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Whoever would study medicine aright must learn of the following subjects. 

First he must consider the effect of each of the seasons of the year and the 

differences between them. Secondly he must study the warm and the cold 

winds, both those which are common to every country and those peculiar 

to a particular locality. 

 

 

Hippocrates, ‘‘Airs, Waters, Places’’, 

ca. 400 B.C.E. 
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1. Introduction and objectives 

Impacts of weather and climate on human health have been considered important since 

Hippocrates’ times in antiquities, but have been underrated in the 20th century when fast 

progress in modern medicine has taken place. The awareness on adverse health impacts of 

weather and climate started to increase especially after the heatwave in 2003, that caused about 

70 000 extra deaths in Europe (Robine et al., 2008). In the future, heatwaves will become longer 

and more intensive due to climate change, while cold stress is expected to decrease because of 

climate change (Smith et al., 2014).  

Depressive disorders are a major public health problem worldwide (WHO, 2017a). Weather 

and climate also affect the mood of people, and seasonal affective disorder is a recognized 

mental condition especially in high-latitude areas (Magnusson, 2000). Seasonality of suicides 

with a peak in late spring or early summer is well known but the reasons for this seasonal pattern 

are not fully understood. Typically it has been connected with increasing amount of sunshine 

in spring.  

This thesis focuses on direct health impacts of weather and climate in Finland via different 

mechanisms. Both heat stress and cold stress lead to physiological responses that may 

contribute to mortality. The impacts of heat and cold stress were studied by comparing daily 

climate data and all-cause mortality in hospital districts.  

The aims were to:  

 Model the relationship between mortality and thermal environment using various 

modelling methods and biometeorological indices for thermal comfort. 

 Study changes in the mortality related to temperature extremes over decades, 1972–

2014, in various age groups. 

 Assess regional differences in temperature-related mortality in Finland. 

The mental health impacts of weather and climate were studied by comparing climate factors 

and deaths from suicide in Finland over three decades (1971–2003), and weather impacts on 

suicide attempts in Helsinki for two shorter periods. 

The aims related to the mental health impacts were to:  
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 Explore the role of meteorological variables in the variation of number of deaths from 

suicides in Finland. 

 Study the role of weather as a trigger for suicide attempts in Helsinki. 

In Finland the research and awareness on health impacts of weather and climate has been quite 

limited – notwithstanding the studies of a few forerunners. This thesis aims also for raising 

awareness about health impacts of weather and climate and enhance the basis for further multi-

disciplinary research collaboration. Furthermore, themes of this dissertation are relevant in 

planning climate change adaptation measures in the health sector. An important motivation for 

health impact studies is a need to understand how climate change will affect health risks 

together with the socio-demographic changes, such as aging population and urbanization, that 

will take place in Finland in the future.  
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2. Background  

The scientific articles included in this thesis focus on weather and climate dependence of 

mortality and self-harm. There are numerous studies on the relationships between mortality and 

temperature and less on weather-related morbidity and the impacts of weather on symptoms of 

the chronically ill (Oudin Åström et al., 2011; Bunker et al., 2016). However, weather-related 

morbidity and disease exacerbation of weather-sensitive individuals may lower the quality of 

life and increase need for health services, and thus research on weather and climate impacts on 

morbidity is relevant. Therefore this Background chapter begins with a wider discussion on the 

adaptation of people to climatic conditions, and generic weather sensitivity, followed by more 

detailed discussion on relationships between meteorological factors and mortality and mental 

health.  

2.1. Human adaptation to variation of climate and amount of light 

Human beings have successfully adapted to various thermal environments and spread to live in 

almost all climatic zones on the globe. Adaptation to climatic conditions of the living 

environment can take place through various behavioural (housing, clothing) and physiological 

processes on different time scales.  

Genetic adaptation takes place over a long period of time. Skin colorization and basal metabolic 

rate (energy consumption at rest) are typical examples of genetic adaptation to regional climatic 

conditions (Jablonski and Chaplin, 2000; Leonard et al., 2002; Hancock et al., 2011). The best 

cold-adapted people are found in Arctic areas and the best heat-adapted people in tropical areas.  

Seasonal acclimatization takes a few weeks in the beginning of the hot or cold season (Koppe 

and Jendritzky, 2005; De Freitas and Grigorieva, 2015). The physiological changes related to 

this short-term acclimatization are not permanent, and they take place annually or when people 

move to stay in new climate zone. 

People have developed sophisticated biological mechanisms, circadian clocks, to adapt to daily 

(circadian) and seasonal variation in light (Coomans et al., 2015; Honma, 2018). The 

hypothalamic suprachiasmatic nucleus in the brain acts as the principal circadian clock and 

synchronizes the functions of other clocks in peripheral tissues. Disturbances in the circadian 

rhythms have been suggested to be associated with both physical and mental health problems 

such as cardiovascular, metabolic and neuropsychiatric diseases (Hastings et al., 2003; 
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Karatsoreos, 2015; Preußner and Heyd, 2016). However, it is not clear up to date if circadian 

disruption is a symptom or reason for diseases. Recently Liberman et al. (2018) presented a 

model to investigate mechanisms how circadian clock genes lead to mood and circadian 

disorders.  

2.2. Weather sensitivity  

In spite of human’s adaptation capability, weather and climate affect human health and quality 

of life. The impacts depend on exposure to particular weather types and relevant individual 

characteristics such as age, body size and composition, fitness, health, medication and 

behaviour. Possibilities to reduce the exposure and recover from adverse impacts depend also 

on a range of socioeconomic factors such as education, income, social isolation, health care 

provision and urban design (Carter et al., 2016; Benmarhnia et al., 2015). 

Weather and climate have some impact on all people, at least on the behaviour and outdoor 

activities, but some individuals are more sensitive to weather than others. Generic weather 

sensitivity, meteorosensitivity, has been studied mainly through surveys, where people 

themselves report the impacts of weather on their well-being and their weather-dependent 

symptoms. In surveys conducted in Germany and Canada, about 55% and 61% of the 

population (Von Mackensen et al., 2005) reported that weather affects their well-being. Among 

the most frequent weather-related symptoms that were listed were e.g. headache and migraine, 

sleep disturbances, fatigue, pain in joints and depression. Most common weather types that 

cause problems for well-being are related to cold or stormy weather. Typically women are more 

sensitive to weather than men and weather sensitivity increases with age. According to a 

German survey, within the group of people who consider themselves weather sensitive 76% 

had chronical illnesses (Koppe et al., 2013).  

The chronically ill are sensitive to different weather variables. The majority of studies report 

on the significant relationship between temperature and total or cause-specific morbidity 

including cardio-vascular and pulmonary diseases and diabetes, as well as emergency transport 

and hospital admissions (Ye et al., 2012). A high risk of epileptic seizures has been associated 

with low atmospheric pressure and high relative air humidity, whereas high ambient 

temperatures seem to decrease seizure risk (Rakers et al., 2017). Strokes have been associated 

with short-term changes is both high and low temperatures (Lian et al., 2015). A statistically 



17 

 

significant association has not been found between strokes and atmospheric pressure or 

humidity (Cao et al., 2016).  

Quality of life and mental health have a clear seasonality. For example Jia and Lubetkin (2009) 

investigated the general Health Related Quality of Life (HRQoL) among the U.S. population 

and found out that physical HRQoL was best during the summer and worst during the winter, 

but the worst mental health occurred during the spring and fall. Grimaldi et al. (2008) found out 

that in a Finnish population lower HRQoL and more severe mental ill-being were associated 

with greater seasonal changes in mood and behaviour and poor illumination experienced 

indoors.  

In Finland, surveys on impacts of hot and cold on symptoms and thermal sensations have been 

conducted in context of national FINRISK-surveys. Almost half of the subjects (46%) reported 

some kind of cold-related symptoms (Näyhä et al., 2011); particularly people with pre-existing 

medical conditions experience cardiovascular, respiratory or musculoskeletal symptoms in the 

cold. About 80% of adult population perceive heat-related general cardiorespiratory or 

psychiatric symptoms even during a normal summer, and 26°C was on average considered as 

hot. Most symptoms increase by age, except feelings of thirst declines with age, and the 

symptoms are more prevalent in women than men (Näyhä et al., 2014). The prevalence of heat-

related cardiorespiratory symptoms was 12% varying between 3% and 60% depending on 

several factors. Heat-related cardiorespiratory symptoms are most common among people with 

pre-existing lung or cardiovascular disease, agricultural workers, unemployed, pensioners, and 

people having only basic education (Näyhä et al., 2017).  

