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Abstract
Aim:	Our	aim	involved	developing	a	method	to	analyse	spatiotemporal	distributions	
of	Arctic	marine	mammals	(AMMs)	using	heterogeneous	open	source	data,	such	as	
scientific	papers	and	open	repositories.	Another	aim	was	to	quantitatively	estimate	
the	 effects	 of	 environmental	 covariates	 on	 AMMs’	 distributions	 and	 to	 analyse	
whether	their	distributions	have	shifted	along	with	environmental	changes.
Location:	Arctic	shelf	area.	The	Kara	Sea.
Methods:	Our	literature	search	focused	on	survey	data	regarding	polar	bears	(Ursus 
maritimus),	Atlantic	walruses	 (Odobenus rosmarus rosmarus)	and	ringed	seals	 (Phoca 
hispida).	We	mapped	the	data	on	a	grid	and	built	a	hierarchical	Poisson	point	process	
model	to	analyse	species’	densities.	The	heterogeneous	data	lacked	information	on	
survey	intensity	and	we	could	model	only	the	relative	density	of	each	species.	We	
explained	 relative	densities	with	environmental	 covariates	and	 random	effects	 re-
flecting	excess	spatiotemporal	variation	and	the	unknown,	varying	sampling	effort.	
The	relative	density	of	polar	bears	was	explained	also	by	the	relative	density	of	seals.
Results:	The	most	important	covariates	explaining	AMMs’	relative	densities	were	ice	
concentration	and	distance	to	the	coast,	and	regarding	polar	bears,	also	the	relative	
density	of	seals.	The	results	suggest	that	due	to	the	decrease	in	the	average	ice	con-
centration,	 the	relative	densities	of	polar	bears	and	walruses	slightly	decreased	or	
stayed	 constant	 during	 the	17-	year-	long	 study	period,	whereas	 seals	 shifted	 their	
distribution	from	the	Eastern	to	the	Western	Kara	Sea.
Main conclusions:	Point	process	modelling	is	a	robust	methodology	to	estimate	dis-
tributions	from	heterogeneous	observations,	providing	spatially	explicit	information	
about	ecosystems	and	thus	serves	advances	for	conservation	efforts	in	the	Arctic.	In	
a	simple	trophic	system,	a	distribution	model	of	a	top	predator	benefits	from	utilizing	
prey	species’	distributions	compared	to	a	solely	environmental	model.	The	decreas-
ing	 ice	cover	seems	to	have	 led	to	changes	 in	AMMs’	distributions	 in	the	marginal	
Arctic	region.
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1  | INTRODUC TION

The	decline	of	the	sea	ice	has	changed	the	Arctic	landscape	and	the	
habitats	of	 the	marine	species	 in	 the	Arctic	marginal	 seas	 (Durner	
et	al.,	2009;	Gaston,	Gilchrist,	&	Hipfner,	2005;	Laidre	et	al.,	2015).	
Longer	ice-	free	periods	and	less	ice	have	facilitated	marine	traffic	and	
extraction	of	natural	resources	(Smith	&	Stephenson,	2013),	creating	
environmental	risks	such	as	oil	spills	(Nevalainen,	Helle,	&	Vanhatalo,	
2017).	Accurate	information	on	species’	distributions	helps	to	assess	
species’	vulnerability	to	changes	in	their	habitats	(Laidre	et	al.,	2008)	
and	 to	 prevent	 their	 exposure	 to	 human	 caused	 hazards	 (Helle,	
Jolma,	&	Venesjärvi,	2016).	Arctic	marine	mammals	 (AMMs)	spend	
most	 or	 all	 of	 the	 year	 in	 sea	 areas	 (Laidre	 et	al.,	 2008)	 and	 their	
specific	activities	(foraging,	moving,	breeding	and	denning)	depend	
on	ice	cover	and	type	(Bluhm	&	Gradinger,	2008;	Kovacs,	Lydersen,	
Overland,	&	Moore,	2011).	By	inferring	how	habitat	characteristics	
(sea	 ice,	 depth,	 distance	 to	 the	 coast	 and	 hydrography)	 correlate	
with	the	abundances	of	AMMs,	we	can	predict	the	distributions	of	
AMMs.	The	predictions	can	be	utilized	in	planning	conservation	ac-
tions	and	in	assessing	the	risks	of	different	species-	human	interac-
tions	 (Wilson,	Regehr	et	al.,	2017;	Wilson,	Trukhanov	et	al.,	2017),	

