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Abstract
1.	 Decisions about land use significantly influence biodiversity globally. The field of 
spatial conservation prioritisation explores allocation of conservation effort, includ-
ing for reserve network expansion, targeting habitat restoration, or minimising eco-
logical impacts of development. Inevitably, the utility of such planning depends on 
the quantity and quality input data, including spatial information on biodiversity, 
threats, and cost of action. In this work we systematically develop understanding 
about the significance of these different data types in spatial conservation 
prioritisation.

2.	 We clarify the common ways different data types enter an analysis, develop math-
ematical models to understand the effects of data in spatial prioritisation, and 
survey literature to establish typical quantities of different types of data used. We 
use Jackknife analysis to derive the expected change in site values, when a single 
new data layer is added to a prioritisation. We validate mathematical formulae for 
expected impacts using simulations.

3.	 A survey of scientific literature reveals that typical spatial prioritisation analyses 
include hundreds of biodiversity feature layers (species, habitat types, ecosystem 
services), but the count of cost, threat or habitat condition layers is typically 0–5. 
Due to these differences, and the mathematical formulations commonly used to 
combine data types, the influence of a single cost, threat, or habitat condition data 
layer can be an order or two higher than the influence of a single biodiversity fea-
ture layer. In a classical cost-effectiveness formulation (benefits divided by costs, 
B/C) the influence of a single cost layer can even be as large as the joint influence 
of thousands of species distributions. We also clarify how changes in data impact 
site values and spatial priority rankings differently, with the latter being further 
influenced by data correlations, the spread of numeric values inside data layers 
and other data characteristics. For example, costs influence priorities significantly 
if cost is positively correlated with biodiversity, but the correlation is the other 
way around for biodiversity and habitat condition.

4.	 This work helps conservation practitioners to direct efforts when collating data 
for spatial conservation planning. It also helps decision makers understand where 
to focus attention when interpreting conservation plans and their uncertainties.
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1  | INTRODUC TION

Many conservation decisions are spatially explicit, including reserve 
network expansions, targeting areas for habitat restoration or re-
introductions, and directing surveys to find endangered or invasive 
species. In the past two decades, several analytical approaches and 
software tools have been developed to help practitioners and deci-
sion makers choose locations for action so that conservation objec-
tives are met cost effectively (Margules & Pressey, 2000; Moilanen, 
Wilson, & Possingham, 2009). Following the principle of comple-
mentarity, these tools utilise mathematical formulations and optimi-
sation methods to analyse often large amounts of spatial data and to 
identify sets of locations that jointly best meet case-specific conser-
vation objectives (Kukkala & Moilanen, 2013; Wilson et al., 2007).

Spatial prioritisation results must always be interpreted in the context 
of the quantity and quality of data used as inputs (Lehtomäki & Moilanen, 
2013). When prioritising for conservation, analyses invariably use data 
about distributions of biodiversity features including species, habitat 
types and their condition, and ecosystem services. Costs, direct or indi-
rect, are another central component: inclusion of cost in spatial prioriti-
sation allows identification of cost-efficient solutions (Armsworth, 2014; 
Naidoo et al., 2006; Wilson et al., 2007). Further important data category 
is threats (pressures, drivers), which are used to target, or avoid, areas with 
negative influences on biodiversity, depending on the objective (Joppa 
et al., 2016). Threats are also often intimately linked to the appropriate 
actions that need to be taken, and as such influence conservation costs.

Data are always, to some extent, uncertain. As biodiversity data 
are never complete, analyses implicitly or explicitly rely on the con-
cept of surrogacy (Rodrigues & Brooks, 2007), with the assumption 
that a sufficiently large sample of biodiversity features will adequately 
represent biodiversity as a whole. Questions of uncertainty and sur-
rogacy are widely acknowledged amongst conservation planners, and 
concerns about adequacy of data commonly arise. Statistical species 
distribution models (SDMs, Franklin, 2013) have become popular for 
extrapolating biodiversity patterns when comprehensive survey data 
are not available, the usual situation for most species and areas. As 
in all models, several sources of error introduce uncertainties into 
SDMs: low number of observations available for model fitting, biases 
or gaps in observations or predictors, and the assumptions and qual-
ity of the statistical model itself (Barry & Elith, 2006).