Many of the weather-related symptoms cannot be correlated to any single meteorological 

variable, but rather to a weather type, which poses challenge to study methods. Furthermore, a 

weakness of survey-based research method is that even though a big share of the variation of 

the symptoms would be explained by weather variability, the causal pathways cannot always 

be well explained. The best-understood responses to weather conditions are the consequences 

of exposure to heat or cold. 
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2.3. Human responses to variation in thermal conditions 

Physiological responses to the heat and cold stress can be described with the human energy 

balance model. The model development has started in early twentieth century, but current 

scientific understanding on thermal comfort is firmly based on the studies conducted in sixties 

and seventies, and a classic work of Fanger (1970).  

The energy balance model is based on thermoregulation of humans: the body aims to maintain 

a core temperature of about 37°C, which is vital for the function of internal organs. If the subject 

is exposed to cold stress, the blood vessels contract, and the blood circulation in the outer parts 

of the body is reduced and skin temperature decreases. The body begins to react to cold 

exposure also by e.g. shivering in order to start producing heat through muscular work. 

Conversely, when the subject is exposed to heat stress, the blood vessels enlarge, and the blood 

circulation in outer parts of the body increases in order to transfer excess heat from the core of 

the body. Excess energy is also used for sweating and evaporation of the sweat. Severe heat or 

cold stress can lead to severe symptoms or even death. 

Thermal stress or thermal comfort of humans depends not only on ambient temperature but also 

on humidity, wind speed and radiation. The energy exchange between environment and the 

human body can be described with a heat budget model as follows (Jendritzky and de Dear, 

2008):  

 M – W – [QH(Ta,v) + Q*(Tmrt,v)] – [QL(e,v) + QSW(e,v)] – QRe(Ta,e) ± S = 0, (1) 

where M is metabolic rate of the subject, W is mechanical work of the subject, S is the storage 

term describing the change in heat content of the body. Other energy terms in the equation are 

also functions of meteorological factors. QH(Ta,v) describes the turbulent flux of sensible heat 

that depend on air temperature (Ta) and wind velocity (v). Q*(Tmrt,v) is radiation budget, where 

the mean radiant temperature (Tmrt) describes the temperature as a consequence of short- and 

long-wave radiation fluxes. Turbulent fluxes of latent heat by diffusion of water vapour (QL) 

and sweat evaporation (QSW) depend on water vapour pressure (e) and wind velocity (v). Energy 

loss in respiration (QRe) depends on air temperature and water vapour pressure.  

The complex energy transfer between the core and outer parts of the body and the insulation of 

clothing are not explicitly mentioned in this equation while putting the emphasis of 

meteorological factors, but these factors are essential and embedded into the energy terms 
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(Parson, 2003). The energy exchange between the environment and human body depend also 

on individual characteristics such as age, weight, gender, health and acclimatization, and 

environmental factors e.g. in the built environment (Rupp et al., 2015). The role of beige and 

brown fat in individual differences and thermoregulation in cold may be substantial. Brown 

adipose tissue (BAT) contributes to energy expenditure and cold-induced thermogenesis in 

humans, and thus, impacts on the responses of humans to cold exposure (Kiefer, 2017; 

Yoneshiro et al., 2016).  

There are only a few rational thermal indices i.e. that are based on human energy balance. The 

state-of-the-art in the field is UTCI (Universal Thermal Climate Index, Blazejczyk et al., 2012; 

Blazejczyk et al., 2013). However, e.g. in comparative study of Morabito et al. (2014), it was 

found that UTCI did not perform as well as expected in health impact studies. Yet, they 

concluded that thermal indices, which include air temperature, humidity, wind speed and solar 

radiation, correlate best with health impacts. In Article I of this thesis, daily mortality is 

compared to values of Physiologically Equivalent Temperature, PET (Höppe 1993; 1999). PET 

is also based on an energy budget and its values are given in degrees Celsius. PET-values in the 

selected thermal environment are equal to similar thermal conditions indoors described by 

temperature. Since it is impossible to calculate the heat stress at an individual level in a larger 

population, the PET-values are typically calculated using standard values for light activity 

(work metabolism 80W) and thermal resistance of clothing (0.9), which could be described as 

clothes that people wear on cool summer day. The meteorological input variables need to be 

transferred to the height of typical person: mass centre (1.1m) (Höppe, 1999; Matzarakis et al., 

1999).  

Earlier, hundreds of different thermal indices have been developed for assessing indoor or 

outdoor thermal comfort (e.g. review of Taleghani et al., 2013). Quite often in research on 

health impacts of weather and climate, only temperature or simple empirical indices are used. 

Simple indices are typically combinations of two or more meteorological variables. 

2.4. Temperature dependence of mortality  

The heatwave of 2003 in western and central Europe caused about 70 000 excess deaths (Robine 

et al., 2008) and the heatwave of 2010 over Russia about 55 000 excess deaths (Barriopedro et 

al., 2011). Both of these heatwaves extended also to Finland. According to Kollanus and Lanki 

(2014), the number of non-accidental extra deaths was over 200 in 2003 and more than 300 in 
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2010. The impacts were most severe among the elderly, aged 75 years and older, as the daily 

mortality increased on average by 21%. An exceptional heatwave took place in Finland in 1972 

causing about 800 extra deaths. After that, remarkable heatwaves with increased mortality 

occurred also e.g. in 1973, 1978, 1988, 1995 and 1997 (Näyhä, 2005).  

The relationship between thermal environment and mortality is widely studied and well 

understood. The temperature‒mortality relationship can be described as U-, V- or J-shaped 

(Armstrong, 2006; Kovats and Hajat, 2008; Gosling et al., 2009). The mortality increases 

towards both extremes of the temperature distribution, and the range of the minimum mortality 

temperature (MMT) varies according to the latitude and geographical area (Basu and Samet, 

2002; Curriero et al., 2002). People living in cold climates are more sensitive to hot weather 

and are better acclimatized to cold conditions than people living in warmer climates. This is 

reflected in the shape of the temperature‒mortality relationships.  

The MMT describes the optimal thermal conditions that the population is acclimatized to and 

it is lower in cool climates than in warm climates. The MMT is typically found around 75th 

percentile of the annual daily mean temperature distribution, varying between the 66th and 80th 

percentiles (Guo et al 2014). In Finland the mortality is lowest when the daily mean temperature 

is at the range of 12–17°C (Figure 1) while in Mediterranean countries the same is true at 22–

25 °C  (Keatinge et al., 2000; Näyhä, 2005; Näyhä, 2007). The MMT may vary even within a 

country like reported e.g. by Tobias et al. (2017) from Spain and Curriero et al. (2002) in the 

USA. A small difference in MMT between southern and northern Finland was also suggested 

by Keatinge et al. (2000). 

Otherwise, there are contradicting results on the climate dependence of the shape of 

temperature–mortality relationships, thus in steepness of the slopes around minimum mortality. 

For instance, Curriero et al. (2002) and Gasparrini et al. (2012) found a clear association of the 

temperature‒mortality relationship with latitude in US cities, while climate-zone dependence 

has not been found in studies of Keatinge et al. (2002) or Guo et al. (2014). Meta-analyses 

across European and US cities (Baccini et al., 2008; D’Ippoliti et al., 2008; Medina-Ramón and 

Schwartz, 2007) have indicated heterogeneity in the relationships. The risk varies by 

community and country and differences in vulnerability and sensitivity of the population to 

temperature extremes depend also on non-climatic environmental and socioeconomic factors 

such as level of urbanization, buildings, share of elderly, income, education, lifestyles, access 

to health care and social structures (Hondula et al., 2015; Bao et al., 2015; Carter et al., 2016). 
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Especially the elderly and people with pre-existing medical conditions such as cardiovascular 

or respiratory diseases, diabetes or chronic mental illnesses are found to be vulnerable to 

temperature extremes (Kovats and Hajat, 2008; Kollanus and Lanki, 2014).  

The impacts of thermal stress depend also on the exposure time and they may appear with a 

delay. The impacts of cold on mortality are more complex than the impacts of hot due to 

different causal pathways. Heat stress leads to enlarging skin vessels and sweating which 

increase cardiac work and blood viscosity, and also the risk of thrombosis. Cold stress causes 

constriction of skin vessels which increases blood pressure and the risk of thrombosis. 

