scales included 
in the model may represent time at entry (baseline) or time at risk measured during the 
follow-up. When modelling the rates with the Poisson regression, time-to-event data can be 
prepared for the analysis by splitting the follow-up time into smaller bands along one or 
more time scales (Carstensen, 2012). Thus, the Poisson regression model, when fitted to the 
split data, provides an efficient and intuitive method for dealing with time-dependent 
covariates, such as time scales.  

The issues that need to considered include the ways of adequate modelling of the effect 
of time scales. The effect of a particular time scale can be flexibly modelled by using 
polynomial functions. For instance, restricted cubic splines are an easy way of including 
covariates in a smooth non-linear way (Carstensen, 2012). 

The Lexis diagram has traditionally been used for analysing incidence and mortality rates 
with the APC models (Smith and Wakefield, 2016). Since the mathematical theory for the 
relationship of rates as described in continuous time in the presence of age-, period- and 
cohort-effects was introduced by Keiding (1990), the Lexis diagram has been extensively 
used to analyse data for the presence of these effects using various APC models (Carstensen, 
2007; Held and Riebler, 2012; Brinks et al., 2014; Christiansen et al., 2015). Models using 
Bayesian inference have been also developed for the Lexis diagram. Two APC models 
introduced for the Lexis diagram with fixed grid used a random walk prior of first and 
second order for all APC effects, assuming a constant or linear trend over time, respectively 
(Berzuini et al., 1993; Berzuini and Clayton, 1994). Several multivariate APC models using 
the Bayesian approach with smoothing priors have been introduced for the estimation of 
relative risk (Riebler and Held, 2010; Riebler et al., 2012).  

APC models are subject to identifiability problem because of over-parametrization due 
to having three time variables, one of which is a sum of two others (Clayton and Schifflers, 
1987a, 1987b; Holford, 1991). Although various solutions have been proposed to address 
the identifiability problem, these solutions are not necessarily intuitive nor applicable 
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without further consideration of the involved assumptions and constrains with respect to the 
specific research question (Bell and Jones, 2015).  

Bayes’ theorem shows the relation between two conditional probabilities that are the reverse 
of each other. This theorem dates back to the original 1763 paper by Thomas Bayes (1701-
1761) and is also referred to as Bayes’ law or Bayes’ rule. Bayes’ theorem provides an 
expression for the conditional probability of A given B, which is equal to 

 

 

 
Bayesian inference refers to statistical inference, which are based on the use of Bayes' 

theorem. The methods that are known today as Bayesian were, however, brought under this 
name relatively recently in terms of their 260-year history (Fienberg, 2006a). 

In the Bayesian approach, the most basic model consists of two parts, a likelihood 
specification  summarizing the evidence about parameter  provided by the 
data  and a prior  reflecting uncertainty about the parameter before the data are 
observed. Bayes' formula provides an expression for updating the prior density into the 
posterior  by taking into account the observed data  
 

 

 
where the proportionality coefficient 
 

 

is the marginal density of the data. The proportionality coefficient can be obtained 
analytically only for some special choices of  and  that are known as conjugate 
distributions (Gutiérrez-Peña et al., 1997). Results from the Bayesian models are usually 
reported in the form of (marginal) posterior expectations and probabilities of the model 
parameters. 
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The prior can play many roles in Bayesian inference (Gelman et al., 2017). First, the prior 
provides a formal way to incorporate already available information, to quantify hypotheses 
or to represent researchers’ degree of belief in a statement regarding the problem being 
analysed. Second, the prior can be used to regularize and stabilize inferences. Third, the 
prior can be treated as a necessary but noninformative part of the analysis, its only role being 
to fulfil the formal requirements of Bayesian analysis while having a minimum impact on 
the posterior distribution.  

In applied Bayesian research, these three prior types are called informative, weakly 
informative and noninformative priors (Syversveen, 1998; Gelman et al., 2008; Kerman, 
2011; Hamran et al., 2013). Within Bayesian inference, the different ways to treat the prior 
have yielded two opposed strands of Bayesian inference, objective and subjective (Berger, 
2006; Goldstein, 2006; Fienberg, 2006b; Ghosh, 2011). In the former, inference is based on 
the use of an objective prior with a minimal impact on the posterior distribution. In the latter, 
the prior is defined to reflect the researcher's subjective beliefs. However, the convenience 
of this distinction between objective and subjective priors is considered to be dispensable 
in practice (Gelman and Henning, 2017). 

Developing prior distributions is an inevitable and undoubtedly the most controversial 
aspect of any Bayesian analysis. Inappropriate choices of priors can lead to incorrect 
inferences, and the methods for choosing priors are an issue of considerable debate. During 
the last decade, the problem of specifying sensible priors has become even more pressing 
due to emergence of increasingly complex statistical models.  

A recently published article by Gelman et al. (2017) called into question the standard 
Bayesian workflow, in which the prior distribution should come before the data model and 
with no reference to the data. Gelman et al. (2017) provided some recommendations 
regarding the choice of prior in real-world modelling and pointed out that in practice 
constructing of the prior often depends on the data and, therefore on the assumed likelihood 
for the data. Another recent work provided a broad framework for building informative 
priors for a large class of hierarchical models (Simpson et al., 2017). Stan Development 
Team (2017) has collected prior choice recommendations for some specific problems, and 
Zondervan-Zwijnenburg et al. (2017) provided a guideline for constructing informative 
priors in small sample research. 

Although some of the Bayesian statistical methods and ideas were introduced and used 
already in the 19th century, decades before the frequentist techniques were developed, the 
latter became a dominating approach for over half of the 20th century owing to the 
influential work by statisticians R. A. Fisher, J. Neyman and E. Pearson (Greenland, 2006). 
As the development and spread of frequentist methods were stimulated by use of 
experimental design, the frequentist inference is driven by the idea of a repeatable 
experiments and null hypothesis testing. In the frequentist paradigm, the presumption is that 
the data constitute a random sample from a distribution (model) controlled by an unknown 
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but fixed distribution (model) parameter(s). However, data generating mechanisms are often 
poorly understood, especially in the non-experimental design. Bayesian inference accounts 
for the modelling parameters as for random variables and, therefore, allows modelling the 
uncertainty in the parameters related with the sampling scheme and the data generating 
process. 

Both the Bayesian and frequentist points of view have been upheld by philosophical, 
practical and pedagogical issues with aim to demonstrate superiority of the one approach 
over another (Mayo and Cox, 2006; Gelman, 2008; Gelman and Shalizi, 2013). Although 
the potential for a fruitful synthesis of these two fundamental statistical ideas is almost 
completely ignored in this debate, some discussion has emerged (Bayarri and Berger, 2004; 
Little, 2006). According to Efron (2005), Bayesian-frequentist dispute “reflects two 
different attitudes to the process of doing science, both quite legitimate”. Little (2006) 
suggested that a compromise involving Bayesian inference for models and frequentist ideas 
on model assessment may be beneficial for the teaching and practice of statistics. 

In Bayesian modelling, model parameter  is often given a probabilistic specification 
 by introducing further parameters  known as hyperparameters. The basic Bayesian 

model can be extended by adding additional levels or sub-models, which then form a 
hierarchical or multi-stage model. For instance, to quantify the uncertainty regarding 
hyperparameters  in  an additional prior  can be set. Each new prior, which is 
called a hyperprior, forms a new level in the model hierarchy. Estimating priors through 
hyperpriors is known as hierarchical Bayes estimation and is a method to elicit the optimal 
prior distributions. 

Such hierarchical thinking allows to construct flexible models for describing complex 
settings and phenomena from classical multilevel modelling for nested data to problems 
involving multiple dimensions or complicated dependence structures. Gelman et al. (2014) 
and Craigmile et al. (2009) provide some examples on use of hierarchical models, including 
model building and fitting. 

Statistical models can be divided into parametric, semi-parametric and nonparametric 
models. In nonparametric models, the parameters of the model are infinite in dimensions. 
In the Bayesian framework, this is achieved by setting priors on probability models with 
infinitely many parameters (Müller and Quintana, 2004; Müller and Mitra, 2013). These 
priors are known as nonparametric Bayesian priors, and inference on such models is referred 
as nonparametric Bayesian inference. Bayesian nonparametric models provide a simple 
framework for modelling complex data. In general, nonparametric models are more robust 
against modelling errors and are therefore more realistic and flexible than parametric 
models, which are likely to understate uncertainties and miss some important structure with 
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more complex data. Examples of nonparametric Bayesian models include approximation of 
intensity functions of a point processes, density estimation, spline regression models and 
multivariate regressions (Arjas and Gasbarra, 1994; Müller et al., 2017). 

The use of unappealing approximations was inevitably involved in applied Bayesian 
inference on the non-conjugate distributions before development of Monte Carlo statistical 
methods (Robert and Casella, 2004). MCMC algorithms are used in Bayesian inference to 
sample from the posterior probability distributions when the marginal density is analytically 
intractable. In MCMC methods, a sequence of random quantities is generated using Markov 
chain that is a random process, which has the Markov property of memoryless.  Markov 
chains are characterized by the state space, index state and transition probabilities between 
the states. The state space is either a finite (countable) or infinite set of values (states), which 
the chain can take. The index state usually refers to time and can be either discrete or 
continuous. In case of memoryless, the probability of the future state of the chain can be 
affected by the more recent state(s) only and as time goes by, the process loses the memory 
of the past.  

Markov chain can be used to draw random sample from some target probability 
distribution. In Bayesian inference, the target distribution is usually the posterior 
distribution of the model parameters. Each Markov chain begins with an initial value or 
state and the algorithm iterates or transits from the current state to the next one thereafter. 
By iterating Markov chain attempts to converge to the target probability distribution. To 
achieve the convergence, it is necessary to construct a transition operator, which after long 
run makes the (stationary) distribution of the chain to match the target one.  

There are two widely used versions of MCMC, the Gibbs sampler and Metropolis-
Hastings algorithms (Robert and Casella, 2004, pp. 270–272, 337–343). Standard MCMC 
sampling algorithms cannot be used for the models of varying dimension, such as 
nonparametric models. Reversible jump algorithms enable sampling from the posterior 
distribution in such models by providing moves between submodels of varying dimensions 
(Robert and Casella, 2004, p. 429–433). 