Conservation scientists have traditionally devoted much effort to 
collecting and improving biodiversity data and models underpinning 
spatial conservation plans. Yet, other important information such 
as current or future conservation costs or anthropogenic threats is 
also uncertain (Joppa et al., 2016). Relatively little effort has been 
spent improving maps of threats or costs (Armsworth, 2014), and 
this could be problematic if they drive spatial prioritisations strongly 

(Balmford, Gaston, Blyth, James, & Kapos, 2003; Bode et al., 2008; 
Naidoo et al., 2006). It is, therefore, relevant to question how uncer-
tainties in different data types affect conservation decisions.

Prior work suggests that there are limits to the amount of species 
data needed for successful planning (Grantham et al., 2008; Kujala, 
Moilanen, & Gordon, 2018), but these studies do not discuss the relative 
roles of different data types. Some have explored the impact of different 
data gaps on conservation plans (e.g., Carwardine et al., 2010; Visconti 
et al., 2013; Wilson & , 2005) but only within the context of a specific 
conservation case, making it difficult to separate the influence of data 
uncertainty from other factors, such as conservation objectives, tar-
gets, data characteristics and correlations (Armsworth, 2014; Ferraro, 
2003), and prioritisation methods. In all such analyses, it is useful to dif-
ferentiate between site value and the priority of a site. Here we define 
site value as the expected numerical value of a location, aggregated 
across all data layers. Site value can be solely based on the biodiver-
sity benefits of acting at the site, as defined by the known or predicted 
biodiversity present. This is sometimes referred to as the conservation 
value of a site in the literature, although terminology varies (Kukkala & 
Moilanen, 2013; Margules & Pressey, 2000). In spatial prioritisations, 
the costs and consequences of acting at a site also affect its numeri-
cal value, in which case terms cost-effectiveness or return-on-investment 
(ROI) are often used (Armsworth et al., 2017). Priority of a site, on the 
other hand, measures the relative urgency and cost-effectiveness of 
acting at a location in relation to other candidate sites. A priority ranking 
is a rank order interpretation of conservation priority.

This study analyses how different data types influence spatial 
conservation plans. We start by clarifying how they typically enter 
a spatial prioritisation analysis. We then show how knowledge of 
the mathematical structure, together with information about the 
typical number of data layers used for each data type, can help 
to estimate the relative influence a data type will have on site 
values and priorities. Because it is desirable that the most influen-
tial data is most accurate, this framework should help researchers 
and conservation practitioners make improved decisions about 
when and where to spend resources to improve spatial data.

2  | MATERIAL S AND METHODS

We start by conceptualising how different types of data typically enter 
spatial prioritisations (Figure 1). We differentiate between spatial data 
layers that enter analysis directly versus indirect data that influence 
other layers. Usually spatial distributions of biodiversity features and 
costs enter analysis directly. Environmental factors usually enter indi-
rectly as explanatory variables within species (or habitat) distribution 
models. Habitat condition is often used to modify biodiversity layers. 

K E Y W O R D S

biodiversity, costs, data quality, habitat condition, spatial prioritisation, systematic 
conservation planning, threat, uncertainty
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Accessibility of ecosystem services can be used to link ecosystem 
service provision (supply) to demand. Threats can enter an analysis 
in several ways, either directly or via impact on other layers (Figure 1, 
and “Threats” section, below). The need for, and information content 
of, data layers may also be affected by other factors. For example, 
threats may dictate the actions needed to achieve conservation goals, 
which in turn can influence information on costs (Figure 1). The num-
ber of data layers per data type is also highly variable. Biodiversity 
is usually described by numerous feature layers, whereas only one 
or a few cost layers are used (Armsworth, 2014). Differences in the 
position in mathematical formulation and in layer counts lead to sub-
stantial differences in the relative impacts of different data types. To 
illustrate these differences, we ask: If a single new data layer is added 
to an existing conservation analysis, how much will the conservation 
value of a location change depending on type of layer added?

We use simplified mathematical definitions of how data impact 
spatial priorities, focusing on the main data types of biodiversity fea-
tures, costs, condition, and threats (see Table 1 for symbols used). 
The analysis uses scoring methods (Moilanen et al., 2009), but is 
also relevant for all target-based reserve selection algorithms (e.g., 
Marxan, Ball, Possingham, & Watts, 2009) and spatial priority ranking 
methods (e.g., Zonation, Moilanen et al., 2005): Whereas the sensi-
tivity of more complex approaches to data type is further influenced 
by other components (e.g., targets, complementarity) not explored 
here, there are inevitable commonalities across all these methods 

in data preprocessing before analysis and in the broad structure of 
analysis, for example, in how benefits and costs are combined.