whereas	habitat	utilization	functions	can	underpin	spatially	explicit	
demographic	analysis	for	better	population	assessments	(Kearney	&	
Porter,	2009;	Lunn	et	al.,	2016).	In	areas	with	high	survey	costs	and	
little	designed	survey	data,	flawed	population	assessments	may	lead	
to	improper	conservation	or	harvest	actions	(Regehr,	Wilson,	Rode,	
Runge,	&	Stern,	2017).

Species	distribution	modelling	(SDM)	is	a	cost-	efficient	method	
for	studying	how	species	respond	to	environmental	covariates	and	
where	they	occur	 (Elith	&	Leathwick,	2009).	The	scarcity	of	 in situ 
observations	on	AMMs	has	so	far	restricted	the	attempts	to	assess	
their	 densities	 in	 large	 areas	 (as	 in	Matishov,	Chelintsev,	Goryaev,	
Makarevich,	&	 Ishkulov,	2014).	Utilizing	species	observations	 from	
complementary	sources	poses	a	high	potential	to	overcome	the	data	
shortage	 (Pacifici	et	al.,	2017)	but	 increases	 the	uncertainty	about	
the	spatiotemporal	accuracy	of	observations	and	about	the	survey	
effort,	and	thus	evokes	 the	need	for	methodological	development	
(Guillera-	Arroita,	2017;	Warton,	Renner,	&	Ramp,	2013).

We	developed	distribution	models	for	three	AMMs,	polar	bears	
(Ursus maritimus),	 Atlantic	 walruses	 (Odobenus rosmarus rosmarus)	
and	ringed	seals	(Phoca hispida),	and	studied	their	seasonally	varying	
areal	 densities	 in	 the	Kara	 Sea	 (Figure	1).	We	 analysed	 previously	

F IGURE  1 The	study	transect	lines	(red)	and	species	observations	(green)	for	polar	bears	(a–c),	walruses	(d–f)	and	seals	(g).	A	grid	cell	
through	which	a	transect	goes	or	at	which	there	is	a	species	observation	is	treated	as	a	cell	with	observation.	The	observation	is	the	number	
of	reported	individual	species	members	and	zero	otherwise.	Other	grid	cells	are	treated	as	missing	data	and	do	not	contribute	to	the	analysis.	
The s1 and s2	axis	(h)	denote	the	axes	of	the	coordinate	system	used	in	spatiotemporal	model

(a) (b) (c) (d)

(e) (f) (g) (h) (i)
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published	data	on	species	observations	that	had	been	collected	by	
heterogeneous	sampling	methods	and	were	incompletely	reported,	
for	example	 in	some	cases	containing	presence-	only	observations.	
The	lack	of	well-	tailored	survey	data	highlighted	the	need	to	develop	
a	 hierarchical	 Bayesian	 SDM,	 which	 models	 the	 species	 observa-
tions	as	functions	of	environmental	covariates,	spatiotemporal	loca-
tion	and	sampling	effort	(Chakraborty,	Gelfand,	Wilson,	Latimer,	&	
Silander,	2011;	Dorazio,	2014;	Fithian,	Elith,	Hastie,	&	Keith,	2015;	
Giraud,	Calenge,	Coron,	&	Julliard,	2016).

