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ABBREVIATIONS

16S rRNA rRNA 16S ribosomal RNA
AAH atypical adenomatous hyperplasia
ADC adenocarcinoma
ATP adenosine triphosphate
BSC best supportive care
CpG cytosine being 5 prime to the guanine base.
CNV copy number variation
COSMIC the Catalogue of Somatic Mutations in Cancer
dbSNP the Single Nucleotide Polymorphism Database
DNA deoxyribonucleic acid
DNMT DNA methyltransferase
FDA Food and Drug Administration
GIT gastrointestinal tract
GTPase small guanosine triphosphatase
HPV human papilloma virus
HR hazard ratio
IGV Integrative Genomics Viewer
IHC immunohistochemistry
LCC large cell carcinoma
LC-CRT long-course chemoradiotherapy
miRNA micro-RNA
mRNA messenger ribonucleic acid
MSI microsatellite instability
NGS next-generation sequencing
NSCLC non-small cell lung cancer
OS overall survival
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PFS progression-free survival
PGM Personal Genome Machine
RAF rapidly accelerated fibrosarcoma
RR response rate
RTK receptor tyrosine kinase
SBRT stereotactic body radiation therapy
SCC squamous cell carcinoma
SCLC small cell lung cancer
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SC-RT short-course radiotherapy
SNP single nucleotide polymorphism
SNV single-nucleotide variant
TKI tyrosine kinase inhibitor
TNM tumor, node, metastasis
WHO World Health Organization

Gene symbols are in italics within the text following the guidelines of the Human

Genome Organization nomenclature committee (HGNC). Gene names used in the

thesis can be found at http://www.genenames.org/.
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ABSTRACT

Lung and gastrointestinal (GIT) cancers are two types of malignancies in which early

diagnosis has a significant impact on prognosis and better survival rate. Exhaled

breath condensate (EBC) from lung cancer patients and stool from patients with GIT

tumors can represent non-invasive sources for diagnosis of malignancy at an early

stage. These materials contain DNA from cells exfoliated from malignant or pre-

malignant lesions and consequently could reflect all genetic alterations occurring

during development of the cancer. Stool samples are also a good source to study gut

bacterial composition. Changes in the gut bacterial profile are linked to many diseases

including GIT cancers. The aim of the study was to explore gene mutations in these

samples, and to test their feasibility for the detection of malignancy in different tumor

stages, including both early and advanced stages. A further aim was to investigate

differences in the gut microbiota profile in stool samples of GIT cancer patients based

on the location of the tumor.

The study material consisted of EBC samples from 29 lung cancer patients and 20

healthy individuals and stool specimens collected from 87 GIT neoplasia patients and

13 healthy individuals included as controls. DNA was isolated from both the EBC

and stool samples. Targeted amplicon next generation sequencing (NGS) and 16S

rRNA sequencing, using the Ion Torrent platforms, were performed to study gene

mutations and stool bacterial profiling, respectively.

In study I, the methodology was optimized for applying NGS to study gene mutations

in the EBC DNA from healthy individuals. The results revealed 15 subjects showing

a total of 35 hotspot mutations in their EBC samples. The most frequent hotspot

mutations occurred at TP53, KRAS, NRAS, and SMAD4 genes. A codon 12 KRAS

G12V mutation was detected in one control EBC sample with a mutant allele fraction

of 6.8%. In the follow-up, study II, the same methodological steps were applied to

the DNA isolated from EBC samples of patients with lung neoplasms. The success

rate was 67.9% with 17 patients revealing a total of 39 hotspot mutations in their
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EBC. The most frequent hotspot mutations occurred in the following genes: TP53,

SMAD4, PIK3CA, and KRAS. A codon 13 KRAS G13D mutation was detected in one

patient’s EBC sample with a mutant allele fraction of 17%. The average mutant allele

fraction for the gene mutations seen in patients were higher compared to that in

controls; e.g. for TP53, the average mutant allele fraction was 22.9% and 13.6% and

for KRAS, 11.4% and 4.3% in the patients and controls, respectively.

In study III, a cancer hotspot gene panel together with colon and lung cancer gene

panels were used to study mutations in stool DNA from 87 patients with gastric and

colorectal neoplasms. The success rates were 78% and 87% for gastric and colorectal

neoplasia, respectively. Stools from patients with gastric neoplasms revealed 5

hotspot mutations, while from colorectal neoplasms 20 hotspot mutations were found.

APC, TP53, and KRAS were the most frequently mutated genes in colorectal

neoplasms. However, APC, CDKN2A, and EGFR were the only genes that showed

hotspot mutations in gastric neoplasms. Hotspot mutations could also be detected in

stool DNA from benign (8 mutations) and early malignant (9 mutations) GIT

neoplasms.

In study IV, bacterial profiling in stool samples from patients with GIT neoplasms

revealed variations in abundance according to the site of the GIT neoplasm. Two

families, Lactobacillaceae and Bifidobacteriaceae, showed lower relative abundance

while Enterobacteriaceae showed higher relative abundance when compared with

control samples. The observed bacterial diversity could serve as an indicator in GIT

neoplasms and help in disease monitoring.

To conclude, EBC and stool specimens are easily accessible non-invasive samples

that could be used for studying different genetic alterations in neoplasms. Our studies

revealed that NGS is a sensitive molecular technique that can be successfully applied

to study gene mutations in multiple cancer genes from a very small amount of input

DNA.
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INTRODUCTION

Cancer is a disease in which the genome is always modified by various genetic and

epigenetic alterations. Genetic alterations include mutations and chromosomal

aberrations (structural and numerical), while epigenetic alterations include DNA

methylation, non-coding micro-RNAs (miRNA), and histone modifications. Genetic

changes in cancer have added many molecular details to tumor classification.

Recently, with the revolution of precision medicine, the need for genetic data to act

as a guide in clinical diagnostic and therapeutic decisions is crucial. Likewise,

assessment of these genetic changes is essential for understanding the mechanisms of

resistance to several cancer targeted therapies.

One of the major challenges is that the standard method for analysis of these

molecular changes is tissue biopsies, which are not always easy to obtain, especially

in early tumor stages. To overcome these obstacles, researchers have started to look

for alternative novel methods for assessment of tumor molecular alterations. Non-

invasive specimens represented the ideal solution by providing simple and easily

accessible materials that could be obtained at different disease stages. There are

several examples of non-invasive specimens, but in this thesis, I focused only on

exhaled breath condensate (EBC) and stool samples from lung and gastrointestinal

(GIT) neoplasia patients, respectively. However, there are a number of challenges

when analyzing the non-invasive samples, for instance, the inconsistency in the

quality and/or quantity of circulating tumor DNA, the variability in circulating tumor

cells, and the lower frequency and volume of gene alterations occurring at the very

early malignancy stages.

With the evolution of advanced and high throughput next generation sequencing

(NGS), it is now possible to analyze different kinds of non-invasive samples with

small amounts if DNA as an input. NGS enables researchers to analyze multiple

distinct alterations simultaneously in a time and cost-efficient way. Moreover, NGS

analysis of the conventional tissue specimens has been approved for clinical use

especially in cancer diagnostics.
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Lung and GIT neoplasms are two groups of malignancies in which clinically relevant

mutations have been described. Currently, the role of genetic mutations as diagnostic

and predictive markers has been established, and their detection and assessment has

become crucial for early diagnosis and targeted therapy in these two types of

malignancies. Moreover, the involvement of gut microbiota in promoting growth of

GIT neoplasms is well acknowledged. Therefore, this thesis focuses on investigating

EBC and stool as non-invasive samples for detection of clinically significant gene

mutations, and assessment of gut microbiota composition in various GIT neoplasms,

by using the targeted NGS molecular technique.
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REVIEW OF LITERATURE

1. Cancer genetics, epigenetics, and development

Cancer is a continuous proliferative process in which a cell starts abnormal

uncontrolled growth that occurs in a multistep manner. The process starts with tumor

initiation because of certain genetic and epigenetic alterations. These alterations can

happen in the same gene in different types of cancers [1]. The principal genes

involved in the tumorigenesis process are proto-oncogenes and tumor suppressor

genes, which include DNA mismatch repair genes. On the one hand, proto-oncogenes

code for proteins that regulate cell growth and differentiation, and they can be

transformed to oncogenes by mutations or increased expression leading to increased

cell proliferation. On the other hand, tumor suppressor genes code for proteins that

have an inhibitory effect on cell proliferation. In general terms, in tumor suppressor

genes, both alleles that code for a particular protein must be altered before an effect

is noticed, which is better known as the “two hit theory”, whereas, a proto-oncogene

alteration in one allele is sufficient for gaining function and transforming to an

oncogene [2].

It is not known exactly why one person develops cancer and another person does not.

There are several predisposing factors that contribute to cancer development

including both non-genetic and genetic factors. Non-genetic risk factors include

carcinogens such as smoking, air pollution, chemicals, radiation, chronic

inflammation, microorganisms, e.g. viruses, and sun exposure. These factors also

include non-controllable factors like age and family history [3]. Genetic factors

include mutations in cancer predisposition genes which constitute approximately

10% of hereditary cancers. Subjects with a mutant allele have an increased

susceptibility to develop cancer [4,5].

.
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Figure 1. Genetic and epigenetic changes induced by different environmental
factors contributing to carcinogenesis. Figure reproduced with permission from
Wiley. Herceg et al., 2007 [6], copyright 2007.

It has been reported that different types of cancers share the same underlying

characteristics, known collectively as “hallmarks of cancer”. These hallmarks

include: 1) self-sufficiency in growth signals, 2) insensitivity to antigrowth signals,

3) evasion of apoptosis, 4) limitless replication potential, 5) sustained angiogenesis,

6) tissue invasion. An additional four hallmarks were added to the previous ones

including: 1) abnormal metabolic pathways, 2) evasion of the immune system, 3)

genome instability, and 4) inflammation [7].

One of the fundamental features of cancer is tumor heterogeneity in which tumor cells

are genetically and morphologically distinct and heterogeneous, and it can be inter-

tumor and/or intra-tumor heterogeneity. Intra-tumor heterogeneity is an essential

consideration when performing genome-wide analysis on a single tumor biopsy. It is

also a major challenge in biomarker detection and in optimization of personalized

medicine [8]. Inter-tumor heterogeneity refers to altered genotype and phenotype

between cancer patients with the same cancer type and is usually induced by different

etiological and environmental factors. Accordingly, genomic profiling of cancer
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patients revealed diverse molecular subtypes and different protocols for targeted

therapy [9].

1.1. Genetic alterations in cancer

Genetic alterations include small DNA alterations as well as large numerical and

structural aberrations of the chromosomes. These alterations can lead to altered

protein products that can serve as targets in guided gene therapy. Two to eight

alterations need to occur before the process of tumorigenesis can be driven [8].

1.1.1 Small DNA alterations

Changes to short DNA nucleotide sequences are called gene level mutations, which

include base substitution, base insertions, and base deletions. Substitutions occur

when one base is replaced by another, known also as a single nucleotide variant

(SNV) or point mutation. They are classified as transitions (purine to purine or

pyrimidine to pyrimidine base) or transversions (pyrimidine to purine or purine to

pyrimidine base). An effect of a point mutation can be reversed either by true

reversion (another mutation reversing the original nucleotide status) or by a second

site reversion (another mutation elsewhere causing regain of normal gene function).

Point mutations occurring in exons can lead to three different kinds of mutations

depending on the affected codon. The mutation might be: 1) a silent mutation, in

which there is no change in the amino acid or resulting protein, 2) a missense

mutation, in which there is a change in amino acid sequence resulting in an altered

abnormal protein, 3) a non-sense mutation, in which there is an early stop codon

leading to a shortened truncated protein. Changes affecting amino acid sequences are

called non-synonymous mutations [10].