2.1 | Mathematical formulation of data 
type influence

2.1.1 | Common conservation value functions

We identify three common ways in which biodiversity information 
and costs are used to calculate the site value (Vi) of a location i: 

Equation (1a) uses only biodiversity data, whereas the two latter 
ones use both biodiversity and cost data. Cost is most commonly 
used as denominator in a classic cost-efficiency analysis (Armsworth, 
2014; Possingham, 2001). Alternatively, (weighted) costs can be sub-
tracted from benefits (Equation 1c), in which case one or both data 
types need to be transformed, for example, via scaling or normali-
sation, to match their units. For simplicity, here we assume values 
in Equation 1c to be already transformed. Equation 1c is commonly 
used in currently available spatial prioritisation software, such as 
Marxan (Ball et al., 2009) and Zonation (Moilanen et al., 2011a), 

(1)Vi=

⎧
⎪
⎨
⎪
⎩

Bi, (a)

Bi∕Ci, (b)

Bi−Ci, (c)

F IGURE  1 Flow of data in spatial prioritisation. Some types of data (e.g., SDMs) enter spatial prioritisation directly, whereas others have 
indirect impacts via other layers. Additional to spatial data (grey boxes), there are also other factors (blue boxes) that influence analysis. In 
all cases, the results and associated quantitative information need to be interpreted from the perspective of the objectives. Arrows indicate 
flow of data into and out of the analysis. We note that the connections between components in this figure are not exhaustive but illustrate 
typical linkages relevant for data flow. The data types assessed in this work are underlined
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although the exact formulation differs between methods. In scor-
ing, the site value directly defines its priority (Turpie, 1995). In 
complementarity-based spatial prioritisation, other mechanisms are 
added to promote balance between biodiversity features.

2.1.2 | Common data types

As a starting point, we assume that data layers of the same type are 
independent, their values are identically distributed, and that, unless 
otherwise specified, there are no correlations between data layers 
of different type. We later explore deviations from this assumption.

Biodiversity features
Biodiversity features j include species, habitat types, ecosystem ser-
vices, and other entities of conservation interest. Typically, biodiver-
sity features constitute the benefits Bi of targeting a location i for 
conservation. Relative contributions of features to benefits may be 
altered using feature-specific weights wB

j
. Various methods are used 

to aggregate values sij across multiple features j to derive the conser-
vation benefit at a location. A commonly used, simple approach is to 
calculate the weighted sum (score, index) across features:

In this formulation weights do not necessarily sum to one. In more 
complicated formulations (not investigated here) benefit functions 
can be used to modify the treatment of features (e.g., Arponen, 
Heikkinen, Thomas, & Moilanen, 2005; Wu & Boggess, 1999).

We illustrate the influence of a single biodiversity data layer using 
a mathematical model based on the relative contribution each biodi-
versity feature makes to the numerical value of benefit obtained from 
a location. Working from Equation (2), the expected benefit from any 
site i can be generalised using the number of features included in 
the analysis (nB), the average values of features at site i (

̄Si) and the 
average weight (w̄B) given to the biodiversity features (detailed in 
Appendix S1):

We further generalise this to a form representing expected aver-
age benefit across all locations i:

where s̄=Ei[s̄i] is the expected average occurrence value across all 
features j and locations i.

Costs
The most commonly considered cost is acquisition, that is, the price 
of land/water area targeted for conservation. Other costs include 
transaction, management, and opportunity costs (Armsworth, 2014).  
Both single and multiple cost data layers may be used in spatial prior-
itisation and costs can be weighted just like biodiversity features, for 
example, when exploring different ways of accounting for different 
opportunity costs (Moilanen, Leathwick, & Quinn, 2011b). As with 
biodiversity (Equation 4), the aggregate cost value can be general-
ised to:

where nC is the number of cost layers, c̄=Ei [c̄i] is average cost across 
all cost layers k and sites i, and w̄c is the average weight given to 
a cost layer. Frequently, there would be only one cost layer, which 
simplifies this expression.

Habitat condition
Condition describes the degree of intactness (naturalness) of a 
habitat at a location. A common way to account for condition is 
to use site-specific condition (hi) to multiply the site-specific val-
ues of either all features (if all features are affected similarly by 
condition) or some features (if features are affected differently) 
(Moilanen et al., 2011b). Multiplier values <1 are used to indicate 
reduced condition relative to a reference state, such as the natu-
ral state (Kujala, Whitehead, Morris, & Wintle, 2015). Condition 
multipliers hi differ from feature-specific weights w

B
j
 in that the 

former vary spatially and the latter are per-feature multipliers. In 
some formulations, threat or accessibility of ecosystem services 
can be treated structurally in the same way as condition is treated 
here.

