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ABSTRACT: Raman spectroscopy is widely used for quantitative pharmaceutical analysis, but a common obstacle to its use is
sample fluorescence masking the Raman signal. Time-gating provides an instrument-based method for rejecting fluorescence
through temporal resolution of the spectral signal and allows Raman spectra of fluorescent materials to be obtained. An addi-
tional practical advantage is that analysis is possible in ambient lighting. This study assesses the efficacy of time-gated Raman
spectroscopy for the quantitative measurement of fluorescent pharmaceuticals. Time-gated Raman spectroscopy with a 128 × (2) × 4
CMOS SPAD detector was applied for quantitative analysis of ternary mixtures of solid-state forms of the model drug, piroxicam
(PRX). Partial least-squares (PLS) regression allowed quantification, with Raman-active time domain selection (based on visual
inspection) improving performance. Model performance was further improved by using kernel-based regularized least-squares
(RLS) regression with greedy feature selection in which the data use in both the Raman shift and time dimensions was
statistically optimized. Overall, time-gated Raman spectroscopy, especially with optimized data analysis in both the spectral and
time dimensions, shows potential for sensitive and relatively routine quantitative analysis of photoluminescent pharmaceuticals
during drug development and manufacturing.

Most (90%) active pharmaceutical ingredients (APIs) crys-
tallize as solid particles.1 Different inter- and intra-

molecular bonding and conformations in solid-state forms of a
substance, such as polymorphs, amorphous solids, salts, and
solvates, result in different physicochemical properties.2,3 Disso-
lution rate, solubility, stability, and bioavailability, among other
properties, depend on the solid-state structure of the substance.
This poses challenges to the pharmaceutical industry in terms
of material characterization, formulation, processing, and end
product quality control and has therapeutic, legal, and commer-
cial implications.4

Effective methods for evaluating the possible changes in solid-
state structure during research and development, manufacturing,

and storing are needed.5,6 Raman spectroscopy is an established
method for qualitative and quantitative analysis of APIs exhib-
iting different solid-state forms and often enables rapid, nonde-
structive measurements with no sample preparation needed.7−9

The spectra can be measured through container walls, blisters,
plastic bags, and in an aqueous environment because Raman
spectroscopy has low sensitivity for water.10 The form of the
sample is also flexible; powders, slurries, pellets, emulsions, and
films are all suitable for Raman spectroscopy. These properties
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make Raman spectroscopy well-suited for diverse real-time
process monitoring applications.
Raman spectra are obtained by measuring the intensity distri-

bution of Raman scattered photons from a monochromatic
light source as a function of wavelength.10,11 Quantitative deter-
mination is based on the concentration of the substance of
interest being proportional to the integrated intensity of its
characteristic Raman bands.12 Overlapping peaks of different
compounds in a mixture and experimental effects that are not
related to sample concentration complicate the analysis.13

In such cases, multivariate analysis, where a large amount of
spectral data can be included, is more reliable than methods
where only one or a few spectral features are considered. Sev-
eral multivariate methods have been established for the inter-
pretation of Raman spectra.14,15 The aims of such methods are
to (i) extract spectral information that quantifies substances of
interest, (ii) estimate the uncertainties of the quantification, and
(iii) evaluate the performance of the built model.14 Partial least-
squares (PLS) regression is one of the most widely used chem-
ometric methods for quantitative analysis.16 PLS relates the
information in two data matrices, X (e.g., the spectral variation)
and Y (e.g., the sample composition), in a multivariate model
by maximizing their covariance.17 Kernel-based regularized least-
squares (kernel-based RLS) regression is another approach that
has the ability to learn functions from the nonlinear data fea-
tures which, when combined with feature selection algorithms
such as greedy forward feature selection, optimizes the use of
information provided by the data features.18,19 PLS and RLS are
quite similar in that they aim to shrink the solution away from
the ordinary least-squares solution toward the directions of the
variable space of large sample spread with lower variability.20