Insertions add one or more nucleotides into the DNA sequence. They can be caused

by errors during replication. Insertion of nucleotides or frameshift in the exons may

cause a shift in the reading frame (frameshift mutation), or disrupt splicing of mRNA

(splice site mutation). Both types have significant effects on gene products. Similarly,

deletions remove one or more nucleotides from a DNA sequence and can also cause
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frameshift mutations. Both insertions and deletions are collectively known as indels

[10].

1.1.2 Structural and numerical aberrations in chromosomes

Chromosomal aberrations are generally classified into numerical and structural

abnormalities. Numerical abnormalities are whole chromosome changes that occur

either by loss or gain of extra chromosomes, causing aneuploidy. Aneuploidy can

cause disruption to the genome stability, loss of tumor suppressor genes, or activation

of proto-oncogenes [11].

Structural aberrations can result from breakage or incorrect rejoining of chromosomal

segments. They can be balanced (if the whole chromosomal set is still preserved,

though rearranged), or unbalanced. Unbalanced structural abnormalities include

deletions and insertions affecting the normal chromosomal copy number leading to

copy number variations (CNV) [12,13]. Balanced abnormalities include inversions,

and translocations, which can result in the production of fused genes such as the ALK

gene fusion with EML4 in non-small cell lung carcinoma (NSCLC) [14]. Other

structural abnormalities include a ring chromosome, which occurs when there are two

chromosomal breaks and the broken ends join each other giving rise to a ring. An

isochromosome can be produced through duplication of the same chromosomal arm

when the other arm is missing [15].

1.2. Epigenetic alterations in cancer

Epigenetic alterations are changes in the gene function that are not related to gene

DNA sequences. They include micro RNA (miRNA), DNA methylation, and histone

modifications.

1.2.1     Small non-coding miRNAs

MiRNAs are small non-coding RNA molecules (around 22 nucleotides long) that are

implicated in RNA silencing and post-transcriptional regulation of gene expression.

MiRNAs are located mainly intracellularly, but some types are also found to be

extracellular. MiRNAs interact with mRNA leading to its silencing either by mRNA

cleavage, shortening of the poly A tail leading to mRNA destabilization, or by
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causing altered mRNA translation into proteins [16]. Altered expression of MiRNA,

either as downregulation or upregulation, is associated with cell proliferation and

cancer development. Several types of miRNAs have been reported to be associated

with different types of neoplasms. Down regulation of miRNA let-7 is associated with

several malignancies, and restoring its normal expression is reported to inhibit tumor

growth [17]. Expression of miRNA-21 is an example of the involvement of miRNA

as a diagnostic and prognostic marker in a number of cancer types [18]. Other

miRNAs have been demonstrated as indicators for poor survival in cancer, e.g.

miRNA-324a in non-small cell lung carcinoma (NSCLC) [19]. Additionally, many

studies have illustrated that miRNAs can be targets for several therapeutic agents such

as antisense oligonucleotides and mRNA sponges. They all act by inhibiting the

oncogenic miRNAs [20].

1.2.2     DNA methylation

DNA methylation is a process in which a methyl group is added to the cytosine base

of a CpG dinucleotide by a DNA methyltransferase enzyme (DNMTs). Also, the

adenine base can be methylated. Normally, DNA methylation is an essential element

in a number of cellular processes such as genomic imprinting, inactivation of

chromosome X, and aging. CpG islands are CpG rich sequences that are normally

unmethylated and are usually located in the gene promoter regions and act as major

regulatory units [21].

In cancer, CpG islands in gene promoters acquire abnormal hypermethylation causing

transcriptional silencing with the possibility to be inherited by the dividing cells.

Hypermethylation can result in inactivation of tumor suppressor genes causing

tumorigenesis, while hypomethylation of some normally methylated genes can cause

chromosomal instability [22]. Reports have demonstrated hypermethylation of tumor

suppressor genes and hypomethylation of oncogenes [23].

An example that demonstrates the role of DNA methylation in the diagnosis of cancer

is illustrated by Tahara et al. 2015, who showed that hypermethylation of CpG islands

can distinguish between different subtypes of gastric cancer and can be used as a

molecular biomarker in a variety of non-invasive samples including serum, plasma,

and gastric wash [24]. Inhibitors of DNMTs can be used in the treatment of cancer as
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they can increase the expression of tumor suppressor genes and decrease tumor load.

So far, only two DNMT inhibitors, azacytidine and decitabine, are approved by the

Food and Drug Administration (FDA) for treatment of myelodysplastic syndrome

[25].

1.2.3     Histone modifications

Histone proteins are responsible for packaging nuclear DNA into the chromatin

structure within the nucleosome. Histone proteins include two copies each of H2A,

H2B, H3, and H4. The N terminal tails of histones are the sites where post-

transcriptional modifications occur. These modifications can be methylation,

acetylation, deamination, and phosphorylation. They can alter histones affecting

chromatin structure and gene expression [26]. For instance; monomethylation of

H3K9 and  H4K20 were reported to be linked to gene activation, whereas

trimethylation of H3K9 and H3K27 were found to be linked to gene repression [27].

Additionally, around 3000 genes that are highly expressed in human CD4+ cells show

high level of 17 histone modifications in their promotors [28]. In cancer, histone

modifications are involved in tumor development such as hyperacetylation of H4 K5

and H4 K8 and hypoacetylation of H4 K12 and H4 K16, in NSCLC cells [29].

2. Lung cancer

2.1. Epidemiology and risk factors

In global terms, lung carcinoma is one of the most common malignancies worldwide

and a major cause of cancer related mortalities. According to the 2018 report, lung

carcinoma is the most frequently diagnosed cancer comprising approximately 11.6%

of total cases, and the most common cause of cancer related mortality (18.4% of total

cancer deaths) [30]. Lung cancer has a very poor prognosis and survival rate, 17.8%

lower than other cancers [31]. Smoking is the major risk factor accounting for more

than 85% of the of lung cancer cases. Cigarette smoke has more than 70 types of

carcinogens that can cause severe DNA damage and affect the repair mechanism [32].

Many studies have also revealed the increasing frequency of lung cancer among

passive smokers [33,34]. Other risk factors include asbestos exposure, air pollution,

radon gas exposure, and viral infection, e.g. human papilloma virus (HPV) [35,36].

Moreover, the genetic component also contributes to the pathogenesis of lung cancer.
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Genetic susceptibility to different carcinogens includes high-penetrance rare genes in

familial aggregation of lung cancer, and low-penetrance common genes involved in

the tobacco smoke metabolism and DNA repair pathways [37]. Polymorphisms in

genes responsible for DNA repair can also contribute to lung cancer development

[38]. Moreover, genetic susceptibility to lung cancer is affected by various genetic

variants especially in genes related to carcinogen metabolism, DNA repair pathways,

cell cycle checkpoint control, inflammatory genes, and cell microenvironment genes

[39]. Genome-wide association studies have additionally identified haplotypes/SNPs

at the nicotinic acid/acetylcholine receptor at 15q25 and TERT-CLPTM1L at 5p15.33

associated with increased risk of lung cancer [40].

2.2. Histopathological classification and staging

Lung cancer is classified histologically into two main categories: non-small cell lung

carcinoma (NSCLC) and small cell lung carcinoma (SCLC). SCLC originates from

neuroendocrine cells and often is an aggressive tumor that spreads easily to the lymph

nodes and distant organs [41]. The three main subtypes of NSCLC are

adenocarcinoma (ADC), squamous-cell carcinoma (SCC) and large-cell carcinoma

(LCC). Adenocarcinoma is the most common type accounting for approximately 40%

and it tends to occur in the peripheral pulmonary tissues. Most of the non-smokers

and ex-smokers cancer cases develop adenocarcinoma [42]. Squamous-cell

carcinoma accounts for about 30% of lung neoplasms and typically occurs in the

center of the lung close to the large airways [43]. Large-cell carcinoma constitutes

around 9% of all lung cancers [44].

The World Health Organization (WHO) updated the previous classification of

NSCLC by adding immunohistochemistry (IHC) and tumor genetics to the

morphological features of the tumor [45]. Five IHC markers are added for NSCLC

classification including thyroid transcription factor 1 (TTF-1) and napsin-A, with a

sensitivity of 80 % for ADCs for both markers. Also, the P40 marker has the best

sensitivity and specificity, followed by P63 and cytokeratin 5/6 (CK5/6) for SCCs.

Furthermore, adding tumor gene alterations, such as EGFR and KRAS mutations and

ALK rearrangements in ADCs and FGFR1 amplification and DDR2 mutations in

SCCs, to guide targeted therapy improve the prognosis and survival rate [46]. The
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precise and correct molecular classification for NSCLC is extremely vital for

therapeutic decisions. Examples for this include patients with SCC who reveal a poor

response to pemetrexed [47], while treating with the anti-VEGF monoclonal antibody

bevacizumab can cause severe bleeding[48].

NSCLC staging follows the tumor, node, metastasis (TNM) staging system in which

T refers to the primary tumor size, and N refers to regional lymph node involvement,

while M refers to distant metastasis. The stages are defined as Ia, Ib, IIa, IIb, IIIa, IIIb

and IV. Stages from Ia to IIIb represent local tumor and locally advanced cancer with

spread to lymph nodes, whereas stage IV describes tumor metastasis to other organs.

Staging is a key factor during diagnosis as lung malignancies are often diagnosed at

a late stage [41].

2.3. Genetic alterations and markers in lung carcinoma

Lung carcinoma development occurs due to the accumulation of pathological and

molecular events known as pre-neoplastic lesions. Exposure of the cytologically

normal epithelium lining the airways to smoking causes molecular alterations that

predispose to the onset of cancer (Figure 2), a paradigm known as “airway field of

injury” [49]. These pre-neoplastic molecular changes can provide comprehensive

insight into the process of tumorigenesis and better opportunities for early detection

of cancer [50].
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Figure 2. Airway field of injury. Figure reproduced with permission from American
Association for Cancer Research. Kadara et al., 2016 [50] copyright 2016.

2.3.1. Non-small cell lung adenocarcinoma (ADCs)

Atypical adenomatous hyperplasia (AAH) is considered the only pathological

alteration identified prior to development of ADCs. Similar molecular changes have

been reported in both AAHs and ADCs. Earlier studies reported KRAS and EGFR

mutations in AAHs and adjacent normal epithelium in ADCs, which are two major

molecular pathways affected in ADCs [51,52].

The most commonly altered pathways in ADCs, according to comprehensive

molecular profiling performed by the Cancer Genome Atlas, include the

RTK/RAS/RAF pathway (76 %), p53 pathway (63 %), cell cycle regulators pathway

(64 %), PI3K-mTOR pathway activation (25 %), and oxidative stress pathways (22

%) [53].

Whole exome sequencing data from the Cancer Genome Atlas revealed frequent

somatic mutations in the following proto-oncogenes genes: KRAS (33%), EGFR

(14%), BRAF (10%), MET (7%), and PIK3CA (7%) and the following tumor

suppressor genes: TP53 (46%), KEAP1 (17%), STK11 (17%), NF1 (11%), RB1 (4%),



21

and CDKN2A (4%) (Figure 3). Mutations in EGFR, occurring either in the

intracellular or extracellular parts of the receptor, are among the most clinically

important mutations that occurs in NSCLC as predictive markers for tyrosine kinase

inhibitors. Studies reported EGFR mutations in the tyrosine kinase domain in

approximately 25% of cases [54,55]. More than 90% of these mutations occur as a

deletion in exon 19 or mutations in exon 21 (L858R). Consequently, signal

transduction pathways are continuously activated leading to cell proliferation and

escape from apoptosis [56].

Copy number alterations commonly seen in ADCs include amplifications of: EGFR,

CCNE1, CCND1, KRAS, MDM2, MECOM, MET, NKX2-1, TERC, and TERT.

Additional copy number alterations are reported in a chromosomal region of 8q24

near MYC, a novel peak containing CCND3, and deletions in CDKN2A [53].