Furthermore, breathing cold air increases the risk of respiratory infections which are associated 

to increase in mortality (Näyhä, 2005). The impacts of hot weather on mortality typically appear 

on the same day and last for a couple of days, whilst the increase in cold-related mortality can 

be found with a delay varying from days up to weeks (Anderson and Bell, 2009; Rocklöv and 

Forsberg, 2008; Yu et al., 2012). Most of the temperature-related mortality burden is 

attributable to cold—even in tropical and sub-tropical areas (Gasparrini et al., 2015a). On the 

other hand, recently e.g. Ebi and Mills (2013) have questioned the assumption that the seasonal 

variation with higher mortality in winter than in summer would be attributable only to 

temperature. Higher winter mortality may also be related to other factors that vary seasonally 

such as influenza epidemics and solar radiation. 

Prolonged heatwave or cold spell seems to cause an additional increase in mortality time series. 

However, according to Guo et al. (2017) no added heatwave effect on mortality was found in 

most of the studied countries. The excess mortality during the heatwaves is rather a cumulative 

effect of hot days.  

Short-term mortality displacement, so called harvesting effect, causes difficulties in assessing 

overall attribution of heat and cold stress on mortality. The number of deaths increases in the 

beginning of the heatwave and after a few days number of deaths may decrease even below the 

baseline level. This harvesting effect may vary from one location to another. E.g. according to 

comparative study of Hajat et al. (2005) the heat-related short-term mortality displacement was 

higher in London than in Sao Paulo or Delhi. However, epidemiological studies have suggested 

that regardless of mortality displacement, the thermal stress increases the number of deaths in 

annual level. Based on data from 12 countries, Armstrong et al. (2017) concluded that most of 

the deaths associated acutely with heat and cold extremes shortened lives by at least one year. 

In Finland, Kollanus and Lanki (2014) did not find a decrease in mortality in the months 
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following the heatwaves in 2003 and 2010, either. Thus, the excess deaths indicated life 

shortening rather than short-term mortality displacement. 

Exposure to heat or cold stress may vary remarkably even in a small area due to mesoscale or 

microscale climatic variation. In densely populated areas the urban heat island (UHI) may cause 

an additional heat stress during heatwaves, and affect the spatial distribution of relative risk of 

mortality (e.g. Taylor et al., 2015; Ketterer and Matzarakis, 2015). Especially in urban areas, 

poor-air-quality episodes may take place simultaneously with heat waves or cold spells causing 

an additional health burden. As a consequence of the heatwave 2010 almost 11 000 excess 

deaths took place in Moscow. It has been assessed that statistically interactions between high 

temperatures and air pollution from wildfires contributed to more than 2000 deaths during the 

heatwave (Shaposnikov et al., 2014).  

2.5. Mental health and climate 

According to WHO depressive disorders are ranked globally as the single largest contributor to 

non-fatal health loss (WHO, 2017a). A climate-dependent type of depressive disorder, seasonal 

affective disorder (SAD), is characterized by the onset of a depressive illness during the winter 

months, when there is less natural sunlight, and improved mood during the spring and summer. 

SAD symptoms have been significantly associated with sunshine hours of the same and 

previous week, and global radiation of the previous week (Sarran et al., 2017). On a monthly 

level, more SAD symptoms have been associated with higher precipitation in the same and 

previous month, and on the other hand, people had less depressive symptoms in areas with 

sunnier conditions (O’Hare et al., 2016). There are also hypotheses that over-activated brown 

adipose tissue might induce disrupted thermoregulation and disrupted circadian rhythm, and 

might contribute to lowered mood and pronounced depressive behaviors (Partonen, 2012). 

Patients with affective disorders are at higher risk to commit suicide than general population 

(Bostwick and Pankratz, 2000). 

In Finland almost 40% of population experience some changes in mood and behaviour routinely 

during wintertime, while about 9% report actual winter depression symptoms (Grimaldi et al. 

2009b). Seasonal affective disorders are linked also to physical health problems. People tend to 

be physically less active and gain weight, which may lead also to health problems such as 

metabolic syndrome (Grimaldi et al. 2009a).  
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Suicides accounted for 1.4% of all deaths worldwide, making it the 17th leading cause of death 

in 2015 with incidence of 10.7/100,000 (WHO, 2017b). In eastern European countries the 

incidence is highest and South-America lowest. In Finland over 700 persons committed suicide 

in 2015 which means incidence of 13.3/100,000, which is higher than in EU-countries on 

average. The median age of men who committed suicide was 48 years and of women 51 years. 

About 10% of suicides were committed by younger than 25 years (OSF, 2015a). 

The seasonal variation of suicides is well-known and reported all over the world both in 

northern and southern hemisphere, and also in Finland (e.g. Christodoulou et al., 2012; Woo et 

al., 2012; Hakko et al., 1998, Partonen et al., 2004). The suicide rate is typically highest in late 

spring or early summer, and smallest in winter. Some studies have reported a secondary peak 

in women suicides in autumn. Seasonality is stronger in suicides of men than women. Different 

suicide methods have different seasonality (Räsänen et al. 2002) and suicides with violent 

methods – hanging, shooting and jumping from high – have stronger seasonality than non-

violent methods such as poisoning. Based on earlier diagnoses, seasonality in suicides is found 

with people suffering from severe depression, alcoholism, schizophrenia or other mental health 

illness. However, according to the review of Ajdacid-Gross et al. (2010) the seasonality in 

suicides has diminished in western countries on the basis of long time series of suicides. The 

seasonality of attempted suicides is not as clear as with deaths from suicide. However, a peak 

in spring and early summer is also the most typical seasonal pattern in attempted suicides 

(Coimbra et al., 2016). In Finland the incidence of attempted suicide was found to be lowest in 

December and highest in April (Haukka et al., 2008). 

Up to date causal pathways of this seasonality are not fully understood but it has been associated 

with a rapid increase in sunshine in springtime (Petridou et al., 2002; Partonen et al., 2004). In 

an Austrian study a positive correlation was found between suicides and sunshine hours up to 

10 days prior to suicides while more sunshine 14 to 60 days earlier was associated with lower 

suicide rate (Vyssoki et al., 2014). Lambert et al. (2002) found that the rate of production of 

serotonin by the brain was related to the prevailing duration of bright sunlight, and thus would 

explain the seasonality of mood and seasonal affective disorder. 

According to review of Thompson et al. (2018) high ambient temperatures have a range of 

mental health effects with strongest evidence for increasing suicide risk. For instance, daily 

mean temperature has been positively associated with suicides in East Asian countries (Kim et 

al., 2016), while in the United States no correlation was found between temperature and suicide 
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rates (Dixon et al., 2007). However, possibly due to varying study methods there is little 

consensus on impacts of weather factors on suicide rate other than seasonal variation, and 

higher suicide risk has not been associated to specific weather conditions so far (Deisenhammer, 

2003). 

2.6. Impacts of climate change on temperature‒related mortality and mental health  

Climate change is projected to increase heat-related mortality especially due to more intense 

heatwaves and to decrease cold-related mortality due to fewer cold extremes (Smith et al., 

2014). Therefore the seasonal pattern in mortality is also expected to be gradually altered. 

Ballester et al. (2011) assessed that in Europe the rise in heat-related mortality would start to 

compensate for the reduction of deaths from cold during the second half of the century. A wide 

multi-country study (Gasparrini et al., 2017) on projected temperature-related mortality under 

climate change scenarios, assuming no adaptation or population changes, concluded that in 

temperate climates such as in northern Europe a large decrease in cold-related excess deaths 

would lead to marginally negative or null net change in mortality, and cold-related mortality 

would remain higher than hot-related mortality even in high emission scenario. In warmer 

regions a sharp increase in heat-related mortality would lead also to large net increases in 

mortality, up to 12.5% (−4.7 to 28.1) in central America by the end of the century. However, 

there is still ongoing discussion if climate change will substantially decrease cold-related 

mortality in future because excess winter mortality is not entirely attributable to cold (e.g. Ebi 

and Mills, 2013). For instance Staddon et al. (2014) also concluded that temperature 

dependence of winter mortality has disappeared in the UK in recent decades and therefore 

winter mortality would not decrease because of future climate change. 