(2)Bi=

nB∑

j=1

wB
j
sij

(3)Bi=

nB∑

j=1

wB
j
sij≅ w̄Bs̄inB

(4)̄B=Ei
[
Bi
]
= w̄Bs̄nB,

(5)̄C=Ei

[
Ci

]
= w̄Cc̄nC

TABLE  1 Mathematical symbols

Symbol Description

sij Numerical value (e.g., occurrence level) of biodiversity feature (layer) j in location i.

cik Numerical value of cost component (layer) k in location i.

Bi Biodiversity benefits of location i, aggregated across biodiversity features.

Ci Costs of including location i to a conservation plan. May be aggregated from several cost components.

nB, nC Number of data layers representing biodiversity features (nB) or costs (nC).

w̄B , w̄c Average of the weights given to biodiversity features (wB
j
) or cost layers (wC

k
).

hi Measure of habitat condition or threat that modifies the values of features at a site i. May influence all features or a subset of 
them (e.g., one taxon).

p Proportion of biodiversity layers influenced by condition or threat.

q Proportion of locations influenced by condition or threat.
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Using p to note the proportion of features affected by condition, 
we can express the expected benefit over all locations based on bio-
diversity and condition data as:

where ̄B is benefit ignoring condition, h̄=Ei[hi] is the average con-
dition multiplier across the landscape, and ̄Bph̄ and ̄B(1−p) are the 
aggregated benefits across features affected and not affected, 
respectively, by condition; this assumes species impacted by con-
dition have similar properties to those not impacted. If habitat 
condition only affects a fraction q of the locations i, parameter 
p can be replaced by q in the equation above (see Equation 6b in 
Appendix S1). Here lower condition leads to reduction in benefits, 
however, in some cases it may be desirable to target degraded 
locations for, for example, restoration actions, in which case 
Equation 6 needs to be further modified (e.g., Moilanen et al., 
2011b).

Threats
Threats typically describe the presence, intensity, and/or frequency 
of any (manageable or nonmanageable) pressure that threatens 
biodiversity, including habitat loss, pollution, invasive species, or 
overexploitation of stocks (Joppa et al., 2016). In spatial conserva-
tion planning, threats are typically used to guide conservation ac-
tions either towards (e.g., invasive species eradication) or away from 
threatened areas (e.g., when threat is nonmanageable). Several op-
tions exist to include threats in spatial prioritisation, the most suit-
able depending on objectives of analysis. First, threat layers can 
be included as features with positive weights (Equation 1a and 3), 
in which case priority is increased at locations with threat. Second, 
threat layers can be given negative weights, in which case they op-
erate effectively as opportunity costs, modelling increased cost of 
threat management (Equation 1c). Finally, threats can also be used 
structurally the same way as a condition layer (Equation 6). If so, the 
interpretation is that habitat conditions (or species occurrence lev-
els) are expected to become reduced in areas with an unmanageable 
threat. The impact of a single threat layer depends on which of these 
options is chosen. There also are examples where threat values have 
been inverted before use in analysis, which changes the direction 
and scaling of the effect in the above formulations (Whitehead et al., 
2014).

2.1.3 | Relative influence of different data types

We explore the relative influence of a data layer to site value through 
a Jackknife analysis, that is, by adding the layer to an analysis and 
comparing the conservation values with and without the additional 
layer. We consider three scenarios:

(1)	 the 1st instance of adding a data layer to the analysis (e.g., 
with and without a single cost data layer);

(2)	 the nth instance of adding a data layer (e.g., with 67 and 68 biodi-
versity features);

(3)	 the values within a single data layer change on average by a frac-
tion x, mimicking the typical situation where information underly-
ing a data layer changes.

To illustrate scenario (3), we calculate the relative impact for each 
data type when x is 0.1 or 0.5, respectively.

We mark the value at site i at the starting situation as V0
i
, using 

any of the objective functions in Equation 1 to calculate site value. 
We then use V1

i
 to describe the altered site value after adding or 

changing a data layer. Then, the relative change in value at site i is:

and the expected (average) change over all sites is:

Not all combinations of data type and value function (Equation 
1a–c) are common (e.g., adding the first biodiversity data layer), 
hence we restrict our analyses to representative cases. Table 2 gives 
equations for the relative influence a layer of a specific data type is 
likely to have on the site value of a location. The derivation of these 

equations is shown in Appendix S1.

