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Abstract

Aging is a phenomenon that is associated with profound medical implications. Idio-

pathic epiretinal membrane (iEMR) and macular hole (MH) are the major vision‐
threatening vitreoretinal diseases affecting millions of aging people globally, making

these conditions an important public health issue. iERM is characterized by fibrous

tissue developing on the surface of the macula, which leads to biomechanical and

biochemical macular damage. MH is a small breakage in the macula and is associated

with many ocular conditions. Although several individual factors and pathways are

suggested, a systems pathology level understanding of the molecular mechanisms

underlying these disorders is lacking. Therefore, we performed mass spectrometry‐
based label‐free quantitative proteomics analysis of the vitreous proteomes from

patients with iERM and MH to identify the key proteins, as well as the multiple

interconnected biochemical pathways, contributing to the development of these dis-

eases. We identified a total of 1,014 unique proteins, many of which are linked to

inflammation and the complement cascade, revealing the inflammation processes in

retinal diseases. Additionally, we detected a profound difference in the proteomes

of iEMR and MH compared to those of diabetic retinopathy with macular edema

and rhegmatogenous retinal detachment. A large number of neuronal proteins were

present at higher levels in the iERM and MH vitreous, including neuronal adhesion

molecules, nervous system development proteins, and signaling molecules, pointing

toward the important role of neurodegenerative component in the pathogenesis of

age‐related vitreoretinal diseases. Despite them having marked similarities, several

unique vitreous proteins were identified in both iERM and MH, from which candi-

date targets for new diagnostic and therapeutic approaches can be provided.
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1 | INTRODUCTION

Population aging is a global phenomenon with profound medical

implications. Tissue dysfunction associated with aging affects all vital

organs, including the eyes. Various ocular structures are affected by

aging, such as the macula, the functional center of the retina respon-

sible for precise central vision. Idiopathic epiretinal membrane (iEMR)

and macular hole (MH) are the major vision‐threatening vitreoretinal

interface diseases that affect millions of aging people globally, mak-

ing these conditions an important public health issue (Steel & Lotery,

2013). iERM is characterized by the growth of fibrocellular tissue

along the inner surface of the retina (Snead, James, & Snead, 2008).

Ultimately, an impaired repair and an excess of fibrosis in iERM eyes

lead to biomechanical and biochemical macular damage, the develop-

ment of retinal surface wrinkling with or without shallow tractional

retinal detachment (RD), macular vascular distortion, the breakdown

of the blood–retinal barrier at the retinal pigment epithelial (RPE)

level, and vascular leakage. MH, however, is a full‐thickness defect

of retinal tissue involving the anatomic fovea (Ho, Guyer, & Fine,

1998). Originally, MH was described in the trauma setting, but it has

been associated with many ocular conditions, and the greater major-

ity of MH cases are idiopathic (Chung & Byeon, 2017).

The exact pathogenic mechanisms underlying these two patho-

logical conditions are still not known. An older age and the develop-

ment of anomalous posterior vitreous detachment (PVD) are the

generally accepted nonmodifiable key risk factors in the iERM patho-

genesis (Cheung et al., 2017). In addition, a number of inflammatory

and immunomodulatory processes, chronic oxidative insult, proteoly-

sis, and cytoskeleton remodeling, have been implicated in its forma-

tion (Joshi, Agrawal, & Christoforidis, 2013; Pollreisz et al., 2013).

Metabolically, the retina is the most oxygen‐consuming tissue in the

human body (Arden, Sidman, Arap, & Schlingemann, 2005). There-

fore, metabolic stress and an altered microvascular retinal blood

flow, together with genetic and lifestyle‐related factors, such as

smoking, could also play a role in iERM formation (Salminen et al.,

2011). The pathogenesis of idiopathic age‐related MH remains

unclear despite the existence of a list of theories, making a systems

level understanding of the disease instrumental in developing thera-

peutic approaches. Currently, pars plana vitrectomy remains the pri-

mary treatment option for achieving MH closure and improvement

and/or stabilization of visual acuity in iERM eyes.

The fundamental cell types involved in iERM are RPE, Müller

cells, astrocytes, and microglia that begin proliferating and migrating

onto the surface of the retina (Schumann et al., 2011; Zhao et al.,

2013). Microglia, the main retinal immune cells (macrophages) espe-

cially play a key role both in degenerative and inflammatory retinal

diseases (Fritsche et al., 2014; Karlstetter, Scholz, Rutar, Wong, &

Provis, 2015). Additionally, other cell types present at the vitreoreti-

nal interface, such as hyalocytes, may contribute to the ERM con-

traction (Kohno et al., 2009).

The protein composition of the vitreous humor is vital for its

homeostasis. In healthy eyes, the homeostasis of the retinal extracel-

lular matrix (ECM) is tightly regulated. However, it is altered in ocular

disorders, and this offers a means of indirectly studying the events

that take place at the retina (Miller, Budoff, Prenner, & Sch-

warzbauer, 2017; Monteiro et al., 2015). Mass spectrometry (MS)‐
based quantitative proteomics provides a means for the determina-

tion of global proteome changes at the tissue and cellular levels,

enabling a molecular level characterization of the pathophysiologies

of complex eye disorders. Currently, most proteomic studies charac-

terizing disease‐induced vitreous proteome changes have focused on

proliferative and nonproliferative diabetic retinopathies (Kim et al.,

2007; Loukovaara et al., 2015; Wang, Feng, Hu, Xie, & Wang, 2013),

proliferative vitreoretinopathy (Garweg, Tappeneiner, & Halberstadt,

2013; Mitry, Fleck, Wright, Campbell, & Charteris, 2010), and age‐re-
lated macular degeneration (AMD; Koss et al., 2014), whereas iERM

and MH remain less‐studied (Mandal et al., 2013; Pollreisz et al.,

2013; Yu et al., 2014; Zhang et al., 2017).

