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ABSTRACT

Landsat time series (LTS) enable the characterization of forest recovery post-disturbance over large areas;
however, there is a gap in our current knowledge concerning the linkage between spectral measures of recovery
derived from LTS and actual manifestations of forest structure in regenerating stands. Airborne laser scanning
(ALS) data provide useful measures of forest structure that can be used to corroborate spectral measures of forest
recovery. The objective of this study was to evaluate the utility of a spectral index of recovery based on the
Normalized Burn Ratio (NBR): the years to recovery, or Y2R metric, as an indicator of the return of forest
vegetation following forest harvest (clearcutting). The Y2R metric has previously been defined as the number of
years required for a pixel to return to 80% of its pre-disturbance NBR (NBR,.) value. In this study, the
Composite2Change (C2C) algorithm was used to generate a time series of gap-free, cloud-free Landsat surface
reflectance composites (1985-2012), associated change metrics, and a spatially-explicit dataset of detected
changes for an actively managed forest area in southern Finland (5.3 Mha). The overall accuracy of change
detection, determined using independent validation data, was 89%. Areas of forest harvesting in 1991 were then
used to evaluate the Y2R metric. Four alternative recovery scenarios were evaluated, representing variations in
the spectral threshold used to define Y2R: 60%, 80%, and 100% of NBRy,., and a critical value of z (i.e. the year
in which the pixel's NBR value is no longer significantly different from NBR,.). The Y2R for each scenario were
classified into five groups: recovery within < 10 years, 10-13 years, 14-17 years, > 17 years, and not recovered.
Measures of forest structure (canopy height and cover) were obtained from ALS data. Benchmarks for height
(> 5m) and canopy cover (> 10%) were applied to each recovery scenario, and the percentage of pixels that
attained both of these benchmarks for each recovery group, was determined for each Y2R scenario. Our results
indicated that the Y2R metric using the 80% threshold provided the most realistic assessment of forest recovery:
all pixels considered in our analysis were spectrally recovered within the analysis period, with 88.88% of re-
covered pixels attaining the benchmarks for both cover and height. Moreover, false positives (pixels that had
recovered spectrally, but not structurally) and false negatives (pixels that had recovered structurally, but not
spectrally) were minimized with the 80% threshold. This research demonstrates the efficacy of LTS-derived
assessments of recovery, which can be spatially exhaustive and retrospective, providing important baseline data
for forest monitoring.

1. Introduction

particular, Landsat time series (LTS) support the characterization of
long-term forest recovery (Chu et al., 2016; White et al., 2017); how-

Time series of remotely sensed data provide opportunities to char- ever much remains to be understood concerning the relationship be-
acterize forest dynamics over large areas (Banskota et al., 2014). In tween spectral measures and manifestations of recovery in forest
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structural attributes. Definitions of forest recovery post-disturbance are
not universal (Bartels et al., 2016) and often relate to the return of
forest structural characteristics following a particular disturbance type
(Frolking et al., 2009). Herein, we follow the approach of Frolking et al.
(2009) and define recovery as the return of forest structure, quantified
by measurable characteristics (e.g. canopy height and cover), against
which target thresholds can be applied to indicate when recovery has
occurred. In reality, forest recovery is a long-term ecological process,
with different functions of a forest returning at different times through
the successional process (Spake et al., 2015). Forest recovery post-dis-
turbance is difficult to characterize using data from ground plots alone,
particularly over large, remote areas with constraints to forest access
(e.g. Canada; Bartels et al., 2016). In nations such as Finland, where
intensive forest management practices prevail (Wulder et al., 2007), the
capacity for synoptic, spatially-explicit monitoring of forest recovery
through time, particularly in the context of a complex land use-land
ownership mosaic, is of interest to resource managers and planners
(Culotta et al., 2015). Remotely sensed assessments of forest recovery
post-disturbance enable assessments of recovery over large spatial ex-
tents and different disturbance types (Frolking et al., 2009; Kennedy
et al., 2012; Madoui et al., 2015), and provide a framework within
which assessments of recovery from ground plot observations may be
integrated (Bartels et al., 2016). Moreover remotely sensed assessments
of recovery that take advantage of the Landsat archive enable retro-
spective studies, thereby providing baseline information for monitoring
programs (White et al., 2017).

Airborne laser scanning (ALS) data have demonstrated capacity for
accurately characterizing forest structure, but are typically limited ei-
ther in spatial or temporal coverage. In contrast, Landsat data provide
both large-area spatial coverage and a temporal archive that extends
back to 1982 for 30m spatial resolution data from the Landsat
Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM +), and
Operational Land Imager (OLI) data. Landsat data have played an im-
portant role in the Finnish multi-source National Forest Inventory (MS-
NFI) and since 1989, have been used as a means to cost-effectively
obtain reliable forest information for areas smaller for which it is not
possible to achieve target accuracies with the network of ground plots
established for the NFI alone (e.g. a municipality) (Tomppo, 1990).
Finland is now generating its 12th MS-NFI (Barrett et al., 2016).
Tomppo et al. (2008) suggested that one potential option for enhancing
the MS-NFI would be to incorporate historical satellite imagery as a
source of additional information on the age and development of forests,
citing that information on stand development would be particularly
useful in Nordic countries because forest practices have typically been
clearcutting (with some required number of retention trees/ha) fol-
lowed by planting and intensive silviculture (e.g. weeding and cleaning
of seedling and sapling stands). A nationwide acquisition of ALS data
initiated by the National Land Survey of Finland (NLS) in 2008 has
greatly expanded the coverage and availability of ALS data and related
forest structural information across the country (Kotivuori et al., 2016).

Assessments of recovery via ground plots are valuable; however,
these assessments are spatially and temporally constrained, (Bartels
et al., 2016), precluding analyses that are both spatially explicit and
spatially exhaustive. ALS data have been used to characterize post-fire
forest structure and recovery (Bolton et al., 2015, 2017; Vogeler et al.,
2015) and provide the requisite spatial detail and structural char-
acterization; however, a single-date acquisition does not support ret-
rospective assessments of forest structural development over time.
Characterization of forest recovery with LTS has become increasingly
common with the opening of the Landsat archive in 2008 (Woodcock
et al., 2008). While post-disturbance recovery has been explored
(Kennedy et al., 2012; Griffiths et al., 2014; Potapov et al., 2015;
Frazier et al., 2015 and 2018; Senf et al., 2017), research has demon-
strated that the disturbance agent (e.g. wildfire, harvest) influences
recovery trajectories (Madoui et al., 2015; White et al., 2017). Char-
acterizations of post-fire recovery with LTS are more common (e.g. Chu
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and Guo, 2014), with fewer studies focusing on post-harvest recovery
(Schroeder et al., 2007; White et al., 2017). LTS metrics and ALS data
can be combined to enhance large-area characterizations of forest
structure (Pascual et al., 2010; Ahmed et al., 2014; Zald et al., 2014;
Bolton et al., 2018). Moreover, spectral trends derived from LTS im-
prove modeled estimates of forest structure (Pflugmacher et al., 2012)
and biomass dynamics (Pflugmacher et al., 2014), and have been de-
monstrated to improve the characterizations of regenerating forests in
temperate (Kennedy et al., 2007) and boreal forest environments
(Olsson, 2009).