Gene fusion in ADCs are of significance as drug targets, especially those involving

ALK. The most common fusion partner of ALK is EML4, although many other genes

are also reported including ROS1, RET, PRKCB, MET [57]. ALK fusion genes occur

in approximately 3-7% of NSCLC especially ADCs. They tend to occur at a younger

age in light and/or never smokers. In a majority of cases, ALK fusion are non-

overlapping with other oncogene mutations reported in NSCLC such as EGFR and

KRAS [58,59].
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Figure 3. Somatic mutations frequently reported in ADCs. Original graph by the
author, based on data from the Cancer Genome Atlas [53].

2.3.2. Non-small cell lung squamous cell carcinoma (SCCs)

Comprehensive molecular analysis performed by the Cancer Genome Atlas showed

alterations in pathways related to oxidative stress NFE2L2/KEAP1 (34%), and

squamous differentiation SOX2/p63/NOTCH1 (44%) [60]. NOTCH1and NOTCH2

truncating mutations have been reported in both cutaneous and lung squamous cell

carcinomas. Other affected pathways in SCCs included PI3K/AKT (47%), and

CDKN2A/RB1 (72 %) [60].

Whole exome sequencing identified the most common mutated genes including:

BRAF, EGFR, HRAS, and PIK3CA as proto-oncogenes, and APC, CDKN2A, KEAP1,

PTEN, RB1, TSC1 and TP53 as tumor suppressor genes. Other mutated genes include

FAM123B (WTX), HRAS, FBXW7, SMARCA4, NF1, SMAD4, EGFR, APC, TSC1,

BRAF, TNFAIP3 and CREBBP. Tumors are also characterized by a chromosomal 3q

gain [60]. Fusion genes in SCCs are reported in FGR, FGFR1, FGFR2, FGFR3,

PKN1, PRKCA, and PRKCB [60]. SOX2 amplification and consequent SOX2 protein
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overexpression are important mechanisms of cancer initiation and progression in

SCCs. Amplification of the genomic region 3q are frequent in SCCs, and SOX2 is

the primary amplification target within the common 3q amplicon. It has been reported

that SOX2 correlates with squamous differentiation in SCCs such as TP63 and

Keratin 6A [61,62].

2.3.3. Small cell lung carcinoma (SCLC)

In SCLC, the most frequent mutated genes are TP53 and RB1, KIAA1211 and

COL22A1, as well as RGS7 and FPR1. Additionally, significant mutation clustering

occurs in genes that have functional roles in the centrosome, ASPM, ALMS1 and

PDE4DIP, and the RNA-regulating gene XRN1. The TP73 gene, a homologue for

TP53, also shows clustered mutations. Mutations in BRAF, KIT and PIK3CA have a

potential therapeutic role in SCLC [63].

2.4. Treatment

Lung cancer comprises two types; NSCLC (85%) and SCLC (15%). In this section

we will focus on treatment options for the common type, NSCLC. There are two

major treatment categories; the conventional standard protocol and the targeted

therapy protocol [64]. According to National Comprehensive Cancer Network

(NCCN) guidelines, the principal aim in treatment is to give optimal therapy for each

patient individually and ensure the best chance of reaching long PFS and OS with

limited side effects. NSCLC are categorized into subgroups which benefited from

defined treatment, e.g. targeted therapies and check point inhibitors. While therapies

in Stage I-III are intended to be curative, Stage IV therapy is non-curative with the

intention of stabilizing and inhibiting cancer as much as possible [65].

2.4.1. Conventional treatment

Patients with NSCLC stages I, II, IIIA typically undergo surgical operations for tumor

removal provided that the tumor is resectable and the patient is operable. Currently,

video assisted thoracoscopic surgery (VATS) is an advanced technique that is used

in many thoracic surgical operations [66].

Stage IV NSCLC patients (40% of total newly diagnosed cases) receive a

combination of cytotoxic chemotherapeutic agents to improve overall survival and
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reduce tumor adverse events [67]. Combinations are decided on an individual basis

and are guided by frequencies of drug side effects. However, lung adenocarcinoma

patients may benefit from pemetrexed [68]. Platinum-containing regimens have been

established as the cornerstone of treatment for the majority of patients. Current

guidelines ensure selection of patients suitable for gene targeted therapy and showing

PDL-1 expression for immunotherapy. The remaining patients receive platinum-

based agents. In second line therapy, combinations with check pint inhibitors can be

clinically decided [69].

Radiotherapy is indicated in patients with localized tumors in the lungs. High dose or

lower doses are chosen mainly based on the size of the planned radiation fields.

Modern radiotherapy techniques, like stereotactic approaches are allowing higher

doses, because margins toward normal tissue could be minimized. Stereotactic body

radiation therapy (SBRT) can precisely locate the tumor through an advanced

coordinate system and is associated with higher overall survival rate. Radiotherapy

could also be given to reduce symptoms of patients, if symptoms are caused by tumor

lesions, e.g. pain relief by local radiation [70].

2.4.2. Targeted therapy

Currently, different advanced molecular techniques allow further classification of

lung neoplasms into subtypes according to gene mutations and alterations that can be

targeted using either monoclonal antibodies (mAb) or tyrosine kinase inhibitor (TKI)

molecules. Non-squamous NSCLC patients harboring EGFR mutations [56], ALK

fusions [58] or ROS1 [57] rearrangements could derive benefit from these targeted

regimens with improved outcome [71].

2.4.2.1. EGFR and ALK inhibitors

The first TKIs developed were gefitinib and erlotinib. Both have reversible action

through competitive binding with ATP for the tyrosine kinase domain leading to

inhibition of the downstream pathways. Molecular analysis of tumor tissues from

patients who responded to TKIs revealed activating mutations in EGFR. EGFR

mutation incidence varies with ethnicity, accounting for 50% occurrence in the Asian

population [71]. These findings clearly intensify the importance of molecular testing
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for carcinoma patients before starting treatment. Several studies have declared the

superiority of first line EGFR TKIs to chemotherapy in EGFR-mutated NSCLC with

regard to the overall response rate (ORR), PFS and quality of life [72–74].

An alternative method targeting EGFR is by using monoclonal antibodies (mABs).

Available mABs include cetuximab, necitumumab, panitumumab and matuzumab. A

combination of mABs with chemotherapy has been tested in some trials (FLEX and

BMS099). The FLEX trial revealed a slight increase in the median overall survival

(11.3 months with cetuximab combination compared to 10.1 months with

chemotherapy alone) with HR of 0.871 [95% CI 0.762-0.996]; p=0.044) [75,76].

Resistance to EGFR targeted therapy is caused by some identified mechanisms in

70% of cases, whereas the exact mechanism in 30% of resistant cases remains

unknown [77]. The most common mechanism for resistance (50%) is through the

concurrent mutation in exon 20 of the EGFR gene causing T790M. The resulting

altered protein has less affinity for first-line TKIs and simultaneously increased

affinity for ATP [78,79]. The second common mechanism (20%) includes MET

amplification overcoming EGFR inhibition via PI3K-AKT-mTOR signaling [80].

Other mechanisms involve mutations in BRAF, PIK3CA, HER2, and transformation

into small cell lung carcinoma [77,81,82]. The LUX-Lung1 clinical trial

demonstrated that second generation TKIs such as afatinib bind covalently to

EGFR/HER1 and HER2 overcoming T790M mutations with a 7% ORR and 3.3

months PFS [83]. Third generation TKIs have a significantly greater activity in EGFR

mutant cells than in EGFR wild type cells, making them mutant-selective. The only

approved third generation TKI is osimertinib [84].

ALK inhibitors are small molecules that target and inhibit ALK. They include three

drugs approved by the FDA; crizotinib, ceritinib and alectinib [85]. Crizotinib acts as

an inhibitor of ALK, MET and ROS tyrosine kinase with a 57% ORR and a PFS of

9.7 months [86]. Compared with second line chemotherapy, crizotinib showed

superior outcomes with a PFS of 7.7 months versus 3.0 months with chemotherapy,

causing at the same time fewer adverse effects such as mild visual and gastrointestinal

disturbances [87].
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Resistance to ALK inhibitors occurs due to variable mechanisms including ALK

amplification, EGFR/HER1, HER2 and HER3 up-regulation, cKIT amplification and

L1196M ALK mutations [88].

2.4.2.2. Angiogenesis inhibitors and immunotherapy

Cutting the tumor blood supply is recognized as an anti-cancer treatment in several

malignancies [89]. In a phase III trial, a combination of bevacizumab, an anti-VEGF

monoclonal antibody, with platinum chemotherapy doublets reported a median

overall survival (OS) of 12.3 months when compared to treatment with chemotherapy

alone, which was 10.3 months (hazard ratio for death, 0.79; 95% CI, 0.67 to 0.92;

P=0.003). However, severe adverse toxic effects have been documented in the form

of bleeding, thromboembolism, and hypertension [90].

The immune system is partially inhibited from attacking cancer cells due to binding

of CTLA-4 and PD-1 as co-receptors on T cells with their ligands on tumor cells,

CD80 and PDL-1, respectively, known as checkpoints activation. Immunotherapy

involves drugs that target these checkpoints;  once released from their inhibition the

immune cells are able to  attack and kill cancer cells [91]. Nivolumab is a PDL-1

antibody first approved by the FDA for treatment of progressed SCC after

chemotherapy [92]. Other FDA approved drugs blocking the PD-1/PDL-1 interaction

include pembrolizumab and atezolizumab. However, there are numerous

immunotherapeutic molecules that are currently under ongoing clinical trials [93].

Ipilimumab is a CTLA-4 checkpoint inhibitor exhibiting PFS benefit in late NSCLC

compared to chemotherapy and placebo in phase II clinical trials [94].

3. Gastrointestinal neoplasms

3.1 Epidemiology and risk factors

3.1.1. Epidemiology and risk factors of gastric carcinoma

Gastric cancer (GC) is the third cause of cancer related mortalities worldwide [95].

Although the incidence has decreased in the last decades, it still accounts for about

989,600 new cases and 738,000 deaths annually [96]. Moreover, the incidence varies

widely between different countries with the highest incidence in East Asia, Eastern

Europe and South America, whereas, North America and most of Africa have a lower
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incidence [97]. Risk factors include Helicobacter pylori (H. pylori) infection, dietary

habits, smoking, obesity and others. It is well known that H. pylori is a major cause

of GC development specially strains with a cytotoxin associated gene A [98]. Better

hygiene and wider use of antibiotics caused a reduction in H. pylori prevalence

leading to an obvious decline in GC incidence [99]. Dietary habits including higher

consumption of salty and smoked food, and lower intake of fresh fruits and vegetables

have a potential carcinogenic effect on the gastric epithelium. They might cause

mucosal damage and increase the possibility of H. pylori infection [100].

Additionally, obesity predisposes to GC especially the adenocarcinoma type. By

predisposing to gastroesophageal (GE) reflux leading to Barrett’s esophagus, obesity

along with GE and Barrett’s esophagus are risk factors for gastric adenocarcinoma

[101]. A significant relationship between higher body mass index and increased

incidence of GE has been illustrated [102].