In this study, we performed MS‐based label‐free quantitative

proteomics analysis of the vitreous proteomes from patients with

iERM and MH. The aim of this study was to obtain an in‐depth and

global understanding of the complex and multifactorial molecular

pathomechanisms underlying the two most typical age‐related vitre-

oretinal interface eye disorders and to show the differences in the

vitreous proteome between eye‐related local degenerative conditions

(MH being nonproliferative; ERM being proliferative) compared to

the findings of systemic and eye‐related inflammatory diseases (dia-

betic patients with macular edema (DME). Understanding how to

achieve primary prevention of retinal fibrosis is an important goal.

Currently, there is no known way to pharmacologically impact this

process, making this MS‐related investigation an important method

to shed more light on the role of various proteins in this harmful

process.

2 | RESULTS AND DISCUSSION

2.1 | Study plan and the patients’ preoperative
analyses

Although both iERM and MH patients have similar visual distur-

bances and symptoms, including metamorphopsia, photopsia, blurred

vision, and decreased visual acuity, these are different pathological

conditions. iERM presents with a thin layer of scar tissue that forms

on the posterior pole of the human anatomic macula, whereas MH

manifests as a partial or full‐thickness loss of tissue in the central

retina (Figure 1a). An optical coherence tomography (OCT) scan

through the fovea of the iERM eye reveals the abnormal organiza-

tion of the retinal layers including epiretinal fibrosis and secondary

cystic macular edema (Figure 1b).

The transparent collagenous human vitreous is in close contact

with the retina and lacks its own vasculature. Because of this close

interaction, the physiological and pathological conditions of the

retina are reflected directly on the protein composition of the vitre-

ous (Monteiro et al., 2015). To obtain an in‐depth view of the vitre-

ous humor proteome in the aging human eye, we collected and

analyzed a total of 54 vitreous humor patient samples; 26 were
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obtained from iERM patients and 21 from MH patients. In addition,

seven age‐matched type 2 diabetic retinopathy patients with macular

edema (DME) were included in the analysis. Patients with prior surgi-

cal complications (such as cataract complications) were not enrolled

in this study. The mean ages in the iERM, MH, and DME patient

groups were highly similar, 68.7 ± 5.0 years, 68.6 ± 6.2 years, and

69.4 ± 15.0 years, respectively (Figure 1c). Neither the body mass

index (BMI) proportion nor the intraocular pressure (IOP) varied sig-

nificantly between the three sample groups (Figure 1c). The average

protein concentration in the vitreous samples of the iERM, MH, and

control‐DME was 4.2 ± 1.0 mg/ml, 4.1 ± 1.2 mg/ml, and

3.4 ± 1.1 mg/ml (mean ± SD), respectively (Figure 1c). Detailed

patient demographics are shown in Supporting Information Table S1.

2.2 | The analysis of the patients’ vitreous humor
proteomes

Vitreous samples from each patient were cleared from possible insol-

uble cellular fractions and analyzed for proteome composition. The

proteins, which were digested into peptides, were analyzed by LC‐
MS/MS, and the corresponding protein identity and abundance were

obtained with the label‐free quantification of the MS1 (Figure 1d).

The run from the MH group that had the greatest similarity to all of

the other runs was automatically selected as the alignment refer-

ence. The median alignment percentage for the MH samples was

80.7%, showing high similarities between the samples (Figure 2a).

The median alignment percentages for the iERM and DME sample
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F IGURE 1 Patient characterization and quantitative proteomics pipeline. (a) Fundus photograph of the central and peripheral retina, optic
disk, and macula from the patients with iERM or MH. The macula is located in the posterior pole of the eye. In the center of the macula, a
shallow depression in the retina (the fovea) marks the area with the highest visual acuity. (b) An optical coherence tomography (OCT) scan
through the fovea of the iERM eye reveals the abnormal organization of the retinal layers, including epiretinal fibrosis and secondary cystic
macular edema. Key: RPE = retinal pigment epithelial cells; scale bar: 200 µm. (c) The demographics of the iERM, MH, and DME patients,
showing the distributions of the age, body mass index (BMI), preoperative intraocular pressure (IOP), and protein concentration (mg/ml). No
significance differences were found between the sample groups. (d) The experimental workflow used for identifying and quantifying the human
vitreous proteins from the patients with iERM, MH or DME. Vitreous samples were collected in vitrectomy, proteins were extracted and
digested with trypsin, and the resulting peptides were analyzed via LC‐MS/MS. The label‐free quantification was performed by using
Progenesis LC‐MS analysis software, and the protein identification was performed using the SEQUEST search engine. Bioinformatics
approaches were used to combine our proteome data with the existing knowledge in order to obtain a systems pathology view on the
differences of the molecular etiologies of these eye diseases
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groups compared to the MH reference run were 67.6% and 52.1%,

respectively, indicating differences in the vitreous proteomes of the

iERM and DME patients compared to the MH patients. On the pro-

tein level, we identified a total of 1,014 unique proteins with 4,323

nonconflicting peptides (Supporting Information Table S3). To assess

the cellular localization of the identified proteins (Figure 2b, Support-

ing Information Table S3), we used Phobius software (Käll, Krogh, &

Sonnhammer, 2004), and more than 99% of intravitreal proteins

were identified either as being extracellular or as having a transmem-

brane domain. This corresponds well with the fact that most vitreous

proteins are expected to be secreted or shed from the surrounding

tissues (Joshi et al., 2013; Loukovaara et al., 2015).