Error sources in the quantitative analysis of powder mixtures
using Raman spectroscopy include intra- and interday variation
of the Raman instrument, changes in room temperature and
humidity, sample fluorescence, mixing, packing, and position-
ing, as well as sample particle size and compactness.21,22 While
most issues can be addressed with suitable spectral processing
and data analysis approaches, complete subtraction of fluores-
cence without any instrument-based methods is difficult, even
with sophisticated algorithms.10

Complete or partial rejection of the fluorescence signal from
the Raman signal is possible with various time-resolved
techniques.23 The ability to detect the arrival time and energy
of each photon allows assessment of the lifetime of both the
fluorescence and Raman signals. Due to the lifetime differences,
rejecting the fluorescence background is possible (Figure 1).
Time-gated devices employ short, intensive laser pulses and
the sample response is recorded simultaneously with the
pulses. This also means that analysis in ambient lighting is
possible.24

Time-gating can be realized with various detection systems
such as time-resolved photomultiplier tubes,26,27 high-speed
optical shutters based on a Kerr cells,28,29 intensified charge-
coupled devices,30 quantum dot resonant tunneling diodes,31

and complementary metal-oxide semiconductor single-photon
avalanche diodes (CMOS SPADs).24 One of the essential
advantages of CMOS SPADs is the ability to reject both the
photoluminescence tail and the photon noise.32 SPADs are
realized in standard CMOS technology and contain a pn junc-
tion which is reverse-biased above its breakdown voltage, mean-
ing that entry of even a single photon can trigger avalanche
breakdown that can then be recorded.33−35 The width and
position of the time gate need to be properly selected.36

The current CMOS SPADs are compact and inexpensive while
being able to achieve adequate temporal resolutions (subnano-
second).37−39 CMOS SPAD detectors have been used to eval-
uate fluorescence lifetimes.40 More recently the applicability of
CMOS SPADs for fluorescence rejection in Raman spectros-
copy in pharmaceuticals has also been shown.25,36,41

The aim of this study was to investigate the potential of time-
gated Raman spectroscopy for quantitative analysis of fluo-
rescent pharmaceutical solids. A time-gated Raman setup using
a fast CMOS SPAD detector39 was employed for the first time
for quantitative analysis of powder mixtures. This instrument
allows the separation of the photoluminescence signal from the
Raman signal in ambient lighting and enables stronger Raman
signal generation compared to traditional instruments.38,39 The
data, with and without prior time-domain selection (based on
visual inspection), was analyzed using PLS regression, the most
well established multivariate quantitative spectral analysis
method in pharmaceutics. Quantitative analysis was also per-
formed using kernel-based RLS with greedy feature selection,
which statistically optimized data use in both the spectral and
time domains.

■ MATERIALS AND METHODS
Materials. Piroxicam (PRX) (Hawkins, USA), a nonsteroidal

anti-inflammatory drug, was the fluorescent model compound
in this study. PRX has six reported polymorphs (β (I), α1 and
α2 (both also referred as form II), III, IV, and V)) and one
hydrated form (monohydrate, MH).42−47 Ternary powder
mixtures used in this study consisted of the most commonly
observed forms: β, α2, and MH.
The PRX was purchased in form β, and this form was used as

received. PRX form α2 was prepared by recrystallization from a
saturated solution in absolute ethanol.46 PRX MH was prepared
by recrystallization from saturated aqueous solution.48 The
aqueous solution was heated to 80 °C and the ethanol solution
to 70 °C, and the solutions were slowly cooled to room temper-
ature before vacuum filtration.