3.1.2. Epidemiology and risk factors of colorectal carcinoma

Colorectal carcinoma (CRC) is a principal cause of morbidity and mortality

throughout the world. In western countries, the risk of incidence in a lifetime is

around 5% [103]. Risk factors include non-modifiable risk factors such as age, family

history, inherited genetic risk and modifiable environmental risk factors such as

dietary habits, obesity, physical activity, smoking and alcohol consumption. About

95% of sporadic CRC arise from either tubular or villous types of colorectal

adenomas[104]. Patients with inflammatory diseases have a 20 fold higher risk of

developing CRC [105]. The most common inherited CRC conditions are familial

adenomatous polyposis (FAP), which is caused by mutations in the APC gene, and

hereditary non-polyposis colorectal cancer (Lynch syndrome), which is caused by

mutations in DNA repair genes; MLH1 and MSH2 [104]. Diet including a higher fat

content, especially animal fat, is a major risk factor for CRC, as it may favor growth

of certain bacteria which produce carcinogenic N-nitroso compounds [106]. Cigarette

smoking promotes development and faster growth of adenomatous polyps

predisposing to malignant transformation [107].
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3.2. Histopathological classification and staging

3.2.1. Histopathological classification and staging of gastric carcinoma

There are several histopathological classifications for gastric carcinoma. The Lauren

classification is the most commonly used system for classification. It includes the

intestinal type, which is the most common type, followed by diffuse and intermediate

types [108,109]. Intestinal metaplasia and H. pylori infection are common

associations with the intestinal type with increased chances of vascular and lymphatic

invasions. However, in the diffuse type, there is minimal cell to cell adhesions with

mucosal infiltration occurring in the form of single cells or small subgroups. Signet

ring cell carcinoma belongs to this type [110]. The World Health Organization

(WHO) provides another common system for classification. In addition to gastric

adenocarcinoma, the WHO classification includes all other less frequent types of

gastric tumors, e.g. adenosquamous carcinoma. Gastric adenocarcinoma is divided

into tubular (the most common), papillary, mucinous and mixed types [111]. Other

classifications include Goseki, Ming, and Grundmann systems [112–114].

3.2.2. Histopathological classification and staging of colorectal neoplasms

The World Health Organization (WHO) classified colorectal neoplasms into

epithelial and non-epithelial (mesenchymal) tumors. Epithelial adenomas include

tubular, villous, tubulovillous and serrated, while epithelial carcinomas include

adenocarcinoma, mucinous adenocarcinoma, signet-ring cell carcinoma, small cell

carcinoma, squamous cell carcinoma and others. The non-epithelial tumors include

Lipoma, Leiomyoma, Gastrointestinal stromal tumor, malignant lymphomas and

others [115]. The American Joint Committee on Cancer (AJCC) has issued its seventh

edition of TNM staging for CRC. Stage I is T1N0M0 and T2N0M0. Stage IIA is

T3N0M0, IIB is T4AN0M0, and IIC is T4bN0M0. Stage IIIA is T1N1/1cM0,

T2N1/1cM0 and T1N2aM0. Stage IIIB is T3N1M0, T4bN1M0, T1N2bM0, T2N2a-

bM0 and T3N2aM0. Stage IIIC is T4aN2aM0, T3N2bM0, T4aN2bM0, T4bN2M0

and T4bN1M0. Stage IVA is any T any N M1a, and stage IVB is any T any N M1b

[116]. Other staging systems include Dukes and Astler-Coller systems [117].
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3.3. Genetic alterations and markers in gastrointestinal neoplasms

3.3.1. Genetic alterations and markers in gastric carcinoma

The Cancer Genome Atlas Network illustrated that gastric carcinoma exhibits a

variety of molecular subtypes, such as microsatellite instability (MSI), and different

histological phenotypes, such as gland forming intestinal type and highly infiltrating

isolated cells in the diffuse type. The most frequently mutated genes are TP53 in

microsatellite stable (MSS) tumors, ARID1A in MSI tumors, Epstein–Barr virus

(EBV) tumors and CDH1 in diffuse type tumors [118]. Other genes are MUC6 in

9.6% of MSS and in 18.2% of MSI tumors, RNF43 in 4.8% of MSS and 54.6% of

MSI tumors. Other genes mutated in MSS tumors include CTNNA2 (6.4%), GLI3

(6.9%), ZIC4 (4.8%), TGFBR2 (4.8%), ACVR2A (2.1%), SMAD4 (4.3%), ELF3

(3.7%), DCLK1 (4.3%), and THBS1 (4.8%). Well known genes, including CTNNB1,

TET1, TSC1, FBXW7 and ATM, are mutated at lower frequencies [118]. The RHOA

gene was mutated in 14.3% of diffuse-type tumors and in 7.8% of indeterminate-type

tumors, with no RHOA mutations reported in the intestinal-type. Additionally, in

intestinal type tumors, there are frequent copy number gains on chromosomes 1q, 5p,

7, 8, 13 and 20 and frequent losses on chromosomes 1p, 3p, 4, 5q, 9p, 17p, 18q, 19p,

21 and 22, whereas, in MSI tumors, a gain of chromosome 8 is frequent [118]. All

tumor subtypes revealed increased expression of AURKA/B and E2F, targets of

MYC activation, FOXM1 and PLK1 signaling and DNA damage response pathways

but to a lesser extent in genomically stable types. However, genomically stable types

revealed increased expression of cell adhesion pathways, including the B1/B3

integrins, syndecan-1 mediated signaling, and angiogenesis-related pathways [118].

3.3.2. Genetic alterations and markers in colorectal carcinoma

CRC is divided into tumors with microsatellite instability (MSI), which are frequently

associated with the CpG island methylator phenotype (CIMP), and tumors that are

microsatellite stable but chromosomally unstable. A comprehensive molecular

analysis done by The Cancer Genome Atlas Network revealed that the non-

hypermutated tumor types exhibit frequent mutations in APC, CTNNB1, FAM123B,

FBXW7, KRAS, NRAS, PIK3CA, SMAD4, SMAD2, SOX9, TCF7L2 and TP53.

Mutations in KRAS and NRAS occur at codons 12, 13, and 61. Mutations in tumor



30

suppressor genes ATM and ARID1A were also frequent. In the hypermutated tumor

type, ACVR2A, APC, BRAF (V600E), MSH3, MSH6, SLC9A9, TCF7L2, TGFBR2,

and TP53 were frequent targets of mutation [119]. The hypermutated tumors show

gains of 1q, 7p and q, 8p and q, 12q, 13q, 19q, and 20p and q, and chromosome arm

deletions at 18p and q (including SMAD4), 17p and q (including TP53), 1p, 4q, 5q,

8p, 14q, 15q, 20p and 22q. Frequent translocations include NAV2 - TCF7L1 and

VTI1A - TCF7L2 fusion genes [119]. WNT pathway signaling is altered in 93% of all

tumors, including inactivation of APC or activating mutations of CTNNB1 in 80%

of cases. Genetic alterations in the PI3K and RAS–MAPK pathways are also common

in CRC with mutations in BRAF, KRAS, NRAS, PIK3R1 and PIK3CA as well as

deletions in PTEN. The TGF-  signaling pathway is affected with involvement of

genomic alterations in TGFBR1, TGFBR2, ACVR2A, ACVR1B, SMAD2, SMAD3 and

SMAD4. Moreover, the p53 pathway is altered including mutations in TP53 and ATM.

MYC transcriptional targets have been found to be altered in nearly 100% of all tumor

types and have an important role in CRC [119].

3.4. Treatment

3.4.1. Treatment of gastric cancer

3.4.1.1. Conventional treatment of gastric cancer

Comprehensive treatment planning is crucial before taking the final clinical decision

by surgeons, medical and radiation oncologists, radiologists and pathologists. It

depends on whether the patient is operable with a regional tumor or inoperable with

a huge metastatic tumor.

Surgical resection is curative especially in early stages. The extent of resection

depends on the tumor stage and varies from endoscopic resection to radical

gastrectomy with or without lymph nodes dissection. Laparoscopic surgery has

advantages of decreased postoperative complications and recovery time [120].

Patients with resectable tumors stage IB receive the cytotoxic agents

platinum/fluoropyrimidine combination pre and post-operatively [121]. Similar

combinations are used in advanced and metastatic tumors in the first line of therapy.

Additionally, a second line chemotherapy , e.g. with a taxane, is given in advanced

and metastatic tumors [122].
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Adjuvant radiotherapy with 5-FU/leucovorin (Q28) plus conventionally fractionated

RT resulted in 50% 3-year survival compared to 41% for patients treated with surgery

alone [123].

3.4.1.2. Targeted therapy

3.4.1.2.1. HER2 inhibitors

Trastuzumab is the first molecular targeted drug that was used in the treatment of

gastric carcinoma. It inhibits HER2 mediated signaling and prevents release of its

extracellular domain. The Trastuzumab for Gastric Cancer (ToGA) clinical trial

revealed a significantly better OS in patients receiving a combination of

chemotherapy and trastuzumab. However, the FDA has restricted trastuzumab

therapy for patients with HER2 overexpression [124]. Alternative approaches that

target the HER2 receptor through monoclonal antibodies include pertuzumab, which

binds to the extracellular domain preventing HER2 dimerization [125].

Secondary resistance to trastuzumab can develop due to molecular alterations. The

PI3K/Akt/mTOR pathway is one of the factors that causes dysregulation of the HER2

downstream signal. The mTOR inhibitors such as everolimus inhibits the mTOR/S6K

signal thus improving fluorouracil-induced apoptosis in gastric cancer cells with

HER2 amplification [126]. Another agent, afatinib, is an irreversible inhibitor of

EGFR, HER2, and HER4. Afatinib can be effective against receptors with secondary

mutations resistant to trastuzumab.

3.4.1.2.2. Angiogenesis inhibitors

A monoclonal antibody, bevacizumab, acts by blocking the binding of VEGF to its

receptors. A double-blind, phase III trial (REGARD) recruited 355 progressive

gastric cancer patients, and investigated the combination of ramucirumab and

chemotherapy, leading to a small but statistically significant prolonged median OS

(3.8 to 5.2 month, p = 0.0473) [127]. Another trial (RAINBOW), which investigated

ramucirumab as a second-line treatment in patients with advanced gastric cancer and

disease progression after first-line chemotherapy, showed a significantly better OS in

the ramucirumab plus chemotherapy group (median 9.6 vs. 7.4 month, p = 0.017)

[128]. Finally, the FDA has approved ramucirumab in April 2014.
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3.4.2. Treatment of colorectal cancer

3.4.2.1. Conventional treatment of colorectal cancer

Surgical removal of small and local tumors is usually a curative treatment.

Endoscopic removal of precancerous polyps can be done and is called polypectomy.

Operations vary from right, transverse or left hemicolectomy, subtotal colectomy, or

total colectomy. Comprehensive geriatric assessment (CGA) is performed to assess

the risk of post-operative complications [129].

Patients with stage II and III colorectal tumors are usual candidates for adjuvant

chemotherapy. Addition of fluoropyrimidine or fluoropyrimidine plus oxaliplatin are

the current standard of care, based on findings from the Multicenter International

Study of Oxaliplatin/5-Fluorouracil/Leucovorin in the Adjuvant Treatment of Colon

Cancer (MOSAIC) and the National Surgical Adjuvant Breast and Bowel Project

(NSAFDA) C-07 trials. Currently, numerous trials are evaluating oral

fluoropyrimidines combined with oxaliplatin and the addition of targeted drugs to

oxaliplatin-based regimens for use in colon cancer adjuvant treatment [130].

Short-course radiotherapy (SC-RT) and long-course chemoradiotherapy (LC-CRT)

are recommended as preoperative radiotherapy because they can reduce the tumor

size especially (LC-CRT) and the relapse risk postoperatively. For stage II/III rectal

cancer, neoadjuvant radiotherapy shows superiority, and stereotactic body

radiotherapy (SBRT) of the liver shows better local control in oligometastatic patients

[131].

3.4.2.2. Targeted therapy

3.4.2.2.1. EGFR inhibitors

Cetuximab and panitumumab are anti-EGFR monoclonal antibodies and one of the

first which are used in CRC targeted therapy. They act by binding to the EGFR

receptor and blocking the intracellular signaling cascade, thus stopping cellular

proliferation and growth. Cetuximab was FDA approved in 2004 as a combination

with irinotecan for irinotecan-refractory CRC patients. However, experimental

studies revealed that an exon 2 activating mutation of KRAS caused resistance to

cetuximab, therefore, cetuximab was used only in CRC patients with wild type KRAS

[132,133]. A second line treatment including cetuximab plus best supportive care
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(BSC) was performed by the NCIC CO.17 trial with improvement of OS and PFS

and preserved quality of life measures observed by adding cetuximab [134].