Along	with	the	hierarchical	modelling,	the	Poisson	point	process	
(PPP)	has	become	an	important	modelling	methodology	for	data	with	
varying	and	potentially	uncontrolled	sampling	effort	(Dorazio,	2014;	
Fithian	et	al.,	2015;	Warton	&	Shepherd,	2010).	In	a	spatially	discret-
ized	(grid	based)	model	setup	PPP	is	an	efficient	tool	for	modelling	
species’	density	per	area,	which	is	a	more	intuitive	and	accurate	mea-
sure	of	density	than	the	scale	dependent	density	(Maxent;	Renner	&	
Warton,	2013)	or	occurrence	probability	(logistic	regression;	Fithian	
&	Hastie,	2013)	per	grid	cell.	The	novelty	of	our	work	is	in	tailoring	a	
recently	developed	SDM	methodology	to	answer	a	question	that	has	
been	out	of	reach	with	past	modelling	tools.

We	quantified	the	utilized	habitat	characteristics	of	the	species,	
created	a	hindcast	of	density	predictions	and	based	on	predictions,	
evaluated	potential	changes	in	species’	relative	densities	in	the	Kara	
Sea	 during	 the	 study	 period.	 This	 is	 essential	 information	 in	 the	
Siberian	shelf	area,	which	has	been	little	studied	compared	to	other	
marginal	 regions	 of	 the	Arctic	 (Wassmann,	Duarte,	Agustí,	&	 Sejr,	
2011).	The	examined	species	are	high	 in	the	marine	food	web	and	
represent	the	full	diversity	of	marine	mammals	in	the	Kara	Sea	ex-
cluding	beluga	whales	(Delphinapterus leucas).	The	predator	species	
are	 essential	 for	 the	 functioning	of	 the	marine	ecosystem	as	 they	
control	populations	of	species	below	them	in	the	food	web	and	the	
balance	 in	 utilization	 of	 resources	 (Baum	 &	Worm,	 2009;	 Myers,	
Baum,	 Shepherd,	 Powers,	&	Peterson,	 2007).	Despite	 earlier	 esti-
mates	of	the	population	sizes	of	polar	bears	(3,200	±	1,100	individ-
uals	 [Matishov	 et	al.,	 2014]),	 ringed	 seals	 (90,000–150,000	 [Kelly	
et	al.,	2010])	and	walruses	(<500	[Born,	Gjertz,	&	Reeves,	1995])	in	
the	Kara	Sea,	there	are	no	rigorous	distribution	estimates	for	these	
species.	Previous	studies	on	polar	bear	distributions	(Durner	et	al.,	
2009;	 Lone,	Merkel,	 Lydersen,	Kovacs,	 and	Aars	 (2018);	Matishov	
et	al.,	2014;	Wilson,	Horne,	Rode,	Regehr,	&	Durner,	2014;	Wilson,	
Regehr	 et	al.,	 2017),	 have	not	provided	a	 spatiotemporally	 explicit	
fine	 scale	 prediction	 about	 the	 density	 of	 polar	 bears,	 whereas	

estimates	for	densities	of	seals	and	walruses	are	mostly	missing	 in	
the	entire	Arctic.

Our	results	contribute	to	the	Arctic	research	with	assessment	of	
changes	of	AMMs’	distributions	in	the	Arctic	shelf	area	and	advance	
the	topical	development	of	SDMs	for	presence-	only	and	other	het-
erogeneous	species	observation	data.	As	more	species	observation	
records	with	varying	accuracies	become	available	through	interna-
tional	cooperation	 (e.g.,	GBIF:	The	Global	Biodiversity	 Information	
Facility,	 2017),	 the	 methodological	 issues	 around	 incompletely	
known	sampling	efforts	(Warton	et	al.,	2013),	the	lack	of	reasonable	
covariates	or	a	mismatch	of	spatiotemporal	scales	between	covari-
ates	 and	 observation	 records	 still	 constrain	 the	 utilization	 of	 the	
data	(Rocchini	et	al.,	2011).	There	are	also	other	poorly	documented	
Arctic	 areas	 alongside	 the	Kara	 Sea,	where	 biodiversity	 estimates	
would	 benefit	 from	 a	more	 efficient	 use	 of	 available	 data	 (Laidre	
et	al.,	2015).