Evaluating Polymorph Conversion. X-ray powder
diffractometry (XRPD) analysis was performed using a Bruker
D8 Advance diffractometer (Bruker, Germany) with a Cu Kα
radiation source (λ = 1.5418 Å) over a 2θ range of 5−40°, using

Figure 1. Relative lifetimes (not to scale) of Raman and photo-
luminescence (including fluorescence) signals (adapted from ref 25).
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a step size of 0.01°, step time of 0.5 s, voltage of 40 kV, and
current of 40 mA. The results were compared to the patterns in
the Cambridge Structural Database (CSD). Fourier transform
infrared spectroscopy (FTIR) measurements were performed
with a Bruker Vertex 70 spectrometer (Bruker Optik, Germany)
and an ATR accessory with a single reflection diamond crystal
(MIRacle, Pike Technologies, Madison, WI, USA). The obtained
spectra were the mean of 64 scans and have a spectral range
from 650 to 4000 cm−1 with a resolution of 4 cm−1. The ATR
spectra were converted to absorbance spectra with OPUS soft-
ware (version 5.0, Bruker Optik, Ettlingen, Germany). Differ-
ential scanning calorimetry (DSC) was performed with a differ-
ential scanning calorimeter (DSC823e, Mettler Toledo AG) in
sealed perforated aluminum pans under dry nitrogen purge
(50 mL/min) at a heating rate of 10 °C/min from 30 to 210 °C.
Particle size and morphology of the PRX solid-state forms were
examined by scanning electron microscopy (SEM) with a
Quanta 250 FEG (FEI Inc., U.S.). Samples for SEM were
mounted on carbon-coated double-sided tape (Agar Scientific,
Germany) and sputter-coated with a 5 nm layer of platinum
(Q150T Quomm, Turbo-Pumped Sputter Coater, China).
Mixture Design. The powder mixtures were prepared

according to a special cubic mixture design (Figure 2).49 The mass

ratio of each form was varied between 0, 1:6, 1:3, 2:3, and 1 in
the mixtures, and the center point (1:3, 1:3, 1:3) mixture was
prepared in triplicate. A ternary mixture design was preferred
over a binary mixture design because often more than two solid-
state forms are potentially present in a process environment.

The solid-state forms of PRX were carefully mixed using geo-
metric dilution with a card to avoid inducing changes in the
solid state.

Time-Gated Raman Spectroscopy. Raman spectra of the
mixtures of different solid-state forms of PRX were collected
with a TimeGated TG532 M1 Raman spectrometer (TimeGate
Instruments Oy, Finland) coupled with a BWTek sampling probe
with a focal spot size of approximately 85 μm (Figure 3). The
Raman instrument was equipped with a picosecond pulsed
laser, CMOS SPAD array detector, and sampling probe. The
excitation source was a 532 nm Nd:YVO microchip pulsed
laser. The average power used was 14 mW (2.235 mW after the
probe), repetition rate 40 kHz, pulse width 150 ps, focus diam-
eter 50 μm, pulse energy 0.35 μJ, peak power 2 kW, and maxi-
mum irradiance 28 MW cm−2.
The detector was a 128 × (2) × 4 CMOS SPAD matrix detec-

tor.39 The internal time histogram of the detector consisted of
four bins accumulating single-photon arrivals. Bin 3 provided
the strongest Raman signal with the present setup (Figure 3).
The signals collected with bin 3 were used for the data analysis.
The time-resolved spectral data sets were collected by sequen-
tially moving the gate in 50 ps steps using the electronic delay
generator. Raman spectra with fluorescence rejection and time-
resolved fluorescence spectra were acquired simultaneously.
The spectra were obtained from the Raman shift range of
700−1700 cm−1 up to 5.5 ns.
The measurements were conducted in triplicate, with contin-

uous sample rotation, and the focal point was moved between
each measurement to acquire a more representative signal over
a larger area of the sample. The measurements were carried out
at ambient temperature, lighting, and humidity. Cyclohexane
was used as a reference standard to monitor wavenumber accu-
racy. Data acquisition and setup control were performed with
the instrument software (TimeGated Model 1).