Only few studies have included scenarios for acclimatization and changes in sensitivity or 

demographic changes (Huang et al., 2011) into projections on mortality in future climates. In a 

European-wide multi-country study (Kendrovsky et al., 2017) projected changes in population 

were included in an assessment of attributable heat-related deaths in two climate change 

scenarios. The outcomes indicated an excess of almost 47 000 and 120 000 attributable deaths 

per year by the end of the century under the Representative Concentration Pathways (RCP) 4.5 

and 8.5 scenarios respectively. For Finland additional attributable deaths per year were almost 

90 and about 290 respectively by the end of the century. 
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The long-term adaptation of population to a gradually warming climate and changes in 

sensitivity of people to extreme temperatures cause substantial uncertainty in projected changes 

in mortality. Based on past data, several studies have shown a decrease in population 

susceptibility to heat over time, but a similar decrease in susceptibility to cold is not found 

(Arbuthnott et al., 2016). For instance in Stockholm the relative mortality risk associated with 

heat extremes has decreased but a similar decrease in cold-related mortality risk was not found 

(Oudin Åström et al., 2013). Furthermore, the minimum mortality temperature has increased 

over the course of the 20th century, suggesting that autonomous adaptation has taken place in 

the Swedish population (Oudin Åström et al., 2016). In the study of Donaldson et al. (2003) a 

decrease in heat-related mortality since 1971 was found in three climatically diverse regions 

including southern Finland.  

Muthers et al. (2010) concluded that heat-related mortality would increase significantly in 

Vienna by the end of the 21st century also in an approach where long-term adaptation was 

included. Ballester et al. (2011) suggested that if societies effectively adapt to a warmer climate, 

at the end of the century the total mortality due to thermal stress might decrease in Europe, 

when increases in heat-related mortality, decreases in cold-related mortality and acclimatization 

are taken into account. The discussion of how to include adaptation and changes in sensitivity 

into assessments of temperature-related mortality under climate change scenarios has only just 

started. The method substantially affects the outcomes and the uncertainties of the outcomes, 

but both shift in threshold (adaptation) and reduction in slopes (sensitivity) should be included 

in climate change impact assessments (Gosling et al., 2017).  

In high-latitude countries people presumably can adapt to gradually changing average thermal 

conditions, and the health risks will be attributable to hot and cold extremes of the future 

climate. In countries with hot climate already now, there is a risk that limits of human 

thermoregulation will be exceeded. According to Mora et al. (2017) about 30% of the world’s 

population is currently exposed to climatic conditions exceeding this deadly threshold for at 

least 20 days a year. By 2100, this percentage is projected to increase to 48% in the scenario 

with low greenhouse gas emissions and to 74% in a high emission scenario. Technical solutions 

such as air-conditioning would be vital for adaptation in such climatic conditions, otherwise 

migration to cooler climate would be necessary.  

Studies on impacts of climate change on mental health and specifically on suicides are less than 

on physical health. In causal pathways of impacts on mental health, the emphasis has been on 
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post-traumatic stress disorders as a consequence of weather-related hazards. Indirect impacts 

such as mental exhaustion due to heat stress, decreasing wellbeing in communities due to 

climate change impacts, and related anxiety or concerns have also arisen (Berry et al., 2010; 

Doherty and Clayton, 2011; Trombley et al., 2017). Impacts of decreasing solar radiation on 

seasonally affective disorders in high-latitude regions has been mentioned in few articles 

without deeper studies (Berry et al., 2010). Based on analysis on relationships between suicides 

and temperature variations, Williams et al. (2015) concluded that it is very difficult to predict 

how climate change will affect the risk of suicide. Impacts of changes in solar radiation on 

suicides under climate change scenarios were not considered.  
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3. Material and Methods  

3.1. All-cause deaths  

For research on the relationship between mortality and thermal conditions, daily number of all-

cause deaths and annual population in 21 hospital districts in Finland from 1971 to 2015 were 

obtained from Statistics Finland. The data included the number of all-aged deaths and the 

number of deaths in two age groups: 65–74 years and 75 years or older. The daily number of 

deaths in additional age groups such as younger than 65 years were calculated from these data. 

Daily population values were interpolated from the annual population values for each age 

group. The life-expectancy in Finland over the study period has increased markedly. In 1980, 

the median age at death was 68.2 years for men and 75.4 years for women. In 2015, the 

corresponding values were 76.8 and 85.3 years, respectively (OSF, 2015b). 

Study I concentrates on changes in the temperature‒mortality relationship in the most populated 

Helsinki–Uusimaa hospital district and the whole time series of mortality by age group were 

utilized in that study. Study II on regional differences in temperature‒mortality relationships 

across hospital districts is based on all-aged number of deaths in a shorter period, 2000–2014. 

Finland is a sparsely populated country and the characteristics of hospital districts vary 

substantially. The highest population, about 1.5 million is in the Helsinki–Uusimaa hospital 

district. In five hospital districts the population is less than 0.1 million and in the rest of the 

hospital districts the population varies between 0.1 and 0.5 million. Daily number of deaths in 

the Helsinki–Uusimaa hospital district varied between 11 and 57 with a median of 30 deaths 

per day during our study period. In the smallest hospital district the median of daily deaths was 

less than five while in most of the hospital districts the median of daily deaths was about 10 

with maximum around 20 deaths per day. Typically the share of deaths in age group 75+ was 

more than 50% of the all-aged deaths, while the share of elderly (75+) in the population varied 

from 5% to 10% in hospital districts, and was highest in eastern Finland. Morbidity indices in 

hospital districts were also used as covariates to explain potential differences in mortality‒

temperature relationships between hospital districts. Morbidity indices describe the generic 

population health status and in the indices the weight of prevalence of selected disease groups 

are based on their significance for mortality, disability, quality of life and health-care costs in 

the population (THL’s morbidity index, 2016). The morbidity indices in hospital districts varied 

between 66 and 147 and were highest in eastern Finland. 
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3.2. Suicides and suicide attempts  

The daily number of deaths from suicide for the period 1969–2003 were obtained from Statistics 

Finland for study III. From the total 43 393 suicides, 33 993 were men and 9400 women. Data 

on attempted suicides are not collected systematically. Therefore data that were originally 

collected for other studies (Billie-Brahe et al., 1995) were used in study IV on attempted 

suicides in Helsinki. The para-suicide data of men and women included two separate periods: 

the first period was from 1 January 1989 to 31 July 1990 (19 months) and second period from 

15 January 1997 to 14 January 1998 (12 months). Altogether 3945 suicide attempts were made 

during these two periods, about half of them were men.  

3.3. Meteorological data 

Various meteorological datasets were used in the studies. Selection of data was based on the 

research questions and prior understanding on potentially relevant meteorological factors that 

may have impact on health impact in question. 

In study I, that concentrates on mortality in the Helsinki–Uusimaa hospital district, two 

indicators for exposure to thermal stress were used, namely the daily mean value of PET 

(Physiologically Equivalent Temperature) in Helsinki–Vantaa weather station and spatially 

averaged daily mean temperature (Tavg) in the hospital district. Station-wise synoptic 

temperature, relative humidity, wind speed and global radiation data were used as input to 

calculate PET for the study period 1971–2014, and PET daily values we calculated from these 

3-hourly data. The calculations were made with the RayMan model (Matzarakis et al. 2007; 

Matzarakis et al. 2010). Values of Tavg were derived from the gridded 10 km × 10 km dataset 

of the Finnish Meteorological Institute (Aalto et al. 2013).  

In study II about regional differences in temperature‒mortality relationships in Finland, the 

number of deaths were compared to spatially averaged daily mean temperatures (Tavg) in the 

hospital districts in the period 2000–2014.  

In study III, deaths from suicide in Finland were compared with global radiation, sunshine 

hours, temperature and precipitation in the time period 1971–2003. Temperature and 

precipitation were spatially averaged values based on the gridded database, but for solar 

radiation station-wise data from Jokioinen in south-western Finland was used instead, because 
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gridded data were not available. About 80% of suicides in Finland take place in southern and 

central part of the country. 

In study IV, suicide attempts in Helsinki were compared to daily mean, maximum and minimum 

temperatures, daily precipitation, global solar radiation, sunshine hours, and atmospheric 

pressure from Helsinki–Kaisaniemi weather station. Furthermore, the deviations of temperature 

and global solar radiation from their climatic normal values from the period 1971–2000 were 

also considered. A descriptive analysis of weather types on peak days of attempted suicides 

were based partly on synoptic weather charts, as well.  

3.4. Methods  

3.4.1. Assessing temperature‒mortality relationship 

Study I aimed to assess changes in temperature‒mortality relationship 43-year-long study 

period in the Helsinki–Uusimaa hospital district. Demographic changes were taken into account 

by calculating daily mortality values as number of deaths / 100,000 inhabitants for each age 

group. Expected mortality was used as a baseline mortality: daily expected mortality values 

were calculated from the mortality data applying Gaussian smoothing with a filter of 365 days 

for the whole study period. The time series of expected mortality include the seasonal cycle but 

day-to-day variability is smoothed out. Relative mortality is then the deviation of mortality from 

the expected mortality as a percentage. The time series of relative mortality are stationary, 

which makes it possible to compare impacts of thermal extremes over the decades regardless 

of demographic changes or lengthening life-time. The smoothing method shortens the mortality 

time series from both ends and comparisons of relative mortality to the meteorological data 

were made for the time period 1972–2014. Figure 1 clarifies this method that was developed 

by Koppe and Jendritzky (2005).  