Of the 1,014 identified proteins, 934 were quantified with an

average MS1 intensity over 1 × 104 in at least one of the sample

groups (Supporting Information Table S4; MH, iERM, or DME). The

most common proteins in each sample group were highly similar

(Figure 2c), consisting of high abundance proteins such as serum

albumin, transferrin, complement factors, and apolipoproteins. This

result is highly comparable with that of previous publications about

MH, iERM or DME vitreous (Loukovaara et al., 2015; Yu et al.,

2014; Zhang et al., 2017). To profile the vitreous proteomes, or

more precisely their possible quantitative differences, the hierarchical

clustering analysis of the MS1 intensity of 934 quantified proteins

was performed (Figure 2d). Clustering analysis aims to classify a
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F IGURE 2 The vitreous proteomes from patients with iERM, MH, or DME show differential compositions between the diseases. (a) The
MS1 spectra alignment percentages for the iERM, MH and DME sample MS analysis runs compared to those of the MH reference run. (b)
Cellular localizations of the detected proteins were predicted using Phobius predictor software and were found to be predominantly either
extracellular or transmembrane. (c) Venn diagram of 100 of the most abundant proteins in the iERM, MH and DME sample groups shows good
overlap between the disease groups, whereas (d) the disease groups separate well after hierarchical clustering of the global quantitative
proteomes. Heat‐map analysis of the hierarchical cluster analysis was performed using log2‐normalized MS1 intensities of 934 quantified
vitreous proteins. The columns represent individual samples, and the rows represent the individual proteins. Each cell in the matrix represents
the expression level of protein in an individual sample. Red and blue in the cells reflect the maximum and minimum expression levels,
respectively
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mixed population into more homogenous groups based on available

features. In spite of a high intergroup similarity on the level of the

most abundant proteins, the clustering revealed three large sepa-

rated protein clusters, which define the differential protein changes

induced by the iERM, MH, and DME diseases.

To further validate the MS workflow, we performed a high‐
throughput dot blot analysis for six proteins. The dot blot results

correlated highly with the MS1 data (median: 0.65, Supporting Infor-

mation Figure S1). The high correlation between the dot blot analy-

sis and MS1 quantification of vitreous samples has also been

previously shown (Loukovaara et al., 2015).

2.3 | DME vitreous proteomes differ from the
iERM and MH proteomes

When the iERM and MH proteomes were compared to the vitreous

proteome of DME, a clear difference was detected among the

groups (Figure 3a). In the iERM proteome, 80 proteins were present

at a higher level and 131 proteins at a lower level compared to in

the DME proteome (the abundance ratio >2, q‐value <0.05, Support-

ing Information Table S5). Likewise, in the MH proteome, 174 pro-

teins were present at a higher level and 123 proteins at a lower

level compared to in the DME proteome (Figure 3a, Supporting

Information Table S6). When the differently expressed proteins were

classified according to their involvement in different biological pro-

cesses, we observed that the more abundant proteins in the DME

group belonged to a limited number of biological processes, mainly

to those of the immune system. More specifically, the proteins were

associated with blood coagulation, fibrinolysis, and platelet aggrega-

tion linked to wound healing, as well as complement activation and

phagocytosis linked to inflammatory processes (Figure 3b). This

observation is consistent with our previous report that shows that

inflammation and the complement cascade play a significant role in

diabetic retinopathy and especially in its most advanced proliferative

form (Loukovaara et al., 2015). Many proteins involved in the classi-

cal and alternative pathways of complement activation were also

detected in the MH and iERM proteomes, indicating that inflamma-

tion may be a common denominator in both fibroproliferative and

nonfibroproliferative retinal diseases.

The proteins that were upregulated in iERM (n = 80) and MH

(n = 174) showed a marked overlap (66 proteins) between the two

groups. Similarly, these two retinal disease conditions shared the

most frequently enriched biological processes (Figure 4a). The com-

mon proteins were associated with cell adhesion, cellular move-

ment, nervous system development, cell signaling, and proteolysis

(Table 1). This finding of multiple proteins being linked to cell adhe-

sion, migration, and formation of the extracellular matrix supports

the hypothesis that the development of macular damage requires

cell migration from within the retina and extracellular matrix‐con-
taining fibrous element of formation. It is notable to report that we

detected six members of the neuronal cadherin and catenin family

(CAD12, CADH2, CSTN1, CSTN3, CTNB1, CTND2) that were sig-

nificantly upregulated in the iERM and MH samples (Figure 4b).

The cadherin‐catenin complex is the main component of the inter-

cellular adherens junction, which contributes to both tissue stability

and dynamic cell movements (Mège & Ishiyama, 2017). Cadherin‐
based adherens junctions are involved in various processes of neu-

ronal development affecting neuronal progenitor cells including reti-

nal stem cells. In the retina, under normal physiological

circumstances, the cadherin complex contributes to RPE cell stabil-

ity, whereas in some pathologic circumstances, it facilitates RPE cell

motility and migration (Van Aken et al., 2003). In addition, the cad-

herin‐catenin complex plays a critical role in regulating Wnt signal-

ing (Heuberger & Birchmeier, 2010), and interestingly, the Wnt

signaling pathway was one of the main enriched processes detected

in the iERM proteomes (Figure 4a).

The other interesting protein groups that were upregulated in

the iERM and MH proteomes are involved in cell motility,

including the proteins CCD39, DYH11, SPG17, and EPIPL, which

regulate cilium movement and wound healing. In the retina, pho-

toreceptors have unique sensory cilia that are essential for eye

health. Patients who have defects in ciliary motility develop retinal

degeneration (Brown & Witman, 2014). It has also been shown

that primary cilia coordinate a series of signaling pathways and

regulate cell migration during the development of and during the

process of wound healing (Veland, Awan, Pedersen, Yoder, &

Christensen, 2009).

Importantly, specific processes, such as Wnt signaling for iERM

samples and the semaphorin‐plexin pathway for MH samples, were

also detected in the iERM and MH proteomes (Figure 4a). Aberrant

Wnt/beta catenin signaling has been implicated in major inflamma-

tory and neurodegenerative disorders (Marchetti et al., 2013) and in

a variety of human hereditary diseases. Currently, the modulation of

Wnt signaling is actively studied in the fields of cancer, regenerative

medicine, and wound healing (Clevers & Nusse, 2012). However, our

understanding of the Wnt pathway is incomplete, and many ques-

tions in this field remain unanswered.