Panitumumab was tested as a first line treatment in combination with the FOLFOX-

4 regimen in the phase III PRIME clinical trial. This combination resulted in

significant improvement in PFS compared with the FOLFOX-4 alone (9.6 months vs

8.0 months; HR = 0.80, P = 0.002). There was no significant difference in terms of

OS and RR (OS 23.9 months vs 19.7 months, HR = 0.83, P = 0.072; RR 55% vs 48%,

OR = 1.35, P = 0.068) [135].

3.4.2.2.2. Angiogenesis inhibitors

Bevacizumab is a monoclonal antibody that selectively binds to VEGF-A and

demonstrates anti-tumor activity by blocking VEGFR2. It had FDA approval in 2004

for treatment of CRC in combination with other cytotoxic agents. In the AVF2107g

trial, bevacizumab was added to either IFL (irinotecan, fluorouracil, and leucovorin)

and demonstrated significant improvements in overall survival [OS, 20.3 months vs

15.6 months, hazard ratio (HR) = 0.66, P < 0.001], progression-free survival (PFS,

10.6 months vs 6.2 months, HR = 0.54, P < 0.001), and RR (44.8% vs 34.8%, P =

0.004) [136].

Aflibercept is another anti-angiogenic agent which can bind to VEGF-A, VEGF-B,

and PIGF preventing these ligands from binding to their receptors and inhibiting the

VEGF pathway [137]. Regorafenib is an oral multi-kinase inhibitor which blocks the

activity of several protein kinases related to the angiogenic pathway (VEGFR-1,

VEGFR-2, VEGFR-3, TIE-2), the oncogenic pathway (KIT, RET, RAF1, BRAF),

and the tumor microenvironment (PDGFR and FGFR). However, grade 3 side effects

such as hand-foot skin reaction, fatigue, diarrhea, hypertension, and rash or

desquamation were reported [138].

4. Gut microbiota in gastrointestinal neoplasms

The gut microbiota comprises approximately 3 × 1013 bacterial cells that colonize the

human gut as commensals living in a balanced state with the host known as eubiosis.

The gut homeostasis is continuously maintained by crosstalk between gut microbiota,

immune cells and mucosal barriers. Disruption of this host/microbiota relationship
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(dysbiosis) is often associated with different diseases, including cancer, by affecting

oncogenesis, tumor progression and response to cancer therapy (Figure 4) [139,140].

Gastric carcinoma is an example of microbiota caused oncogenesis. Infection with H.

pylori may cause a sequence of gastritis, ulcer, atrophy and finally cancer. H. pylori

was classified as a carcinogen, however, it is associated with a lower risk of

esophageal cancer, which in a way clarifies the effect of organ specificity in

microbiota-induced oncogenesis [141–143]. A microbiota tumor promoting effect is

clearly evident in CRC. A dysbiosis effect caused by long-term treatment with broad

spectrum antibiotics and germ free status is remarkable leading to alteration in the

host-microbiota relationship [144–147]. Moreover, numerous by-products from gut

microbiota can target intestinal epithelial cells and cause either a tumorigenic effect,

e.g. Bacteroides fragilis toxin, or a tumor suppressive effect, e.g. short-chain fatty

acids [148].

Figure 4. Contribution of gut microbiota to colorectal carcinogenesis. Nistal et
al., 2015 [149], reprinted under the terms of the Creative Commons Attribution
License (CC BY), 2015.
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A principal element that maintains the balance between host and microbiota is the

presence of well-established multilevel barriers. Disruption of these barriers causes

inflammation and various diseases including cancer. Examples of these barriers

include intact epithelial and mucosal lining, low PH (in stomach), special cell types

such as goblet cells and gut associated lymphoid tissue (GALT) [150]. Studies

revealed variations at the different taxonomic levels in the normal gut microbiota, and

changes in the diet, immune system alterations, and infections can affect microbial

richness, composition and metagenome [151]. Several mechanisms can explain the

involvement of microbiota in carcinogenesis. Regulation of microbiota by the

immune system can favor the growth of certain bacterial types. The microbiota are

labeled with pattern recognition receptors (PRRs), which are recognized by toll like

receptors (TLRs) on immune cells and can elicit a strong pro-inflammatory state

[152]. Tumor cells express TLRs. Signaling pathways of TLRs, such as the myeloid

differentiation primary response 88 (MYD88), usually exhibit multiple effects that

alter tumor cells [153]. TLR4, which is the receptor for lipopolysaccharide on the cell

wall of gram negative bacteria, can promote tumorigenesis in colon, liver and

pancreas as evidenced by increased tumor load in mice expressing activated epithelial

derived TLR4 [154–156]. TLR2 is a receptor for peptidoglycan in the bacterial cell

wall and is shown to promote gastric cancer [157].

Another mechanism by which microbiota can contribute to carcinogenesis is through

generation of metabolic activities that may affect carcinogenesis by regulating obesity

and obesity-induced inflammation, metabolic activation and activation of

carcinogens. Bile acid metabolism is regulated by gut microbiota enabling

microorganisms to use secondary bile acids as an energy source. Recently, it was

shown that a high-fat diet alters the gut microbiota and increases the levels of the

secondary bile acid (produced by bacterial dehydroxylation), which could promote

liver and colon carcinomas [158,159]. Carbohydrate fermentation by gut microbiota

produces beneficial short chain fatty acids such as butyrate, which have a vital role

in the control of inflammation and autophagy and consequently a protecting effect

from cancer [160–162]. In contrast, protein metabolism produces toxic cancer

promoting metabolites such as ammonia and nitrosamines. Protein fermentation
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mainly occurs in the distal colon, and diets rich in protein and low in carbohydrate

may change intestinal fermentation and can lead to increased levels of hazardous

metabolites [163–165]. Furthermore, microbiota metabolites can be altered by

inflammation, e.g. nitrate. Nitrate provides energy for facultative anaerobes such as

Enterobacteriaceae, supporting them to thrive within a community dominated by

obligate anaerobic bacteria that lack the proper electron transport chain to use nitrate

as shown by the prevalence of Enterobacteriaceae in numerous inflammatory disease

models and in patients with chronic inflammation [166–168].

Large-scale studies in an organ- and cancer-specific manner including

metagenomic, metatranscriptomic and metabolomic analysis from large

cohorts of patients and healthy controls are crucial for a better understanding

of whether changes in microbial composition or richness, especially at the

metagenomic level, affect cancer development, progression and treatment

[150]. Assessment of human cancer microbiomes in preclinical sessions would

help to assess the tumorigenic potential of the cancer-associated microbiota.

In this thesis, we studied the differential microbiota taxonomic composition in

a cohort of stool specimens from different GIT neoplasms including stomach,

pancreas, small intestine, colon and rectum.

5. Non-invasive samples as cancer biomarkers

A diagnosis of cancer often occurs at late stages due to a lack of symptoms or the

presence of vague non-specific symptoms in most cases. Moreover, when malignancy

is suspected, the classical method to establish a definite diagnosis is to take a biopsy

from the tumor tissues, which is not always available during the early stages of the

disease or during treatment. Therefore, establishing a novel non-invasive method that

could be used for early detection of malignancy or for cancer screening has been the

main concern of several researchers over the past few decades leading to the

appearance of the “liquid biopsy” concept [169–171].
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The continuous process of the rapidly proliferating malignant cells causes exfoliation

and shedding of tumor cells into the blood circulation and epithelial cavities. In

malignancy, removal of these cells by macrophages is impaired leading to the

increased amount of the tumor cells and their availability for detection in different

kinds of body fluid samples. The exfoliated tumor cells can be a source for detection

of different genetic and epigenetic alterations found in the original tumor biopsies

[170].

5.1. Sources of non-invasive samples

There are several different sample materials that can serve as non-invasive samples.

Blood and its derivatives such as plasma and serum represent the earliest liquid

biopsies that have been investigated. Two types of cancer derived materials can be

detected in blood, including circulating tumor cells (CTCs) and cell free circulating

tumor DNA (ctDNA) [172]. It has been reported that release of ctDNA into the blood

stream is affected by multiple factors such as tumor type, location, size, and

vascularity [173]. Also, it has been found that the amount of circulating DNA in the

plasma of serum of cancer patients is higher than in healthy individuals [174]. They

have been studied in a variety of solid tumors, such as colon, breast and lung

malignancies [175–177], and reported even to predict tumor location [178].

Another important source for liquid biopsies is urine. Patients with renal cell

carcinoma, bladder cancer, and prostate neoplasms show detectable cell free DNA in

approximately 70% of urine samples [179]. Additionally, mitochondrial DNA

(mtDNA) mutations have been detected in urine from bladder cancer patients and to

a lower extent from patients with prostate cancer [180]. In patients with NSCLC,

urine has been tested for EGFR mutation analysis [181].

Like blood, sputum samples contain both cells that can be studied through cytological

and molecular examinations, and cell free DNA that can be investigated by molecular

approaches. The relatively low amount of tumor DNA and target cells in sputum

impose particular requirements for sputum molecular analysis including the use of

internal and external positive and negative controls [182]. Both KRAS mutations and

promoter methylation have been reported relatively frequently in sputum while
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reports on loss of heterozygosity (LOH) and RNA are far fewer to date [183,184]. In

cases of non-small cell lung carcinoma (NSCLC) and mesothelioma, sputum samples

have been investigated to search for tumor markers and the genetic and epigenetic

changes that are commonly reported in the tumor tissues [185].

Saliva contains both human and microbial DNA. It also gives a very good yield of

DNA regarding quantity and quality [186]. Cancer biomarkers in saliva have been

reported in pancreatic, breast, lung, and oral malignancies [187–190].

5.2. Advantages and drawbacks of non-invasive samples

Non-invasive samples offer several advantages over conventional tissue specimens.

In addition to being a patient friendly approach and easy to collect, they are easy to

repeat; providing the opportunity to take serial samples and follow a tumor situation

continuously and dynamically. Moreover, non-invasive samples can be used for

screening of different neoplasms especially in high-risk individuals. They can help in

diagnosis of neoplasms at an early or premalignant stage and act as a guide in the

targeted therapy regimen.Thus development of resistance could be followed, e.g.

EGFR resistance and appearance of T790M which then can be treated by a specific

drug, osimertinib. Additionally, many of the tumor biomarkers that have been

frequently detected in liquid samples can be used as predictive factors, as the liquid

samples might represent tumor heterogeneity better than a tissue sample biopsy [190].

Limitations of liquid biopsies are associated with the components of liquid samples.

Firstly, the ctDNA is a fraction of total cell free DNA that originates primarily from

normal tissues and therefore is present in low concentrations, which may cause false

negative results. Secondly, circulating tumor cells (CTCs) have complex

heterogeneity in morphology and number as they undergo the process of epithelial to

mesenchymal transition. Also, the percentage of CTCs detected varies between

different tumors. Moreover, there is considerable molecular heterogeneity and it is

difficult to specify the origin of circulating DNA [191].
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5.3. Clinical applications of non-invasive samples

Being non-invasive, one of the principal applications of non-invasive samples is to

be used as cancer biomarkers. They can be used for primary diagnosis of tumors at

an early stage, which consequently results in a significant improvement in patients’

survival and outcome [192]. Liquid biopsies can also monitor progression of the

tumors as frequencies of genetic mutations in ctDNA are positively correlated with

tumor grade, stage, and evolution [192,193]. The methylation pattern of a CpG in

urine DNA samples is reported to  diagnose prostate cancer with 94.6% sensitivity

and 78.3% specificity [194]. One more essential application of liquid biopsies is in

monitoring treatment effect and predicting drug resistance. It has been reported that

lung cancer patients with an EGFR C797S mutation in ctDNA develop resistance to

the drug AZD9291 [195]. Additionally, PIK3CA mutations in ctDNA can be used to

detect minimal residual disease (MRD) in breast cancer patients after chemotherapy

or surgery [196].

5.4. Diagnostic role of exhaled breath condensate (EBC) in lung cancer

One of the major challenges in the diagnosis of lung carcinoma is that symptoms are

usually vague and might appear only in late stages of the disease. Although, chest

radiographic examinations, such as computed tomography (CT) is the primary

diagnostic approach, eventually a biopsy is taken for definitive diagnosis [197].