The impacts of the thermal conditions on the relative mortality were studied by comparing the 

daily mean values of PET and Tavg with the mean value of relative mortality in the same and 

following day, thus applying a 1-day lag. Generalized additive model (GAM) was applied to 

visualize the relationships and the analysis was done for the whole study period and separately 

for two 21 year-long sub-periods, 1972–1992 and 1994–2014. The R-package “mgcv” (Wood, 

2016) was used for modelling. 

Quantitatively the relationships between relative mortality and the thermal indices were 

calculated in 12 percentile categories of the PET and Tavg frequency distributions. Then the 
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mean values of relative mortality with 95% confidence intervals were calculated in these 

percentile categories were calculated for the age groups: all ages, <65, 65–74, ≥ 75 years. In 

order to assess potential changes in the relationships between relative mortality and the thermal 

indices during the study period, we applied linear regression to explore linear time trends of the 

mean relative mortality in each percentile category. Furthermore, the changes in relative 

mortality were concretized by calculating relative mortality mean values in the percentile 

categories in the two sub-periods: 1972–1992 and 1994–2014 using the percentile categories 

that were defined from the whole study period. The statistical significance of differences in the 

relative mortality between the sub-periods were tested by a Welch Two Sample t-test and the 

Shapiro–Wilk test was used to check the normality of the distributions.  

The dependence between mortality and thermal conditions varies depending on the time 

window. Therefore, the relationships were calculate also for longer time windows using 7- and 

14-day averages of relative mortality and thermal indices without lag considerations.  

The main aim of study II was to assess regional differences is temperature‒mortality 

relationships across 21 hospital districts in Finland. The research was conducted using daily all-

aged mortality data in the 15-yearlong study period, 2000–2014 and the exposure to thermal 

stress was described by spatially averaged daily mean temperatures in hospital districts, 

calculated from gridded temperature data.  

In modelling the relationship between the daily deaths and mean temperatures in the hospital 

districts, different versions of distributed lag non-linear model (DLNM) were applied 

(Gasparrini et al., 2010; Gasparrini, 2011; Gasparrini and Leone, 2014). The daily number of 

deaths follow quasi-Poisson distribution and the general model definition is as follows: 

 g(µt) = α + s(xt; β) + ∑ ℎ𝐽
𝑗=1 j(cti; γj)     (2) 

where g is a log link function of the expectation µt   ≡  E(Yt), with Yt being the time series daily 

mortality counts in hospital district, α is an intercept, s(xt;β) is an exposure–response function 

to temperature (xt) defined by β and it is chosen as quadratic B-spline defined by internal knots. 

The cross-basis matrix of coefficients also describes lag effects of temperature, defined by knots 

for lag on a logarithmic scale. Delayed effects of temperature on mortality were studied with a 

lag of up to 25 days. Confounding factors (cti) were day of the week and time from the beginning 

of the time series. Day of the week is modelled as a categorical variable and elapsed time as a 
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natural cubic spline with 7 degrees of freedom (df) per year to control seasonal variation and 

long-term trend. 

Simple model versions without delayed temperature impacts (lag = 0) and with 4 internal knots 

for temperature distribution, were first applied for each hospital district (HD) separately without 

confounding factors. After this first-stage modelling, meta-regression analysis (Gasparrini et 

al., 2012) was conducted to assess if there is heterogeneity, thus significant differences, in 

temperature‒mortality relationship across the hospital districts. In this method the effects of 

random variation on the relationships is reduced by calculating best linear unbiased predictions 

(BLUP) for the relationship. These BLUP estimates converge the HD-specific relationships 

towards a pooled, averaged exposure–response relationship. A Cochran Q test and I2 were used 

to study heterogeneity across the BLUP estimates of the relationships in hospital districts.  

Climatological mean temperature, ranges of daily mean temperatures, morbidity indices, 

population, and share of elderly (75 years and older) in the hospital districts were used as 

covariates to explain potential heterogeneity in the temperature‒mortality relationship in the 

hospital districts. An LR test and Wald test were applied to study the statistical significance. 

Because temperature ranges deviate between the hospital districts, the meta-regression was 

done on both absolute and relative temperature scales. 

For studying the effects of heat stress and cold stress on mortality with a long delay, we applied 

a more complex DLNM version with lag up to 25 days. Based on the lowest Akaike Information 

Criteria (AIC) value, the best models in hospital districts had on average three internal knots 

for temperature and two knots for lag, and these fixed numbers of knots were used in this 

complex modelling version in all hospital districts. The R packages dlnm (Gasparrini, 2011) 

and mvmeta (Gasparrini et al., 2012) were used while conducting these studies. 

3.4.2. Baseline mortality definitions 

The shape of temperature‒mortality relationship varies also according to the chosen definition 

for baseline mortality and how seasonal variation is controlled. Different baseline mortality 

definitions are used in studies I and II. The consequences of methodological differences needs 

to be understood when interpreting the modelled temperature‒mortality relationships, and they 

are demonstrated in Figure 1. 
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In study I the baseline mortality is seasonally varying expected mortality, which is higher in 

winter than in summer.  The deviation of the observed mortality from its seasonal expected 

value, relative mortality, is then used in modelling the temperature‒mortality relationship, as 

described is 3.4.1. In study II the temperature‒mortality relationship is modelled using mortality 

at the minimum mortality temperature (MMT) as a reference, and relative risk for mortality is 

then number of deaths at given temperature/ number of deaths at MMT. Different baseline 

definitions lead to differences in mortality risks in the cold thermal range, while the risks in the 

warm range are fairly similar and in study I the modelled increase in mortality due to cold stress 

appears to be smaller than in the study II. 

 

 

 

 

 

 

 

 

 

   

Figure 1. The definition for the baseline mortality effects on the shape of the temperature‒

mortality relationship. In study I (upper row) the baseline mortality is seasonally varying 

“expected mortality”, while in study II (lower row) the baseline is the mortality at the 

minimum mortality temperature (MMT, vertical line in the graph).   

MMT 
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3.4.3. Assessing impacts of weather and climate on suicides and attempted suicides  

The suicide rates and meteorological variables in the time period 1971–2003 were compared in 

various time windows ranging from monthly to annual level (Study III). For each time window 

the cumulative values of suicide rates (all, men and women), global radiation, sunshine hours 

and precipitation were calculated as the sum of daily values for the period in question, whereas 

temperature was averaged over the period. Delayed climate impacts were not considered in this 

study. 

Both simple and multivariate linear regression analyses were performed. Linear univariate 

regression models were calculated using the suicide rate as the dependent variable and the 

measured global radiation, sunshine hours, average temperature or precipitation as the 

explanatory variable. For the multivariate models global radiation, average temperature and 

precipitation were included stepwise as the explanatory variables.  

The regression analyses were conducted both to the data that included long-term trends, and to 

the residual data after the trends were removed in order to differentiate impacts of long-term 

variations and trends (years) and short-term variations in weather variables. The trends were 

filtered by fitting linear trends both to the suicide and weather data for two sub-periods, i.e., the 

periods of increasing suicide rates from 1971 to 1990 and of decreasing suicide rates from 1991 

to 2003. The regression analyses were also conducted separately to these sub-periods in order 

to see if the impacts of meteorological factors differ between the time periods of increasing and 

decreasing suicide trends. 

Daily number of suicide attempts in Helsinki during the two shorter study periods (Study IV) 

were an average two for both women and men, varying between zero and nine for women and 

between zero and eight for men, and the frequency distributions followed Poisson distribution. 

Based on weather data and synoptic charts, descriptive case studies were made in the beginning 

in order to assess if certain weather types prevailed on cluster days with high number of suicide 

attempts, and days without self-harm. The criteria for a cluster day was defined as the 

probability for the number of suicide attempts being less than 0.01 according to a Poisson 

distribution. Altogether 17 days fulfilled the cluster day criteria, either for men, women or both 

sexes together. The outcomes of these preliminary, descriptive analyses were tested using the 
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chi-squared test. Similar descriptive analyses were made for cluster weeks and low-self-harm 

weeks in order to control for day-of-the-week effect. 