Computational advances, such as Markov chain Monte Carlo methods, emerged during the 
computer era for and from Bayesian analysis (Andrieu et al., 2004) and have led to 
widespread use of Bayesian inference. In the two past decades, the emergence of Bayesian 
analysis was seen in many methodological and applied fields, including medicine, public 
health and epidemiology (Etzioni and Kadane, 1995; Gurrin et al., 2000; Dunson, 2001; 
Spiegelhalter et al., 2004; Ashby, 2006). However, for instance in epidemiologic research, 
the number of studies in which Bayesian techniques have been used for primary data 
analysis has remained constant over the years (Reitbergen et al., 2017). 
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Diabetes mellitus is a group of chronic, progressive diseases characterized by elevated levels 
of blood glucose as caused by deficient insulin production in type 1 diabetes (T1D) 
(Atkinson et al., 2014) or by body’s ineffective use of insulin in type 2 diabetes (T2D) (Kahn 
et al., 2014). A constantly increasing prevalence of type 1 and 2 diabetes has been reported 
worldwide (Lammi et al., 2008; Tuomilehto, 2013; Harjutsalo et al., 2013; NCD-RisC, 
2016; Ogurtsova et al., 2017). According to the report of World Health Organization (2016), 
there were 422 million people with diabetes in the world in 2014. The number of people 
with diabetes aged 20–79 years was predicted to rise to 642 million in 2040 (Ogurtsova et 
al., 2017).  

Controlling blood glucose levels is the ultimate goal of diabetes management and requires 
a lifelong treatment. The goals of diabetes treatment regardless of its type include 
elimination of short-term risk of high or low glycaemic levels as well as prevention of short- 
and long-term complications of diabetes (American Diabetes Association, 2016). There are 
different classes of anti-diabetic medications (ADM), which can be divided into injected 
drugs, such as different insulins, and oral drugs, such as sulfonylureas, biguanides 
(metformin), thiazolidinediones (pioglitazone, rosiglitazone) and glucosidase inhibitors. All 
ADMs are targeted at lowering blood glucose levels but different drug classes achieve the 
target through different physiological actions (American Diabetes Association, 2016) 

Since the discovery of insulin in 1921–22 and its rapid translation to practice, insulin 
administration has become a fundamental treatment of T1D (Polonsky, 2012). Preventive 
strategies and treatments for T2D have evolved especially during the last decades (Kahn et 
al., 2014). At its early stages, T2D is usually treated by lifestyle modifications along with 
oral ADMs. Due to the progressive character of T2D, initiation of insulin therapy is often 
required at later stages.  

In Finland, individuals with specified diseases and conditions, including diabetes, are 
entitled to special reimbursement for drug costs in outpatient treatment. Entitlement for 
special reimbursement is granted to the person by the Finnish Social Insurance Institution 
(SII) after evaluation for eligibility according to the application completed by a physician 
certificate. All individuals entitled to special reimbursement are then recorded in the 
Reimbursement Register maintained by SII and can be identified from there by their unique 
identification numbers. The register was established in 1964 and holds information on dates 
when the reimbursement entitlement started (and possibly ended), and the code of the 
disease or condition due to which the reimbursement entitlement was granted. This 
nationwide register provides a reliable source for assessment of disease rates and is often 
used to define study populations in health care research.  
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In the Reimbursement Register, the reimbursement entitlement due to diabetes is 
recorded regardless of the type of diabetes. In 2017, diabetes medications other than insulin 
were transferred from the higher to the lower special reimbursement category (65% 
reimbursement rate, special reimbursement code 215). Before 2017, any diabetes 
medication belonged to the higher special reimbursement category (100% reimbursement 
rate, special reimbursement code 103), but since 2017 the highest reimbursement rate is 
applied to insulin only. 

In Finland, the number of people with diabetes trebled from 122 675 people in 1990 to 
368 314 in 2011, and this increase was due to the increasing prevalence of both type 1 and 
T2D (Arffman et al., 2014). During the period 2009–2011, the age-adjusted prevalence rate 
increased from 74 to 98 per 10 000 persons for T1D, and from 310 to 761 per 10 000 persons 
for T2D (Arffman et al., 2014). Based on the statistics of the Reimbursement Register, there 
were altogether 336 401 people entitled for insulin, and 336 406 people entitled for other 
diabetes medicines at the end of 2017 (Kelasto-reports, 2018). The lower category includes 
people with T2D, whereas the higher category includes people with type 1 or 2 diabetes, 
and the majority of the individuals included in the lower category are also entitled to the 
higher special reimbursement for insulin. 

In Finland, large-scale nationwide programs and studies, such as FINRISK (Borodulin et 
al., 2017), FINDRISC (Lindström and Tuomilehto, 2003), DPS (Lindström et al., 2003), 
FIN-D2D (Saaristo et al., 2010), FinDM (Sund and Koski, 2009), have been implemented 
during the last decades to prevent diabetes, to study causes and prognosis of the disease, as 
well as to monitor changes in its prevalence and incidence over time. In addition, register-
based observational studies outside these programs have contributed to the extensive and 
high-quality research on diabetes in Finland. Indeed, data from the administrative health 
and welfare registers, such as Reimbursement and Prescription Registers (SII), Finnish 
Hospital Discharge Register and Cancer Register (National Institute for Health and 
Welfare), have been intensively used for research purposes (Gissler and Haukka, 2004). The 
Finnish registers have a long recording history and have been shown to be of good quality 
in general (Gissler and Haukka, 2004; Sund, 2012).     

Despite the advances in diabetes treatment that emerged during the last decades, diabetes is 
still associated with an increased overall risk of dying prematurely, being ranked the eighth 
leading cause of death in 2012 (WHO, 2016). 

Acute complications of diabetes, such as ketoacidosis and hypoglycemia, remain a 
significant contributor to the increased mortality (Groop et al., 2018). Over time, all types 
of diabetes can lead to chronic complications, many of which are caused by damage to large 
(macrovascular) and small (microvascular) blood vessels, thereby affecting the function of 
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many organs, including heart, kidneys, eyes, and nervous system (Fowler, 2008). The 
Finnish study reported that in 2011 about 17% of persons with diabetes had at least one 
serious complication, of which the most common were myocardial infarction (46%) and 
stroke (45%) and the least common were amputation (6%) and chronic kidney disease (3%) 
(Arffman et al., 2014). A recent Finnish study, which covered the period of 1994–2011, 
reported a decreasing risk of diabetes-related complications among persons with T2D, but 
an increasing risk of multiple serious complications in those with T1D (Forssas et al., 2016). 
Moreover, this study found that having diabetes-related complications was associated with 
an increased risk of death irrespective of diabetes type. 

One of the most common comorbidities in patients with T1D is chronic kidney disease 
(CKD), which can progress to ESRD, a life-threatening condition with poor prognosis, 
requiring treatment by dialysis and kidney transplantation. The cumulative incidence of 
ESRD varies between 0.7% and 9.3% after 20-30 years of diabetes duration (Finne et al., 
2005; Lecaire et al., 2014; Helve et al., 2017; Gagnum et al., 2017). Observational studies 
have reported an increasing risk of ESRD with increasing duration of T1D (Raile et al., 
2007; Lecaire et al., 2014; Helve et al., 2017). Several studies observed a decreasing 
cumulative risk of ESRD with increasing calendar year of T1D onset (Finne et al., 2005; 
Lecaire et al., 2014; Helve et al., 2017).  

Age at onset of T1D has been suggested as another potential factor influencing the risk 
for ESRD. However, the findings regarding the association between age at onset of T1D 
and the risk of ESRD have been inconsistent. Several studies observed the lowest risk of 
ESRD among those aged 0–4 or <6–10 years at onset (Finne et al., 2005; Svensson et al., 
2006; Gagnum et al., 2017; Costacau and Orchard, 2018), whereas two studies found the 
highest cumulative hazard for the onset ages of 5–9 years (Helve et al., 2017) and 10–14 
years (Gagnum et al., 2017).  

Presence of CKD in persons with T1D increases the risk not only for ESRD but also for 
cardiovascular death, being a strong determinant of excess mortality associated with T1D 
(Groop et al., 2009; Forsblom et al., 2011). Some observational follow-up studies on ESRD 
risk accounted for death without ESRD as a competing event (Finne et al., 2005; Forsblom 
et al., 2011; Lecaire et al., 2014; Helve et al., 2017). 

Large-scale epidemiological studies conducted in various populations have demonstrated 
an association between diabetes and increased risk for any cancer as well as for certain site-
specific cancers (Carstensen et al., 2012; Harding et al., 2015; Carstensen et al., 2016; 
Ballotari et al., 2017).  

Observational studies have reported statistically significant excess risks of 8-25% for 
any cancer among men and women with T2D and both types combined when compared to 
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the general population (Harding et al., 2015; Ballotari et al., 2017). Two studies found 
statistically significant differences in the incidence of any cancer in women with T1D but 
not in men with T1D when compared to those without T1D (Harding et al., 2015; Carstensen 
et al., 2016). 

For both type 1 and 2 diabetes, the excess cancer risk has been reported for pancreas, 
liver, endometrium (corpus uteri), kidney and stomach (Harding et al., 2015; Carstensen et 
al., 2016; Ballotari et al., 2017). Among individuals with T2D, the excess risks have been 
observed also for cancer of gallbladder, colon and rectum, lung, breast, bladder, and thyroid, 
for ovarian and cervical cancer, for Hodgkin's and Non-Hodgkin's lymphoma, and multiple 
myeloma (Harding et al., 2015; Ballotari et al., 2017). An observational study in the 
Australian population found no difference in the incidence of breast cancer among women 
with T1D relative to the general female population (Harding et al., 2015), whereas a five-
country study on T1D reported a reduced risk (Carstensen et al., 2016). For prostate cancer, 
a reduced risk for type 1 and 2 diabetes has been reported by many (Carstensen et al., 2012; 
Harding et al., 2015; Carstensen et al., 2016), but not all epidemiological studies (Ballotari 
et al., 2017). 

A consensus report by Giovannucci et al. (2010) listed three major mechanisms, which 
may underlie the association between diabetes and cancer: 1) risk factors common to both 
diseases, including obesity, diet, smoking, physical inactivity; 2) specific metabolic 
disturbances typical of diabetes, such as hyperglycemia, insulin resistance, 
hyperinsulinemia; 3) ADMs. It has been also suggested that the association between 
diabetes and excess cancer risk can be only partially explained by a detection bias and/or 
reverse causation. 

A recent Taiwanese study on a cohort of 405,878 subjects participating to a standard medical 
screening program explored the relationship between several chronic diseases and their 
markers and the risk for cancer (Tu et al., 2018). This study found that diabetes was 
associated with an increased risk for any cancer (HR 1.10, 96% CI 1.03–1.18) even after 
adjustment for known risk factors (age, education, occupation, smoking status and pack 
years of smoking, alcohol consumption, body mass index (BMI), physical activity, fruit and 
vegetable intake). It is, however, unlikely that the extent to which the risk factors contribute 
to the association between diabetes and cancer is uniform across diabetes types and different 
cancer sites.  