2  | METHODS

2.1 | Data

Our	 data	 consist	 of	 species	 observations	 from	 the	 years	 1996	 to	
2013	and	of	environmental	data	(the	covariates).	We	use	bathymetry,	
distance	to	the	coast,	ice	concentration	and	sea	surface	salinity	(SSS)	
as	environmental	covariates	to	explain	species	observations.	The	co-
variates	were	selected	based	on	their	accessibility	and	hypothesized	
impact	on	species	occurrence	(see	Tables	1	and	2).	The	study	area	
was	 defined	 as	 a	 region	 between	 the	 Eurasian	 continent,	 Novaya	
Zemlya	 and	 Severnaya	Zemlya	 (see	Figure	1).	We	used	 a	 5	×	5	km	
lattice	grid	over	the	Kara	Sea	as	our	modelling	layer	(see	Section	2.2)	
and	a	temporal	resolution	of	1	month.	The	spatial	and	temporal	reso-
lutions	compromise	between	computational	effort	and	a	 temporal	
range	of	ecosystem	responses	to	environmental	variation	(Mannocci	
et	al.,	2017).	More	information	about	the	spatiotemporal	scaling	and	
spatiotemporal	variation	of	covariates	is	provided	in	the	supplemen-
tary	material	(Appendix	S1).

We	collected	the	species	data	from	scientific	articles	and	books	
(see	 Table	3).	 Most	 of	 the	 species	 observations	 were	 made	 from	
survey	cruise	ships,	and	hence	the	data	consisted	of	maps	showing	
where	 the	 survey	cruises	had	 taken	place	and	of	 tables	and	maps	
showing	where	and	how	many	individual	species	members	had	been	
detected.

Data Format Resolution Source

Sea	ice	concentration Grid 5	km²	(original	
25	km²)

Cavalieri,	Parkinson,	
Gloersen,	and	Zwally	(1996)

Bathymetry Grid 5	km²	(original	
0.5	km²)

Jakobsson	et	al.	(2012)

Distance	to	the	coast Grid 5	km² Calculated	based	on	
bathymetric chart

Sea	surface	salinity Grid 5	km² Mäkinen	and	Vanhatalo	
(2016)

TABLE  1 List	of	environmental	
covariates	with	the	source	information
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Most	of	the	species	sightings	(positive	valued	observations)	were	
published	as	 tables	with	precise	 information	on	 location,	 timing	and	
number	 of	 individuals	 observed.	 The	 absence	 observations	 were	
created	 by	 digitizing	 the	 survey	 transect	 lines	 from	 the	maps.	 Each	
grid	cell,	which	was	in	contact	with	a	transect	line	was	treated	as	an	
observed	cell	(i.e.,	an	area	where	a	survey	had	been	conducted).	The	
original	publications	did	not	report	their	study	effort	in	detail,	so	we	
did	 not	 know	 the	 probability	 of	 observing	 an	 individual	 or	 a	 group	
of	 individuals	of	a	species	 if	 they	were	present	 in	a	cell	 intersecting	
with	a	transect	line.	However,	the	transect	lines	had	been	accompa-
nied	with	information	on	the	timing	of	the	cruise	which	allowed	us	to	
link	them	with	the	species	sightings.	Hence,	grid	cells	along	a	transect	
line	which	did	not	overlap	with	any	of	the	sightings	during	that	survey	
were	treated	as	having	zero	observations.	Those	that	overlapped	with	
species	sightings	were	treated	as	having	a	positive	count	observation.

This	created	a	list	of	observations	with	information	on	the	count	
of	individual	species	members,	coordinates,	timing	and	environmen-
tal	 covariates.	Grid	cells	 for	months	 that	were	not	 in	contact	with	
a	survey	transect	or	at	which	no	positive	species	observation	was	
located	were	treated	as	missing	data	(see	Section	2.2.).	The	monthly	
distribution	of	species	observations	is	presented	in	the	supplemen-
tary	material	 (Appendix	S1).	The	observations	cover	all	 seasons	of	
the	year	and	thus	we	can	observe	the	seasonally	varying	distribu-
tions	of	the	species.