Poisson regression was used to study statistical association between weather variables and 

suicide attempts in the whole datasets. The analysis was conducted for women and men 

separately using weather parameters as independent explanatory variables and daily number of 

suicide attempts as dependent variable. Daily mean temperature was taken as deviation from its 

normal value, and global radiation as a proportion of its normal value in the period 1971–2000. 

Furthermore, Poisson regression was performed separately on violent suicide attempts, which 

are defined by the method of the suicide attempt, such as hanging or shooting.  
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4. Summary of results  

4.1. Heatwaves in 1972 and 2010 

Heat-related mortality is important also in Finland, but intense heatwaves do not take place 

every summer. In Figure 2 the increases in mortality in the context of two remarkable heatwaves 

are presented. In the data used in these impact studies in the period from 1971–2015 the highest 

increase in mortality was found in the heatwave 1972. In context of exceptional the heatwave 

in 2010, a new heat record was achieved. As a sign of changes in sensitivity of the population 

to heat stress, the increase in mortality was less than the heatwave 1972. However, the heatwave 

in 1972 lasted longer than the heatwave 2010 and the impacts are therefore not directly 

comparable. 

 

Figure 2. Daily relative mortality (all-aged, all-cause) and mean temperature (spatial average 

over Finland) in summers 1972 (upper) and 2010 (lower). 
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In 1972 the heatwave started in late June and lasted for about two weeks. The highest maximum 

temperature was 33.6°C and the heatwave was most intensive in eastern and northern Finland. 

The peak in relative mortality was 58% and according to Näyhä (2005) during the heatwave 

1972 over 800 extra deaths took place. The heatwave 2010 consisted of two shorter periods in 

the middle and end of July. The highest measured maximum temperature was 37.2°C and 

especially people in southern and eastern Finland were exposed to heat stress. The peak in 

relative mortality was 34% and according to Kollanus and Lanki (2014) the heatwaves in 2010 

caused over 300 non-accidental extra deaths. 

 

4.2. Thermal environment and all-cause mortality 

4.2.1. Changes in sensitivity to thermal stress over decades 

The increase of the relative mortality in the hot extreme end of the thermal distributions is more 

than in the cold extreme. The increase in relative mortality appears above the 95th percentile of 

the thermal distribution and is highest above the 99th percentile among those 75 years and older. 

On the other hand, from the 43-year-long time series of mortality and meteorological data we 

found a statistically significant decrease in relative mortality in upper percentiles of the thermal 

distribution, indicating decreasing sensitivity to heat stress over the decades. In Figure 3 the 

relationship between relative mortality in Helsinki–Uusimaa hospital district and PET in 

Helsinki–Vantaa airport for all-aged and elderly (≥ 75 years) for the two 21-year sub-periods. 

The decrease in sensitivity to the hot extreme was statistically significant in upper percentiles: 

for instance in the highest percentile category (>99th percentile) the all-aged relative mortality 

decreased from 18% (1972–1992) to 9% (1994–2014). Among the elderly the decrease was 

from 21% to11 %.  
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Figure 3. Relationships between relative mortality in the Helsinki–Uusimaa hospital district 

and daily mean value of PET in Helsinki–Vantaa weather station in the periods 1972–1992 

and 1994–2014 for all-aged and elderly, ≥ 75 years. (Adopted from study I Figure 2.) 

 

In addition to the daily mean value of PET at Helsinki–Vantaa weather station, following other 

thermal indicators were also used: daily max and min values of PET based on synoptic data in 

Helsinki–Vantaa, station-wise daily mean, max and min temperatures in Helsinki–Vantaa and 

spatially averaged daily mean, max and min temperatures over the Helsinki–Uusimaa hospital 

district. Even though quantitatively the relationships between relative mortality and the thermal 

indicators varied, the shapes of the relationships were fairly similar. In study I the relationship 
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between mortality and daily mean values of PET and spatially averaged daily mean temperature 

Tavg were reported. In Figure 4 an example of the impact of thermal indicator on the shape of 

the relationship between mortality and thermal environment is demonstrated.  

Figure 4. Relative mortality in Helsinki–Uusimaa hospital district as a function of PET daily 

mean value in Helsinki–Vantaa weather station and spatially averaged daily mean temperature 

in Helsinki–Uusimaa hospital district. (Adopted from study I, Figure 2 and Figure 3.) 

In the Tavg scale, the impact of heat stress appeared to be somewhat stronger than in the PET-

scale and the increase in mortality appeared to be also steeper in Tavg. This difference is partly 

due to the fact that the PET-scale is wider than spatially averaged temperature, because of the 

role of solar radiation in summer and wind in winter in contributing to PET-values. On the other 

hand the distribution of spatial average of temperature over hospital district is narrower than 

station-wise temperature distribution.  

Both PET and spatially averaged temperature are feasible indicators in modelling the 

relationship between mortality and thermal environment – depending on the scope of the study 

and availability of the data. Based on this conclusion, spatially averaged temperature was used 

as indicator for thermal stress in study II. 
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4.2.2. Regional differences in the temperature‒mortality relationship 

The simple DLNM modelling without lagged effect and without controlling seasonality 

produced U-shaped relationships in all hospital districts, except for the two least-populated 

ones, which have populations of less than 50 000. The first-stage modelling showed large 

differences and variation in the temperature–mortality relationships across hospital districts, 

especially on the cold thermal range, but the BLUP estimation converges the relationships 

towards the pooled, average relationship and the differences between hospital districts almost 

disappear (Figure 5).  

According to the meta-analysis there was no statistically significant heterogeneity in mortality–

temperature relationships among the hospital districts on an absolute temperature scale. Thus, 

based on the meta-analysis the same mortality–temperature relationship can be applied in all 

parts of the country. However, on the relative temperature scale, 21% of variation in the 

relationships between hospital districts would be explained by heterogeneity. According to the 

Wald test, morbidity index and population in the hospital districts would explain heterogeneity 

on a statistically significant level, but the LR tests did not support these findings. Climatological 

factors – climatological mean temperature and range of daily mean temperature in the hospital 

districts – did not explain considerably the small heterogeneity. 

On the basis of the pooled temperature–mortality relationships, the increase in relative risk (RR) 

of mortality at a daily mean temperature of 24°C was 1.16 (1.12–1.20; CI 95%) when compared 

to mortality at 14°C, which is the minimum mortality temperature (MMT) of the pooled 

relationship. On the cold side, at a daily mean temperature of −20°C, RR was 1.14 (1.12–1.16; 

CI 95%). The MMT was found at the 79th percentile on the relative scale of daily mean 

temperature. 
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a)             b) 

c)             d) 

Figure 5. Temperature–mortality relationships based on the model without lag. a) Hospital 

district (HD)-specific models (dash curves) with the pooled relationship (solid curve), b) best 

linear unbiased predictions (BLUP) estimates for hospital districts, c) pooled, average 

relationship (solid curve) with 95% confidence interval (shaded), relative risk (RR) reference 

at T = 14°C, which is the minimum mortality temperature d) Meta-analysis on relative 

temperature scale with morbidity index of hospital districts as covariate. (Adopted from Study 

II, Figure 2 and Figure 3.) 

The impacts of heat stress appeared typically on the same day and lasted for a few days while 

the impacts of cold stress appeared after a few days but lasted for several days or even weeks. 

Modelling with more complex DLNM with long 25-day lagged effects suggests that including 

delayed impacts with a long lag may double or triple the estimated overall mortality risk 

compared to the outcomes of a simple model (Table 2 in Study II). Figure 6 visualizes delayed 

impacts of heat and cold in the Helsinki−Uusimaa hospital district.  



41 

 

 

a)       b) 

 

c)      d)  

Figure 6. Example of DLNM with 25-day delayed temperature effect on relative risk of 

mortality (RR) in Helsinki−Uusimaa hospital district. a) 3D-visualizaton on RR as a function 

of daily mean temperatures and lag. b) Overall temperature−mortality relationship when 

impacts are aggregated over the 25-day period. c) Lagged temperature effects at Tavg = 24°C, 

representing heat stress and d) Tavg = −20°C, representing cold stress. (Adopted from Study 

II, Figure 4 and Figure 5.)  
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4.3. Impacts of weather and climate on suicides and suicide attempts 

4.3.1. Deaths from suicide in Finland, 1971-2003 

A key finding of this study was that from meteorological variables, solar radiation explained 

best the inter-annual variability in suicide rates in Finland, and men appeared to be more 

sensitive to lack of solar radiation than women (Figure 7). In simple regression, global solar 

radiation was statistically significantly correlated with suicide rate at the inter-annual level 

(negative correlation, R2=0.23). Temperature or precipitation alone could not explain variations 

in suicide rates, but using them in multiple regression together with global radiation increased 

the explanatory power (R2=0.32). In a multiple regression, temperature had also statistically 

significant positive partial correlation with female suicide rate.   