In recent years, the role of obesity in the association between diabetes and cancer has 
been reviewed (Garcia-Jiménez et al., 2016; Klil-Drori et al., 2017) and scrutinized by 
observational studies. A cohort study in 300 039 CPRD patients with T2D found an 
increased risk of colorectal cancer for a cumulative obesity duration of 4–8 years (HR 1.19, 
95% CI 1.06–1.34) and 8 years or more (HR 1.28, 95% CI 1.11–1.49]), as compared with 
non-obese persons with T2D (Peeters et al., 2015). The results from a cohort study, which 
comprised 88 107 postmenopausal women from the Women’s Health Initiative, suggested 
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that the association between diabetes and incidence of endometrial cancer may be largely 
confounded by body weight (Luo et al., 2014).  

The complex process of the formation of cancer is termed carcinogenesis and can be divided 
into several, though rather simplified steps: initiation, promotion and progression. A number 
of plausible biological mechanisms, including the effects of hyperglycemia, 
hyperinsulinemia, and chronic inflammation on the promotion and progression of cancer, 
have been suggested as potential pathways linking diabetes and cancer (Giovannucci et al., 
2010; Johnson et al., 2012; Gallagher and LeRoith, 2015). These metabolic abnormalities 
may contribute directly or indirectly through several mechanisms. However, as cancers are 
a group of heterogeneous diseases, it appears unlikely that these diabetes-related factors act 
uniformly across cancer sites. Despite multiple studies elucidating various mechanisms, 
through which diabetes-related factors are likely to influence the neoplastic process, our 
current understanding of the association between diabetes and cancer relies on hypothesized 
rather than established biological links. 

Although both experimental and epidemiological evidence is more consistent with the 
hyperinsulinemia hypothesis (Giovannucci et al., 2010), the hyperglycemia hypothesis 
cannot be ruled out (Stattin et al., 2007; Ryu et al., 2014). Hyperglycemia and 
hyperinsulinemia refer to high circulating glucose and insulin levels, respectively. 
Hyperglycemia is the hallmark of both type 1 and 2 diabetes, whereas endogenous 
hyperinsulinemia, the one caused by disease itself, is associated with T2D. However, 
regardless of the diabetes type, diabetic patients with insulin treatment may have exogenous 
hyperinsulinemia due to insulin treatment. It is possible that hyperinsulinemia, both  
endogenous and exogenous, could promote carcinogenesis  directly through the insulin and 
insulin-like growth factor-1 receptors, which are expressed by most cancer cells and 
stimulate cell metabolism and cell growth and mitosis; or/and indirectly by increasing 
circulating levels of bioactive insulin-like growth factor-1, which has higher tumour 
favouring activity than insulin, or/and by causing elevated levels of sex steroids, which are 
associated with a higher risk of certain cancers (Giovannucci et al., 2010). 

Epidemiological evidence, though inconsistent, has suggested that different ADMs may 
modulate the risk of cancer (Smith and Gale, 2009, Giovannucci et al., 2010; Tokajuk et al., 
2015). A meta-analysis of 265 of observational studies and RCTs, reported a lower risk of 
cancer for the use of metformin and thiazolidinediones and an increased risk of cancer for 
the use of insulin, sulfonylureas and alpha glucosidase inhibitors (Wu et al., 2015). 
However, the results from the observational studies regarding specific ADMs have been 
inconsistent.  
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Lewis et al. (2011) found an increased cancer risk for the use of pioglitazone, whereas 
more recent studies found no association between the use of pioglitazone and the risk of 
cancer (Lewis et al., 2015, Kowall et al., 2015; Levin et al., 2015; Korhonen et al., 2016) 
and rosiglitazone (Tuccori et al. 2016). A reduced risk of cancer has been reported for the 
use of metformin by numerous observational studies but only three of 27 studies reviewed 
by Suissa and Azoulay (2012) avoided time-related biases.  

Results from four observational studies (Colhoun, 2009; Currie et al., 2009; Hemkens 
et al., 2009; Jonasson et al., 2009) raised concerns on the potential association between 
insulin analogue glargine and increased cancer risk (Pocock and Smeeth, 2009; Giovannucci 
et al., 2010; Johnson and Yasui, 2010). These concerns appeared to be well-founded in the 
light of preclinical safety evaluations suggesting an increased mitogenic potency of some 
insulin analogues due to their greater binding affinity for the insulin and insulin-like growth 
factor-1 receptors as compared to human insulin (Baricevic et al., 2015). 

Findings from the numerous observational studies, which emerged after the publication 
of four initial studies, provided no conclusive evidence on the relationship between the use 
of insulin analogue glargine and cancer risk (Karlstad et al., 2013; Badrick and Renehan, 
2014). The majority of these observational studies have been criticized for limitations, 
methodological drawbacks and biases, including short follow-up, prevalent-user design, 
confounding by indication and time-related biases (Pocock and Smeeth, 2009; Johnson et 
al., 2012; Wu et al., 2016). In addition, the findings of several observational studies have 
suggested that reverse causality and detection bias may explain an increased cancer risk at 
the time of diabetes onset or initiation of ADMs (Carstensen et al., 2012; De Brujin, 2014). 

There are only few observational studies with new-user design and/or assessment of the 
cancer risk by treatment duration or cumulative dose (Suissa et al., 2011; Ruiter et al., 2012; 
Fagot et al., 2013; Stürmer et al., 2013; Peeters et al., 2016; Wu et al., 2017). These studies 
compared use of insulin glargine to human insulin with respect to the incidence of breast 
cancer (Suissa et al., 2011; Peeters et al., 2016; Wu et al., 2017), any cancer and breast 
cancer (Ruiter et al., 2012; Fagot et al., 2013), any cancer, breast cancer, prostate cancer, 
and colon cancer (Stürmer et al., 2013). For any cancer, no association with use of glargine 
was seen in two study (Fagot et al., 2013; Stürmer et al., 2013), and a decreased risk was 
found in the study by Ruiter et al. (2012). For breast cancer, two studies observed an 
increased risk for the use of insulin glargine compared with that of human insulin (Ruiter et 
al., 2012; Wu et al., 2017), and three found no association (Suissa et al., 2011; Stürmer et 
al., 2013; Peeters et al., 2016). Stürmer et al. (2013) observed no difference in the risk of 
prostate and colon cancer. 

The need for robustly designed and conducted observational studies on well-powered 
cohorts with long follow-up has been acknowledged and calls have been made for second-
generation observational studies (Renehan, 2012; Johnson et al., 2012). Among principles 
and recommendations regarding the appropriate methodological and analytical approaches, 
the use of time-varying (cumulative) exposure definition, the new-user cohort design and 
evaluation of site- and sex-specific cancer endpoints have been emphasized (Johnson et al., 
2012; Renehan, 2012; Walker et al., 2013; Badrick and Renehan, 2014; Wu et al., 2016).  
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The present study was undertaken to investigate the relationship between the use of anti-
diabetic medications, including different insulin types, and the risk of cancer when 
addressing methodological shortcomings and mitigating bias potentially involved in 
previous observational pharmacoepidemiological studies. In addition, the present study 
aimed at addressing the issue of multiple time scales, which are often present in 
observational cohort studies, by introducing a novel method and by applying it to a real-
world problem. 
 
Study-specific objectives were as follows. 
 

Study I 

To evaluate the relationship between anti-diabetic medication and risk for any 
cancer in the population-based FINRISK cohorts, when accounting for the effect of 
duration of anti-diabetic treatment and controlling for important confounders, such 
as smoking, use of alcohol and BMI.  

 

Study II 

To investigate the relationship between use of certain insulins and risk for any cancer 
and ten specific cancers in a five-country cohort study on new insulin users, when 
addressing the limitations and biases involved in previous studies. 
 

Study III 

To introduce a nonparametric Bayesian model for the estimation of intensity 
function on two time scales jointly. 
 

Study IV 

To demonstrate that exploring time-to-event data on several time scales jointly may 
provide additional insights to a phenomenon of interest and to provide a motivating 
example by modelling the time-dependent dynamics of the hazard of ESRD and 
death without ESRD with the models based on the method from Study III. 
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The empirical part of this thesis includes two studies, in which the relationship between the 
cancer risk and the use of ADM (Study I) and different insulins (Study II) was studied using 
the FINRISK cohort and the CARING cohort, respectively. In addition, in Study IV, a 
cohort of T1D patients (IV) was studied to demonstrate several applications of the Bayesian 
intensity model introduced in Study III. The study cohorts are presented graphically in 
Figure 3.  

 

Figure 3 Bars show the study periods and the size of study populations investigated in this work: 
the FINRISK cohorts (Study I), cohorts of new insulin users from Nordic countries and 
the CPRD from the UK (Study II) and the FinDM (Diabetes in Finland) cohort of 
individuals diagnosed with T1D (Study IV).  
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The study population comprised three FINRISK cohorts on respondents of representative, 
cross-sectional population surveys carried out in 1997, 2002 and 2007 in several areas in 
Finland (Borodulin et al., 2017). Data on potential confounders, such as smoking, alcohol 
consumption and BMI were measured as part of the FINRISK survey and were augmented 
by data on incident cancers from the Finnish Cancer Registry, death records from Statistics 
Finland, and ADMs from the Prescription Register (SII). Individuals entered the cohort at 
the date they visited the FINRISK study site and were followed until December 31, 2010, 
the date of diagnosis of any cancer or death, whichever occurred first. After exclusion of 
individuals with any history of cancer at baseline (N=870) and prevalent users of ADM 
(N=548) identified using a half-year wash-out period, the study population comprised 
23,394 individuals. 

Prescription data included the date of purchase, anatomical therapeutic chemical (ATC) 
code (A10 for any ADM, A10A for insulin etc.), the number of packages purchased and the 
code of reimbursement entitlement. In this study, the exposure to any and specific ADM 
was measured in terms of time since date of the first purchase. Individuals who purchased 
any ADM during the study period were considered as new ADM users after the first 
purchase and, according to intention-to-treat approach, were regarded as users thereafter. In 
this manner, users of specific ADM, including metformin, sulfonylurea and insulin, were 
identified.  

The outcome of interest was any incident cancer defined as the first primary cancer of 
any site except for skin cancer other than melanoma. To avoid uncertainty in the sequence 
of the initiation of ADM and cancer diagnoses, we regarded those diagnosed with cancer 
within the first month of using ADM as being diagnosed as non-users.  

According to the alcohol consumption reported at baseline, the individuals were divided 
into non-users, moderate users (<14 and <7 portions per week for men and women, 
respectively) and heavy users for the higher consumption. Based on the baseline smoking 
status, individuals were divided into never, former and current smokers. For BMI (weight 
in kilograms divided by square of height in meters), four categories were used: underweight 
(<18.5kg/m2), normal (18.5–24.9 kg/m2), overweight (25–29.9 kg/m2) and obese (30 kg/m2 
and over). Because there were missing values in alcohol consumption (4%), smoking status 
(1.3%) and BMI (11%), the categorical variables included also a “missing” category. 
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To avoid immortal time bias, the individual follow-up time was cut into intervals according 
to the date of the first purchase of any ADM. As a result, the follow-up time of user was 
split in two intervals, the time before and after the initiation of ADM. For each specific 
group of ADM, the individual follow-up was treated in the same manner. Further, the time 
since initiation of any and specific ADM was split into smaller intervals at 3, 6, 12, 24, and 
48 months. Therefore, each user contributed multiple intervals of their follow-up time (i.e. 
person-time) to the split data.  