The temporal length and consistency of LTS are particularly well-
suited to provide supporting information about forest regrowth trends.
Schroeder et al. (2007) used LTS to examine the spatial and temporal
variability in forest regrowth after clearcutting in western Oregon. To
quantify forest regrowth, the authors used estimates of percent tree
cover derived from ground plots and interpretation of aerial photo-
graphs, which were extrapolated to the LTS using date-invariant re-
gression. The annual percent tree cover data were then grouped into
four regrowth classes: little to no, slow, moderate, and fast, and dif-
ferent ecological regions were characterized by the prevalence of each
of the regrowth classes. In addition, elevation and potential relative
radiation were identified as the main drivers of the different regrowth
classes. A similar approach was used by Chu et al. (2016) for assessing
post-fire vegetation regrowth, whereby fractional vegetation cover was
estimated to assess the return of vegetation. While these relative as-
sessments of recovery can provide useful ecological insights regarding
spatial and temporal variations in recovery, these approaches rely on
the development of robust models of tree or vegetation cover, and the
portability of those models through space and time. Other assessments
have relied directly on the spectral metrics (e.g. Pickell et al., 2016;
Frazier et al., 2015, 2018). Kennedy et al. (2012) defined an absolute
and relative metric of short-term (5-year) recovery derived directly
from Normalized Burn Ratio (NBR) values. Griffiths et al. (2014) as-
sessed recovery following stand replacing disturbance in the Car-
pathians ecoregion using derivatives of the Disturbance Index (Healey
et al., 2005). White et al. (2017) characterized both short- (5-year) and
long-term (25-year) recovery from harvest and wildfire in a national
assessment for Canada's forested ecosystems (~650 Mha) enabled by
LTS, adapting the short-term metrics used by Kennedy et al. (2012) and
a longer-term metric based on NBR (the Years to Recovery or Y2R
metric) used by Pickell et al. (2016).

LTS offer new opportunities to characterize forest dynamics and in
particular, provide for the characterization of recovery post-disturbance
over large areas; however, there is a knowledge gap concerning how
spectral measures of recovery relate to actual manifestations of forest
structure (e.g. height and cover). The intensive forest management
context in Finland provides a relatively controlled forest environment
(i.e. even-aged, limited tree species) and a unique opportunity to ex-
plore the relationship between spectral measures of recovery derived
from LTS, and actual manifestations of structure, as characterized with
ALS data. The overarching goal of this research was therefore to im-
prove our understanding of the linkages between spectral metrics of
forest recovery post-harvest—as derived from LTS data—and manifes-
tations of forest structure (height and cover) as measured from ALS
data. The specific objectives of this study were threefold: (i) to apply an
established image compositing and change detection approach
(Composite2Change or C2C) to an area of managed forest in southern
Finland and generate a spatially-explicit dataset characterizing forest
change (1984-2012); (ii) to validate the detected changes using in-
dependent reference data; and (iii) to evaluate the utility and appro-
priateness of the Y2R spectral recovery metric for assessing the return
of forest following harvest in a managed, boreal forest context. This last
objective represents the unique contribution of this work: the use of
ALS data to corroborate spectral metrics of forest recovery derived from
LTS data.
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Fig. 1. Location of study area in southern Finland, with derived forest mask shown.

2. Study area

The study area, approximately 5.3 Mha in size, represents an in-
tensively managed forest area in southern Finland and a complex
landscape mosaic of agricultural, forest, and urban land use (Fig. 1).
Approximately 86% of the study area belongs to southern boreal ve-
getation zone and the majority is considered forest (65% by area).
Protected areas, such as national parks, represent 2.3% of the forested
area whereas agricultural fields cover approximately 16% of the study
area. Forests in this area have a mean stem volume of 146.4m>ha™*!
and the main tree species are Norway spruce (Picea abies L. (Karst.)) and
Scots pine (Pinus sylvestris L.) contributing 40.2% and 38.5% of the stem
volume, respectively. Approximately, 97.5% of the forest area is con-
sidered productive forest, with a growth increment of at least
1m3ha~'yr~. Site type varies from herb-rich forest to barren heath
forest, with the main site type being mesic heath forest covering 49.8%
of the forest land within the study area (Natural Resources Institute of
Finland, 2015).
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3. Materials and methods

The primary objective of this work was to assess whether spectral
measures of recovery were indicative of forest return, as determined by
the FAO benchmarks of forest cover and height. To accomplish this
required the generation and integration of numerous data sources and
outputs (Fig. 2), following established methods and approaches from
the literature.

3.1. Landsat data and best-available pixel composites

The study area covers eleven overlapping Landsat Worldwide
Referencing System-2 (WRS-2) scenes (i.e. paths/rows). Candidate
images for best-available pixel (BAP) compositing included Landsat
Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM +)
L1T format images with < 70% cloud cover. Using the C2C algorithm
(Hermosilla et al., 2016), annual, cloud-free Landsat surface reflectance
image composites with a 30-m spatial resolution for 1984 to 2012 were
generated for the study area to represent August 1 ( = 30 days). Pre-
processing applied to the L1T images are described in detail in White
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Fig. 2. An overview of the methodological workflow applied in this study.

et al. (2014). Briefly, prior to compositing, clouds and cloud shadows
were detected using Fmask (Zhu and Woodcock, 2012), and the Landsat
Ecosystem Disturbance Adaptive System (LEDAPS) was used to gen-
erate surface reflectance values (Schmidt et al., 2013). The compositing
rules, as described in White et al. (2014) and Hermosilla et al. (2016),
included distance to target day of year (August 1), distance to clouds
and cloud shadows, sensor, and atmospheric opacity. For each year,
pixels were scored against each of these rules, the scores for each pixel
were summed, and the pixel with the highest score was considered as
the best observation and was used in the annual composite. Gaps or “no
data” areas exist in the composites where no best observation was
available for a given pixel.