Figure 7. Annual suicide rates (upper panel) in Finland and annual global solar radiation and 

sunshine hours in Jokioinen weather station in 1971−2003. (Adopted from Study III, Figure 1).  
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In the regression analysis, at monthly and seasonal levels only a few statistically significant 

correlations between suicides rates and meteorological variables were found. In order to 

identify the time window in which lack of solar radiation had best correlation with suicide rates, 

the relationship was calculated in various cumulative time windows starting from November, 

which can be considered the beginning of the darkest period in Finland. The strongest negative 

correlation was found in a five month period from November to March, when (lack of) solar 

radiation explained 40% of variation in male suicide rate. For women the correlation was 

substantially smaller, only 14% of the variation of female suicide rate was explained by solar 

radiation in this 5-month time window.  

4.3.2. Suicide attempts in Helsinki 

Based on Poisson regression, the daily number of suicide attempts in Helsinki were correlated 

with atmospheric pressure but not with solar radiation, air temperature or precipitation. Small, 

but statistically significant, correlations between daily mean atmospheric pressure and the 

number of suicide attempts were opposite for women and men. For women the correlation was 

positive with rate ratio, RR=1.005/hPa (p=0.026) and for men the correlation was negative with 

RR=0.995/hPa (p=0.016). In the cases of violent methods of suicide attempt, the correlation 

was stronger for men with RR=0.983/hPa (p<0.001), but for women not significant. The 

Poisson regression was repeated by using a few-day average of the atmospheric pressure as an 

explanatory variable. For women the correlation was found to be statistically significant for two 

days and for men for one day before the suicide attempt. 

Descriptive case studies on cluster days of suicides attempts indicated that low-pressure 

situations with cloudy weather with rain or snow typically prevailed on male cluster day, but in 

spring the cluster days were in high atmospheric pressure situations with sunny weather. Female 

cluster days were days with high pressure and cloudy weather. No day-of-the-week effect was 

found on cluster days. 

Days free from suicides or suicide attempts can partly be explained by a harvesting effect, thus 

short-term displacement in suicides and their attempts due to earlier higher incidences. Those 

days were excluded from the case studies. For men “protective” weather conditions could be 

described as near average atmospheric pressure with varying meteorological variables 

otherwise. For women “protective” conditions appeared to be warmer than usual for the season 

and cloudy weather in context of low pressure situations. Monday is the most probable day 

without suicides or suicide attempts.  
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5. Discussion 

5.1. All-cause mortality 

The studies of this thesis increase the understanding of temperature-related mortality in Finland 

and provide relevant information for further development of Heat-Health Warning System and 

cold weather warnings. Heatwaves in Finland will become more intense and longer due to 

climate change (Kim, 2017). Temperature‒mortality relationships produced in this study in the 

current climate can be used as a baseline for further studies on climate change impacts on 

mortality. Both studies indicate that heat-related mortality is substantial even in northern 

countries like Finland. Seemingly contradictory outcomes concerning the importance of cold-

related mortality are due to different definitions for baseline mortality. In study I the increase 

in mortality was compared to seasonally varying expected mortality while in study II the 

increase in mortality was compared to minimum mortality, which was found at daily mean 

temperature of 14°C. The baseline mortality used in study I is applicable especially in research 

concentrating on impacts of extreme temperatures, while the baseline mortality used in study II 

is applicable in research on generic temperature‒mortality relationships. 

Study I, in which baseline mortality includes seasonal variation, indicates that increases in 

relative mortality are greater in hot than in cold extreme conditions, and people in Finland are 

less accustomed to high than low temperatures. This finding supports the globally demonstrated 

phenomenon that people adapt to their climatic conditions. The increase in relative mortality 

appears above the 95th percentile of the thermal distribution and is highest above the 99th 

percentile among elderly, 75 years and older. However, the dependence of mortality on extreme 

temperatures has weakened during the 43-year-long study period, even among the age group 

75 years and older. Thus, the study shows that the sensitivity of the Finnish population to 

temperature extremes has decreased in recent decades. It was beyond the scope of the study to 

explain reasons behind the decreasing sensitivity. Potential explanations can be physiological 

or behavioural changes of people or infrastructural changes in society, such as improved public 

health and lengthening of life expectancy.  

The calculation of PET values requires sub-daily meteorological data – temperature, humidity, 

wind speed and solar radiation – and spatial distribution of PET values is affected remarkably 

by topography and the built environment. The study I shows that temperature may give results 

that in many cases are good enough for studies related to impacts of weather and climate on 

mortality. Especially in climate change impact studies it may be adequate to use only 
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temperature scenarios without considering projections for all the input variables that are needed 

for calculations of PET. The use of gridded temperature data instead of station-wise 

meteorological data extends the possibilities to study weather impacts on mortality in sparsely-

populated larger areas, which is the case in most parts of Finland.  

Study II showed that modelling temperature‒mortality relationships at the hospital-district level 

gave realistic, U-shaped relationships even in sparsely populated areas, in hospital districts with 

population less than 50 000. The shapes of hospital-district-specific first-stage relationship 

varied substantially but the best linear unbiased prediction (BLUP) reduced the variability in 

the relationships and statistically significant differences in the temperature‒mortality 

relationships across hospital districts were not found. Thus, based on the meta-analysis the same 

mortality–temperature relationship can be applied in all parts of the country.  

There are substantial regional differences in mortality and morbidity in Finland (THL, 2016; 

Figure 8). People in southern and western parts of the country are healthier and mortality lower 

than in eastern and northern parts of the country. The hypothesis for the study II was that there 

would be regional differences in temperature‒mortality relationships and acclimatization of 

population in Finland, but this hypothesis could not be confirmed. However, the meta-

regression on the relative temperature scale suggests that morbidity index and population in the 

hospital districts might explain some of the small regional heterogeneity of the temperature–

mortality association. In future studies this could be further examined by using more relevant 

Figure 8. Mortality (1/100,000; left) and morbidity index (right) in hospital districts in 2014. 

(THL, Sotkanet) 
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health indicators such as incidences of weather-sensitive chronic diseases (e.g. cardiovascular 

and respiratory diseases) as additional explaining variables. Climatological factors – 

climatological mean temperature and range of daily mean temperature – did not explain 

considerably the small heterogeneity. 

Seasonality in mortality is well-known, however, the reasons behind this seasonality are not 

self-evident. Based on the studies of this thesis I tend to support the conclusion of Ebi and Mills 

(2013) that higher mortality during winter is not related to temperature variation only but also 

to other seasonally varying meteorological and behavioural factors, and influenza epidemics. 

Furthermore people spend most of their time indoors. Based on a population study in Finland, 

people spent only 4% of their total time under cold exposure (Mäkinen et al., 2006). A 

climatologically interesting candidate to explain excess mortality during winter might be lack 

of solar radiation and vitamin D concentration, which typically varies seasonally. In a meta-

analysis of Rush et al. (2013) vitamin D status was inversely associated with all-cause mortality. 

That meta-analysis included also the study of Virtanen et al. (2011) from Finland.  

Sensitivity to temperature extremes has decreased over decades, but based on that result from 

the past times series we cannot conclude that this trend would continue also in the future. In 

climate change impact studies various scenarios for development in sensitivity and 

acclimatization should also be considered and applied together with different climate change 

scenarios. People spend most of their time indoors. Therefore the studies, in which the exposure 

to thermal stress is based only on outdoor thermal conditions, do not provide accurate 

information on the real exposure to heat or cold stress and further studies are needed to assess 

relationship between indoor and outdoor thermal conditions. Furthermore, urbanization is 

expected to continue in the future, and a big share of the population will be exposure to thermal 

stress, that is also modified by the urban heat island effect. Further holistic, multi-disciplinary 

research is needed to better explain and predict future temperature-related mortality. 

5.2. Suicides and attempted suicides 

In 1970s the Finnish health authorities became concerned about the increasing suicide trend 

and in 1986 a nationwide suicide-prevention program was launched, which lead to decreasing 

suicide trend after 1990 (Beskow et al. 1999, Hakko et al. 1998). The main finding of study III 

is that the variation in annual solar radiation explains part (about 20%) of the inter-annual 

variation in suicides. Furthermore, this finding also suggests that both increasing suicide trend 
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until 1990 and decreasing trend after that could partly be explained by long-term variation in 

solar radiation (see also Figure 7).  