Based on the split data, I constructed several variables describing this follow-up time in 
terms of ADM use. The time before and after the initiation of ADM was described by a 
binary variable with two categories, ‘no ADM’ and ‘ADM’. To specify the time elapsed 
since the initiation of ADM (i.e. duration of use), we used a time-varying variable with the 
category ‘no ADM’ and three categories ‘≤ 1 year’, ‘1–4 years’ and ‘>4 years’ for ADM 
use. For each specific group of ADM, otherwise similar exposure variables were constructed 
except they included an additional category ‘other ADM’ to denote the time on other 
ADM(s) that possibly preceded the initiation of the specific ADM of interest.  

For instance, if an individual used ADM for five years, and started with metformin that 
was then augmented by insulin three years later, his/her exposure was described by the 
following variables: 

1. Any ADM: the binary variable and time-varying variables as described above 
2. Metformin: the categorical variable with categories ‘no metformin’, ‘other ADM’ 

and ‘metformin’ so that s(he) contributed no person-time to the category ‘other 
ADM’; in the time-varying variable, s(he) contributed person-time to the categories 
‘no metformin’ and ‘≤ 1 year’, ‘1–4 years’, ‘>4 years’ on metformin 

3. Insulin: the categorical variable with categories ‘no insulin’, ‘other ADM’ so that 
s(he) contributed person-time to all categories; in the time-varying variable, s(he) 
contributed person-time to the categories ‘no insulin’, ‘other ADM’ and ‘≤ 1 year’, 
‘1–4 years’ on insulin.  

Using the univariate logistic regression, we assessed the effect of each confounder on 
the probability of starting ADM. The incidence rate (IR) of cancer was modelled by using 
Poisson regression model for rates with the offset term for the logarithm of person-time. 
The crude and adjusted rate ratios (RR) with 95% confidence intervals (CIs) for the use of 
(specific) ADM relative to non-use were assessed by using univariate and multivariate (sex, 
age modelled by the cubic spline, calendar time, BMI, smoking) Poisson regression models, 
respectively. The covariates other than those for ADM exposure were selected into the 
model based on the Akaike information criterion and the deviance test. As accounting for 
the baseline use of alcohol did not improve the multivariate model, this covariate was not 
included into the final model. In addition, I examined the variation in RR graphically by 
using restricted cubic splines for the duration of (specific) ADM with knots set at quartiles. 

The data were processed using the Lexis machinery (Carstensen, 2012) available in the 
Epi package (Plummer and Carstensen, 2011) for the R statistical software (R Core Team, 
2017). The p-values corresponding to the z ratio were calculated and p<0.05 were 
considered statistically significant. 
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An observational cohort study on new users of insulin was conducted as a part of the five-
country CARING project to study the relationship between the use of different insulins and 
cancer risk. Population-based cohorts were formed by using the prescription data from the 
Norwegian, Swedish, Danish and Finnish National Prescription Registries and from the 
CPRD in the UK. For each country, the start of the study period was defined as the year 
when the collection of prescription data started. The study period was 1996–2010 for 
Denmark, 1996–2011 for Finland, 2005–2011 for Norway, 2007–2012 for Sweden and 
1987–2013 for the UK.  
The Nordic prescription data were linked to the register data on cancer, death and 
emigration. For the UK cohort, the data on cancer and death were retrieved from the CPRD. 
The data sources and formation of the study cohorts are described in more detail in the study 
protocol, which was registered in the ENCePP electronic register of studies (CARING 
Consortium, 2015). 

The individuals entered the cohort on the date of the first prescription of any insulin 
(index date). The exclusion criteria comprised any history of cancer at baseline and 
prevalent use of insulin as defined by a 1-year wash-out period. After applying the exclusion 
criteria, the study population comprised 327 040 new insulin users. 

The primary outcome of interest included incident cancer at ten cancer sites: trachea and 
lung, breast, endometrium, prostate, colon and rectum (colorectal), liver, pancreas, bladder, 
melanoma of skin and non-Hodgkin lymphoma. The secondary outcome of interest was any 
incident cancer except non-melanoma skin cancer. Diagnoses are recorded in the Nordic 
countries using the ICD codes (revisions 7, 9, 10 and O-3) and in the CPRD according to 
the Read code system. Identification of the incident cancers from the data was performed 
relying on coding dictionaries compiled according to the different coding systems. To 
achieve concordance between the diagnosis codes, the code lists were carefully revised for 
equivalence and completeness. 

In the Nordic Prescription Registers, purchased medicines are recorded using ATC 
codes, in the CPRD with the British National Formulary codes. The primary interest was on 
the long-acting insulins (human insulin, insulin glargine and insulin detemir) and all other 
insulins were considered as one group. The Nordic prescription data included the date of 
purchase and the amount purchased in defined daily doses (DDD) but no information on 
individual dosage. The CPRD prescription data included the date of prescription and the 
dosage information (substance strength and amount), from which the DDD was derived. By 
assuming a dose of 1 DDD per day, the exposure to insulins of interest was assessed in a 
time-dependent manner as the cumulative treatment time. For each insulin type of interest, 
the exposure started at the date of first purchase, and an individual was considered exposed 
from that point onward. To capture the changes in exposure status during the follow-up 
period, the individual follow-up time was split into 120-day intervals. The exposure was 
updated at the start of each interval. Time on a particular insulin cumulated until exposure 
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stopped due to switching to another insulin type or discontinuation (or the end of follow-
up) and cumulative exposure remained at the same level unless the treatment was resumed. 
In episodes of repeated prescriptions, possible gaps between the periods covered by each 
prescription did not accumulate treatment time. Cumulative treatment time was divided into 
half-year categories for the first year, followed by 1-year categories for longer exposure, 
with the last being >6 years for the broadly, and >12 years for the finely categorized long-
term exposure. In addition, each exposure variable incorporated a non-exposed status. 

We only considered confounders available in all five datasets: sex, age (time-varying, 
10-year groups), calendar time. The baseline co-medication (non-insulin ADM, statins, 
nonsteroidal anti-inflammatory drugs, hormone replacement therapy) was defined as at least 
one prescription within one year before the index date. Individuals aged 30 years or younger 
at index date with no oral ADMs were considered to have T1D, whereas those aged 40 years 
or older were considered to have T2D. The rest of cohort was assigned unspecified diabetes 
type. Duration of insulin-treated diabetes was defined as a time since index date in 1-year 
intervals. Menopausal status (no/yes) was evaluated time-dependently. Women were 
assumed to reach menopause at the age of 50 years. Furthermore, country of the data source 
was used as a covariate. In order to tabulate the data, only categorical variables were used. 

Table 2 summarizes the approaches, including the study design, methodological and 
analytical methods, used in this study to mitigate different types of bias. For each cohort, 
the data were tabulated and the number of cancer cases and person-years were aggregated 
by categorical variables. Tabulated data on five cohorts were combined and IRs were 
estimated by fitting multivariate Poisson regression models on tables of event numbers 
using the log of person-years as an offset. Each model incorporated all three insulin 
exposures, and was adjusted for age, calendar time, duration of insulin-treated diabetes, 
country, baseline use of non-insulin ADM and other co-medication. The RRs for cancer 
incidence with 95% CIs were evaluated by contrasting rates in the same exposure categories 
of glargine, detemir, and human insulin (glargine vs. human insulin, detemir vs. human 
insulin, glargine vs. detemir). In the primary analyses, sex- and site-specific endpoints were 
examined using insulin exposures with a broader category for longer duration. For the 
secondary analyses, similar evaluations were performed without stratifying on sex and using 
the insulin exposures with the finer categories of cumulative duration.  

To evaluate the robustness of the results, several sensitivity analyses were performed. 
Potential confounding effect of diabetes type was evaluated by restricting the study 
population to those who fulfilled the definition of T2D. To account for possible changes in 
the profile of new insulin users after the launch of glargine in 2000, we excluded all 
individuals with the index date before 2000. Given that recording of cancer diagnosis in the 
CPRD is based on a different approach and coding system than in the Nordic Cancer 
Registries, we repeated the primary analysis using the Nordic cohorts only. For breast and 
endometrial cancer, further adjustment for menopausal status was performed.  
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The model proposed in this work is based on the point process on the Lexis diagram and 
allows for modelling the right-censored time-to-event data on two time scales jointly. By 
viewing the intensity process as a non-homogeneous Poisson process, the model yields the 
Poisson likelihood for statistical inference. A less complex parametrization of the model is 
achieved by discretizing the process with respect to one of the two time scales. First, the 
Lexis diagram is transformed into its isomorphic representation, in which the life lines 
become horizontal (Figure 4). Then, the observational space defined on this isomorphic 
representation is divided into  strips or strata , within which the life lines remain over 
the entire observation period. These strata are assigned the intensity functions , each of 
which can vary with respect to the one time scale only that is along life lines. These strata-
specific intensity functions are modelled by piecewise constant functions , , 
which are specified by jump points  and hazard levels  (Figure 5). 
 

 

Figure 4 The Lexis diagram as divided into ten strata and transformed to its isomorphic 
representation in which the life lines become horizontal. The follow-up of each women 
from the gbcs cohort is represented by a life line with or without dot at the end to denote 
recurrence and censoring, respectively. The life lines proceed along time since 
mastectomy. The strata are formed according to age at mastectomy and are assigned 
the intensity functions , k=1, …, 10. The stratum-specific intensity function  is a 
function of time t that is measured as time since mastectomy.  
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Jump points  and hazard levels  are the model parameters to estimate. The Bayesian 
modelling proceeds by assigning a prior distribution to the model parameters. Figure 5 
visualizes the structure of the prior. Arjas and Gasbarra (1994) proposed a nonparametric 
Bayesian approach to the estimation of the intensity function of a non-homogenous Poisson 
process on the real line. The prior proposed by Arjas and Gasbarra for the hazard levels, 
hereafter referred as the AG prior, assumes no trend a priori. The prior for the hazards levels 
of the two-dimensional model, hereafter referred as the Lexis prior, was constructed by 
extending the idea of Arjas and Gasbarra to apply the two-dimensional case.  

The prior distribution of the jump points  is assumed to be a time-homogenous 
Poisson-process with intensity parameter . Figure 5 visualizes the structure of the Lexis 
prior. The Lexis prior for the hazard levels assumes no trend a priori but additionally 
incorporates smoothing and borrowing of strength in two dimensions, within and over strata 
as shown by curved arrows in Figure 5.  