The semaphorin‐plexin pathway is also known to have functions

in the neural and immune systems, as well as in angiogenesis (Worz-

feld & Offermanns, 2014). The intravitreal semaphorin 3A concentra-

tion has been previously shown to be increased in patients suffering

from diabetic retinopathy (Cerani et al., 2017). However, in the DME

proteome in our study, semaphorins, including 3A, were detected at

only very low levels, whereas several semaphorins (3A, 3B, 4B, 3F,

7A) and their binging partner, plexin B1, were present at higher

levels in the MH proteome, suggesting an important role of sema-

phorin‐plexin signaling in MH but not in DME. Altogether, the role

of the Wnt or semaphorin‐plexin signaling pathway in the MH or

iERM processes has not been explored in great detail and therefore

requires further study.

2.4 | The iERM and MH vitreous proteomes display
a surprisingly high abundance of neuronal proteins

To assess the cellular origins of the upregulated proteins in iERM and

MH, we analyzed gene expression profiles using the MediSapiens
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database, which includes the gene expression data from over 3,000

samples from 60 “healthy” human tissues (www.medisapiens.com).

Only one clear cluster could be detected, showing the accumulation

of neuronal origin proteins in the vitreous proteomes (Figure 4c). To

further analyze these neuronal proteins, we used the PINA2 data-

base to derive the protein–protein interactions for these proteins

(Figure 5a). According to the PINA2 analysis, the 37 upregulated

proteins found in the neuronal cluster have a total of 90 interactors

that were identified in our vitreous proteome analysis (Figure 5a,

Supporting Information Table S7). The interacting proteins formed

several protein groups, the largest of which were the apolipopro-

teins, keratins, and signaling proteins. Additionally, several proteins

involved in neuronal system development and cell adhesion were

detected.
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Network analysis showed a central role of apolipoproteins in the

vitreous proteome (Figure 5a). Previously, APOA1, APOB, APOH, and

APOC have been reported as biomarkers for diabetic retinopathy

(Loukovaara et al., 2015; Sasongko et al., 2011). However, according

to our study, APOE and APOB were more abundant in the iERM and

MH samples than in the diabetic control samples, indicating the
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F IGURE 4 Systems level analysis highlights the interconnectivity of the upregulated proteins in iERM and MH. (a) Biological processes
associated with the 80 and 174 proteins upregulated in the iERM and MH groups, respectively, compared to the DME group. (b) MS1 intensity
(log‐scale) of the enriched group of adhesion molecules involved in the cadherin‐catenin complex illustrates their abundant presence in iERM and
MH. (c) Hierarchical clustering of the iERM and MH sample upregulated proteins based on their gene expression profiles in healthy human tissues.
The iERM and MH upregulated proteins are expressed clearly in separate clusters consisting of a majority of neuronal tissues
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TABLE 1 Sixty‐six common proteins that present with higher levels in the iERM and MH proteomes than in the DME proteome

GO processes UniProt Protein name Description

Fold change
compared to DME

MH iERM

Cell adhesion P46108 CRK Adapter molecule crk 2.9 3.1

P55289 CAD12 Cadherin‐12 25.7 32.2

P19022 CADH2 Cadherin‐2 2.8 2.4

O94985 CSTN1 Calsyntenin‐1 2.8 2.8

Q9UQB3 CTND2 Catenin delta‐2 136.7 146.2

P26006 ITA3 Integrin alpha‐3 33.3 11.9

Q9UHB6 LIMA1 LIM domain and actin‐binding protein 1 9.9 2.9

Q9P121 NTRI Neurotrimin 2.6 2.1

Q9HB19 PKHA2 PH domain‐containing family A member 2 10.2 14.8

Q7Z7G0 TARSH Target of Nesh‐SH3 4.6 6.4

Cell motility Q9UFE4 CCD39 Coiled‐coil domain‐containing protein 39 3.0 2.2

Q96DT5 DYH11 Dynein heavy chain 11, axonemal 25.4 38.0

P58107 EPIPL Epiplakin 23.7 26.3

Q14533 KRT81 Keratin, type II cuticular Hb1 16.4 13.1

P35908 K22E Keratin, type II cytoskeletal 2 epidermal 2.3 3.1

P20929 NEBU Nebulin 17.1 5.9

Q9H939 PPIP2 Pro‐Ser‐Thr phosphatase‐interacting prot 2 2.8 3.1

Q9Y4F4 F179B Protein FAM179B 2.3 4.4

Q5T5U3 RHG21 Rho GTPase‐activating protein 21 6.3 6.8

Q9HBV2 SACA1 Sperm acrosome membrane‐associated prot 1 3.4 4.3

Q6Q759 SPG17 Sperm‐associated antigen 17 8.1 9.1

P28290 SSFA2 Sperm‐specific antigen 2 2.5 3.4

P32019 I5P2 Type II inositol polyphosphate‐5‐phosphatase 3.2 3.2

Nervous system development Q16706 MA2A1 Alpha‐mannosidase 2 3.3 3.4

P51693 APLP1 Amyloid‐like protein 1 3.9 3.4

P02649 APOE Apolipoprotein E 2.1 2.0

P43251 BTD Biotinidase 3.2 3.2

Q86SQ4 GP126 G protein‐coupled receptor 126 23.3 12.3

Q9Y287 ITM2B Integral membrane protein 2B 77.4 73.9

P41271 NBL1 Neuroblastoma suppressor of tumorigenicity 1 30.0 41.2

P16519 NEC2 Neuroendocrine convertase 2 4.7 3.8

Q92823 NRCAM Neuronal cell adhesion molecule 5.1 3.9

Q15818 NPTX1 Neuronal pentraxin‐1 9.6 17.9

O14773 TPP1 Tripeptidyl‐peptidase 1 2.8 2.7

P30291 WEE1 Wee1‐like protein kinase 4.2 4.6

Cell signaling Q9HCE7 SMUF1 E3 ubiquitin‐protein ligase SMURF1 2.2 2.4

Q14571 ITPR2 Inositol 1,4,5‐trisphosphate receptor type 2 244.9 320.2

O15240 VGF Neurosecretory protein VGF 10.6 9.5

P48552 NRIP1 Nuclear receptor‐interacting protein 1 19.3 29.3

Q9P219 DAPLE Protein Daple 10.3 13.5

Q15904 VAS1 V‐type proton ATPase subunit S1 2.4 2.2

(Continues)
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specific role of these apolipoproteins in iERM and MH conditions.