3.2. Detection of annual forest change via Landsat time series analysis

The annual BAP composites were further processed in C2C to re-
move noise and fill data gaps, as described by Hermosilla et al. (2015a).
The annual pixel-level series of NBR values were used to identify and
remove anomalous spectral values related to undetected clouds and
cloud shadows or haze, thereby resulting in additional gaps in the
image composites. Simultaneously in the temporal domain, the C2C
algorithm identified spectral trends and detected changes in the NBR
time series for each pixel using the breakpoint detection algorithm of
Keogh et al. (2001). NBR is a spectral index that was first introduced by
Key and Benson (2006) to map burn severity, and is calculated using
Landsat TM/ETM + bands 4 (B4; near-infrared) and 7 (B7; shortwave-
infrared), as follows:

NBR = B4-B7

" B4+ B7 @

NBR values range from —1 to 1, with positive values for pixels
dominated by vegetation, and negative values for pixels dominated by
bare soil (Escuin et al., 2008). As an index, the NBR was designed to
take advantage of the different responses that disturbed and un-
disturbed areas will have in the near-infrared (NIR) and short-wave
infrared (SWIR) spectral regions (Cohen and Goward, 2004). NBR is the
spectral index used in the LandTrendr algorithm to characterize dis-
turbance and recovery trends (Kennedy et al., 2010, 2012) and is

among the most useful indices for disturbance detection in forests
(Cohen et al., 2018).

In the C2C approach, analysis in the temporal domain was followed
by contextual analysis of change pixels in the spatial domain, with the
objective of identifying change events that are spatially cohesive and
uniform (Hermosilla et al., 2015a). This spatial analysis also imposes a
minimum mapping unit (MMU) of 0.5 ha, or approximately 5 pixels, for
detected changes. As per Kennedy et al. (2012), this MMU is small
enough to capture most forest management activities, while also being
sufficiently large to enable validation. Following the contextual ana-
lysis, data gaps in the annual BAP composites are filled with a proxy
surface reflectance value, using the spectral trend information derived
from the aforementioned breakpoint detection process and piecewise
linear interpolation, as described in Hermosilla et al. (2015a). The
temporal breakpoints define the change intervals that bound the pie-
cewise interpolation of the different temporal trends in a pixel's time
series (e.g. monotonic, multiple breakpoint, single breakpoint).

The outputs from the combined spatial and temporal processing are
gap-free, surface reflectance proxy image composites at a 30m re-
solution, annual change detection information, and a series of change
metrics characterizing the detected changes (including pre- and post-
change conditions). A complete list of change metrics generated by C2C
is provided in Hermosilla et al. (2016).

3.2.1. Identification of forest harvesting

C2C identifies a wide range of forest change, including stand re-
placing and non-stand replacing changes (Hermosilla et al., 2015b). As
we were primarily interested in evaluating post-harvest recovery, we
needed to identify changes related to forest harvesting, specifically
clearcutting. We define clearcutting as an even-aged silvicultural
system that removes an entire stand of trees from an area in a single
harvesting operation. In Finland, forest certification currently requires
that at least 10 retention trees are left for every hectare of clearcut
(Forest Stewardship Council Finland, 2010, PEFC Finland, 2014). To
ensure that the changes we analyzed were predominantly clearcuts, we
first generated a forest mask (Figs. 1 and 2) to constrain the area in-
cluded in our analysis. Information from the national base map of
Finland with a scale of 1:25,000 was used to exclude agricultural fields,
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non-forest land, lakes and rivers wider than 125 m, as well as urban
areas. In addition, highways, railways, and power lines were excluded
(with a 60-m buffer), as well as main roads (30-m buffer) and other
roads (15-m buffer), with buffer widths selected to represent the typical
widths of these features (which are represented as single-line features in
the base map data). For changes located within this forest mask, we
used the size and magnitude of the changes to aid in identifying
clearcuts. Given the complex mosaic of land ownership and land use in
the study area, we selected a minimum size threshold of 2ha to dis-
tinguish those change events corresponding to forest harvesting activ-
ities as opposed to changes related to other land uses. We acquired
change validation data (see Section 3.3) through the visual inter-
pretation of high resolution imagery available from Google Earth™ and
we used this visual interpretation to identify a change magnitude
threshold corresponding to clearcutting (change magnitude < —0.4).
C2C is capable of capturing multiple changes within the time series for
a given pixel; however, change metrics will only be generated for the
change with the greatest magnitude in the time series (Hermosilla et al.,
2016). In stratifying by change magnitude, we ensured that other
management activities, such as pre-commercial thinnings were not in-
cluded as areas identified as harvest. Lastly, we applied a 30-m
(equivalent to 1 Landsat pixel) buffer to the interior of these change
events to account for stand edge effects, particularly with the ALS data,
and excluded these pixels from our analysis. Our 2-ha minimum change
event size ensured that we had sufficient pixels for analysis remaining
within each event after the 1-pixel internal buffer is applied.

3.3. Validation of change and change year

A stratified random sample of points was selected to evaluate the
change detection outputs following the approach described in Olofsson
et al. (2014) and similar to that implemented in Hermosilla et al.
(2015b, 2016). We allocated a sample size of 400 points equally to our
change and no change strata. As we were also interested in character-
izing the frequency with which change events were attributed to the
correct year, we distributed the change samples (n = 200) approxi-
mately equally to each year in which changes were detected. Similar to
methods outlined in Hermosilla et al. (2016), each sample was manu-
ally interpreted from the LTS as per Cohen et al. (2010), augmented by
interpretation of high resolution Google Earth™ imagery, when avail-
able. The spatial support region for interpretation of each validation
point was considered as the area corresponding to a 30 m Landsat pixel
surrounding the point. An interpreter visually examined each sample
and identified whether the pixel at the sample location was considered
“changed” or “not changed”, and in what year the change occurred.
Results were summarized using a confusion matrix, with associated
measures (e.g. producer's, user's, and overall accuracy) calculated using
estimated area proportions of change and no change, as per Olofsson
et al. (2014).

3.4. Airborne laser scanning (ALS) data and processing of ALS metrics

The NLS began collecting ALS data throughout Finland in 2008 to
provide a new national-level digital terrain model (DTM) with a 2-m
resolution. The NLS and the Finnish Forest Centre have outlined a plan
to cover the entire area of Finland by the end of 2019; free and open
access to the ALS data are provided by the NLS data services." The ALS
data have been acquired for production areas of varying sizes. The ALS
data used in this study were acquired between 2008 and 2016 for
production areas that ranged from 43,200 ha and 417,600 ha in size.
Target parameters set by the NLS for ALS data acquisitions were a
minimum point density of 0.5 points/m? and a point height error <
15 cm. Flying altitude of all acquisition campaigns was approximately

1 https://tiedostopalvelu.maanmittauslaitos. fi/tp/kartta?lang = en
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2000 m above sea level, a scan angle of + 20° with a footprint size
of < 60 cm. The utility of these data for characterizing the vertical
distribution of vegetation has been demonstrated (e.g. Kankare et al.,
2015; Kotivuori et al., 2016).