Continuous Wave (CW) Raman Spectroscopy. Raman
measurements were executed with a home-built Raman setup in
a backscattering geometry using 532 nm excitation produced
with a CW single frequency laser (Alphalas, Monolas-532-
100-SM). The beam was focused onto the sample and subse-
quently collected with a 100× microscope objective (Olympus
100× with 0.70 N.A.). The scattered light was dispersed
in a 0.5 m imaging spectrograph (Acton, SpectraPro 2500i)
using a 600 g/mm grating (resolution: ∼5−6 cm−1). The signal
was detected with EMCCD camera (Andor Newton EM

Figure 2. Mixture design employed in the experiments.

Figure 3. (a) Schematic of the time-gated Raman instrument used for obtaining the Raman spectra and performing fluorescence rejection and
(b) basis for bin 3 selection. The four bins collect the scattered photons with different delays and the intensity of the obtained signal varies. Bin 3
provided the strongest signal at the optimal time frame for detection of Raman scattered photons for PRX.
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DU971N-BV) using 60 μm slit width. The Rayleigh scattering
was attenuated with a notch filter (Semrock). The sample posi-
tioning was performed with an XYZ-piezo scanner (Attocube,
ANPxyz101) with the smallest step of 100 nm in each direc-
tion. The laser power was ∼0.5 mW, and two 5 s measurements
were averaged for each accumulation.
Partial Least-Squares (PLS). Part of the fluorescence was

rejected from the signal by the time-gated detection system
using the data obtained from bin 3 data. Residual photo-
luminescence (elevated baseline) signal was removed using the
software provided with the instrument (TimeGated Model 1).
The time frame for analysis was selected manually based on
visual appearance of the signal. The location of the Raman peaks
in the time domain was found to be at the delay of 0.4−0.8 ns.
Baseline correction was performed using adaptive iteratively
reweighted penalized least-squares (airPLS) and local minima
fitting (Lmin) algorithms. Data from the whole time domain
without selecting a specific time frame (0.0−5.5 ns) was processed
identically with the selected time frame data for comparison.
PLS is widely used for quantitative Raman spectral analysis of

pharmaceutical samples. In general, PLS finds components
known as latent factors in variable matrix X which best predict
the response matrix Y. PLS regression searches for a set of factors
that simultaneously decompose X and Y where these factors
explain the covariance between the two matrices as much as pos-
sible.50 The spectral data was standard normal variate (SNV)
transformed51 and mean centered (without scaling) prior to PLS
analysis. SNV and mean-centering have been shown to be suitable
algorithms for quantitative analyses of solid-state mixtures by
vibrational spectroscopy.21 PLS regression52 for quantitative
analysis was carried out with the NIPALS algorithm17 using
SIMCA-P software (version 13.0.3, Umetrics AB, Sweden).
The performance of the model was evaluated using R2X, R2Y,

and the root-mean-square error of cross-validation (RMSECV).
RMSECV values were obtained with leave-one-out cross-validation
(LOOCV), with the leave-one-out procedure performed with
all mixtures except the pure forms (because there is no mixing
error associated with the pure forms), where in each CV round
all replicates of one mixture are left out. The reported RMSECV
values are the average of the root-mean-square error of predic-
tion (RMSEP) values which were obtained for the left-out
mixtures for each cross-validation round (eq 1):

=
∑ − ̂= y y

n
RMSEP

( )i
n

1
2

(1)

Here, y − y ̂ is the predicted residual for each mixture form of an
observation.
Kernel-Based Regularized Squares (RLS). Part of the

fluorescence was rejected from the signal by the time-gated
detection system using the data obtained from bin 3 data as in
the previous section. To further investigate the quantification
potential of the 3D spectra in both the spectral and time
dimensions, fast kernel-based RLS analysis with multitarget
greedy feature selection was applied. All predictive models were
trained with the Python-based machine learning software
library RLScore.19 RLS with a Gaussian kernel was built as
the prediction model. Given a training set {(xi,yi)}

n
i=1 where the

feature vector ∈ xi
p and the class labels ∈ yi

q, the multi-
variate RLS formulation finds A such that (eq 2):