Therefore, our findings suggest that APOB is not a suitable biomarker

for diabetic retinopathy.

Moreover, various keratins have been identified as binding part-

ners of upregulated neuronal proteins. Generally, keratins are

broadly expressed in epithelial cells, but they have also been

detected in normal nervous tissue (Iwatsuki & Suda, 2010). The

detection of multiple different keratins in the proteome analysis indi-

cates a specific role of keratins in age‐related eye diseases, even

though some keratins can also be contaminants linked to sample

preparation. Keratins are a class of intermediate filament proteins

that participate in scar formation and wound healing (Martin, 1997).

As the iERM is a condition in which a thin sheet of scar tissue grows

on the surface of the retina, keratins could also play a role in the

iERM process.

Interestingly, many proteins directly associated with neurodegen-

eration were also detected at higher abundances in the iERM and

MH samples than in the DME samples, including amyloid‐like protein

1 and 2 (APLP1 and APLP2), integral membrane protein 2B (ITM2B),

amyloid beta A4 protein (A4), and tripeptidyl‐peptidase 1 (TPP1).

The presence of a member of the amyloid precursor protein gene

family in vitreous the iERM and MH humor suggests that there

could be a link between age‐related eye diseases and neurodegener-

ative diseases in the brain. Similar morphological and functional

changes in microglial and neuronal activities, such as those reported

in the brain of Alzheimer´s patient, may also occur in the retina

(Krantic & Torriglia, 2014). Actually, neurodegenerative processes

that have been characterized in central nervous system disorders

have also been detected in ocular pathologies, such as glaucoma and

age‐related macular degeneration (London, Benhar, & Schwartz,

2013).

2.5 | SWATH MS analysis for validation of the
data‐dependent global proteomics results

Sequential window acquisition of all theoretical mass spectra

(SWATH MS) is a recently developed, massively parallel protein tar-

geting technique that features high accuracy and high reproducibility

TABLE 1 (Continued)

GO processes UniProt Protein name Description

Fold change
compared to DME

MH iERM

Proteolysis P16870 CBPE Carboxypeptidase E 2.9 2.8

Q9Y646 CBPQ Carboxypeptidase Q No detected in

DME

Q9NZP8 C1RL Complement C1r subcomponent‐like protein 24.8 10.0

Q86UX2 ITIH5 Interalpha‐trypsin inhibitor heavy chain H5 19.6 22.1

Q9H3G5 CPVL Probable serine carboxypeptidase CPVL 3.1 5.0

O75674 TM1L1 TOM1‐like protein 1 No detected in

DME

Q9Y5W5 WIF1 Wnt inhibitory factor 1 2.6 3.3

Other Q8IVF6 AN18A Ankyrin repeat domain‐containing prot18A 3.5 3.2

Q8NE71 ABCF1 ATP‐binding cassette subfamily F member 1 7.0 15.8

Q9UBZ9 REV1 DNA repair protein REV1 4.9 5.0

Q96HE7 ERO1A ERO1‐like protein alpha 3.8 4.3

O75063 XYLK Glycosaminoglycan xylosylkinase 17.7 6.0

Q9UPS6 SET1B Histone‐lysine N‐methyltransferase SETD1B 28.0 44.1

Q9H1K4 GHC2 Mitochondrial glutamate carrier 2 3.4 4.7

Q02817 MUC2 Mucin‐2 89.5 21.2

Q14995 NR1D2 Nuclear receptor subfamily 1D2 22.3 22.1

O94880 PHF14 PHD finger protein 14 9.3 13.0

Q6UX71 PXDC2 Plexin domain‐containing protein 2 3.1 3.0

Q7Z5M8 AB12B Protein ABHD12B 11.3 15.2

Q92520 FAM3C Protein FAM3C 6.1 4.8

Q9BSG5 RTBDN Retbindin 3.7 3.3

Q8IXT5 RB12B RNA‐binding protein 12B 2.5 2.3

Q8WVM8 SCFD1 Sec1 family domain‐containing protein 1 61.6 11.7

P04278 SHBG Sex hormone‐binding globulin 2.4 2.2

Q14679 TTLL4 Tubulin polyglutamylase TTLL4 7.6 6.7
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in protein quantification (Gillet et al., 2012). To validate our findings,

we performed SWATH MS analysis of vitreous samples from 5

iERM, 5 MH and 4 DME patients. In addition, two rhegmatogenous

retinal detachment (RRD) patients were included in the analysis as a

second control. A total of 403 proteins could be reliably quantified

(Supporting Information Table S8). Clustering analysis showed nice

separation of the iERM and MH proteomes from the DME and RRD

controls (Supporting Information Figure S2). Several proteins were

selected for validation, including proteins associated with neurode-

generation (A4, APLP2, and TPP1), cell adhesion (CADH2 and

NCHL1) and cell signaling (WIF1), and these produced very similar

expression profiles to those produced by the quantitative shotgun

MS approach (Figure 5b). In addition, the SWATH analysis verified

the increased expression of an additional 15 neuronal proteins in the

iERM and MH vitreous (Supporting Information Figure S3), confirm-

ing our speculation about the neurogenesis background of these two

diseases. The increased amount of neuronal proteins was not

detected in the RDD control samples, which eliminates the possibil-

ity that the neuronal proteins being in the vitreous was due to

unspecific leakage caused by retinal tearing.