2.1.4 | Site values vs priority ranks

Conservation decisions are often made based on rankings of site 
value, simply by selecting the most highly valued areas (i.e., scor-
ing approach). Although newly added data may change the values 
of sites, this need not influence rankings. Earlier studies suggest 
that the influence of added data on conservation rankings of lo-
cations depends on both its correlation with, and the internal 
variation in values compared to, existing data (Figure 2). In classic 
cost-effectiveness analyses (Equation 1b), cost data becomes a dom-
inant driver of priority ranks when costs are positively correlated 
with biodiversity values and have larger internal variation (Ferraro, 
2003). In contrast, condition most affects priority ranks when nega-
tively correlated with biodiversity occurrence (Equation 6). With 
biodiversity, largest changes in ranks are expected with large nega-
tive correlation between previous and new data and few features in 
the analysis (Figure 2).

2.2 | Simulation analysis

We verify the correctness of the above mathematical formulations 
using a simulated multifeature prioritisation (detailed in Appendix S2 
and S3). We first generated sets of hypothetical species, with values 
ranging from 1 to 10, into a 20 × 20 grid using unconditional Gaussian 
simulation (r package “Gstat” v.1.1-3). We summed the species lay-
ers to produce a baseline prioritisation (Equation 1a and 2), giving 
equal weights to all species. Next, we simulated three additional 
data layers with values between 1 and 10, but with a predefined 

(6)Bh= ̄B
(
1−p

)
+ ̄Bph̄

(7)ΔVi=
V1
i
−V0

i

V0
i

=
V1
i

V0
i

−1

(8)ΔV=Ei
[
ΔVi

]
=Ei

[
V1
i

V0
i

]

−1
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strong negative (Spearman’s correlation coefficient, ρ = −0.9), neu-
tral (ρ ≈ 0) or strong positive (ρ = 0.9) spatial correlation with the 
baseline priority map. We then re-prioritised the original data by 
including each new data layer either as an equally weighted biodi-
versity feature (Equation 1a), cost (Equation 1b) or condition layer 
(Equation 6). We compared the expected average change in the site 
values (E[∆Vi]) (Equation 8) to observed changes (O[∆Vi]) and calcu-
lated the Spearman’s rank correlation between the baseline and the 
new priority ranks of sites. Figure 3 illustrates the analysis steps with 
a smaller 5 × 5 grid.

In these simulations, adding the new data layer as a species 
represents the “add nth layer” scenario. The cost and condition ex-
amples represent the scenario in which the new type of layer en-
ters analysis for the first time. Supporting Information (Appendix 
S2 and S3) includes further simulations of the mathematical ex-
pressions above, including selected variants of cost-effectiveness 
formulation (Equation 1b,c), variable numbers of biodiversity 
layers, and different scenarios of addition or change in a layer of 
specific type. All simulations were repeated 1,000 times for each 
added data layer to calculate a range of potential outcomes. All 
data layers were produced and simulations run using r (v.3.3.1).

2.3 | Use of data types in literature

To clarify the differences in the number of layers typically used 
for each data type, we draw on examples from scientific literature. 
Kullberg and Moilanen (2014) reported that only 39 out of 207 
conservation prioritisation articles published between 2010 and 
2012 used information on cost, condition or threats together with 
biodiversity data. These studies cover a variety of prioritisation ap-
proaches, from simple biodiversity scores (equivalent to Equation 1) 
to complex complementarity-based optimisations. We re-visit these 
39 articles to record the number of data layers used for each data 
type, thereby providing an a-priori expectation of typical data layer 
counts.

3  | RESULTS

3.1 | The relative influence of data types and 
number of data layers

When the benefits of acting in a location are defined by the 
(weighted) summed values of biodiversity features present (Equation 
1a), the impact of adding or changing any single biodiversity data 
layer depends on the total number of biodiversity features (Table 2, 
first row, “nth layer added”; Supporting Information Figure S1). Our 
literature survey indicates that the number of biodiversity features 
used in conservation analyses varies greatly, ranging from just a few 
to thousands of features, with a mean of 741 (Table 3). Considering 
Equations 1–3, it becomes evident that when the biodiversity value 
of a location is based on many (e.g., >100) features, adding one 
more feature is likely to have negligible impact on the site value Ty
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(Supporting Information Figure S1), as the addition of one layer in-
duces <1% change in information input (assuming the new layer is 
not given a high relative weight). Similarly, a change (update) of one 
layer has an even smaller impact than the addition (or removal) of 