An overview of the ALS processing is included in Fig. 2. A suite of
ALS metrics was calculated for the ALS data using LAStools (Isenburg,
2017). ALS data were downloaded from the NLS data services in
3 x 3km tiles, with ground and non-ground points classified by the
NLS. Data processing was done independently for each production area
to ensure metadata concerning data origin (i.e. data provider, sensor,
year of acquisition) was maintained. A rough “skypoint” classification
(single points above the canopy height level) was conducted using
Terrascan (Terrasolid Ltd) with a threshold value of 40 m to remove
outliers. Only ground and vegetation points were then exported into
new (.las) files for further processing. Using LasHeight and LasIndex
—tools (Isenburg, 2017), ALS elevation data were normalized to height
from the ground and a spatial index for each 3 X 3 km tile was created
to facilitate processing. A tessellation of 30 X 30 m grid cells identical
to the footprint and orientation of Landsat pixels was then created and
used in LasCanopy -tool to clip and generate metrics from the nor-
malized ALS data. Calculated metrics used in the analysis included the
mean and standard deviation of ALS heights, ALS height percentiles
(1%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, 99%; referenced as pO1,
p05, pl0, etcetera), and the percentage of ALS returns within specified
height intervals relative to the total number of returns (1, 2, 3, 4, 5, 6,
7, 8,9, 10, 15, 20, and 25 m; referenced as dOO for 0-1 m, dO1 for
1-2m, etcetera). Following on the recommendations of @rka et al.
(2016) and Korhonen et al. (2013), who studied the use of ALS data to
characterize regenerating forests, we applied no minimum height
threshold (e.g. 2m) and used only first returns when calculating ALS
metrics.

3.5. Landsat time series assessment of forest recovery

3.5.1. The Y2R metric

Vegetation recovery post-disturbance was assessed using a spectral
metric of recovery derived from the fitted NBR time series data as per
White et al. (2017). The Y2R metric is designed to characterize the
longer-term, sustained regeneration of forests at a site. Y2R is de-
termined using trend-fitted NBR values from our time-series analysis.
Prior to trend fitting, we applied a de-spiking approach similar to that
of Kennedy et al. (2010) and Bolton et al. (2015), where noisy ob-
servations are detected by examining them in relation to their previous
and subsequent spectral values in the time series (Hermosilla et al.,
2015a). As noted by Schroeder et al. (2007), year-to-year differences,
resulting from phenology or atmospheric effects such as haze, will be
minimized by a fitted trajectory curve. In previous research (Pickell
et al., 2016; White et al., 2017), Y2R was defined as the number of years
it takes for a pixel to return to 80% of its pre-disturbance value, with
the latter defined as the average NBR value of the 2years prior to
disturbance (y-2 and y-1):

NBR,_, + NBR,_,
2 2)

As noted earlier, the NBR captures different spectral responses in the
NIR and SWIR spectral regions. Harvesting will cause a marked increase
in reflectance in both the SWIR and NIR bands. The initial 20-30 years
of stand development post-harvest are then characterized by an in-
crease in the proportion of sunlit crowns and a decrease in the pro-
portion of sunlit and shaded ground (Li and Strahler, 1985; Nilson and
Peterson, 1994). SWIR, in particular, is sensitive to shadowing and
vegetation density (Horler and Ahern, 1986) and thus as canopy com-
plexity and shadowing increases with age, there is a decrease in re-
flectance in the SWIR (Peterson and Nilson, 1993). Uncertainty in
monitoring the successional trajectories of forest post-disturbance is
complicated by topography, atmosphere, phenology, and sun and view

NBRye
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angles (Song and Woodcock, 2003). While it is possible to model suc-
cessional reflectance trajectories (e.g. Peterson and Nilson, 1993), real
successional trajectories are noisy and often non-linear, being strongly
influenced by background or understory conditions and topography
(Song et al., 2002). The influence of understory on Landsat reflectance
in Finnish boreal forests was found to vary by stand development and
site fertility classes (Kuusinen et al., 2015), and were greatest in the
NIR, similar to the findings of Miller et al. (1997) in Canadian boreal
forests. As noted by Song et al. (2002), the impacts of understory on
reflectance successional trajectories can be reduced by narrowing the
image acquisition window, as was done in this study for the BAP
composites, and by making use of multi-temporal imagery. Cohen et al.
(2018) published a Disturbance Signal to Noise Ratio (DSNR) metric.
NBR was found to have the highest median DSNR of all the spectral
features tested, while the NIR band had the lowest median DSNR value.
Moreover, the NIR was found to “be the single most important com-
plementary spectral band, in spite of its tendency to exhibit low DSNR
values.”

As one of our objectives in this study was to determine the suit-
ability of the Y2R metric for managed forests relative to the manifes-
tation of forest structure, we evaluated alternative definitions of the
Y2R metric. Specifically, four spectral recovery scenarios were con-
sidered (Fig. 3): recovery when NBR value was: 60% of NBRp.
(Y2R60%); 80% of NBRy.. (Y2R80%); 100% of NBRp. (Y2R100%);
and > the one-sided critical z-value (a = 0.05, —1.645, Y2RZ). For the
Y2RZ scenario, we standardized the NBR values for each pixel's time
series to z-scores using the following equation:

NBR; = Unprpre

ZNpR; =
' UNBRpre

3
For this scenario, Y2R is defined probabilistically and is the year in

which the NBR value is no longer significantly different from NBR.
(i.e. when the z-value exceeds the one-sided critical value of —1.645).
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recovery (e.g. Schroeder et al.,, 2011; Kennedy et al., 2012, and
Baumann et al., 2012). This 80% threshold ensures that most of the pre-
disturbance spectral condition is met, but allows some latitude in
spectral development, because attaining the 80% threshold does not
necessarily indicate a return to similar pre-disturbance forest condi-
tions. However, the suitability of this threshold in different forest en-
vironments with different disturbance characteristics is not known, so
other threshold values were tested in this study. In addition, the use of a
data driven, probabilistic assessment of recovery, which in practical
applications would negate the requirement to establish a threshold, was
also applied.