2.6 | Comparison of the iERM and MH proteomes

Next, we compared the iERM proteome to the MH proteome to

assess for precise biomarkers of these diseases. Altogether, 160

proteins differed significantly between the iERM and MH groups

(q‐value <0.05), with 53 proteins being upregulated in the iERM

samples (abundance ratio >2) and 65 proteins being upregulated in

the MH samples (Figure 6, Supporting Information Table S9). As

these upregulated proteins in the iERM and MH groups represent

different biological processes and could not show any enrichment

pathways, we selected some highly expressed individual proteins

that displayed a significantly different abundance in the iERM sam-

ples compared to the MH samples as potential biomarker candidates

for a diagnosis and prognostic approach.

One of the novel biomarker candidates is tyrosinase (TYRO),

which is the rate‐limiting enzyme oxidase responsible for melanin

biosynthesis in the RPE of the eye. RPE cells contain different

types of melanin granules (Boulton, 2014), making them the proba-

ble origin of an increased level of tyrosinase. Melanin has an

important role in retinal development and protection against light‐
induced oxidative stress, and melanin levels have been associated

with AMD (Reinisalo, Putula, Mannermaa, Urtti, & Honkakoski,

2012). Our analysis showed that tyrosinase levels were 70‐fold

higher in the iERM eyes than in the MH eyes and 40‐fold higher

in the iERM eyes than in the DME eyes, indicating a specific role

of tyrosinase in iERM formation.

Fibulin‐7 (FBLN7) is a cell adhesion molecule that is expressed

in the retina also. Recently, it was shown to play a role in prevent-

ing AMD (Sardell et al., 2016). In addition, it has been found to

negatively regulate angiogenesis (de Vega et al., 2014), which could

be a mechanism for AMD regulation. FBLN7 interacts with beta1

integrin, which forms a heterodimer with alpha3 integrin (ITA3)

which was found to be one of the upregulated proteins in our

iERM samples. In the eye, integrin receptors have been closely

associated with ocular surface inflammation, vitreolysis, and choroi-

dal and preretinal angiogenesis. Alpha3beta1 integrin mediates the

attachment of the vitreous to the retinal surface (Oliveira et al.,

2002), which makes these adhesion molecules a potential therapeu-

tic target for iERM.

Caspases are a family of protease enzymes with essential roles in

programmed cell death and inflammation. During eye development,

cell death allows for the selection of appropriate synaptic connec-

tions (Braunger, Demmer, & Tamm, 2014). Dysregulation of pro-

grammed cell death, however, has been linked to the pathogenesis

of several retinal diseases, including RD and AMD (Kaarniranta,

Tokarz, Koskela, Paterno, & Blasiak, 2017; Torriglia, Jaadane, &

Lebon, 2016). Caspase‐5 (CASP‐5), a poorly characterized member of

the caspase subfamily, was found to be highly upregulated in our

iERM sample group. It interplays with caspase‐1 in inflammatory

responses in RPE cells, but the functional roles of CASP‐5 in ocular

inflammatory diseases are essentially unknown (Bian et al., 2011).

EPHA5 receptor tyrosine kinase also plays a key role in the develop-

ment of the eye and visual system (Pfeiffenberger et al., 2005).

However, the association between EPHA5 and retinal dysfunctions

has not been reported.

In regard to the MH eyes, three interesting signaling molecules,

Janus kinase and microtubule‐interaction protein 1 (JAKMIP1), leuke-

mia inhibitory factor receptor (LIFR), and adenylate cyclase type 6

(ADCY6), were presented at significantly higher levels in the MH

proteome than in the iERM or the DME proteome, and they may

therefore be considered as potential MH markers. JAKMIP1 interacts

with Tyk2, a member of Janus kinase family, which has been shown

to control the survival and proliferation of retinal cells (Samardzija

et al., 2006). LIFR, together with its ligand, leukemia inhibitory factor

(LIF), also participates in neuroprotection by activating an

endogenous rescue pathway that protects viable photoreceptor cells

(Bürgi, Samardzija, & Grimm, 2009). ADCY6 is a member of

F IGURE 5 The iERM and MH vitreous proteomes display high abundance of neuronal proteins. (a) Interaction analysis of the differentially
abundant neuronal proteins. Thirty‐seven neuronal proteins that were present at higher levels in the iERM and MH proteomes were analyzed
using the PINA2 protein interaction public database (green nodes indicate proteins that were upregulated in the iERM samples; orange nodes
indicate upregulated proteins in the MH samples; and yellow nodes indicate upregulated proteins in both of the samples). Interaction analysis
reveals a total of 90 interacting proteins found in our vitreous analysis, and they are classified based on their biological processes. (b) SWATH
MS analysis verifies the increased expression of neuronal proteins in the iERM and MH vitreous, including proteins associated with
neurodegeneration (A4, APLP2, and TPP1), cell adhesion (CADH2 and NCHL1), or cell signaling (WIF1). The results are shown as the peak
areas detected in the SWATH analysis. The spots represent individual samples, and the lines indicate the mean values
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adenylate cyclase family that synthesizes cyclic adenosine

monophosphate or cyclic AMP from adenosine triphosphate. Two

members of the family, ADCY1 and ADCY8, work together to facili-

tate midline crossing of retinal axons, but the role of ADCY6 in reti-

nal function has not been reported (Xu, Leinwand, Dell, Fried‐
Cassorla, & Raper, 2010).

2.7 | Concluding remarks

Systemic data of intravitreal biochemical factors and signaling

pathways related to the age‐related retinal interface diseases iERM

and MH are rather scarce. This study utilized label‐free quantita-

tive MS to investigate the vitreous proteomes in iERM and MH

eyes. Precise bioinformatics analysis was performed to reveal

novel candidate protein groups and signaling pathways involved in

the formation of iERM and MH, potentially guiding the develop-

ment of further pharmacological treatments or therapies. In con-

clusion, our results illustrate the following: (a) Both iERM and MH

have complicated pathological processes involving inflammation,

extracellular matrix dysfunction and fibrosis; (b) the surprisingly

large number of neuronal proteins analyzed in this study was

more abundant in the vitreous proteome from the age‐related eye

pathologies of iERM and MH than in those of DME and RRD,

indicating the neurodegenerative background of these two age‐re-
lated pathologies; (c) Wnt signaling involved in the development

of iERM and the semaphorin‐plexin pathway involved in the

development of MH formation were novel findings; and (d) the

identity of proteins differed significantly between the iERM and

MH conditions, from which we identified a candidate list of

possible targets for diagnostic, prognostic, and/or therapeutic

approaches.