λ= − +
n

A Y KA A KAarg min
1

tr( )F
T

A

2
(2)

where A is the n × q weight matrix, Y is the n × q label matrix,
∥...∥F is the Frobenius norm of a matrix, K is the n × n kernel
matrix, λ is the regularization parameter, and tr is the trace of a
matrix. The following Gaussian kernel function was used in the
models (eq 3):

σ
= −

−⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟x x

x x
K( , ) exp

2i j
i j

2

2

(3)

where ∥...∥ is the 2 norm and σ is the kernel width parameter.
A kernel-based RLS model was obtained by carrying out the

following procedure. A hyperparameter combination consisting
of the kernel width parameter, σ, the regularization parameter,
λ, and the time interval for averaging with SNV and mean
centering, was selected from a three-dimensional grid with
LOOCV on a training set. In addition to the hyperparameter
values, a multitarget greedy RLS algorithm was built to select a
predictive subset of Raman shifts.18 Greedy RLS starts from the
empty set, and on each iteration adds the feature (Raman shift)
whose addition provides the best LOOCV performance.
To avoid selection bias, the prediction performance of the
obtained kernel-based RLS model was estimated with the
standard nested cross-validation approach in which the
selection procedure described above was separately carried
out during each round of an outer cross-validation, and the
performance estimate was the average of the prediction errors
of these models on the data withheld in the corresponding
rounds of the outer cross-validation.53

In addition, to ensure that the performance estimate would
reflect the real-world conditions under which the model is
expected to be used, the fold-partition of the cross-validation
was performed similar to PLS analysis as follows. A LOOCV
was applied to the PRX mixtures, indicating that every repli-
cation of each mixture was simultaneously used as test data and
the pure forms were not used for testing.
Given the input vector of a new measurement unseen during

the training phase (left-out mixtures for testing), kernel-based
RLS makes a prediction of its corresponding output vector. The
real-value vectors (y = [predicted value of form β, predicted
value of form α2, predicted value of MH]) predicted by the
kernel-RLS model were postprocessed as follows, with the ith
entry of the vector, y, set as (eq 4):

∑
y

y

max(0, )

max(0, )
i

i i (4)

The purpose of this setting was to restrict the mixture pro-
portions between zero and one and prevent impossible predic-
tions. Later, eq 1 was used as described earlier to calculate the
RMSECV values of each of the three solid-state forms.

■ RESULTS AND DISCUSSION

Polymorph Conversion. XRPD, FTIR, and DSC analyses
confirmed complete polymorph conversion of form β of PRX
(CSD: BIYSEH13)54 to form α2 (CSD: BIYSEH06),46 and MH
(CSD: CIDYAP02).54 No solid-state impurities were detected.
SEM images show clear morphological differences between the
solid-state forms (Figure S1 (Supporting Information)). Addi-
tionally, PCA of the Raman data also showed very clear differ-
ences for all the mixtures with no overlap of the sample clusters
observed.
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Raman Spectra and Fluorescence Rejection. Fluores-
cence, as indicated by the elevated baselines, was observed in
both the CW Raman spectra and the time-gated spectra that
were the sum of the raw signal recorded over the whole time
scale (0−5.5 ns) (Figure 4a,b). Form β fluoresced more
strongly than form α2 and the MH. The baseline increased with
increasing Raman shift for all three solid state forms.
Fluorescence rejection with the time-gated data (using bin 3,

0.4−0.8 ns time frame, and residual airPLS and Lmin for base-
line correction) resulted in 2D Raman spectra with fluorescence-
free baselines (Figure 4c). The characteristic peaks of the solid-
state forms of PRX match those previously published.55 The
vibrational modes for piroxicam have previously been predicted
and assigned using density functional theory calculations.56