3.5.2. Pixel-level analysis of Y2R

The Y2R metrics were generated for each pixel. The number of years
required to satisfy each of these aforementioned recovery scenarios
were then grouped into five possible recovery groups: (1) < 10 years,
(2) 10-13years, (3) 14-17 years, (4) > 17 years, and (5) not recovered.
In a previous study using ground plot data, we found that on average,
the benchmarks of cover and height used herein could be achieved at
the plot level in boreal forests within 10 years, but that this varied by
location, tree species composition, site characteristics, and disturbance
type (Bartels et al., 2016). Given the more northern latitude of the study
area described herein, any sub-groupings < 10years would not be
meaningful in characterizing a return of forest structure at the pixel
level. The remaining Y2R (10-21 years) were divided into equal 4-year
intervals. We compared mean values of our derived ALS and LTS me-
trics using a one-way ANOVA to identify statistically significant dif-
ferences between these five groups for each of the recovery scenarios.
For a subset of pixels, the year of ALS measurement (which equates to
time since disturbance) corresponded to the year in which the pixel was
considered recovered by the Y2R metric; however, the sample size was
relatively small (n < 300 pixels) for all recovery scenarios except for
Y2R100% (n = 2064 pixels). Therefore, as we had a direct temporal
correspondence between a spectral measure of recovery (from LTS) and

Y2R100% = 17 years

&=Y2R80% = 10 years

/_/YZRGO% =7 years

Fig. 3. An NBR trajectory for a sample change event from 1991. This trajectory represents the average of the pixels within the object (source pixels indicated with
white cross). Note the 30-m buffer applied to the interior of the change event to reduce edge effects. Image in panels A-D is Landsat bands 5 (R), 4(G), 3(B).

The 80% threshold is based on the work of Pickell et al. (2016), who
compared the performance of several spectral indicators to measure
years to recovery. In turn, Pickell et al. (2016) had based their approach
on earlier work that had similarly used relative metrics of spectral

a structural measure of recovery (from the ALS), for the Y2R100%
scenario we also compared ALS and LTS metrics using a one-way
ANOVA and tested for significant differences between the different
Y2R.
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3.5.3. Forest structural benchmarks of recovery derived from ALS data

Bartels et al. (2016) suggested the use of benchmark thresholds of
canopy cover (> 10%) and height (> 5m) that could be used to assess
forest recovery, and these thresholds correspond to the minimum values
required to satisfy the FAO's definition of forest (FAO, 2012). The cover
benchmark was evaluated against the sum of the ALS return den-
sities > 2m (i.e. d02-d12), and the height benchmark was assessed
using 99th percentile of height. We applied the minimum height and
cover thresholds to each recovery scenario and analyzed the percentage
of pixels that met these thresholds overall and within each of our re-
covery groups.

3.5.4. Event-level analysis of Y2R

As the information needs of forest monitoring associated with large-
area indicators of forest recovery are primarily at the stand level, we
summarized the Y2R and ALS metrics at the change event level
(Hermosilla et al., 2016). We calculated the arithmetic mean of the Y2R
and ALS metrics of the pixels found within each change event, for each
recovery scenario. We then applied the same benchmarks of recovery
for cover and height and analyzed the percentage of change events that
met the benchmarks, by recovery group and scenario.

4. Results
4.1. Landsat data compositing, change detection and validation

A total of 554 images were used to generate annual BAP composites
(1984-2012), with an average of 20 images used per year. Some years
had no available imagery with < 70% cloud (Fig. 4). The availability of
Landsat data impacts the detection of change. The lack of data avail-
ability prior to 1990 precluded change detection for this period.
Moreover, as no suitable Landsat data were available in 1991, 1992, or
1993, changes that occurred in these years were assigned a greatest
change year (GCY) of 1991. Likewise, changes that occurred in 1995,
1996, and 1997 were assigned a GCY of 1995. This accounts for the
greater amount of change attributed to 1991 and 1995, relative to other
years (Fig. 4). A total of 117,901 change events were detected within
our forest mask (Fig. 1) between 1991 and 2011, with a mean event size
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of 1.85 ha. The overall accuracy of the change detection was 89%, with
errors of omission for the change class greater than errors of commis-
sion (Table 1). Of the 177 reference samples that were correctly iden-
tified as change by C2C, 162 or 85.88% were detected in the correct
year and ~94% were within *+ 1 year (Table 2).

Of the total 117,901 change events detected, 33,164 change events
were identified as forest harvesting (with this subset having a mean
event size = 3.83ha). To ensure the maximum recovery period, we
only included change events that occurred in 1991 (n = 3697) in our
analyses. These events yielded 40,365 pixels for our analysis of the Y2R
metrics.

4.2. Landsat time series assessment of forest recovery

The relative distributions of change pixels within the four recovery
groups, by recovery scenario, are summarized in Table 3. For the
Y2R60% and Y2R80% scenarios, all pixels included in our analysis were
considered recovered by the end of the time series (i.e. 2012). The
Y2R80% and Y2RZ scenarios had similar distributions of pixels among
the five recovery groups, with Y2RZ having 1.67% pixels identified as
not recovered. In contrast, distributions for the Y2R60% and Y2R100%
scenarios were markedly different: whereas 93.96% of pixels recovered
in < 10 years for the Y2R60% scenario, only 4.80% of the pixels in the
Y2R100% scenario recovered in < 10years. Moreover, 30.99% of
pixels were considered as not recovered in the Y2R100% scenario
(Table 3).

We found significant differences for all ALS metrics among the re-
covery groups, with the exceptions of the density metrics associated
with the upper canopy and the lowest height percentiles (d12 and p01;
results not shown). Given our large sample sizes, the significance of
these differences was expected. The metrics with the maximum abso-
lute difference between recovery groups for mean metric values were
d00 and p99 (Table 4). Generally, differences in ALS metrics between
groups decreased with an increase in the spectral threshold used to
define recovery. For example, the maximum difference among recovery
groups for p99 was 4.68 m for the Y2R60% scenario, compared to only
1.03m for the Y2R100% scenario (Table 4). Similarly, the maximum
difference in the mean value of d00 was 28.61% for Y2R60%, compared

20000
B Number of images

O Number of change events

18000

16000

14000

12000

10000
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Number of detected change events
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2012

Fig. 4. Temporal distribution of Landsat TM and ETM + images used to generate annual best-available-pixel (BAP) composites (1984-2012), and number of change

events detected within the area of the forest mask (n = 117,091).
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Table 1
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Validation results of C2C change/no change detection. Accuracy measures were calculated using estimated area proportions of change and no change as per Olofsson

et al. (2014).