During the last decade, human vitreous proteomics has rapidly

expanded the list of potential protein biomarkers and molecular dis-

ease pathways. The differences between the pathogeneses of iERM

and MH were actively investigated to provide new potential

biomarkers to be used for diagnostic and prognostic approaches. We

could observe several highly upregulated proteins in the iERM and

MH proteomes, which provides further insight into the pathologies

of these two age‐related eye diseases. The vitreous proteome atlases

of iERM and MH, which were generated in this study, could provide

a plethora of information and form the basis of future diagnostic

and therapeutic approaches. However, although we were able to

provide some novel insight into the pathomechanisms of these two

retinal interface diseases that could possibly guide the further devel-

opment of efficient treatments, other studies are required to better

understand these pathologies.
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3 | EXPERIMENTAL PROCEDURES

3.1 | Patients

This study was conducted according to the Declaration of Helsinki

and was approved by the Institutional Review Board of Helsinki

University Central Hospital at the University of Helsinki in Finland.

Signed informed consent was obtained from each participant before

the sampling occurred. Confidentiality of the patient records was

maintained when the clinical data were entered into a computer‐
based standardized data entry for analysis.

The patients were admitted for primary vitrectomy for the man-

agement of the pathologies of iERM, MH or diabetic retinopathy

with macular edema (DME) in the Unit of Vitreoretinal Surgery at

Helsinki University Central Hospital in Helsinki, Finland. The diagno-

sis and detection of morphologic retinal pathological changes in each

studied eye were confirmed using optical coherence tomography

(OCT) prior to surgery. OCT (Stratus OCT; Zeiss) or the spectral

domain‐OCT OptoVue RTVue V.5.1 device (OptoVue Inc.) was

acquired under mydriatic circumstances. The scan pattern used on

Optovue RTVue was a standardized macular protocol, retina MM6,

which gives accurate thickness measurements in the fovea, perifovea

(<3 mm), and parafovea (<6 mm). The measurements of the central

retinal thickness in the innermost foveal area were recorded and

analyzed pre‐ and postoperatively.

The exclusion criteria among the iERM and MH patients were

vitreous hemorrhage and inflammation, other retinal inflammatory or

retinal vascular disorders (retinitis, choroiditis, uveitis, or retinal vein

occlusion), RD, AMD, or previous ocular trauma. One eye from the

iERM group was excluded because of previous systemic borreliosis,

and one eye from the MH group was excluded because of previous

glaucoma surgery (trabeculectomy). A total of 56 eyes from 56

patients underwent primary transconjunctival microincision vitrec-

tomy for iERM (n = 26), MH (n = 21), DME (n = 7), or RRD (n = 2)

between 2006 and 2017. The clinical systemic and ocular character-

istics of the study patients are given in Table 1.

3.2 | Vitreous sample collection

Undiluted vitreous samples (up to 1,000 µl) were collected at the

start of the standard three‐port pars plana vitrectomy (25‐gauge or

23‐gauge, Constellation Vision System, Alcon Instruments, Inc.) with-

out an infusion of artificial fluid. The samples were collected by man-

ual aspiration into a syringe via the vitrectomy with the cutting

function activated. The samples were immediately frozen at −70°C

until MS analysis.

In the vitrectomy, if the vitreous was attached to the posterior

retina, PVD was induced by suction with the vitrectomy probe over

the optic disk. To visualize and identify the posterior hyaloid epireti-

nal membranes and the internal limiting membrane, intravitreal vital

dyes were used (chromovitrectomy). Diluted indocyanine green,

MembraneBlue‐Dual® or ILM‐blue® (D.O.R.C. Zuidland, Netherland)

dye‐assisted ERM ± ILM or plain ILM peeling was performed. Peeling

of ERM and ILM was carried out using the pinch‐peel technique with

fine‐tipped forceps. In all of the MH eyes, a fluid‐air exchange was

performed with a subsequent gas exchange.

3.3 | Sample preparation for the LC‐MS

The collected patient vitreous samples were centrifuged at 18,000 g

for 15 min at 4°C to clear the samples from cellular debris. Average

protein concentrations (mg/ml) of the vitreous samples were deter-

mined using the Bicinchoninic Acid (BCA) Protein Assay Kit (Pierce,

Thermo Scientific) according to the manufacturer's instructions.

100 μg of total protein per sample was taken for LC‐MS analysis.

Urea was added to a final concentration 1 M, and the proteins were

reduced with tris(2‐carboxyethyl)phosphine and alkylated with

iodoacetamide. The proteins were then digested to peptides with

Sequencing Grade Modified Trypsin (Promega) using a 1:50 enzyme:

protein ratio at 37°C o/n. The resulting tryptic peptides were purified

with C18 microspin columns (Nest Group, Southborough, MA, USA)

before they were subjected to LC‐MS/MS analysis.

3.4 | LC‐MS/MS analysis

The LC‐MS/MS analysis was carried out with a Q Exactive ESI‐quad-
rupole‐orbitrap mass spectrometer coupled to an EASY‐nLC 1000

nanoflow LC (Thermo Fisher Scientific), using the Xcalibur version

3.1.66.10 (Thermo Scientific). The tryptic peptide sample mixture

was loaded from autosampler into a C18‐packed precolumn (Acclaim

PepMap™100 75 μm × 2 cm, 3 μm, 100 Å, Thermo Scientific) in buf-

fer A (1% acetonitrile, 0.1% formic acid). Peptides were transferred

onward to C18‐packed analytical column (Acclaim PepMap™100

75 μm × 15 cm, 2 μm, 100 Å, Thermo Scientific) and separated with

a 120‐min linear gradient from 5% to 35% of buffer B (98% acetoni-

trile, 0.1% formic acid) at a flow rate of 300 nl/min. MS analysis was

performed in a data‐dependent acquisition in a positive‐ion mode.