Let  denote a Gamma prior with the shape and scale parameter. Within the first 
stratum , the prior for the hazard levels is assumed to be  and , 

, for  and , respectively.  Within the strata , , the prior for the hazard 
levels  is assumed to be , where  is calculated by dividing  by the 
weighted mean of the previous hazard level , if exists, and the average of the 
neighbouring hazard levels of . The weighted mean is calculated by using a weight 
parameter .  

 

 

Figure 5 The data are divided into the strata , , and the stratum-specific 
piecewise constant functions  are specified by the jump points  and the 
corresponding hazard levels ,  j= 0,1, … . Within , the prior for the hazard levels 
is assumed to be   ~  and  ~  when . Within ,  

, the hazard levels  are assigned the prior  that tightens  with 
the previous hazard level  within  and  the neighbouring hazard levels of  
as shown by curved arrows. 
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Altogether, the Lexis prior comprises five hyperparameters, , ,  and . The 
small values for  imply few jump points in the hazard rate and vice versa. The initial hazard 
levels of the first and subsequent strata are controlled by  and , respectively, that regulate 
the looseness of the hazards levels with the larger values resulting in a stronger smoothing. 
The direction and strength of smoothing is regulated by , with  standing for equally 
strong impact of  and the average of neighbouring hazard levels of , and  
standing for a priori independent hazard functions  and . For the latter case, the Lexis 
prior simplifies to the AG prior. The hyperparameters can be given some values or be set 
priors.  

Inference under the proposed nonparametric Bayesian model is accomplished using the 
MCMC method, namely the reversible jump Metropolis-Hastings algorithm described by 
Härkänen (2003). The reversible jump Metropolis-Hastings algorithm allows for sampling 
from the posterior distribution with the parameter space of variable dimension. 

The analyses were performed using the BITE software (Härkänen, 2003), which 
incorporates a set of nonparametric Bayesian intensity models, and provides the MCMC 
procedure for drawing the samples from posterior distribution (Haukka et al., 2016). The 
CODA software package (Plummer et al., 2006) for R (R Core Team, 2015) was used to 
assess the convergence of parameter estimates. 

To evaluate the adequacy of the proposed method, survival data were generated by 
specifying a hazard function incorporating abrupt changes in hazard levels. Five hundred 
simulated data sets were generated to contain each 5000 individuals with the event or 
censoring times defined on two time scales. 

To illustrate the feasibility of the proposed model, it was fitted to the gbcs dataset 
available on https://www.umass.edu/statdata/statdata/data/ (University of Massachusetts 
Amherst). The data originate from a trial started in 1984 and conducted by the German 
Breast Cancer Study Group (Schumacher et al., 1994). The dataset comprises 686 women 
diagnosed with primary node-positive breast cancer and followed from mastectomy until 
recurrence (N=299), death or end of follow-up. There are several prognostic factors 
available in the gbcs data, including age at operation and number of lymph nodes involved 
at the time of operation. To model the hazard rate with respect to age and time since 
mastectomy, we divided data into ten strata (5-year strata except the youngest <30 and the 
oldest ≥70), in which the number of patients varied from 6 to 137, and the number of events 
from 6 to 58. Similarly, to explore the changes in the effect of positive lymph nodes over 
time, the data were divided into 22 strata (by one node for the first 20 nodes, 21-24 and ≥25 
nodes), in which the number of patients varied from 3 to 187, and the number of events from 
2 to 59. 
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Several nonparametric Bayesian models with various values for the hyperparameters  and 
were applied to 500 simulated datasets, each of which was divided into 15 strata. For each 

stratum, the posterior expectations of the strata-specific hazards with 95% credible intervals 
were calculated for 99 equally spaced points. The adequacy of the method was examined 
by assessing the coverage probability. For each of these 1485 points, the coverage 
probability was calculated as the proportion of pointwise credible intervals containing the 
true value. For each model, we reported the proportion of credible intervals for which the 
coverage probability was within the [0.94, 0.96]. In addition, we assessed the median of 
mean squared errors (MSEs) obtained for each of the 1485 points. The MSEs were 
calculated by taking the average of the squared difference between the expectations and the 
true values of the hazard function. 

In addition, we compared the performance of our model with two other methods. The 
nonparametric Bayesian model with the AG prior was fitted by setting  that implies 
no smoothing over a priori independent strata-specific hazard functions . In addition, each 
hazard function  was modelled using the Poisson regression model with the cubic spline 
for the effect of time.  

The proposed method was used to model the hazard rate of recurrence of breast cancer 
in the gbcs dataset (Hosmer et al., 2008). In the first model, the hazard of recurrence was 
estimated on two time scales, age and time since diagnosis of breast cancer. In the second 
model, the hazard of recurrence was estimated with respect to the number of lymph nodes 
involved at the diagnosis and time since the diagnosis of breast cancer.   

To demonstrate the advantages of exploring the hazard on two or more time scales jointly, 
the models based on the method from Study III were applied to the data from the nationwide 
register-based FinDM cohort study. The FinDM study is aimed at monitoring the incidence 
and prevalence of diabetes and its complications in Finland (Sund and Koski, 2009). In this 
study, 11,810 individuals diagnosed with T1D before the age of 30 years between 1972 and 
1991 were followed up from diabetes onset until the end of follow-up at 31 December 2014 
for the incident onset of ESRD or death without ESRD. The relevant time scales to study 
the hazard of ESRD and death without ESRD included age, diabetes duration and calendar 
time. Three models were applied to the data to explore the time-dependent dynamics of the 
hazard. 
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The two-dimensional hazard of each outcome was modeled as a function of age and diabetes 
duration. The former was used to form six diabetes-onset-age strata (0–3, 4–8, 9–13, 14–
18, 19–23, 24–29 years). Within the strata, the sequence of event times and size of the risk 
set at each time point are determined by the time scale that is used in the analysis as a 
continuous one. The intensity model with the Lexis prior ( ,   and 

) was applied to estimate the stratum-specific hazard functions either as functions 
of diabetes duration or age.  

By assuming the time-scale-specific hazard components to act multiplicatively, the 
assumption involved in the modelling of time-to-event data with the Cox regression, I 
studied the individual contribution of diabetes duration and age to the time-dependent 
dynamics of the hazard of both outcomes. Alternatively, an additive model can be applied. 
The time-scale-specific components of the two-dimensional hazard of death without ESRD 
were modelled as a product of two-dimensional function of diabetes duration using broader 
strata (0–8, 9–18, 19–29 years) and one-dimensional function of age. The individual 
contribution of diabetes duration and age to the hazard of ESRD was studied by modelling 
both components as one-dimensional functions.  

The three-dimensional hazard was modelled to explore whether and how the time-
dependent dynamics of the two-dimensional hazard vary with the diabetes cohort (1972--
1975, 1976--1979, 1980--1983, 1984--1987, 1988--1991). The intensity model with the 
Lexis prior with two weight parameters ( ,   and ) 
was applied. In this model, borrowing of power and smoothing within both the diabetes-
onset-age strata and diabetes cohorts as well as between the diabetes-onset-age strata and 
diabetes cohorts. 

The models were fitted to the data using the BITE software (Härkänen, 2003), the 
convergence of the MCMC simulation results was assessed using the CODA software 
package (Plummer et al., 2006) for R (R Core Team, 2015). Based on the trace plots, we 
found the convergence to be reasonable. The lattice package (Sarkar, 2008) for R was used  
to plot the estimated hazard surfaces by means of wireframe plots and heatmaps. The 
comparison of the stratum-specific hazard rates were based on the visual examination of the 
95% credible intervals for overlapping. 
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In the FINRISK cohort, during a median follow-up of 9 years 1301 individuals of 23 394 
started ADM. The mean baseline age of users of ADM was 61 years and of non-users 48 
years. Table 3 shows other baseline characteristics of the FINRISK participants. Among 
users, there were more men, more obese (BMI≥30 kg/m2) individuals and less those who 
never smoked. The probability of starting ADM was higher for men, overweight (25-29 
kg/m2) and obese individuals and among current and former smokers (Table 3). Similar 
associations were found between the baseline characteristics and the risk of cancer, when 
measured using the univariate Poisson regression models. 

Table 3 Distribution of the baseline characteristics as number of individuals (%) of the 
FINRISK participants divided into users of ADM and non-users.  The crude odds 
ratio and 95% CI for starting ADM according to the baseline characteristics. 

 Users of ADM    
N = 1 301 

Non-users            
N = 22 093 

Crude odds ratio 
(95% CI) 

Sex 
Men 

Women 

764 (58.7) 
537 (41.3) 

10 428 (47.2) 
11 665 (52.8) 

reference 
0.61 (0.58-0.64) 

FINRISK year    
1997 633 (48.5) 6 928 (31.4) reference 
2002 472 (36.2) 8 256 (38.6) 0.67 (0.64-0.71) 
2007 199 (15.3) 6 906 (31.3) 0.47 (0.43-0.52) 

BMI (kg/m2)    
<18.5 - 158 (0.7) - 

18.5-24 96(7.4) 8 026 (36.4) reference 
25-29 458 (35.2) 7 958 (36.0) 5.24 (4.71-5.84) 
≥30 725 (55.8) 3 429 (15.5) 20.27 (18.28-22.54) 

Missing 22 (1.7) 2 522 (11.4) 1.44 (1.16-1.78) 
Smoking    

Never 594 (45.7) 11 525 (52.2) reference 
Former 346 (26.6) 4 861 (22.0) 1.39 (1.31-1.48) 
Current 323 (24.8) 5 436 (24.6) 1.12 (1.05-1.19) 
Missing 38 (2.9)   271 (1.2) 2.94 (2.52-3.41) 

Alcohol consumption    
Non-user 525 (40.3) 7 820 (35.4)  reference 
Moderate 499 (38.4) 10 375 (47.0) 0.72 (0.63-0.82) 

Heavy 3 136 (14.2) 3 136 (14.2) 0.79 (0.73-1.87) 
Missing 762 (3.4) 762 (3.4) 1.36 (1.21-1.52) 
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In the FINRISK cohort, 1071 individuals were diagnosed with cancer during the follow-
up period, 53 cancers occurred in users and 1028 in non-users. For the use and non-use of 
ADM, there accumulated 5.3 and 192.2 thousand person-years, respectively. The crude IR 
was 9.93 (95% CI 7.44–13.00) per 1000 person-years of using ADM and 5.35 (95% CI 
5.02-5.69) per 1000 person-years not using ADM, yielding a crude RR of 1.86 (95% CI 
1.39–2.42). The association attenuated after adjustment for age, sex and calendar time (RR 
1.08, 95% CI 0.81–1.42) and further for BMI and smoking (RR 1.01, 95% CI 0.75–1.33). 