Reference data

Change No change Total User's accuracy Producer's accuracy Overall accuracy
Change 0.152 0.013 0.164 0.92 + 0.03 0.62 * 0.06 0.89 * 0.03
No change 0.092 0.743 0.836 0.89 = 0.04 0.98 = 0.02
Total 0.244 0.756 1.000
Table 2 Table 4

Attribution of changes to the correct year.

Year of change Percentage of samples

Maximum differences between recovery
metrics, by recovery scenario.

groups for the mean values of ALS

Maximum difference between mean values for recovery groups

Changes detected in the correct year 85.88
Changes detected within = 1 year 7.91 Y2R60% Y2R80% Y2R100% Y2RZ
Changes detected within + 2 years 3.95
Changes detected within + > 2years 2.26 ALS metric 4 groups 4 groups 5 groups 5 groups
Density (%)
Table 3 doo 28.61 11.43 4.28 8.40
. s . do1 6.49 1.07 0.31 0.32
Percentage of pixels within each recovery group for each recovery scenario 402 2.20 110 0.69 0.69
(n = 40,365 pixels). Recovery scenarios are defined according to the threshold 403 3:37 1:27 1:1 4 0:88
applied to the fitted Normalized Burn Ratio (NBR) time series: 60%, 80%, or 404 4.62 1.58 1.24 1.05
100% from the pre-disturbance value of NBR, and Y2RZ, which is defined as the dos 5.29 2.15 1.03 1.44
year in which the NBR value is no longer significantly different from NBRe. doe 4.20 2.41 1.03 1.71
Note a very small sample size for Y2R60% recovery group 4 (n = 2 pixels). do7 3.28 2.16 1.03 1.53
do8 2.45 1.69 0.85 1.23
Recovery scenarios d09 1.77 1.25 0.66 0.94
d10 3.83 2.50 1.69 1.90
Recovery group Group # Y2R60% Y2R80% Y2R100% Y2RZ dis 1.51 0.51 0.45 0.29
d20 1.24 0.11 0.09 0.04
< 10years 1 93.96 55.32 4.80 50.14
10-13 years 2 5.72 31.60 12.27 28.41 Height (m)
14-17 years 3 0.32 10.63 20.03 14.62 po1 0.00 0.00 0.00 0.00
> 17 years 4 0.00 2.45 31.91 5.17 p05 0.01 0.02 0.01 0.01
Not recovered 5 0.00 0.00 30.99 1.67 pl0 0.05 0.06 0.03 0.03
p25 1.91 1.07 0.46 0.79
p50 4.01 1.79 0.72 1.29
75 0.42 0.31 0.15 0.25
to 4.275% for Y2R100%. ’ ;’90 4o oo 000 e
Generally, pixels that were considered as spectrally recovered 95 3.73 1.58 0.93 1.95
within 10 or fewer years (recovery group 1) had larger median values p99 4.69 1.92 1.03 1.41
for ALS height percentiles p75, p90, p95, p99, relative to pixels that avg 1.53 1.04 0.40 0.76
std 1.02 0.62 0.36 0.45

took longer to recover (Fig. 5). Hence pixels that recovered rapidly
were taller on average at the time of ALS measurement, than pixels that
took longer to recover. Fig. 5 indicates a decreasing trend in the median
values of these height percentiles for the different recovery groups
considered. For example, for the Y2R60% scenario, p99 had a median
value of 10.03m for pixels recovered in < 10years, compared to a
median of 7.54m for pixels that recovered in 14-17 years (recovery
group 3). Similar to the trend shown in Table 4, the difference between
recovery groups decreases with an increase in the spectral threshold
used to define recovery; the Y2R100% scenario, pixels in recovery
group 1 had a median p99 of 10.98 m compared to a median of 9.74 m
for pixels in recovery group 3 (Fig. 5).

Trends were similar for the ALS density metrics (Fig. 6). As in-
dicated in Table 4, the largest differences between recovery groups was
found for density in the 0-1 m stratum (d00), and this difference is
greatest for Y2R60%, and smallest for Y2R100%. Pixels that had longer
recovery times also had larger median values for d00. For example, in
the Y2R60% scenario, the median d00 value for pixels that recovered
in < 10years was 53.00%, compared to 68.95% in pixels that re-
covered in 14-17 years. By comparison, in the Y2R100% scenario, the
median value for pixels in recovery group 1 was 50.71% compared to
53.7% for recovery group 4 (Fig. 6).

The differences between the Y2R60% and Y2R100% scenarios, and
the similarities between the Y2R80% and Y2RZ scenarios are indicated
in Fig. 7. Generally, as the spectral threshold for recovery increased (i.e.
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from 60% of NBR,. to 100% of NBRy,.), the spread of the distribution
of Y2R values also increased, indicative of a greater number of years
required to attain the spectral threshold value.

For the Y2R100% scenario, we analyzed a subset of pixels where the
year of spectral recovery was the same as the year of ALS acquisition.
Within this subset, the Y2R ranged from 17 to 22 years. Significant
differences were found between the mean values for these Y2R groups
for a subset of ALS metrics; however, the magnitude of the differences
in mean values for ALS metrics between years, within this single re-
covery group (recovery group 4), was markedly lower (Table 5) than
between recovery groups (Table 4). Overall, and in contrast to Figs. 5
and 6, no trends are evident in the median values for these ALS metrics
between years (Fig. 8).

We applied the FAO thresholds of > 5m for height (Fig. 5) and >
10% for cover (Fig. 9) and determined the percentage of pixels that met
or exceeded the thresholds for both cover and height, by recovery
group, for each recovery scenario (Table 6).

The relative distribution of pixels among benchmark categories
within recovery groups was relatively consistent across all four sce-
narios: benchmarks of height were more commonly achieved than
benchmarks of cover, while achieving benchmarks of both cover and
height was most common overall. Recalling that all pixels were con-
sidered recovered in the Y2R60% and Y2R80% scenarios, there was no
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Fig. 7. Pixel-level distribution of years to recovery (Y2R), by recovery scenario
(bars), with fitted normal distribution (lines).

Table 5
Maximum between-year differences (17-22 years) for selected ALS
metrics.