MS spectra were acquired from m/z 200 to m/z 2,000 with a resolu-

tion of 70,000 with a full AGC target value of 1,000,000 ions and a

maximal injection time of 100 ms in the profile mode. The 10 most

abundant ions for which the charge states were 2+ to 7+ were

selected for subsequent fragmentation (higher energy collisional dis-

sociation (HCD), and MS/MS spectra were acquired with a resolution

of 17,500 with an AGC target value of 5,000, a maximal injection

time of 100 ms, and the lowest mass fixed at m/z 120, in the cen-

troid mode. The dynamic exclusion duration was 30 s.

3.5 | MS1 quantification and protein identification

Progenesis LC‐MS software (v4.1, Nonlinear Dynamics Limited, Tyne,

UK) was used to obtain the MS1 intensities of the peptides for

label‐free quantification. The run with the greatest similarity to all of

the other runs was automatically selected as the alignment refer-

ence. All of the runs were then aligned to a reference run automati-

cally and further adjusted manually. The retention time was limited

to 10–130 min excluding the first and last 10 min of the recorded
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data. Only peptides with charge states from +2 to +7 were allowed.

For the protein identification with the MS/MS‐scan, data acquired

from Progenesis LC‐MS were searched against the human compo-

nent of the UniProtKB database (release 2016_06 with 20,154

entries) using SEQUEST search engine in Proteome Discoverer™

software (version 1.4). Carbamidomethylation (+57.021464 Da) of

cysteine residues was used as a static modification, and oxidation

(+15.994491 Da) of methionine was used as a dynamic modification.

Precursor mass tolerance and fragment mass tolerance were set to

<15 ppm and 0.05 Da, respectively. A maximum of two missed

cleavages were allowed. The results were filtered to a maximum

false discovery rate of 0.05. For the protein identification, the pep-

tide spectrum match was set to ≥2.

To validate the sample reproducibility in regard to the feature

alignment and detection level, five samples were analyzed in techni-

cal replicates. The distribution of the MS1 feature alignment and

MS1 quantitation level correlation showed extremely high repro-

ducibility (Supporting Information Table S2).

3.6 | Dot blot analysis

Five microgram of total protein from the vitreous samples was dot

blotted to a nitrocellulose membrane using the Bio‐Rad 96‐well dot

blot system (Bio‐Rad) according to the manufacturer's instructions.

Six antibodies against the differentially expressed proteins between

the samples were selected based on the availability of high‐quality
antibodies suitable for Western blotting. Signals were visualized

using the Amersham ECL Western blotting analysis system (GE

Healthcare). The dot blots were analyzed and quantified using Dot

Blot Analyzer for ImageJ30. For each of the proteins, the Pearson´s

correlation was calculated between the corresponding MS1 and dot

blot intensities.

3.7 | Data processing

Statistical significance tests of abundance changes between the

iERM, MH, and DME eyes were conducted with Student's t test.

An abundance change with a q‐value of 0.05 or less was consid-

ered a significant change. q‐Values were used instead of conven-

tional p‐values to maximize the power of the statistical test.

Hierarchical cluster was performed by Pearson correlation (both

samples and identifications; average linkage) using Morpheus soft-

ware (https://software.broadinstitute.org/morpheus). The boxplots

and volcano blot analysis were produced using R version 3.3.2.

Gene Ontology (GO) annotations were obtained from DAVID

bioinformatics resources (Huang, Sherman, & Lempicki, 2009). The

cellular locations of the identified proteins, being either intracellu-

lar, transmembrane, or extracellular, were extracted from the

Phobius predictor (Käll et al., 2004). The MediSapiens database

(www.medisapiens.com) was used to study the gene expression

levels across healthy human tissues (Kilpinen et al., 2008). The

PINA2 protein interaction database was used to obtain the known

protein–protein interactions.

3.8 | SWATH analysis

The samples were analyzed both in the shotgun experiment for

spectral library building and in the SWATH MS mode for quantita-

tive analysis using a Sciex 6600 TripleTOFF MS coupled to an Eksi-

gent nanoLC with a microelectrospray ionization source. MS was

operated in the positive‐ion mode. In the shotgun experiment, infor-

mation‐dependent acquisition (IDA) was implemented using a “top
30” method. Specifically, a 100 ms survey scan was performed in

the m/z range of 100–1,500, and the top 30 ions above the intensity

threshold of 150 counts were selected for subsequent MS/MS scans

with an accumulation time of 250 ms. In the SWATH experiment, a

100 ms survey scan was performed in the m/z range of 400–1,250,
followed by serial consecutive SWATH scans. Spectral library was

performed using the human Uniprot database (release 04_2018 with

20,341 entries) supplemented with common contaminants using

Paragon algorithm via ProteinPilot (v4.5, AB SCIEX; Shilov et al.,

2007). The “Thorough ID” mode was selected, which automatically

adjusts the mass tolerance to fit the high‐resolution MS and MS/MS

data. Peak extraction of the SWATH data was performed using the

SWATH micro app embedded in PeakView (ver2.0, AB SCIEX) with

the following parameters: 75 ppm m/z tolerance for the targeted

transition, five transitions selected per peptide, peptide identification

FDR < 1%, and exclusion of shared peptides. Retention time calibra-

tion was performed based on PepCalMix (AB SCIEX) elution profiles.

The results are shown as the total area normalized ion peak areas.

3.9 | Data availability

The peptide raw data have been uploaded to the MassIVE public reposi-

tory (https://massive.ucsd.edu.), the MassIVE ID MSV000081839.
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