As compared to non-use, a higher incidence rate was observed for 1–4 years' duration 
of the use of any ADM (i.e. duration of treated diabetes) yielding the crude RR of 2.44 (95% 
CI 1.67–3.34). However, the association attenuated after adjustment for calendar time, age 
and sex (RR=1.47, 95% CI 1.00–2.06) and further after adjustment for baseline BMI and 
smoking status, (RR 1.37, 95% CI 0.94–1.94). No association was found between cancer 
risk and durations of the use of ADM longer or shorter than 1–4 years. The crude RR varied 
with time since initiation of ADM but this variation flattened after adjustment (Figure ). 
No association between the cancer risk and various durations of drug use was seen in the 
similar analyses performed for metformin, sulfonylurea, insulin and any oral ADM.   
 

 

Figure 6 Rate ratio of cancer for the use of DM as compared to non-use as modelled along 
time since initiation of the first ADM. 

The CARING cohort comprised 327,112 new users of any insulin, 66,698 from Norway, 
105 945 from Finland, 21,541 from Norway, 85 319 from Sweden, and 47,609 from the UK 
(CPRD). After the mean follow-up of 4.6 years, there were 212,848, 82,851 and 46,721 
ever-users of human insulin, insulin glargine and insulin detemir, respectively. 

A total of 1.47 million person-years (54.7% in men) accumulated and 21 390 new cancer 
cases occurred during the follow-up. There were 2812 prostate, 2423 colorectal, 2311 
pancreatic, 2233 lung, 1793 breast (women only), 809 liver, 634 endometrial cancer cases, 
612 cases with Non-Hodgkin lymphoma, and 584 with melanoma of skin. Prostate cancer 
(IR=3.50, 95% CI 3.37–3.63) and breast cancer (2.69, 2.57–2.82) showed the highest IR per 
1000 person-years in men and women, respectively, and were followed by colorectal (1.65, 
1.58–1.72), pancreatic (1.57, 1.51–1.64) and lung (1.52, 1.46–1.58) cancer. About 32% of 
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all cancer cases and the majority of pancreatic cancer cases (63%) were diagnosed during 
the first year of insulin treatment. 

In the main analysis performed by sex and cancer site, a few increased and decreased 
risks but no systematic differences in the risk for studied cancers was found, when 
comparing the cumulative treatment time (≤0.5, 0.5–1, 1–2, 2–3, 3–4, 5–6, >6 years) on 
insulin analogue glargine to that on human insulin (Figures  and  ). Comparisons of insulin 
detemir to human insulin and insulin glargine to insulin detemir also showed no consistent 
differences in incidence rates of sex- and site-specific cancers (results not shown).  

In women, we observed an increased risk for colorectal and endometrial cancer for the 
first half-year, and for melanoma of skin for 2–3 and 4–5 years of the cumulative treatment 
time on insulin glargine relative to that of human insulin. In men, we observed a decreased 
risk for pancreatic cancer for 2–3 years, for liver cancer for 3–4 years and >6 years of the 
cumulative treatment time on insulin glargine relative to that on human insulin.  

For any cancer, we found an increased risk in women for 0.5 year and a decreased risk 
in men for 0.5–1 year, 1–2 years and >6 years of the cumulative treatment time on insulin 
glargine relative to that on human insulin. The results of the main analysis were robust 
across a range of sensitivity analyses. 
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Figure 7 Adjusted rate ratios (95% CI) of cancer occurrence (eight site-specific cancers and any 
cancer) in male insulin users when calculated by cumulative treatment time on insulin 
glargine as compared to human insulin. 
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Figure 8 Adjusted rate ratios (95% CI) of cancer occurrence (nine site-specific cancers and any 
cancer) in female insulin users when calculated by cumulative treatment time on insulin 
glargine as compared to human insulin.  
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Based on the 95% coverage probability, the Bayesian intensity model with hyperparameters 
 and  demonstrated the best fit with the coverage probability falling into the 

interval [0.94, 0.96] in 39% of the examined points. The corresponding figure for the strata-
specific Poisson models and the Bayesian model with the AG prior (i.e. without smoothing 
over strata) was 26% and  6%, respectively. 

The results from the Bayesian model depicted how the hazard varies both with the 
different values of the prognostic factors (i.e. the variation over strata) and along time-on-
study (i.e. the variation within strata). The highest hazard of recurrence was associated with 
the age of 20–30 years at mastectomy (Figure 9). The hazard decreased with older ages at 
mastectomy, achieving the lowest levels at the age of 45–50 years after which it increased 
again. A fairly constant hazard of recurrence was seen throughout the follow-up period for 
all ages at mastectomy except the age of 55–65 years that was associated with the lower 
hazards levels during the first year after mastectomy. The hazard of recurrence varied with 
both the number of involved nodes and time since mastectomy, being the lowest during the 
first year after mastectomy in women with 1–4 involved nodes (Figure 9). Starting from 5 
nodes, the hazard of recurrence increased gradually with the increasing number of nodes,  
achieving the highest value and levelling off around 15 nodes. 
 

 

Figure 9 The posterior expectation of the hazard of recurrence by time since mastectomy and 
age at mastectomy (left) and by number of positive lymph nodes (right). 
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After a mean follow-up of 26.7 years, a total of 338,493 person-years accumulated and 844 
individuals developed ESRD, yielding a crude incidence rate of 2.53 (95% confidence 
interval 2.36-2.71) per 1000 person-years. There were 1905 deaths among persons without 
ESRD, resulting in a crude mortality rate of 5.71 (95% CI 5.46-5.97) per 1000 person-years. 

The hazard of ESRD varied mainly with attained age, while the hazard of death without 
ESRD was strongly influenced by diabetes-onset age, being higher for older diabetes-onset 
ages (Figure 10). The most apparent differences in the hazard of both outcomes appeared 
between individuals with diabetes-onset ages of 9–13 and 24–29 years.  

 

 

Figure 10 The posterior expectation of hazard for ESRD (grey line) and death without ESRD 
(black line) by diabetes-onset-age strata. 95% credible intervals are shown by dashed 
lines.  
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By fitting the multiplicative model, it was possible to separate the hazard components 

related to diabetes duration and age. For the hazard of ESRD, the former component 
diverged from zero already at diabetes onset and showed a slow and smooth increase after 
15 years of diabetes duration, while the latter component diverged from zero around the age 
of 20 years and after a steady rise remained constant for 10-15 years (Figure 11). The 
dynamics of the hazard of death was different across the diabetes-onset-age strata during 
the initial period of 10-20 years but stabilized at the same level thereafter.  For the hazard 
of death without ESRD, the age-specific component demonstrated a J-curve. 

Based on the results from the three-dimensional model (not shown), the hazard of both 
outcomes also varied with the diabetes cohort. 
 

 

Figure 11 The posterior expectation of the age-scale-specific components of the hazard of ESRD 
and death without ESRD with 95% credible intervals (dashed lines) that were estimated 
by using the multiplicative model. For example, for an individual diagnosed with 
diabetes at the age of 10 years, the hazard of ESRD at the age of 30 years (i.e. after 20 
years since diabetes onset)  is calculated by multiplying the corresponding values of 
the age-specific and diabetes-duration-specific hazard functions. Since the 
contribution of diabetes duration to the hazard of death without ESRD varied across 
three diabetes-onset-age strata, the hazard of death for the same individual should be 
calculated according to his/her diabetes-onset-age stratum (9–18 years).  
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In the study on the FINRISK cohort, the primary focus was to assess the variation of the 
cancer risk with respect to time since starting ADMs when accounting for important 
confounders. Several studies have highlighted the importance of considering time-varying 
representation of exposure when exploring the link between ADM and cancer risk 
(Carstensen et al., 2012; Renehan, 2012; Walker et al., 2013). However, this approach has 
not been routinely used by studies on the relationship between the use of ADM and cancer 
risk. Suissa and Azoulay (2012) reviewed 27 observational studies on the relationship 
between use of metformin and cancer risk and found that 24 studies were subject to time-
related biases. Time-related biases can be avoided by applying with new-user design and by 
using time-varying representation of exposure (Suissa, 2008; Yoshida et al., 2015).  

There was a considerable discrepancy in the baseline characteristics between the 
FINRISK participants who started the use of ADM as compared to non-users. We observed 
that several known risk factors, including age, BMI, smoking and alcohol use, influence in 
a highly similar way the probability of starting ADM and the risk of cancer. Therefore, these 
risk factors are likely to confound the relation between the use of ADM and cancer risk.   

Only a limited number of observational studies on the link between the use of ADM and 
cancer risk have accounted for the effect of common risk factors (Habel et al., 2013; Onitilo 
et al., 2013; Peeters et al., 2015; Peeters et al., 2016; Wu et al., 2017). Therefore, there is 
still a need for the further evaluation of the relationship between cancer risk and ADM by 
accounting for important risk determinants. Recently, a Dutch research group published a 
study protocol concerning the within-class examination of differences in cancer risk for 
sulfonylurea treatment in a prospective cohort of patients with T2D (Schrijnders et al., 
2017). According to the protocol, covariates collected at cohort entry and annually thereafter 
include among others Hemoglobin A1c, BMI, smoking, diabetes duration, serum creatinine, 
and use of other ADMs than sulfonylurea. 

In the CARING cohort study of 327 112 new insulin users, no consistent differences 
were found in the risk of any cancer and ten site-specific cancers for the use of insulin 
glargine or insulin detemir relative to that of human insulin, when examining by the 
cumulative treatment duration. Of the 136 associations tested in the main analysis, only a 
few increased and decreased risks were found. 

The findings of previous observational studies on the link between cancer risk and use 
of insulin glargine have been conflicting, at least partly due to methodological shortcomings 
and biases (Walker et al., 2013; Karlstad et al., 2013; Wu et al., 2016). In addition, most of 
the previous studies lacked important features considered by Renehan (2012) as important 
components of an appropriately conducted pharmacoepidemiological study on the link 
between insulin analogues and cancer risk. Among others, Renehan (2012) listed new-user 
design, sufficiently long follow-up, evaluation of sex- and site-specific cancer outcomes, 
time-varying representation of exposure, cumulative duration or dose of insulin treatment.  



 

 
 
 
 

68 

The results of the CARING study suggested a shift towards increased risk for breast 
cancer for the initial year of glargine use compared to that of human insulin (RR=1.32, 95% 
CI 0.98–1.78 ≤0.5 years, RR=1.32, 95% CI 0.95–1.85 for 0.5-1 years of use), possibly 
suggesting presence of detection or protopathic bias. We found no association between the 
risk of breast cancer and longer treatment durations with insulin glargine as compared to 
human insulin. 