one layer (Table 3).
The relative impact of new cost data also depends on the num-

ber of cost layers included, which usually is between zero and a 
few (Kullberg & Moilanen, 2014; Table 3). Therefore, nC is typi-
cally orders of magnitude smaller than nB, and the relative impact 
of new cost data to aggregate cost (Equation 5) is likely to be much 
larger than the impact of new biodiversity data to aggregate ben-
efits (Equation 3; Table 2; Supporting Information Figure S2). This 
is particularly so for the cost-efficiency formulation B/C, in which 
biodiversity value, aggregated across potentially thousands of bio-
diversity features, is divided by a single or an aggregate of just a 
few cost values. Interestingly, the effects of the cost layer are inde-
pendent from the biodiversity layers in the B/C formulation (Table 2, 
third row; Supporting Information Figure S2), implying that the im-
pact of a single cost layer can equal the influence of all biodiversity 
layers put together.

Information on condition and threat are also typically based on 
few layers (Table 3). In the reviewed literature, analyses accounting 
for habitat condition and/or threat most often used only a single 
data layer to describe these aspects. The main difference between 
condition and cost data is that condition may have varying impact 

on spatial priorities depending on the fraction of features it influ-
ences (Equation 6; Supporting Information Figure S3). If a single 
condition layer is applied to all features, the impact is larger than 
when only some features are multiplied or when multiple condition 
layers are used for separate species groups, in which case some 
impacts may be counter balanced. The impact of a condition layer 
is also reduced if it impacts only a small part of the landscape.

Threats may be accounted for in several ways, similar to the 
use of feature layers, costs or condition. The impact of a threat will 
consequently depend on the fractions of layers and landscape im-
pacted. As the typical number of threat layers is small (Table 3), the 
expectation is that a single threat layer may have relatively high im-
pact, especially if the layer is used structurally like cost or condition.

Simulation results in Supplementary material (Supporting 
Information Figures S1–S3) confirm that our mathematical formulae 
in Table 2 closely approximate changes observed in simulation exper-
iments. This confirms both our mathematical derivation (Appendix 
S1) and the estimates of relative expected change in Table 2, above.

3.2 | Expected change in site value and spatial 
correlations between data types

Figure 3 illustrates how site value and priority are influenced by 
the addition of a single new layer of a specific data type. When an 
equally weighted biodiversity layer is added to a pool of 10 layers, 

F IGURE  3  Illustration of the influence of an additional data layer on site values and priorities. The two top rows show distributions of 
ten simulated species. Row three shows a baseline prioritisation result (sum across the ten simulated distributions), and three additional 
data layers of random values with strongly positive, neutral or strongly negative correlation with the baseline values. The rows (a)–(c) show 
updated spatial priorities when the additional data layers have been added as (a) an equally weighted additional biodiversity feature, (b) cost 
(Equation 1b), or, (c) condition (Equation 6, p = 1). The numbers above each re-prioritisation give the expected (E[∆Vi]) and observed (O[∆Vi]) 
average change in site value between the two prioritisations, and the Spearman’s rank correlation coefficient (ρ) between the original and 
new priority ranks. Note that except for the first two rows, colours are not comparable between plots but cell values are shown

F IGURE  2 A schematic of how spatial correlation between old and new priority ranks (Y-axis) links to spatial correlation between new 
and old data (X-axis), when added data represents (a) biodiversity feature, (b) costs, or (c) condition. The direction of this relationship varies 
with data type. With costs and condition data, influence on rankings also depends on the relative range of values compared to biodiversity 
values (b and c). The effect of additional biodiversity data further depends on how many features are already included in the analysis (nB)
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the expected average change in site value is E
[
ΔVi

]
=

1

nB
=

1

10
=0.1.  

(Table 2), closely matching the change observed (O[ΔVi] = 0.11–
0.12). The approximately 10% change in site values produces a 
smaller change in priority rankings (ρ = 0.91–0.98). Variation in 
change is explained by spatial correlation between the new layer 
and original priorities: site values are on average altered most by 
new species that have a negative correlation (Figure 2; Supporting 
Information Figure S1).