Genetic alterations occurring during the development of lung carcinoma and detected

in tumor tissues is an essential element in molecular classification and identification

of tumor type and subtype. Exhaled breath condensate contains cells that are

exfoliated from the respiratory epithelium or nucleic acids that are shed from

pulmonary cells into the airway lumen. Thus, EBC DNA could directly reflect the

molecular and genetic alterations occurring in lung tumor tissues [198]. Somatic

mutations in the TP53 and EGFR genes are reported in EBC from NSCLC patients

[199,200]. A large cohort study demonstrated the existence of KRAS mutations in

EBC from NSCLC patients and the follow up of the patients revealed the

disappearance of KRAS mutations from some patients after successful surgery [201].

Mutations in the mitochondrial D-loop have been detected with higher prevalence in

EBC from lung cancer patients compared to healthy controls [202]. Furthermore,
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miRNA-21 is reported to be upregulated while miRNA-486 is downregulated in the

EBC of NSCLC patients [203]. Microsatellite alterations, gene promoter methylation,

and human papilloma virus DNA (HPV) have all been detected in EBC from lung

cancer patients [198]. It is obvious that EBC could have several applications in the

lung cancer field being advantageous over other conventional methods in screening

of high risk patients or monitoring patients after treatment. Although EBC is a non-

invasive specimen, further studies are needed to assess its diagnostic applicability in

pulmonary neoplasms [198].

5.5. Diagnostic role of stool specimens in gastrointestinal neoplasms

Gastrointestinal tract (GIT) neoplasms consist of a diverse group of tumors that have

different pathological and molecular events. They usually begin with benign growth

of cells which often proceed to malignancy without being detected in the benign

phase. The classical method for diagnosis of GIT neoplasms is endoscopy with its

common sequelae being an invasive procedure. Several attempts have been made

over the last decades to develop a non-invasive tool for early detection of GIT

neoplasms. Stool contains a mixture of cells including leucocytes, blood cells,

inflammatory cells, as well as tumor cells. [204]. The process of tumor cell shedding

from the neoplastic epithelium into feces in the intestinal lumen is continuously

occurring and to a much greater extent (qualitative and quantitative) than under

normal conditions. Furthermore, the cell free DNA level is elevated in stool of cancer

patients [205]. These exfoliated tumor cells are believed to reflect the ongoing

carcinogenesis, thus revealing several genetic alterations associated with malignancy.

These observations encouraged the translational research community to apply these

tests for cancer diagnostics. In 2014, the FDA approved the multi-target test

Cologuard for screening and early detection of CRC from stool samples [206]. Gene

mutations in stool from premalignant colorectal adenomas or early stage malignant

GIT neoplasms have been detected by applying next generation sequencing (NGS),

which opens possibilities for non-invasive diagnosis and screening [207]. The

optimum clinical application of stool-based assays in GIT tumors need more

investigation including different types and subtypes of GIT neoplasms.
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AIM OF THE STUDY

The general aim of the study was to determine whether non-invasive specimens, stool

in GIT tumors and EBC in lung carcinoma, offer a reliable source for detection of

driver gene mutations that are commonly found in tumor tissue by application of

NGS, and hence, can be used for early diagnosis of cancer.

Specific aims were:

To assess the genetic alterations that are present in EBC from healthy

individuals before application of EBC on lung cancer patients (Study I).

To study tumor associated hotspot mutations in EBC samples from lung

cancer patients and compare them with the detected mutations in the healthy

controls (Study II).

To investigate the detection of gene mutations in stool from patients with

gastric or colorectal neoplasms, including benign and malignant tumors

(Study III).

To investigate the differences in taxonomic composition in stool samples

from GIT neoplasia patients (stomach, pancreas, small intestine, colon, and

rectum) based on the tumor location (Study IV).
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MATERIALS AND METHODS

Sample features and analytical methods used in this thesis are described generally in

the following section. Detailed information can be obtained from the original

publications. Table 1 provides an overview of samples and methods used in studies

I-IV.

1. Study samples

1.1. Exhaled breath condensate samples (I, II)

Exhaled breath condensate (EBC) samples were collected from 20 healthy adult

subjects with an average age of 34.9 years in study I. The samples were collected in

the Helsinki University Hospital. Two different samples were taken from one

individual with a one-month interval. The smoking status of the healthy subjects

was categorized into never smokers (n= 15), ex-smoker (n= 4), and current smoker

(n= 1). In study II, EBC samples were collected from 26 patients, average age of

67.5 years, with different lung malignancies. Lung neoplasms included non-small

cell lung carcinoma (NSCLC) patients (n=17), small cell lung carcinoma (SCLC)

patients (n= 6), 2 patients with mesothelioma, and 1 patient suspected for

malignancy. In studies I and II, EBC samples were collected by breathing into the

EcoScreen instrument (Jaeger/Germany) for 15 minutes, while recording breathing

frequency and mean breath volumes every 5 minutes, then finally storing the

collected EBC at -70oC (Figure 5).
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Figure 5. EcoScreen instrument (Jaeger/Germany) for EBC collection and the
cup containing the exhaled breath condensate (EBC) sample (Original photo by
the author).

1.2. Stool samples from GIT neoplasms (III, IV)

For study III, stool samples were collected from 87 patients with gastric (n= 41) and

colorectal neoplasms (n= 46). Stool samples from 14 healthy adults were also

collected. The samples were collected in the Helsinki University Hospital. A total of

21 patients received treatment in the form of chemotherapy, radiotherapy or

antibiotics before sample collection. In study IV, stool samples from 63 GIT

neoplasia patients (classified as gastric, pancreas, small intestine, colon and rectum)

were collected before any kind of treatment, whereas samples from 20 patients were

obtained after starting treatment, either chemotherapy and/or radiotherapy. Stool

samples from 13 controls were also included in the study. In both studies, stool

samples were collected in special tubes provided in the PSP Spin Stool DNA Plus Kit

(Stratec Biomedical, Berlin, Germany). These tubes contain stool DNA stabilizer to

allow collection, transport and storage of the samples without DNA degradation, and

can be stored at -20oC till further analysis.
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Table 1. Samples and methods used in studies (I-IV)

Study I Study II Study III Study IV

Analytical

group

Healthy

individuals

Lung cancer

patients

GIT

neoplasia

patients

GIT neoplasia

patients

Sample

material

EBC EBC Stool Stool

Number of

subjects

20 Healthy

subjects

26 patients 87 patients 83 patients

Average of

age (years)

34.9 67.6 69.7 69.6

Female

Male

F=10

M=10

F=12

M=14

F=40

M=47

F=38

M=45

NGS gene

panel used

Ion Ampliseq

Colon and

Lung Cancer

panel v2 (22

genes)

Ion

Ampliseq

Colon and

Lung Cancer

panel v2 (22

genes)

Ion

Ampliseq

Colon and

Lung Cancer

panel v2 (22

genes) and

Ion

AmpliSeq

Cancer

Hotspot

Panel

v2 (50 genes)

Ion 16S

Metagenomics

kit (16S rRNA

gene)
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2. Ethical permissions

Studies on EBC samples (I, II) were approved by the Hospital and Uusimaa (HUS)

review board (Ethical permission number 253/13/03/01/2015), while studies on stool

samples (III, IV) were approved by the Hospital District of Helsinki and Uusimaa

(HUS) review board (Ethical permission number 351/13/03/02/2014). Written

informed consent was obtained from all participating subjects (patients and controls).

3. DNA extraction

In studies I and II, DNA was extracted from the whole EBC sample with the QIAamp

circulating nucleic acid kit (Qiagen Cat No./ID 55114) according to the

manufacturer’s instructions using a vacuum pump. The kit has an RNA carrier for

proper isolation of the DNA.

In studies III and IV, stool samples were well mixed with the stabilizer for proper

homogenization, then a volume of 1.4mL of stabilized stool sample was extracted

using the PSP® Spin Stool DNA Plus Kit (Stratec Biomedical) according to the

manufacturer’s instructions.

4. Next generation sequencing (NGS)

4.1. Targeted NGS

In studies I and II, approximately 10ng of EBC DNA was used for the preparation of

libraries with an Ion AmpliSeq™ Library kit 2.0 (Thermo Fisher Scientific) and the

Ion Ampliseq Colon and Lung Cancer panel v2 (Life Technologies, California,

United States) was used. It consists of a primer pool for 92 amplicons from 504

hotspot regions in 22 genes frequently mutated in lung cancer. The genes included in

this panel are AKT1, ALK, BRAF, CTNNB1, DDR2, EGFR, ERBB2, ERBB4, FBX7,

FGFR1, FGFR2, FGFR3, KRAS, MAP2K1, MET, NOTCH1, NRAS, PIK3CA, PTEN,

SMAD4, STK11, and TP53.

In study III, 20ng of stool DNA was used to prepare the libraries by using two

different gene panels; the Ion AmpliSeq Cancer Hotspot Panel v2 (Life Technologies,

California, United States) consisting of a primer pool for 207 amplicons from an

average of 2800 mutational hotspot regions in 50 genes, including ABL1, AKT1, ALK,

APC, ATM, BRAF, CDH1, CDKN2A, CSF1R, CTNNB1, EGFR, ERBB2, ERBB4,
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EZH2, FBXW7, FGFR1, FGFR2, FGFR3, FLT3, GNA11, GNAS, GNAQ, HNF1A,

HRAS, IDH1, JAK2, JAK3, IDH2, KDR, KIT, KRAS, MET, MLH1, MPL, NOTCH1,

NMP1, NRAS, PDGFRA, PIK3CA, PTEN, PTPN11, RB1, RET, SMAD4, SMARCB1,

SMO, SRC, STK11, TP53, and VHL. This panel was used to study gastric neoplasia

mutations. The other gene panel, the Ion Ampliseq Colon and Lung Cancer panel v2

(Life Technologies, California, United States), was used for studying mutations in

colorectal neoplasia.

In study IV, 3 ng of stool DNA was used to prepare the libraries. An Ion 16S

Metagenomics kit (Thermo Fisher Scientific, USA) was used according to the

manufacturer’s instructions. For each sample two primer pools were used to amplify

six hypervariable regions (Primer set V2, V4, V8 and Primer set V3, V6-7, and V9)

of the 16S rRNA gene.

In all studies (I-IV), purification of the amplified libraries was done by using

Agencourt AMPure XP beads (Beckman Coulter Genomics, High Wycombe, UK),

and the concentration of the purified libraries was measured on the Qubit® 2.0

Fluorometer  using the Qubit® dsDNA HS Assay kit. Template preparation was

performed with an Ion OneTouch 2 system, using the Ion PGM™ Hi-Q™ OT2 Kit

(Thermo Fisher Scientific). The final step was sequencing carried out on the Ion

Personal Genome Machine System (PGM™, Life Technologies, California, United

States) using Ion 316™ chips (Ion 318™ chips in study IV) and the Ion PGM™

Sequencing Hi-Q kit v2.

4.2. Primary data analysis

In studies I, II, and III, the raw data obtained from the Ion Torrent PGM sequencer

were analyzed with the Torrent Suite TM Software (v.5.2.2) (Thermo Fisher

Scientific). The Variant Caller plug-in (v5.2) (Thermo Fisher Scientific) was used for

variant calling with the default settings: a quality score 6, relative read quality 10,

coverage of 100 for SNP/COSMIC variant and indel, and strand bias 95 % for

SNP/COSMIC variant and 90 % for indel. The Coverage Analysis plug-in (v5.2)

(Thermo Fisher Scientific) was used for coverage analysis.
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In study IV, raw data were used to create OTU (Operational taxonomic unit)

abundance tables. A Phyloseq R package was used to even the depth of the

sequencing counts between samples converting the rarified read counts to relative

abundances and generating taxa (105 families and 121 genera). Fecal microbiota

community alpha diversity and observed richness were analyzed at the family and

genus levels using the microbiome and vegan R packages. Community richness and

diversity were quantified by the number of unique observed taxa and Shannon index,

respectively.