Two studies on the CPRD cohorts and with a similar study design reported contradictory 
findings regarding the link between the use of insulin glargine and risk of breast cancer 
among persons with T2D (Peeters et al., 2016; Wu et al., 2017). When studying new insulin 
users, Peeters et al. (2016) found no association between the incidence of breast cancer and 
the overall use (HR=0.99, CI 95% 0.71–1.37) and various cumulative treatment durations 
of insulin glargine as compared to human insulin. However, among users of insulin glargine 
with past use of >3 years of other insulins, Peeters et al. (2016) observed an increased risk 
of breast cancer (HR=3.17, 95% CI 1.28–7.84). Wu et al. (2017) observed an increased risk 
of breast cancer for the overall use (HR=1.44, 95% CI 1.11–1.85) and for the treatment 
duration >5 years (HR= 2.29, 95% 1.26–4.16) of insulin glargine as compared to that of 
human insulin.  

The heterogeneity of the above results may be at least partly due to the complex nature 
of breast cancer, which is not a single disease but involves different subtypes with the 
potentially different response to the insulin exposure (Bronsveld et all., 2015). Therefore, 
further research into the relation between the use of insulin and risk of breast cancer is 
important. Preferably prospective, large-scale studies with long follow-up should be 
conducted to examine the relationship separately for premenopausal and postmenopausal 
breast cancer and also by diabetes type.  

In the study on the FINRISK cohorts, we used high-quality register data from the Finnish 
Cancer Registry and Prescription Register. By using the new-user design and by employing 
time-varying definition of exposure, we eluded several biases, including prevalent user bias 
and immortal time bias. The potential for detection bias was addressed by evaluating the 
variation of the cancer risk by time since initiation of treatment. Moreover, we controlled 
for confounding through adjustment for known risk factors available from the FINRISK 
survey.  

However, there were also limitations in the study on the FINRISK cohorts. The major 
limitation was a relatively small number (N=53) of cancer cases in those who started ADM 
during the follow-up period, precluding examination of the risk of site-specific cancers. In 
addition, we lacked information on the important confounders, including the type of 
diabetes and duration of diabetes. In addition, in cohort studies with long follow-up, 
defining the confounders based on their baseline values may result in misclassification. 
Therefore, the presence of both residual and unmeasured confounding cannot be ruled out. 

The CARING cohort was fivefold in size compared to the largest new-user cohort of 
those studied up to date (Fagot et al., 2013) and had, therefore, enough statistical power for 
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the assessment of both sex- and ten site-specific cancer outcomes by cumulative treatment 
durations. By using the new-user active comparator study design and time-varying 
definition of exposure (Suissa, 2008; Yoshida et al., 2015), we avoided and mitigated 
several biases, including prevalent user bias, immortal time bias, confounding by indication 
and unmeasured confounding. Moreover, use of similar data sources minimized pitfalls 
arising in multi-country cohort studies, and application of the same design and analytical 
approaches across populations provided apparent benefits (Bazelier et al. 2015). 

The CARING study, however, involved some limitations. The most substantial 
limitation was lack of information on confounders, such as smoking, BMI, type and duration 
of diabetes, comorbidities. To reduce the unmeasured confounding, we adjusted for the 
duration of insulin-treated diabetes and used the active-comparator design (Yoshida et al., 
2015). Although we adjusted for country, we could not rule out any potential confounding 
effects resulting from the differences in insulin user profiles between the countries. In 
addition, examining a large number of potential associations is likely to produce some false 
positive results.  

In the context of register-based research, which always has some limitations, the internal 
validity of the CARING study can be considered good. As the CARING study was based 
on the nationwide (Nordic countries) and representative population-based (CPRD) cohorts,  
the findings of the study are generalizable to the studied populations.  

Application of the Bayesian model to the empirical data yielded reasonable results and 
provided additional insights to the phenomena of interest. 

In Study III, I used the gbcs dataset to examine the hazard of breast cancer recurrence with 
the Bayesian intensity model and found a considerable variation in the hazard according to 
the number of involved positive lymph nodes and age at mastectomy. Similar relationships 
were found in a study that investigated the functional form of relationships between the 
prognostic factors and the 5-year recurrence-free survival using the same data from the 
German Breast Cancer Study (Sauerbrei et al., 1999). Sauerbrei et al. modelled the average 
effect of the prognostic factors on the hazard over the 5-year period, whereas estimation of 
the two-dimensional hazard with the Bayesian model allowed for studying the variation in 
the hazard as a function of the age or the number of nodes at mastectomy as well as exploring 
potential changes in this variation over time. Such an analysis corresponds to the evaluation 
of time-varying effects.  

Gray (1992) studied the functional form of the effect of several prognostic factors, 
including age and the number of positive lymph nodes at diagnosis, on the hazard of breast 
cancer recurrence in 2,404 women. In the preliminary analysis, Gray addressed potential 
time-varying effects of the prognostic factors by performing a time-varying coefficient 
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analysis and observed time-varying effects for all the factors. However, Gray found the 
variation to be moderate for all the factors except oestrogen receptor status. To account for 
the nonproportionality of the effect of oestrogen receptor status, Gray used proportional 
hazards models with strata by oestrogen receptor status and assessed the average effect of 
the other factors over the period of 12 years. Natarajan et al. (2009) studied the effect of 
nine predictor factors on the recurrence-free survival in a cohort of 3,088 breast cancer 
patients by applying the Gray’s 10-knot spline models. Natarajan et al. found time-varying 
effects for oestrogen receptor status, with the assumption of proportional hazards being 
violated for the later. 

With the Bayesian intensity model, the effect of variables on the hazard can be explored 
or accounted for in two different ways. In fact, the baseline hazard can be modelled as a 
function of time (measured on one of the involved time scales) and one or more ordinal 
variables. When studying the effect of the determinant of interest, the usual practice is to 
adjust for potential confounders, such as sex and baseline age. Instead of adjusting, these 
variables can be used to model the multidimensional baseline hazard. It is also possible to 
explore whether and how the baseline hazard is modified by the effect of other variables by 
including them in the Bayesian model as covariates. Then, the (multidimensional) baseline 
hazard and covariate effect can be combined in a multiplicative manner similar to the that 
of the Cox model or in an additive manner. Importantly, estimation of these effects with the 
Bayesian intensity model involves no assumption of proportional hazards. 

Moreover, because of the multidimensional smoothing and borrowing of strength, which 
are built-in features of the Bayesian model, it yields accurate results even when the data are 
limited. For instance, the cohorts studied by Gray (1992) and Natarajan et al. (2009) were 
three to four times as large as compared to the gbcs dataset that included 686 women. 
Estimation of the two-dimensional hazard with the Bayesian model yielded, however, 
reasonable results. Indeed, based on the comparisons in Study III, the Bayesian model 
outperforms the methods that approximate the two-dimensional hazard by a collection of 
one-dimensional functions without smoothing and borrowing of strength. 

In Study IV, by applying the Bayesian models to the data on individuals with T1D from 
the FinDM study, I studied the time-dependent dynamics of the hazard of ESRD and death 
without ESRD on two and three time scales jointly. The results are consistent with previous 
studies but also provide an additional insight to the nature of previous findings. 

I used the two-dimensional model to depict the variation of the hazard according to 
diabetes duration and diabetes-onset age. For ESRD, I observed the similarly shaped 
stratum-specific hazards, which, however, involved the lag period of different length and 
differed slightly in their magnitudes. For death without of ESRD, the stratum-specific 
hazards differed by both their shape and magnitude.  

When trying to interpret the results from such a model, it should be noted that the time 
scales are not truly different variables but are measuring time from different origins and 
time proceeds on all time scales at the same pace. In the two-dimensional model, one of the 
time scales is used to form the strata of life lines and another to proceed along life lines. 
Obviously, as the follow-up of an individual proceeds along the time scale that is used as a 
continuous one, the same amount of time proceeds on all time scales. For instance, the more 
time elapses from diabetes onset the older individual becomes. Although the hazard is being 
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assessed as a function of diabetes duration, age is likely to contribute to the observed 
variation. Therefore, the two-dimensional model provides a descriptive rather than 
analytical tool. However, it is important to explore the time-to-event data in a such way 
because the hazard pattern itself may guide further analysis. 

I explored the individual role of each time scale with the multiplicative model. Based on 
these results, diabetes duration and attained age but not diabetes-onset age contributed to 
the variation in the two-dimensional hazard of ESRD. In contrast, the two-dimensional 
hazard of death without ESRD was influenced by all the three time determinants, suggesting 
an interaction between diabetes-onset age and diabetes duration.  

The individual contribution of diabetes duration is likely to reflect an impact of the 
increasing cumulative glycaemic burden (Writing Team for the Diabetes Control and 
Complications Trial, 2003; de Boer, 2011). In addition, the hazard of ESRD varied with 
attained age but not with diabetes-onset age. Findings of previous studies have, however, 
suggested that diabetes-onset age is an important determinant for the hazard of ESRD (Finne 
et al., 2005, Svensson et al., 2006; Costacau and Orchard, 2017; Gagnum et al., 2017; Helve 
et al., 2017). I observed the longer lag periods for younger diabetes-onset ages and the 
similarly shaped stratum-specific hazards. These results suggest that the age-specific hazard 
is intensified by the effect of cumulative glycaemic burden and the differences attributed to 
diabetes-onset age arise from the differences in diabetes duration. 

There were differences in the hazard of death without ESRD between the diabetes-onset-
age strata. During the first 15-25 years after diabetes onset, the hazard was increasing among 
those with younger diabetes-onset age (0–8 years) and was decreasing among individuals 
with older diabetes-onset age. The study on the cohort of Finnish T1D patients without 
albuminuria observed that during the first 10 years after diabetes diagnosis the excess 
mortality was driven by acute complications (Groop et al., 2018). The study on mortality 
before age of 30 years among patients with childhood-onset T1D reported that acute 
complications were the main cause of excess mortality (Wasag et al. 2018). In addition, 
Wasag et al. (2018) reported an increasing risk of death with increasing diabetes-onset-age 
and older age during the follow-up. A J-shaped age-specific hazard, which was observed 
for death without ESRD when modelled with the multiplicative model, is a typical pattern 
seen for all-cause age-specific mortality in the populations of developed countries (Siegel 
2012, p. 80–82). 

Based on the results from three-dimensional model, which was based on diabetes 
duration, diabetes-onset age and calendar time, the hazard of ESRD and death without 
ESRD also varied with diabetes cohort. I observed a delayed onset of ESRD and a 
decreasing hazard of death without ESRD for the latter cohorts. 