As anticipated, adding a first cost or condition layer results in 
notably larger changes both in values and priority rankings. In our 
example, dividing the benefits with the first cost layer changes the 
site values on average by 70–80% and alters the priority rankings 
from relatively little (ρ = 0.92) to nearly opposite patterns (ρ = −0.81) 
in comparison to the original priorities. Our results support ear-
lier notions (Ferraro, 2003; Naidoo et al., 2006) that when costs 
and biodiversity benefits are positively correlated, including costs 
strongly impacts priorities (Figure 3; Supporting Information Figure 
S4). Inclusion of the first condition layer caused a major (440%–
470%) change in site values. Opposite to costs, the rankings of B 
and the product h*B are almost the same when the spatial correla-
tion between benefits and condition is positive (ρ = 0.91, Figure 3; 
Supporting Information Figure S4), and vice versa for negative cor-
relation (ρ = −0.72).

In addition to the spatial correlation between data types, our 
simulations confirm that the influence of a data layer on priority 
ranks is further dependent on the relative range of values within the 
layer. Notably, high changes in ranks due to adding cost or condition 
only occur when the internal variation of cost or condition values 
reaches a certain level in relation to biodiversity values (Supporting 
Information Figure S4).

4  | DISCUSSION

There are many factors that shape conservation priority patterns. 
This work clarifies the major differences in influences of different 
data types on site value and priority ranks, with implications for data 
collection and analysis interpretation.

Several observations stand out. First, when scoring is used to 
rank candidate locations across many biodiversity features, con-
cerns about the accuracy of a single feature layer are likely to be of 
less significance, given the minor effect one layer has on aggregate 
value. Second, costs, threats and habitat condition will typically have 
impacts orders of magnitude higher than those of individual biodi-
versity feature layers. In a classic cost-effectiveness analysis (B/C) 
the effect of a single cost layer can be equal to the joint effects of 
all biodiversity feature layers together. Cost and threat layers both 
typically have very low layer counts (Table 3), and given their high 
influence (Figure 3), more attention should be directed to their 
production and verification. Third, there are alternatives to how 
costs and threats enter analysis (see Methods) and it is important 
to understand the interpretations of these alternatives. Fourth, the 
impact of fractionally changing one biodiversity feature layer is on 
average smaller than the effect of adding one completely new layer. 
Fifth, effects of spatial correlation depend on data type.

Our results are aligned with previous studies showing how costs 
may in some situations override biodiversity in spatial prioritisations 
(Armsworth, 2014; Armsworth et al., 2017; Balmford et al., 2003; 
Bode et al., 2008; Ferraro, 2003; Leathwick et al., 2008; Naidoo 
et al., 2006). Our work provides a mathematical explanation and 
shows how the influence of cost layers significantly depends on 
the combination of costs and benefits in the objective function 

TABLE  3 Numbers of layers used for each data type across 39 articles reviewed, and the relative influence of a change in a single data 
layer on the site value (Vi). The table gives the average, mode (median for biodiversity) and maximum number of layers used, and the 
proportion of studies that used only a single layer of that data type (1-only). The studies (n = count) using cost and threat are subdivided 
according to specific formulations. Relative impact is illustrated by calculating the proportional change in Vi using Equation (1) and (7), and 
the mean number of layers for each data type and formulation. We used an average value p = 0.9 as per literature and assumed an average 
condition value of 0.5 for hi (with a typical range of 0–1). Relative impact shown only for data types that do not require information on layer 
values

Data type

n Typical number of data layers used
Change (%) in Vi when one 
data layer changes by

Mean Mode Maximum 1-only (%) 10% 50%

Biodiversity 39 741.1 97a 6,078 0.0 0.01 0.08

Cost 23 2.1 1 5 39.1

B/C (Equation 1b) 11 1.9 1 5 45.5 −5.0 −20.8

B-C (Equation 1c) 12 2.4 2 5 25.0 – –

Condition 11 4.0 1 8 36.4 7.4 37.2

Threat 19 2.5 1 7 36.8

B*T (Equation 6) 5 1.2 1 2 80.0 7.4 37.2

B-T (Equation 1c) 5 3.8 4 7 20.0 – –

Postprocessingb 9 2.5 4 4 11.1
aMedian. bThreat was not used in the priority ranking itself but instead overlapped with priorities in a separate postprocessing analysis. 
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(Equation 1). Highest impacts of costs are expected in the B/C cost-
efficiency formulation. If, on the other hand, there are many cost 
layers in a B–C structure, the relative influence of each cost layer will 
be smaller. Finally, higher internal variation in a layer leads to greater 
impacts (Supporting Information Figure S4) (Ferraro, 2003; Naidoo 
& Ricketts, 2006).