Lack of solar radiation was associated with higher suicide risk especially during a five month 

period from November to March. Thus, the darker the winter the higher the suicide mortality. 

This raises another concern related to climate change. In Finland the amount of solar radiation 

is expected to decrease in winter, in the high-emission RCP8.5 forcing scenario the projected 

change is −17% to +2% by middle of the century (Ruosteenoja et al., 2016). The decrease in 

solar radiation will be exacerbated by a shortening snow-cover period, which will reduce the 

amount of reflected shortwave radiation from the ground. The worst scenario is that the positive 

development in suicide prevention and decreasing suicide trend will come to a halt because of 

darker winters. Since e.g. seasonal affective disorders depend on solar radiation, future studies 

need to be extended more widely to the impacts on mental health. Furthermore, the impacts of 

various solar-radiation spectral ranges on mental health need to be better understood.  

The outcome of this study may seem to contradict the earlier studies that associate quickly 

increasing solar radiation with higher suicide incidence in spring and early summer. However, 

season and length of the time windows explain these different outcomes. Correlations between 

deaths from suicide and meteorological variables indicated that the lack of solar radiation 

increased suicide risk especially in winter. It has been suggested that sunshine acts like an 

antidepressant that first increase the suicide risk and later improves the mood (Christodoulou et 

al., 2012). In future studies the impact of solar radiation could be studied by using more 

advanced modelling methods that would take into account both cumulative lack of solar 

radiation in winter as a factor that increases the number of people at suicide risk, and quickly 

increasing amount of solar radiation as trigger for committing suicide in spring. As suggested 

also by Vyssoki et al. (2014), sunshine may have a bimodal effect on suicidal behaviour: more 

sunshine may increase suicide risk in short exposure time scale but decrease suicide risks in 

longer exposure time scale. 

Another interesting outcome of study III is that climatic conditions have impact on suicide risks 

for both genders, but men and women react differently. Men appeared to be more sensitive than 

women to variation in solar radiation. Furthermore, temperature was associated more with 

suicide risk of women than of men. A later study (Hiltunen et al., 2014) also concluded that 

daily temperatures and large increase in temperature in a few-day period, as can often happen 

in spring, may contribute to higher suicide risk. These gender differences might be related to 
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differences in circadian rhythms and thermoregulation between sexes, but requires further 

studies. 

The main findings of study IV, on relationship between suicide attempts and weather, were that 

atmospheric pressure predicted the risk of suicides attempts, and the impact of atmospheric 

pressure was opposite on men and women. Low pressure conditions were associated with higher 

risk for suicide attempts of men, but with lower risk for suicide attempts of women. The other 

meteorological variables – solar radiation, temperature and precipitation – did not have 

statistically significant correlation with the suicide attempts in Helsinki. However, the 

robustness of these outcomes are limited due to short time series and small samples. 

Understanding a causal pathway explaining this relationship needs further studies. If the 

atmospheric pressure as such has direct impacts on the suicide attempt risks, and when the 

impacts on men and women are opposite, the reason might even be hormonal and e.g. the levels 

of some sex-specific hormones have been found to respond to atmospheric pressure (El-

Migdadi et al., 2000). On the other hand, atmospheric pressure might be an indicator describing 

the weather type. The descriptive meteorological case studies indicated that the impacts of 

weather types on para-suicides may also vary seasonally, but due to short datasets of suicide 

attempts a firm conclusion cannot be made. 

These studies have increased the understanding on relationships between meteorological 

variables and deaths from suicide and suicide attempts, but only piecemeal, and further 

comprehensive, multidisciplinary research is needed to understand how individual, societal and 

environmental factors together impact on mental health and suicide risks. Associations between 

meteorological factors and deaths from suicides and suicide attempts appear seemingly 

contradictory. Partly these differences are related to differences in time spans used in the studies 

and a small sample size of suicide attempts is a limitation for the study. However, there may be 

also other factors explaining the differences, since for instance the differences in gender ratios 

between deaths from suicides and suicides attempts are not fully understood. The impacts of 

weather and climate on suicides and suicide attempts are small compared to the other risk 

factors, but they may contribute by increasing the probability or affect timing of self-harm. 

However, the applicability of these outcomes could also be studied in clinical work when 

assessing risk of suicidal patients.  



49 

 

6. Summary 

Human beings are able to adapt to their climatic normal conditions, but despite this capability, 

weather extremes especially may pose a substantial health risk. Changing climate raises 

questions on how the weather-related health risks will change and to what extent people can 

adapt to continuously changing climate and extremes of the future climate. This thesis on 

weather dependence of all-cause mortality and suicides and suicide attempts in the present 

climate in Finland gives a basis for further studies on impacts of climate change on human 

health in Finland, and in general in northern-latitude countries. 

Human thermoregulation aims to maintain the core temperature of the body as constant. 

Thermoregulation forms the basis of a human energy balance model that describes the heat 

exchange between body and environment. Ambient temperature, humidity, wind speed and 

radiation balance are essential meteorological factors in this energy exchange. Both heat and 

cold stress may pose severe risk to health and contribute to premature death. Elderly and people 

with pre-existing chronic diseases such as cardiovascular and respiratory diseases are most 

vulnerable to temperature extremes. 

In this thesis different methods were used to study dependence of mortality on thermal 

conditions. The method to calculate relative mortality makes the long mortality time series 

stationary and, thus, comparable over the decades regardless of changes in population and life-

expectancy. This method was applied to study changes in sensitivity of Finnish population to 

temperature extremes over a 43-year-long period. Hospital-district-specific temperature‒

mortality relationships were studied using complex, distributed lag non-linear models and 

differences in these relationships were assessed by meta-regression with selected climatic and 

sociodemographic covariates. 

The studies of this thesis show that heat-related mortality is remarkable also in a northern 

country like Finland. The increase of the relative mortality in the hot extreme of the thermal 

distributions is more than in the cold extreme. On the other hand, based on the analysis of the 

43-year-long time series, a statistically significant decrease in relative mortality in the upper 

percentiles of the thermal distribution was found indicating decreasing sensitivity to thermal 

stress in the Finnish population over the decades.  

Regional differences in temperature–mortality relationships were not found at the statistically 

significant level on the absolute temperature scale, thus, the same pooled temperature–mortality 
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relationship can be applied in different parts of the country in e.g. climate change impact studies 

in future. On the other hand, the meta-analysis on a relative temperature scale indicated that 

morbidity indices and population in hospital districts could explain the small heterogeneity in 

the relationships ‒ a characteristics that might be worthy of deeper studies. Further studies are 

also needed to assess temperature-related mortality in areas where urban heat island effect is 

clear. 

Both station-wise PET (physiologically equivalent temperature) and spatially-averaged 

temperature over larger areas like hospital districts are feasible indicators in modelling the 

dependence of mortality on the thermal environment. The indicator can be selected depending 

on the scope of the study and availability of the data.  

The study on deaths from suicide on the basis of a 33-year-long time series from Finland 

showed a significant association between suicide rates and global solar radiation especially 

during winter in the period from November to March, suggesting that a lack of solar radiation 

during the winter in higher-latitude regions increases the risk of suicide mortality. The study 

showed also that men are more sensitive to variation in solar radiation than women. On the 

other hand, women seemed to be more sensitive than men to variation in temperature, but the 

temperature dependence of suicides was not as strong as the dependence on solar radiation. The 

study of weather dependence of attempted suicides in Helsinki on the basis of two shorter 

periods showed another interesting difference between genders. The risk of suicide attempts of 

men increased with decreasing atmospheric pressure, while the risk of suicide attempts of 

women increased with increasing pressure. 

Further studies on self-harm should be conducted by using more sophisticated modelling 

methods such as distributed lag non-linear models in order to understand better the impact of 

solar radiation. Based on studies of this thesis, lack of solar radiation in winter may increase 

the number of people at suicide risk, while – based on literature – quickly increasing amount of 

solar radiation in spring may act as a trigger for committing suicide.  

The impacts of decreasing global solar radiation on suicide risks due to climate change need to 

be studied. Future winters in Finland will become milder with increasing cloudiness and 

precipitation and shorter snow-cover period. These together with decreasing solar radiation may 

lead to wider adverse mental health impacts in Finland through seasonally affective disorders, 

SAD.  
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The outcomes of this thesis can be used in communicating the impacts of weather and climate 

on both physical and mental health. They can also be applied in the health sector for instance 

to improve preparedness for heatwaves and cold spells, and planning long-term adaptation 

measures to climate change. 
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