Along with the empirical questions, examination of the hazard using the Bayesian model 
allows for addressing methodological issues, such as the choice of the primary time scale 
and competing risks. So far, the focus has been on the evaluation of the impact of the 
primary time scale on the hazard ratio instead of exploring the actual contribution of each 
time scale to the hazard. As a result, the recommendations have been contradictory  (Korn 
et al., 1997; Thiébaut and Bénichou, 2004; Pencina et al., 2007; Cologne et al., 2012; 
Chalise et al., 2016). Obviously, there is no single time scale that fits all situations, because 
different phenomena involve different time scales and the contribution of each time scale 
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and their interplay is not uniform across phenomena. Modelling the hazard on two or more 
time scales jointly avoids confusion regarding the choice of time scale, reduces the potential 
for the misspecification and inferior performance of the model as well as allows for the 
informed choice of the most informative time scale, if is of interest. Previous 
epidemiological studies on the risk of ESRD have accounted for death as a competing event 
by using the competing risks model by Fine and Gray (1999) which is based on the 
subdistribution hazards and estimates the cumulative hazard of the event of interest by 
conditioning on the risk of the competing event. As pointed out by Andersen et al. (2012), 
it is important to report both the cumulative hazard from the subdistribution hazards analysis 
and the actual hazard rates of both the event of interest and a competing event. 

To our knowledge, there is no methods for the estimation of multidimensional hazard 
function equivalent to that proposed in this study. Some generic methods can be developed 
using survival analysis methods tailored for the estimation of one-dimensional hazard. In 
study III, I approximated the two-dimensional hazard function by a collection of one-
dimensional hazard functions modelled using Poisson regression models with splines for 
the effect of time or the Bayesian intensity models with the AG priors. The two-dimensional 
model outperformed these methods, suggesting that smoothing and borrowing the strength, 
the built-in features of the proposed model, are crucial to the multidimensional modelling. 
In addition, since the nonparametric Bayesian model is based on piecewise constant hazard 
functions, it adapts to data flexibly and is advantageous for the modelling of the hazard with 
a complex time-dependent dynamics and for detection of change points.  

Application of the proposed method demonstrated that it can be used as a powerful tool 
which that allows for exploring the hazard with a complex time-dependent dynamics. At 
present, the proposed method lacks desirable statistical features that allows for making 
inference from the model. There are several directions for the further development of the 
proposed method.  

Data modelling can be considered as an iteration of four steps: (1) model building, (2) 
model assessment, (3) model inference, (4) prediction. Selection of the model and 
assessment of the model accuracy are therefore essential steps towards the model inference. 
Model selection involves comparison of the fitted models. The general approach for 
assessment and comparison of the fitted models is to evaluate their predictive accuracy. Out-
of-sample checks using within-sample fits are employed for this purpose. Out-of-sample 
accuracy can be estimated through the cross-validation or by means of an information 
criterion.  

Among various methods proposed for the model comparison and assessment in the 
Bayesian framework, the deviance information criterion (DIC) is the most popular option 
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(Spiegelhalter et al., 2002). Popularity of this method stems from its simplicity and link with 
cross-validation, which make the method advantageous in practical use. However, this 
option is not applicable to nonparametric models due to the poor performance of DIC in 
more complex models (Plummer, 2008). According to Gelman et al. (2014), DIC provides 
unreasonable results in the models yielding the posterior distribution, which is not well 
summarized by its mean.  

There are several other options. Watanabe–Akaike information criterion or widely 
applicable information criterion (WAIC). WAIC can be viewed as an improvement of the 
DIC, because it closely approximates Bayesian cross-validation, and, unlike DIC, is 
invariant to parametrization and also works for singular models (Watanabe, 2010; 
Watanabe, 2013). Gelman et al. (2014) pointed that data partition, on which WAIC relies, 
is likely to cause difficulties with structured models such as spatial models. Another option 
is Bayesian cross-validation methods, including k-fold cross-validation and leave-one-out 
(LOO) cross-validation (Vehtari and Ojanen, 2012; Gelman et al., 2014). LOO cross-
validation is based on the log-likelihood evaluated at the posterior simulations of the model 
parameters. For the proposed model, LOO cross-validation appears to be the most appealing 
alternative. Vehtari et al. provided (2017) a fast and stable computation for LOO cross-
validation in the case of Monte Carlo posterior inference. Based on this method, Vehtari et 
al. (2018) have developed a loo R package, which provides the efficient approximate LOO 
cross-validation. 

Various statistical tests are used to draw inference from the model. In the case of our 
model, statistical inference would concern testing for differences in the hazard between the 
strata and testing for trend within the strata. A preliminary evaluation of differences in the 
hazard between the strata can be done by using the graphical output and based on credible 
intervals. Overlapping credible intervals suggest that data do not provide sufficient evidence 
for differences, whereas the absence of overlap advocates an opposite conclusion. 
Preliminary checks for an increasing (decreasing) trend within a stratum can be done by 
calculating the posterior probability of increasing (decreasing) trend. Although, these 
preliminary checks are informative, statistical testing is needed for further examination.  

Last but not the least, statistical programs or packages are needed to perform modeling 
of the time-to-event data using our method. The BITE software (Härkänen 2003) is an 
already available tool, incorporating a set of nonparametric Bayesian models for the 
estimation of both one-dimensional and multidimensional intensities and providing the 
Markov chain Monte Carlo (MCMC) procedure for drawing samples from the posterior 
distribution.  The software is freely available and can be downloaded from the BITE website 
(Haukka et al. 2016). The reference manual for BITE provides instructions on the 
installation and running BITE, as well as some background theory and model examples 
(Härkänen and But 2016). In the R statistical environment (R Core Team 2017), a user-
friendly package can be developed based on the BITE software. This would allow linking 
BITE with other useful R packages such as the CODA package (Plummer et al 2006) for 
the assessment of the convergence of MCMC iterates, the lattice package (Sarkar 2008) for 
visualization of results with three-dimensional plots and heatmaps, the loo R package, the 
loo package for the LOO cross-validation (Vehtari et al., 2018). 
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Given an increasing prevalence and incidence of diabetes, I have addressed an important 
clinical and public health question whether the use of ADM influences the risk of cancer. 
As there is a variety of different glucose lowering medications and even more different 
cancer types, answering this question is not straightforward and requires a rigorous and 
systematic research.  I have contributed to the research on this topic by addressing a specific 
question whether some of commonly used insulin treatments should be preferred over others 
as safer with respect to the cancer risk.  

In the rigorously performed five-country CARING study, no persistent differences in 
the risk for the ten cancers and any cancer was found, when comparing the cumulative use 
of insulin analogues glargine or detemir to that of human insulin. These results add to the 
conclusive evidence on the absence of the relationship between the cancer incidence and 
use of insulin analogues at follow-up exceeding five years.  

I have learned that there are several simple but effective methods by applying which it 
is possible to avoid or mitigate bias in observational pharmacoepidemiological studies. 
These methods include new-user active-comparator study design and time-varying 
definition of exposure. It is also important to account for confounding whenever it is 
possible.   

I have demonstrated that analysis of the time-to-event data on multiple time scales 
jointly may provide an additional insight to the real-life phenomenon. Cohort studies on 
chronic diseases with long follow-up and multiple time scales would benefit from the use 
of nonparametric Bayesian intensity model that was introduced in this work. It is also 
possible to study the time-varying effects of prognostic factors with the method. Overall, 
the proposed approach provides an appealing and flexible framework for modelling time-
to-event data on multiple time scales. 
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In 2012 I became a doctoral student in the doctoral programme in population health, Faculty 
of Medicine, University of Helsinki. One year earlier, in 2011, I graduated with a Master 
degree in biometry, statistics, from the University of Helsinki, where I started studies in 
2001 at the Faculty of Mathematics. In 1996 I met my husband, 1998 I had my first child, 
2007 my second child and 2009 my third child. In 1993 I came to Finland with my mother 
and sister, my father followed us two years later. I was born in 1977. Why am I going back 
in my history? It is a kind of prospective study and I shall analyze these observations.  

Each of the listed years is the date when an important event took place in my life. Each 
of these events gave a rise to something new, started a new era, created a new time scale. 
Time, timelines and time scales are an exciting matter to think about and to study. This can 
be done in many ways, including empirical, philosophical, mathematical and statistical.  

I am sure a game of chance has played a huge role in what has happened to me so far 
and I am grateful for the strokes of fortune. Since these events have taken place within one 
individual, these cannot be assumed to be independent of each other. Perhaps, the pattern 
reflects my personality but I am not, however, going to analyze myself because such an 
evaluation will be biased (towards or away from null) any way. Instead, I would like to 
convey my gratitude to people who have contributed to this story. 

I would like to express my deepest gratitude to my supervisors Jari Haukka and Tommi 
Härkänen for their invaluable input. Under Jari’s supervision I have had an opportunity to 
grow as a researcher at my own pace but with the confidence that help, good advice and 
experience of life is always available upon asking. Tommi has presented me challenges, 
shared his knowledge and practical experience and guided me gently but firmly on my path.  

I owe my gratitude to all the co-authors of the original publications. This thesis would 
not have been possible without their input. It was the pleasure to work with all the 
collaborators form the CARING project, the team of warm people and skilled researchers 
coordinated by Professor Marie Luise De Bruin. I also sincerely thank those who provided 
me the data: Satu Männistö for providing the FINRISK data, Reijo Sund and Martti Arffman 
for providing the FinDM data and the collaborators from the CARING project for acquiring 
and preparing the data from the Nordic National registries and the CPRD. 

I also thank my thesis committee members, Professor Jukka Corander and Professor Nea 
Malila for willing to be involved. I sincerely thank Professor Peter Muller for helpful 
comments on the draft of the third publication. I greatly appreciate the precise and 
educational comments and thoughts the preliminary examiners, Professor Kari Auranen and 
Docent Maarit Korhonen, provided me with. 

There would not have been this thesis without the financial support. The CARING 
project was funded by the European Community’s Seventh Framework Programme (FP-7). 
My work on finalizing the thesis was supported by Finnish Cultural Foundation.   

During these years, I has been lucky to work at the Department of Public Health 
alongside the great people and experienced researchers. I am grateful to Professor Ossi 
Rahkonen for encouraging, asking questions and giving advices. It has been the pleasure to 
work with my colleague Paula Bergman who has an enthusiastic and professional grasp on 
work.  I am thankful to Paula for having a good laugh almost every day and for interesting 
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conversations and I am sorry for my absences and for being sometimes absent even when 
present during the last year. 

There would not be me like I am without my family. I am grateful to my husband for his 
daily care to me and our children and for his support during this long way. My children have 
always motivated me to go ahead, to learn new things and to grow. They have kept my feet 
steadily on the ground but also energized me and have made sure that my inner child is alive 
and thriving with them. My sister has been a peer support of mine, we share not only many 
genes but also many thoughts. My parents have been overwhelmingly supportive, 
understanding and loving throughout my life. They have taught me invaluable lessons about 
life, including love, patience, parenting and work.  
  
Helsinki, 11 November 2018 
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