It is one thing to point out that cost, threat, and condition lay-
ers should be of high quality and another to produce those layers. 
All these data types are dependent on human behaviour and pref-
erences, which is a major source of uncertainty. Acquisition and 
opportunity costs and demand for ecosystem services can change 
together with land use and economic shifts (Armsworth, 2014; 
Arponen, Cabeza, Eklund, Kujala, & Lehtomäki, 2010). Despite the 
important role of threats in conservation resource allocation, a re-
cent study found that reasonable quality global data were available 
for 14 threats only (Joppa et al., 2016). Armsworth (2014) sum-
marises shortfalls in available cost data, and argues that current 
cost proxies do not correctly reflect true conservation spending. 
Linkage to human influence implies that cost, threat and condition 
layers may have a very short period of validity compared to, for ex-
ample, geophysical data. The relatively low (c. 20%) usage of cost 
and threat information in spatial prioritisation studies identified by 
Kullberg and Moilanen (2014) may reflect poor availability of data or 
possibly also concerns about data quality. An operationally critical 
question is, that if cost, condition or threat data are highly uncertain, 
should they be included in or excluded from the analysis? Our results 
suggest these data types strongly influence the location of priority 
sites and are therefore critical components of spatial prioritisation. 
They also imply that if these data are sufficiently uncertain, they will 
bias results in a semirandom and counter-productive manner. From 
our results we cannot determine when uncertainty in data war-
rants their inclusion/exclusion and hence this needs to be assessed 
case-specifically. When faced with data uncertainty, one option is 
to replicate analyses both with and without costs/threats/condition 
so that their effects can be separated from those of biodiversity dis-
tribution. Value of Information analyses (Yokota & Thompson, 2004) 
can provide further insight on how data improvements are likely to 
affect the results, with respect to the effort of additional data col-
lection. Although there currently exists no definition of adequately 
good data, it could be argued that improvements to data are not nec-
essary if they will not change the decision at hand (Runge, Converse, 
& Lyons, 2011; Yokota & Thompson, 2004). Equally important is to 
develop more standardised data collection procedures for cost, con-
dition, and threat information and to improve data sharing.

Compared to costs and threats, distributions of many species 
and habitats are primarily influenced by abiotic and biotic factors 
and only secondarily by human activities. Habitat mappings can be 
improved through more relevant predictor variables, and more spe-
cies observations—particularly in poorly surveyed areas—can be col-
lected to improve species distribution data. If a new species is given 
an extremely high weight, or if multiple data layers are changed 
simultaneously, for example, through updates in environmental 
layers used to produce species distribution models, the expected 

change in site values increases. Habitat condition information will 
have limited impact on spatial priorities if it already influences many 
SDMs directly or indirectly. On the other hand, binary (presence-
absence) habitat distributions can change significantly when modi-
fied by additional habitat condition information. Hence, the quality 
of condition data is important when habitat categories (ecosystem, 
community, etc.) or species range maps are used in spatial prioritisa-
tion. Furthermore, administrative borders and land use restrictions 
can impact spatial solutions significantly. These data (land owner-
ship, governmental borders, protected areas, etc.) were not consid-
ered here, as they usually are of comparatively higher quality and 
higher certainty.

Additional to data, priority rankings are determined by the relative 
differences between cells, which do not necessarily change when cell 
values themselves change. Conservation priorities are influenced by 
factors such as the objectives and preferences of the decision maker, 
species-specific targets, interdependencies between locations (e.g., 
complementarity, connectivity, resource flow), and the algorithms 
used in prioritisation. Thus, the interaction between methods, as-
sumptions, and data need to be accounted for when interpreting 
analyses. Here we used a simple scoring algorithm that aggregates 
benefit across features. Methodologically, complementarity-based 
spatial prioritisation employs more complex algorithms to balance the 
solution between features (Ball et al., 2009; Cabeza, 2003; Margules 
& Pressey, 2000; Moilanen et al., 2005). This has the consequence 
that the solution becomes more sensitive to additional biodiversity 
data (Kujala, Moilanen, et al., 2017). However, if additional data is 
effectively the same as the existing data, little change in priorities 
should be expected (Di Minin & Moilanen, 2012; Kujala, Moilanen, 
et al., 2017). While understanding complex interactions between pri-
oritisation options is beyond the scope of this study, present results 
are directly relevant for scoring methods and cost-effectiveness anal-
ysis—both common in conservation decision making.

We have clarified the sensitivity of spatial conservation planning 
to uncertainties in different types of data, which helps direct atten-
tion during data collection, analysis preparation and decision mak-
ing. Researchers and conservation managers should aim to improve 
spatial data and modelling in the most relevant and cost-effective 
manner possible.
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