The raw 3D spectra recorded with the time-gated instrument
(bin 3 data), the subtracted 3D baseline spectra (representing
the fluorescence), and the 3D Raman spectra after baseline
rejection from PRX form β, form α2, and the MH are presented
in Figure 5. The 3D data indicates the starting point of the
Raman signal immediately after the laser pulse as well as the
fluorescence starting-point and the fluorescence tail. Consistent
with the spectra in Figure 4b, the 3D spectra also suggest the

Figure 5. 3D spectra obtained with time-gated Raman of (a) raw spectrum (form β), (b) baseline spectrum (form β), (c) Raman spectrum (form β),
(d) raw spectrum (form α2), (e) baseline spectrum (form α2), (f) Raman spectrum (form α2), (g) raw spectrum (MH), (h) baseline spectrum
(MH), and (i) Raman spectrum (MH).

Figure 4. Raman spectra obtained with (a) the CW Raman setup, (b) the
time-gated Raman instrument, presented as sum spectra from 0 to 5.5 ns,
and (c) the time-gated Raman instrument, presented as spectra after
fluorescence rejection. The Raman intensity scale is the same for each
solid-state form but different for each of the three columns for clarity.
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three solid-state forms of PRX fluoresced to varying degrees
over the presented Raman shift range, with form β exhibiting
the strongest baseline intensity maxima as well as the largest
baseline profile change as a function of Raman shift. The 3D
plots also reveal the changing baselines over time: a rapid initial
increase (at all Raman shifts) is followed by a more gradual
decay over several nanoseconds for all three forms. It is impor-
tant to note that because the presented data are from bin
3 only, the baseline signal cannot be expected to represent the
total fluorescence signal over the presented time range, with
detected signal intensity biased toward time delays close to the
Raman-active time frame. Bin selection for biased detection was
appropriate in this case because avoiding fluorescence through
instrumental means for improved quantification was one of the
aims of the study. Despite this, it is interesting to note that
different baseline decay profiles are visible for the three different
solid-state forms, supporting previous evidence that not only
relative fluorescence intensity (as a function of Raman shift) but
also the fluorescence signal lifetime profiles can also be solid-
state specific. Differences in such decay profiles have previously
been observed using time-gated Raman spectroscopy with the
amorphous and γ-crystalline forms of the drug indomethacin.25

After subtracting the detected baseline spectra from the raw
spectra, very little fluorescence signal was observed and Raman
peaks were clearly visible at time delays of less than 1 ns. Overall,
the time-gated Raman instrument and with baseline processing
enabled robust fluorescence rejection without any requirement
for substance specific calibration or suppression methods. This
provided a suitable basis for applying chemometric data analysis
for quantitative solid-state determination.
PLS Regression. The PLS regression used to quantify the

mixtures on the basis of the associated Raman spectra using the
0.4−0.8 ns window was successful. Traditional PLS models with
four PLS factors resulted in an R2X(cum) of 0.997, R2Y(cum)
of 0.982, and a mean RMSECV of 4.1%, whereas the data from
the whole time-domain without selection of a specific time
frame (0.0−5.5 ns) resulted in a mean RMSECV of 6.7%,
R2X(cum) of 0.997, and R2Y(cum) of 0.964 with four PLS
factors (Table 1).

Kernel-Based Data Analysis. Iterative optimization of the
time frame (an example of the process is presented in Figure 6)
with the kernel-based RLS and greedy forward feature selection
strongly affected the quantitative performance. Clear differences
were observed in the quantitative performance between the
optimized and nonoptimized time frames (Table 2). If the full
time frame data was used, mean RMSECV values of 6.2%, at
best, were obtained. However, when the time frame was
optimized, the predictions improved, down to 1.4%. AirPLS
(optimized λ = 10) was found to be most efficient with or
without time frame selection. Overall, this result suggests that
kernel-based RLS analysis is a valid alternative to the PLS
approach in this study for quantitative analysis of time-gated