Metric Maximum difference between years

Density (%)

doo 2.77
Height (m)

p75 0.37
P90 0.58
p95 0.69
P99 0.81

difference between these two scenarios in terms of the total percentage
of recovered pixels that had achieved both benchmarks of cover and
height (88.88%). However, there were differences for these two sce-
narios in terms of the percentage of pixels within each of the recovery
groups that had achieved the benchmark targets (Fig. 10). For example,
in recovery groups 2 and 3, the Y2R60% scenario had a greater per-
centage of pixels that were indicated as spectrally recovered but that
had not achieved the benchmarks of cover and height (Table 6). For the
Y2R100% threshold scenario, the percentage of pixels that re-
quired > 17 years to recover and that attained the benchmarks of both
cover and height was 27.92%. However, 26.84% of pixels that were
considered as not recovered using the Y2R100% threshold had also
achieved both benchmarks for height and canopy cover. The results for
the Y2RZ scenario were very similar to those of Y2R80% (Fig. 10) with
only a small percentage of non-recovered pixels (1.34%) that had
achieved the benchmarks of both cover and height. Pixel-level trends
observed for benchmarks of cover and height were also evident when
Y2R metrics were averaged to the level of the change event (Fig. 10).

5. Discussion

Forest recovery is a long-term process, and it can be challenging to
define the point at which a stand can be considered recovered (Frolking
et al., 2009; Bartels et al., 2016). Depending on the information need,
the application of benchmark targets of forest structure provides an
objective assessment of recovery that can be readily measured with ALS
data. In our analysis, the application of the FAO benchmarks of forest
cover (> 10%) and height (> 5m) provided insights on the appro-
priateness of the various spectral recovery thresholds considered in our
analysis. For example, when only one benchmark was achieved, the
height benchmark was more frequently attained relative to the cover

Remote Sensing of Environment 216 (2018) 262-275

benchmark (Table 6). A similar phenomenon was noted by Bolton et al.
(2017) in their analysis of post-fire regeneration with ALS data: height
growth post-fire was more rapid than the return of canopy cover, and
this was thought to be a result of residual structures (i.e. snags or
surviving trees) remaining at the site. In a meta-analysis of ground plot
data, Bartels et al. (2016) similarly found that the FAO height bench-
marks were attained more rapidly than cover following stand replacing
disturbances (i.e. wildfire, clearcut) in Canada's boreal forests.

Our results confirm the utility and appropriateness of the Y2R me-
tric as an indicator of forest recovery. Regardless of the Y2R threshold
used herein, pixels that recovered rapidly had larger median values for
the upper ALS height percentiles (Fig. 5). Conversely, pixels that took
longer to recover had smaller median values for height percentiles.
Differences between recovery groups decreased with an increasing
spectral threshold for recovery, indicating that with the longer recovery
times required to achieve a higher target threshold, forest structural
conditions in terms of height and cover, begin to converge. Although
the Y2R60% and Y2R80% scenarios were comparable in terms of the
overall percentage of recovered pixels that had attained the benchmark
values for both cover and height (88.88%; Table 6), the within-recovery
group comparisons between these two scenarios revealed that only
about half of pixels that the Y2R60% scenario indicated as recovered in
14-17 years had achieved the benchmarks for both cover and height. By
comparison, approximately 80% of Y2R80% pixels recovered in
14-17 years had achieved both benchmarks for height and canopy
cover (Table 6). Likewise, under the Y2R60% scenario, 2.5 times as
many pixels that were spectrally recovered in < 10years had not
achieved the FAO benchmarks, compared to the Y2R80% scenario. This
suggests that the Y2R60% may be an overly optimistic threshold for
assessing the return of forests, with spectral recovery attained rapidly
before forest structure, in terms of height and cover, have returned at a
given location. Likewise, the Y2R100% may be an excessively pessi-
mistic threshold, with > 86% of pixels that were considered as not yet
recovered by the end of the time series having already attained the
benchmark values of cover and height. As noted by Pickell et al. (2016),
it may be unrealistic to assume that a pixel will return to 100% of its
pre-disturbance value within the temporal window of the LTS, parti-
cularly if the forest was mature prior to disturbance (as in our study) or
there was a change in dominant species or management practices post-
disturbance that would alter the density and configuration of the ca-
nopy, and thereby also the reflectance properties of the stand. Real
successional reflectance trajectories are noisy (Song et al., 2002) and
are driven by a myriad of factors.

Our results indicated that of the recovery scenarios evaluated, the
Y2R80% threshold provided the most realistic assessment of forest re-
covery post-harvest in the intensively managed forests of southern
Finland: all pixels were considered recovered within the time period
assessed, and sites that recovered rapidly (< 10years) had forest
structural properties at the time of ALS measurement that were distinct
from sites that took longer (i.e. > 17 years) to recover. For Y2R80%,
88.88% of recovered pixels met the FAO benchmarks for both cover and
height (Table 6). Moreover, under the Y2R80% scenario, there were
fewer pixels that were spectrally recovered but not structurally re-
covered, and conversely, no pixels that were structurally recovered but
not spectrally recovered. False positives were more common for the
Y2R60% scenario, while false negatives accounted for 26.84% of pixels
under the Y2R100% scenario.

The results of the Y2RZ scenario were similar to those of the
Y2R80%, with the Y2RZ having a small percentage of pixels identified
as not recovered that had actually attained the FAO benchmarks for
cover and height. However, unlike the Y2RZ, the Y2R80% scenario is
straightforward to apply and requires no further computation once the
NBR trajectories are processed. However, as our results indicate, spec-
tral thresholds can dramatically alter the characterization of recovery: a
60% threshold indicated that 93.96% of pixels recovered in < 10 years,
whereas a 100% threshold indicated that only 4.80% of pixels
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Table 6
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Percentage of pixels within each of the recovery groups that achieved the benchmark values for canopy cover (> 10%), height (> 5m), both cover and height, or

neither benchmark, by recovery scenario.