4.3. Secondary data analysis

The secondary analysis was performed in multiple steps. In studies I, II and III, for

the visualization of data, the Integrative Genomics Viewer (IGV) was used (IGV v

2.4 Broad Institute). Two analysis tools, PROVEAN and SIFT, were used to predict

the effect of the non-synonymous variants on the encoded protein. Only SNVs

resulting in a non-synonymous amino acid change, or a premature stop codon, and all

short indels resulting in either a frameshift or insertion/deletion of amino acids were

selected. All SNVs were analyzed for somatic mutations previously reported in the

Catalogue of Somatic Mutations in Cancer (COSMIC) database and novel variations,

i.e. new mutations detected by NGS but not reported in either COSMIC or dbSNP

(build 151) databases. Threshold parameters were 3 % for the mutant allele

frequency, and 20 for the quality score ( 15 in study III).

In study IV, data grouping was based on relative abundances of the taxonomic groups

using hierarchical clustering with Bray-Curtis distance. Ordination with the

unsupervised principal coordinates analysis (PCoA), as implemented in the phyloseq

R package, was based on the Euclidean distance between Hellinger-transformed

abundance profiles. Only the core genera or families that were detected in at least

20% of all samples were included in the analysis.

5. Statistical analysis

In study II, comparison between the median of two groups was performed using the

Mann-Whitney test (non-parametric t-test) using the IBM SPSS advanced statistics

version 24 (SPSS Inc., Chicago, IL). Independent samples T test was used to compare
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the significant difference between the number of detected mutations in the before

treatment and during/after treatment groups. All tests were two-sided and P-values

0.05 were considered statistically significant.

In study IV, the significance of the group-level differences was estimated with the

Kruskal-Wallis test. Multiple testing correction was done separately for each group

of analyses based on the Benjamini-Hochberg FDR correction. The significance of

the community level differences between the groups was assessed with

PERMANOVA with the R package compositions, while the significance for the

differences in the abundance of individual taxa was assessed with ANCOM.
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RESULTS AND DISCUSSION
1. Mutations in EBC from healthy individuals and lung neoplasia patients (I,

II)

A total of 20 EBC samples from healthy controls and from 26 lung neoplasia patients

were analyzed by NGS. The success rate for NGS application was 95.5% and 65.4%

for controls and patients, respectively. Targeted NGS was performed using the Ion

Ampliseq Colon and Lung Cancer panel v2 (Life Technologies, California, United

States). The panel did not include all the exonic regions of the targeted 22 genes but

only the mutational hotspot regions covering most of the driver mutations used in

clinical practice. The panel consists of 22 genes frequently mutated in lung cancer

including AKT1, ALK, BRAF, CTNNB1, DDR2, EGFR, ERBB2, ERBB4, FBX7,

FGFR1, FGFR2, FGFR3, KRAS, MAP2K1, MET, NOTCH1, NRAS, PIK3CA, PTEN,

SMAD4, STK11, and TP53. With cutoff parameters including threshold for quality

score  20 and for mutant allele fraction  3% (tested previously for EGFR mutations

in lung cancer patients [208]), EBC samples from healthy controls (study I) revealed

a total number of 35 hotspot mutations, which were previously reported as somatic

mutations in the Catalogue of Somatic Mutations in Cancer (COSMIC) database.

Samples from 5 controls did not show any kind of hotspot mutations. Hotspot

mutations occurred at the following genes: BRAF, CTNNB1, DDR2, EGFR, ERBB2,

FBXW7, FGFR3, KRAS, MET, NOTCHf1, NRAS, PIK3CA, PTEN, SMAD4, and

TP53. Simultaneously, a total of 106 novel mutations were found including all

missense, nonsense and indels, which were not previously reported in COSMIC or

dbSNP databases (build 150). By applying the same threshold criteria to patients’

EBC samples (Study II), a total number of 39 hotspot mutations were detected in the

following genes: APC, BRAF, DDR2, EGFR, ERBB4, FBXW7, FGFR1, FGFR3,

KRAS, MAP2K1, MET, NRAS, PIK3CA, PTEN, RET, SMAD4, STK11, and TP53.

Additionally, 98 novel mutations including non-synonymous mutations, which were

not previously reported in COSMIC or dbSNP databases (build 151), were also

detected. Figures 6a and 6b illustrate the genes which had hotspot mutations in both

controls and patients.
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In healthy controls’ EBC samples (study I), 11 TP53 and 4 KRAS hotspot mutations

were reported in COSMIC databases. An earlier study reported similar findings

through detection of TP53 (3.2%) and KRAS (1%) mutations in the plasma of healthy

individuals and illustrated that these mutations could be detected in the cell free DNA

before cancer detection [209]. Another similar approach found TP53 mutations in the

cell free DNA in plasma from 11% of 205 non-cancerous control subjects, and in

35.7% from early stage and 54.1% from late stage SCLC patients [210]. Furthermore,

in study I, one EBC control sample revealed a codon 12 G12V KRAS mutation with

a mutant allele fraction of 6.8%. A similar study by other researchers detected a KRAS

G12V mutation in the plasma in three out of six controls by using droplet digital PCR

[211], and by using the Ion Torrent NGS, KRAS mutations have been found in the

plasma of 3.7% healthy subjects and 4.3% of patients with chronic pancreatitis [212].

Figure 6a. Genes mutated in healthy controls’ EBC along with number of

hotspot mutations.
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Figure 6b. Genes mutated in neoplasia patients’ EBC along with number of

hotspot mutations.
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For validation of the NGS technique, two EBC samples were collected from the same

control subject with a one-month gap. Most of the germline single nucleotide

alterations were detected in both samples indicating the reproducibility of the

technique. However, the sequencing depth from one of the EBC samples was not

good, causing some discrepancies in the somatic alterations detected in both samples.

In lung cancer patients (study II), the average number of detected hotspot mutations

was higher in their EBC samples than in the control samples (2.29 and 1.75

respectively), although this difference was not statistically significant (P=0.292).

However, the average mutant allele fraction was higher in mutations seen in patients

than those in controls, e.g. 22.9% and 13.6% in TP53, and 11.4% and 4.3% in KRAS

in patients and controls, respectively. When comparing the EBC mutational analysis

with the corresponding tissue analysis, four adenocarcinoma patients had NGS results

from tumor tissue as a part of routine clinical diagnostics. One patient revealed the

same KRAS exon 3 mutation in both EBC and tissue samples, although with low

frequency in EBC (1%) on visual inspection of sequencing results in IGV. Another

patient showed a MET exon14 (c.3028+ 3del) mutation in tissue which in our analysis

was outside of the amplicon region and could not be studied. Two more patients

showed KRAS exon2 mutations in their tissue but not in their EBC samples.

Importantly, these two patients had their EBC samples taken during or after the

chemotherapy treatment course. An early study reported a significant decrease in the

mut/wild allele fraction of KRAS in EBC after tumor resection [201]. Additionally,

the treated patients’ EBC samples revealed a lower number of mutations than in the

samples collected from patients before any treatment, however, this difference was

statistically not significant (P=0.83). One of the drawbacks in study IV is the small

number of patients with available sequencing data which makes it difficult to validate

EBC sequencing results. Therefore, comparison of tissue and EBC mutations on a

large scale is still needed before considering its application in cancer biomarkers and

diagnostics. However, the principal and major advantage of investigating EBC for

mutation analysis is that it is easy to obtain at different tumor stages, as most of the

patients either do not have a tissue specimen or have a very small tumor tissue in the

specimen which is not sufficient for sequencing. Since tissue NGS was not applicable
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to 15 patients for several reasons such as insufficient tissue material, EBC could

therefore represent a non-invasive material that could be used for assessment of

genetic alterations and molecular profiling. Also, EBC can be an alternative for tumor

re-biopsies in following the course of disease and it could be beneficial in the

detection of new resistant mutations during the treatment. So far, the mutation studies

on EBC are in the beginning stage, and in this thesis, we optimized the methodology

to be applied in larger cohort studies.
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2. Mutations screening in stool specimens in gastric and colorectal neoplasms

(Study III)

DNA was successfully isolated from 77 stool specimens out of a total of 87 collected

from Finnish patients, and from 13 out of 14 control specimens. The success rates of

NGS from stool DNA samples for stomach and colorectal neoplasia were 78% and

87%, respectively. Targeted NGS was performed using the Ion AmpliSeq Cancer

Hotspot Panel v2 (Life Technologies, California, United States). The panel  consists

of 50 genes, including ABL1, AKT1, ALK, APC, ATM, BRAF, CDH1, CDKN2A,

CSF1R, CTNNB1, EGFR, ERBB2, ERBB4, EZH2, FBXW7, FGFR1, FGFR2,

FGFR3, FLT3, GNA11, GNAS, GNAQ, HNF1A, HRAS, IDH1, JAK2, JAK3, IDH2,

KDR, KIT, KRAS, MET, MLH1, MPL, NOTCH1, NMP1, NRAS, PDGFRA, PIK3CA,

PTEN, PTPN11, RB1, RET, SMAD4, SMARCB1, SMO, SRC, STK11, TP53, and VHL.

A total of 25 hotspot mutations (5 in gastric and 20 in colorectal) and 9 novel

mutations were reported in the study. No hotspot mutations were detected in controls

except for two novel mutations in ALK and STK11 genes. Figure 7 illustrates the

number of hotspot mutations in different genes in gastric and colorectal neoplasms.

Figure 7. Number of hotspot mutations in both in gastric and colorectal

neoplasms.
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Sequencing data from colorectal cases revealed two codon 12 KRAS mutations

(G12V and G12D) and one codon 61 NRAS mutation (Q61R). Mutations in the KRAS

gene were also frequent in our previous study on colorectal tumors from Iranian

patients [215] at codons 12, 13, 20, 63, 117, 146 and 43. The presence of KRAS G12V

in the stool of one patient with a mutant allele fraction of 13% was confirmed in the

corresponding tissue with a 20% mutant allele fraction. The corresponding tissue

from another patient revealed no KRAS nor NRAS mutations with the same negative

findings in the stool specimen [207]. Stool specimens from benign colorectal

adenomas revealed hotspot mutations in APC, ERBB2, FBXW7, NRAS, and

SMARCB1 genes.  The presence of APC mutations in colorectal adenomas increases

the chance that it will become malignant [216,217].

In gastric neoplasms, the most frequent mutations occurred in the APC gene with

three mutations encountered in gastric carcinoma and one in benign gastric dysplasia.

Mutations in the APC gene have been reported in both histological types of gastric

adenocarcinoma (intestinal and diffuse) as well as benign neoplasms with increased

possibilities to convert to malignancy [218–220]. The APC A1582P mutation was

seen in stool specimens from malignant cases and in stool specimens from benign

gastric dysplasia as well. Previous studies reported APC mutations in tissues from

gastric adenomas and flat dysplasia [221]. Mutations at CDH1 (V82A) and EGFR

(A750T) were also detected in the diffuse subtype of gastric carcinoma in our study

[207]. It is known that these two mutations are commonly encountered in the diffuse

gastric carcinoma [137,138].

In this study, we illustrated for the first time that NGS can be successfully applied to

stool samples not only from patients with colorectal neoplasms, but also from patients

with gastric neoplasms for investigation of gene mutations. Also, we demonstrated

that mutations can be detected in stool from neoplasms at early malignant stages

(stage I and II) or even in stool from benign neoplasms. The first step toward the

application of stool DNA sequencing as a non-invasive biomarker in CRC neoplasms

has been made. In 2014, the FDA approved a multi-target test called Cologuard for

screening of adults with high risk for CRC from stool specimens. It tests for mutated
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human DNA and hemoglobin [206]. However, with the application of targeted NGS,

a larger number of genetic alterations in many genes could be assessed in a single

test. One of the major limitations of stool DNA analysis is the low amount of human

DNA, and with NGS, this issue can be overcome, and the test can be performed with

only 10ng of human DNA. Another vital issue, is the lack of similar types of non-

invasive tests for gastric carcinoma. In my study, NGS analysis also detected

mutations in stool from gastric neoplasms, providing a promising tool for better

diagnosis of these cancers, which are difficult to detect. However, application of stool

DNA analysis for early detection of gastric cancer still needs future investigations.