Raman spectra, as indicated by at best approximately 3-fold
lower RMSECV values.
The Gaussian kernel-based RLS model used in this study has

the ability to learn target functions from the data capturing the
nonlinearity of its features. The kernel-based RLS model accom-
panied by careful selection of the Raman shifts, time interval, and
the models’ hyperparameters utilizing a nested cross-validation
resulted in improved prediction of the different drug forms in
the mixtures. The result of this study supports exploration of
the possibilities of efficient optimization of the time frame as
well as selection of the best Raman shifts for Raman analysis
using kernel based methods and feature selection.
Overall, this study demonstrates that quantitative analysis

with time-gated Raman spectroscopy can be suitable for solid-
state analysis of photoluminescent pharmaceuticals during drug
development and manufacturing. Raman spectroscopy is
especially applicable for focusing on the properties of the API
in mixtures and pharmaceutical products. This is because the
functional moieties present in common APIs typically involve
aromatic and π-bonded structures which produce stronger
Raman signals than the aliphatic and polar structures typical of
common excipients. However, in addition to some APIs, many
excipients (e.g., cellulose-based polymers) also fluoresce, which
further restricts conventional Raman analysis for the analysis of
pharmaceutical processing and dosage forms. An additional
advantage of the time-gated measurements is that they can
be performed in ambient lighting which facilitates analysis
during pharmaceutical processing. These advantages mean that
the time-gated Raman spectroscopy approach used in this study
has much potential for process monitoring in pharmaceutical
manufacturing.
The Raman signals of piroxicam were able to be detected

over the fluorescence backgrounds. However, in the case of
more extreme or complete Raman signal masking, an instru-
mental means to avoid fluorescence becomes essential. Time-
gated Raman spectroscopy is one such approach.25

Table 1. Data Analysis Performed on the Raman Data with
PLS Indicating Time-Frame, Method for Baseline Removal,
and RMSECV Values Obtained for Each Crystal Forma

time-frame
(ns)

baseline
removal

RMSECV
form β (%)

RMSECV
form α2 (%)

RMSECV
MH (%)

0.4−0.8 airPLS, Lmin 4.1 4.5 3.8
0.0−5.5 airPLS, Lmin 7.5 6.6 6.0

aAll spectra were pretreated using SNV transformation and mean
centering.

Figure 6. Leave-one-out cross-validation mean squared error
(LOOCV-MSE) results from one round of the inner-loop of the
kernel-based RLS model, where the model tries to find optimal
parameters (time-interval, σ2, λ) based on the LOOCV-MSE. The X-axis
represents the number of different time intervals tested during each
round of the model construction to find the optimal time interval
along with the other optimal model parameters. The time interval
corresponding to the lowest LOOCV-MSE was 0.25−0.6 ns in this
example.
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Even though the PRX Raman bands were still observable
without the fluorescence rejection, quantification was improved
by the fluorescence rejection. Furthermore, the quantitative
analysis approach in this study is applicable to more strongly
fluorescing systems, as well as, for example, samples with high
water contents, such as proteins and biological and biochemical
samples. Altogether, the capability of the time-resolved Raman
and fluorescence measurements with a CMOS SPAD detector
for quantitative analysis shows promise in diverse areas, includ-
ing fundamental chemical research, the pharmaceutical setting,
process analytical technology (PAT), and the life sciences.

■ CONCLUSIONS

This study demonstrates that time-gated Raman spectroscopy is
a useful tool for quantifying mixtures of fluorescent materials
when conventional Raman spectroscopy could fail. PLS analysis
of the time-gated spectra allowed quantitative analysis and
demonstrated the benefit of time-domain selection. In this case,
statistical optimization of model parameters using kernel-based
RLS further improved the quantitative results. Overall, the
time-gated Raman spectroscopy approach employed shows
potential for relatively routine quantitative solid-state analysis of
photoluminescent pharmaceuticals during drug development
and manufacturing.
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