Benchmarks of recovery Recovered Not recovered
< 10yrs 10-13yrs 14-17 yrs > 17 yrs Total
Y2R60%
Cover 1.29 0.22 0.00 0.00 1.52 0.00
Height 5.08 0.41 0.06 0.00 5.55 0.00
Cover & height 84.20 4.51 0.17 0.00 88.88 0.00
None 3.38 0.58 0.09 0.00 4.05 0.00
Total (see Table 3) 93.96 5.72 0.32 0.00 0.00
Y2R80%
Cover 0.47 0.69 0.31 0.05 1.52 0.00
Height 2.71 1.81 0.75 0.28 5.55 0.00
Cover & height 50.75 27.58 8.73 1.82 88.88 0.00
None 1.39 1.52 0.83 0.30 4.05 0.00
Total (see Table 3) 55.32 31.60 10.63 2.45 0.00
Y2R100%
Cover 0.05 0.14 0.32 0.58 1.09 0.42
Height 0.20 0.50 0.82 1.79 3.30 2.25
Cover & height 4.43 11.34 18.35 27.92 62.04 26.84
None 0.13 0.29 0.54 1.62 2.58 1.48
Total (see Table 3) 4.80 12.27 20.03 31.91 30.99
Y2RZ
Cover 0.47 0.57 0.34 0.09 1.48 0.04
Height 2.42 1.56 0.90 0.49 5.37 0.18
Cover & height 45.92 25.00 12.48 4.14 87.54 1.34
None 1.33 1.27 0.90 0.44 3.94 0.11
Total (see Table 3) 50.14 28.41 14.62 5.17 1.67
90 which impacts regional Landsat archive data holdings differently
(Wulder et al., 2012). The Landsat Global Archive Consolidation in-
- ~ itiative seeks to incorporate all previously acquired Landsat data that is
70 currently archived regionally by groups such as ESA, into the central
g o global USGS archive (Wulder et al., 2016), which may result in addi-
5 tional data for our study site. However, logistical and programmatic
g 50 challenges during the commercialization phase of the Landsat program
..g' - (1985-2001) reveal insights into the decline in Landsat data acquisition
% during this time (Goward et al., 2017). The increased frequency of data
§ 30 gaps in the BAP composite influences the attribution of change to the
& exact year in which the change occurred, and likely would also impact
» the detection of non-stand replacing changes (Hermosilla et al., 2015b),
10 as detection accuracy has been known to diminish over time for non-
, n stand replacing changes such as insect damage (Wulder et al., 2005). In
Y2R60% Y2R80% Y2R100% YRz this study however, our targets were clearcuts in boreal forests, which
Pixel-level: m <10 years 10-13 years 14-17 years 17 years i NGt recovarad were readily distinguishable on the landscape 3-4years post-dis-
Event-level: 71<10 years 10-13 years 14-17 years >17 years 7 Not recovered turbance. Another notable difference for this study site is the intensity

Fig. 10. Percentage of pixels and change events within each recovery group
that achieved benchmarks of canopy cover and height, by recovery scenario.

recovered in < 10 years. Moreover, a 60% threshold indicated that all
pixels had recovered, whereas a 100% threshold indicated that 30.99%
of pixels had not recovered. Further research is necessary to determine
the appropriateness of the probabilistic approach to defining spectral
recovery across different forest environments; however, one of the key
advantages of the Y2RZ scenario for operational programs would be
removing the necessity to identify an optimal threshold for a given
forest environment or disturbance context.

The application of the C2C approach in southern Finland demon-
strates the portability of the approach to other regions. Of note, data
availability was markedly lower for this study area in the earlier part of
the time series in the pre-ETM+ era (i.e. pre 1999; Saarinen et al.,
2018) compared to previous implementations of C2C (White and
Waulder, 2013; Hermosilla et al., 2016). This reflects the less systematic
acquisition of Landsat data globally prior to the launch of Landsat 7,

and mixture of land uses found. Compared to other pan-boreal en-
vironments in Russia, Canada, and Alaska where large wildfires are the
dominant stand-replacing change (de Groot et al., 2013), and moreover,
where changes in the forested areas are typically remote from areas of
other land use (White et al., 2017), change events in our study site were
relatively small (1.85ha overall, 3.83 ha for harvest) and embedded
within a complex mosaic of different land uses.

The overall accuracy of the change detection was 89% and is
comparable to that reported by other studies using LTS data in similar
mixed land use European contexts (e.g., Griffiths et al., 2014). Forest
practices in Finland have evolved over time, with retention trees within
harvested areas becoming increasingly common from the mid-1990s
(Gustafsson et al., 2010). Retention trees may confound assessment of
recovery at the event level (given the spatial resolution used in this
analysis—30 m), thereby emphasizing the importance of the initial per-
pixel analysis of recovery, and the use of Landsat pixels as a spatial
reference for ALS metric generation, as demonstrated in this study. By
considering only those changes that occurred in 1991, we examined
those pixels that had the longest possible recovery times afforded by
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our time series; however both short- and long-term recovery metrics
can provide meaningful insights regarding vegetation return post-dis-
turbance (Kennedy et al., 2012; White et al., 2017).

Landsat time series data allow for a more holistic assessment of
forest dynamics: it is now possible to characterize both disturbance and
recovery on an annual basis, which was previously not feasible with bi-
temporal or multi-temporal epochal image data. In contrast to ground-
based surveys of forest recovery, which are often spatially and tempo-
rally constrained (Bartels et al., 2016), the opening of the Landsat ar-
chive has enabled assessments of recovery that are spatially exhaustive
and retrospective—providing important baseline data for forest mon-
itoring in an era of climate change.

6. Conclusions

LTS-derived measures of spectral recovery are useful for under-
standing regional (Schroeder et al., 2007; Kennedy et al., 2012), tem-
poral (Frazier et al., 2018), and agent-based (White et al., 2017) var-
iations in forest recovery over large areas. These remotely-sensed
assessments can augment ground-based surveys, providing improved
understanding of variations in forest return following disturbance
(Frolking et al., 2009); however, the linkages between spectral mea-
sures of recovery and manifestations of forest structure have not been
well understood (Schroeder et al., 2011). In this research we demon-
strated that LTS-derived spectral measures of recovery, specifically the
number of years required for a pixel to return to a certain percentage of
its pre-disturbance NBR value, relate to measures of forest cover and
height derived from ALS data. We found that an 80% threshold pro-
vided the most realistic assessment of recovery, with the majority of
pixels identified as spectrally recovered also attaining FAO benchmarks
of cover and height for forest, while minimizing false positives that
were more common with the lower 60% threshold (i.e. pixels that were
spectrally recovered but which had not attained benchmarks of cover
and height), as well as the false negatives associated with the 100%
threshold (i.e. pixels identified as not spectrally recovered but which
had attained the benchmarks for cover and height). In the forest en-
vironment of southern Finland, a probabilistic definition of recovery
(Y2RZ: the year in which the pixel's NBR value is no longer significantly
different from its pre-disturbance NBR value) provided similar results to
that of the 80% threshold. Such a data driven approach may be desir-
able for operational assessments of recovery over large areas; however,
the approach as presented herein, should be tested in other forest en-
vironments prior to its widespread application. Spectral recovery me-
trics derived from LTS data offer synoptic, spatially-explicit and retro-
spective assessments of forest recovery and can provide a useful and
meaningful heuristic for large-area assessments of forest recovery. We
have demonstrated that national ALS acquisitions can provide useful
data to corroborate these thresholds and improve our understanding of
the linkage between forest structural development and spectral mea-
sures of recovery.
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