Figure 8 illustrates the total number of mutations (hotspot and novel) in both gastric

and colorectal neoplasms of different tumor stages.

Figure 8. Mutations detected in stool DNA of patients with gastrointestinal

neoplasms according to stage of tumor
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Clinical applications and future prospects of EBC and stool analysis:

The reports of genetic alterations in EBC from healthy individuals and lung cancer

patients are still scanty, whereas, the genetic changes in stool DNA has more

investigations in CRC but not in gastric neoplasms. The suitability of NGS analysis

for both EBC and stool DNA has been investigated in this thesis. However, the results

show variations between healthy controls, EBC or stool samples, and tumor tissue

specimens (Table 2), and stool analysis revealed hotspot mutations only in cancer

patients and not in controls, thus, it has more specificity than EBC.

Table 2. Differences in mutation profile between EBC and stool in cancer patients

along with findings in healthy controls and tumor tissue

Hotspot

mutations in

controls

Hotspot mutations

in patients

Hotspot mutations in

corresponding tumor

tissue

EBC 35 mutations 39 mutations 4 available specimens

Confirmed in 1 specimen

Stool No hotspot

mutations

25 mutations (2 in

CRC & 5 in gastric)

2 available specimens

Confirmed in 2 specimens

The differences between the findings in both stool and EBC might be due to the

composition of both samples. While it seems more likely that EBC is composed

mainly of cell free DNA, stool has a larger cellular component [198,204]. Hotspot

mutations in EBC samples were equally frequent in both controls and patients. EBC

results probably describe a process of homeostasis whereby the pulmonary tissue gets

rid of defective cells and damaged DNA [214]. Further EBC studies might clarify

whether specific mutations in certain genes can differentiate between healthy and

patients or if the mutant allele fraction of certain gene mutations could be of

significance in diagnosis of malignancy. Somatic mutations from the Cancer Genome

atlas database were used to customize a prediction model for immunotherapy in lung

adenocarcinoma [222]. The high incidence of treatment resistance and side effects of

immunotherapies revealed the need for novel biomarkers beyond PDL-1 expression

[223]. Mutations in DNA repair genes can successfully predict response to PD-1
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inhibitors in some cancers, e.g. CRC, but not yet in lung carcinoma. These mutations

represent potential biomarkers for immunotherapies, as the high mutation frequency

is associated with neo-antigens and tumor infiltrating lymphocytes [224]. In that

sense, EBC mutations profiling by targeted NGS in lung cancer might provide a tool

for predicting response to targeted treatment and check point inhibitor regimens.

In stool DNA based analysis, hotspot mutations were not detected in healthy controls

and were seen mainly in cancer patients, thus they were more specific for the presence

of GIT malignancy. In addition to stool cells exfoliated from digestive epithelium,

there are also other components including extracellular human DNA and bacterial

DNA [204]. This indicates the enhancement of stool DNA based studies, which can

amplify only human or bacterial DNA efficiently, by applying sensitive amplicon

based NGS that could screen up to 50 genes in a small DNA quantity [207].

The essential advantage of EBC and stool analysis approaches over other

conventional diagnostic methods such as endoscopies and biopsies, is their suitability

at all tumor stages and during treatment follow-up. Certain inquiries still to be

clarified:

1- Whether EBC and stool genetic changes match perfectly with changes in the

corresponding tumor tissues. This issue requires still large series of patients’

samples.

2- Can EBC and stool biomarkers serve as tools for early cancer diagnosis or

screening of high risk individuals?

3- How do these genetic events change after starting treatment, and how could

they be used to monitor treatment and follow-up?
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3. Stool microbiota abundance in different gastrointestinal neoplasms (Study

IV)

The non-treated patients were classified into five categories according to the tumor

location; stomach, pancreas, small intestine, colon and rectum. The treated patients

were classified as a separate category regardless of the tumor site. At the family and

genus levels, no significant differences were found in alpha diversity between groups

(P=0.21), nor in the beta diversity between patients and controls (p>0.2). Each

category was compared against controls. At the family level, Enterobacteriaceae

showed higher abundances in stools of patients with neoplasms of the stomach or the

small intestine, while Bifidobacteriaceae and Acidaminococcaceae had lower

abundances in stools of patients with rectal and colonic neoplasms, respectively.

Lactobacillaceae had a significantly lower abundance in stool from colonic and

pancreatic neoplasms, although when comparing the whole treated group with the

whole non-treated groups, it revealed a significantly higher abundance. (Table 3)

Table 3. Bacterial families with a significant difference in composition in patient

groups compared to the control group.

Neoplasm location High relative abundance Low relative abundance

Stomach Enterobacteriaceae

Pancreas Lactobacillaceae

Small Intestine Enterobacteriaceae

Colon Lactobacillaceae

Acidaminococcaceae

Rectum Bifidobacteriaceae

Treated* Lactobacillaceae

*Treated group is compared against the whole non-treated patients group.

At the genus level, Ruminococcus and Subdoligranulum showed a higher relative

abundance in stool samples from patients with stomach and colon neoplasms

(Ruminococcus in stomach only), while Lachnoclostridium and Oscillibacter had a

lower relative abundance in stools from patients with both stomach and colonic

neoplasms. Lachnoclostridium also had a lower relative abundance in stools from
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patients with small intestine neoplasms. In the rectal neoplasm group,

Bifidobacterium showed lower relative abundance in comparison to controls. Similar

to the findings at the family level, Lactobacillus showed higher relative abundance

when compared to the whole non-treated group (Table 4).

Table 4. Bacterial genera with significant difference in all categories compared to the

control group.

Tumor category High relative abundance Low relative abundance

Stomach Ruminococcus Lachnoclostridium

Subdoligranulum Oscillibacter

Small Intestine Lachnoclostridium

Colon Subdoligranulum Lachnoclostridium

Oscillibacter

Rectum Bifidobacterium

Treated* Lactobacillus

*Treated group is compared against the whole non-treated patients group.

By focusing mainly on the genus level, similar microbiota were altered in both gastric

and colonic neoplasms (Subdoligranulum, and Lachnoclostridium). They are

reported to be associated with metabolic diseases and inflammation [225,226].

Moreover, Subdoligranulum has been found to inhibit inulin fermentation by

bifidogenic bacteria which has a beneficial role in preventing colon carcinoma [227].

Lachnoclostridium has been reported to have a lower abundance in stools of

Hashimoto’s Thyroiditis patients, while Oscillibacter are reported to produce anti-

inflammatory metabolites [228,229]. Stool samples from patients with rectal

neoplasms showed a significantly lower abundance of Bifidobacterium. These

bacteria have a role in inhibiting the growth of pathogens thus maintaining the

balance of the healthy gut bacterial profile [230]. In stool samples from patients with

neoplasms of the small intestine and pancreas, lower abundances of

Lachnoclostridum and Parabacteroides were detected, respectively. However, due to
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the small number of patients in these two groups, no robust conclusions could be

drawn.

Furthermore, we compared the bacterial profiles in stool samples from patients

collected before the start of any treatment (irrespective of tumor site) with those

collected after treatment. This comparison showed a higher abundance of

Lactobacillaceae at the family level and Lactobacillus at the genus level in the treated

group compared to the non-treated group. Since Lactobacillaceae is considered part

of the normal gut flora, its higher level in stools of the treated group could indicate

restoration of the balance of the normal bacterial flora after treatment.

In study IV, significant differences in the abundances of gut bacterial taxa were found

in stool specimens from patients with various GIT neoplasms according to the

location of the neoplasm. These findings could be useful in assessment of neoplastic

alterations in various parts of the GIT, with possible applications in monitoring

disease status and treatment.
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CONCLUSIONS

In this thesis, EBC and stool materials as non-invasive samples were investigated for

detection of various gene mutations in lung cancer and GIT neoplasms, respectively.

All mutations including hotspot and novel mutations were reported along with the

mutant allele fractions. In stool samples, we also studied the composition of fecal gut

microbiota in patients with GIT neoplasms grouped according to the location of the

tumor in the GIT. The principal molecular technique used in this thesis was NGS (Ion

Torrent PGM).

The results obtained from EBC showed the successful application of NGS on EBC

DNA from both healthy individuals and lung cancer patients (Study I and II).

Although 35 hotspot mutations were reported in EBC from normal controls (study I),

their significance is thought to simply reflect the amount of mutagenic load to which

normal pulmonary cells are exposed, e.g. smoking. One EBC sample from a healthy

control revealed the clinically relevant codon 12 KRAS mutations with a 6.8% mutant

allele fraction. To maintain cellular hemostasis, cells with unrepaired damaged DNA

are eliminated through the physiological process of apoptosis. At the same time, these

genetic alterations might represent very early neoplastic changes occurring in the

pulmonary tissue detected by applying the highly sensitive NGS technique. By

applying the same methodology to EBC from lung cancer patients, a total of 39

hotspot mutations were found (Study II). Importantly, the average mutant allele

fraction was higher in patients than in controls, for instance 22.9% and 13.6% in TP53

and 11.4% and 4.3% in KRAS in patients and controls, respectively. EBC could

provide a helpful tool in analysis of the mutational status and molecular profiling in

lung cancer patients, however, more investigations are required to test its applicability

for diagnostic purposes.

Results obtained from stool samples revealed that NGS-based mutation analysis can

be successfully applied to stool DNA from patients with different GIT neoplasms

(Study III). With a success rate of 78% and 87% for samples from gastric and

colorectal neoplasms, respectively, a total of 25 hotspot mutations (5 in gastric and

20 in colorectal) were detected. In this study, we demonstrated that gene mutations

can be detected from stomach neoplasms as well as colorectal tumors. Additionally,
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mutations were detected in stool from patients with benign tumors and neoplasms at

early malignant stages. Indeed, these findings could have future implications in stool

based diagnostic assays in different types of GIT neoplasms, and in follow up of

treatment protocols.

The relative abundance of stool microbiota was compared in various GIT neoplasm

locations (Study IV) against the relative abundance in control samples. The

differences were variable depending on the location of the GIT neoplasm. The

increased abundance of Enterobacteriace and lower abundance of two common

families, Lactobacillaceae and Bifidobacteriace could provide indicators of altered

balance in the gut bacterial microenvironment and potentially facilitate GIT disease

monitoring. Moreover, Lactobacilli showed a higher relative abundance in stool from

treated cancer patients at both the family and genus taxa levels when compared to the

non-treated group. The main conclusion is that the composition of the gut microbiota

varies according to the neoplasm location and depends on the treatment status of the

patients.

The current status of applying these non-invasive samples in clinical practice is just

at the beginning. In EBC, a few sporadic studies were reported in which single gene

alteration such as KRAS or miRNA dysregulation in lung cancer was investigated.

This thesis is the first study that tests amplicon-based NGS on EBC from healthy

individuals and cancer patients. The situation is slightly different in stool samples.

While fecal DNA-based analysis has taken a step forward, very little is known about

applying the same methodology for gastric carcinoma. Before applying those non-

invasive techniques in clinical situations such as targeted therapy decisions, a route

map starting from the current stage needs to be established, and larger cohorts

including larger patients’ samples need to be tested.

The era of non-invasive samples in cancer diagnosis and management has taken one

step further after introduction of the NGS technique, and NGS is gradually replacing

the conventional molecular methods. Although the application of NGS to non-

invasive cancer samples has opened a window of hope for earlier and better cancer

detection, it is still at an initial stage and needs more studies and investigations before

it can be fully ready for clinical use.
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COSMIC http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/

NCBI dbSNP http://www.ncbi.nlm.nih.gov/SNP/
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