There	were	some	exceptions	in	the	data	quality	between	source	
studies	(see	Table	3).	The	observations	of	Matishov	et	al.	(2014)	had	
been	 made	 between	 January	 and	 March	 in	 2013	 without	 a	 spe-
cific	 time	stamp	and	so	each	observation	was	 located	to	February	
2013.	 The	 study	 of	 Svetochev	 and	 Svetocheva	 (2008)	 contains	
presence-	only	data	as	location	descriptions	based	on	local	people’s	

TABLE  2 The a priori	assumed	covariate	impact	on	species	occurrence	and	reasons	for	including	it	in	the	model

Covariate/
Response Polar bear Walrus Ringed seal

Sea	ice	
concentration

Sea	ice	is	a	platform	for	foraging,	denning	
and	moving.	Polar	bears	possess	seasonal	
variation	in	their	functional	responses	to	
sea	ice	cover	and	type

Walruses	inhabit	sea	ice	in	winter.	
They	occupy	pack	ice	close	to	
polynyas	and	leads	that	allow	them	
to	access	benthic	prey

Seals	use	ice	for	resting,	breeding,	
pupping	and	moulting.	Annual	land	
fast	and	pack	ice	are	inhabited	by	
ringed	seals	from	the	freezing	to	ice	
break	up

References Ferguson	et	al.	(2000),	Lone	et	al.	(2018),	
Mauritzen	et	al.	(2003),	and	Stirling,	
Andriashek,	and	Calvert	(1993)

Born,	Acquarone,	Knutsen,	and	
Toudal	(2005),	Freitas,	Kovacs,	Ims,	
Fedak,	and	Lydersen	(2009)	and	
Stirling	(1997)

Pilfold	et	al.	(2014),	Reeves	(1998),	
Smith,	Hammill,	and	Taugbol	(1991)	
and	Tynan	and	DeMaster	(1997)

Sea	surface	
salinity	(SSS)

SSS	is	a	surrogate	for	the	productivity	of	the	marine	ecosystem	in	the	Kara	Sea.	SSS	is	a	regionally	important	covariate	for	the	
ecosystem	functioning	and	its’	spatial	trend	may	be	one	factor	determining	the	distribution	of	Arctic	marine	mammals

Ref. Bluhm	and	Gradinger	(2008)	and	Miquel	(2001)

Distance	to	the	
coast

Polar	bears	inhabit	coastal	or	pelagic	areas	
according	to	the	subpopulation.	In	many	
parts	of	the	Arctic	and	in	the	Kara	Sea	
polar	bears	inhabit	coastal	land	fast	ice	
and	avoid	open	sea

In	summer	walruses	stay	on	the	coast	
and	dive	in	the	coastal	zone	for	
benthic	prey.	Mostly	they	do	not	
follow	the	marginal	ice	zone.	This	
means	that	they	do	not	leave	too	far	
from	the	coast

Ringed	seals	are	mostly	coastal,	but	
their	density	varies	according	to	the	
distance	to	the	coast.	They	are	not	
dependent	on	depth	but	more	on	the	
ice	type	varying	along	with	the	
distance	to	the	coast

Ref. Born	and	Knutsen	(1997),	Ferguson	et	al.	
(2000),	Mauritzen	et	al.	(2002,	2003)	and	
Pilfold	et	al.	(2014)

Freitas	et	al.	(2009) Freitas,	Kovacs,	Ims,	and	Lydersen	
(2008),	Krafft	et	al.	(2007)	and	Reeves	
(1998)

Relative	seal	
density

Ringed	seal	is	the	most	important	prey	for	
polar	bears	and	foraging	habitat	of	polar	
bear	follows	the	distribution	of	seal	
denning

– –

Ref. Born	and	Knutsen	(1997),	Derocher,	Wiig,	
and	Andersen,	(2002)	and	Stirling	and	
Oritsland	(1995)

– –

Bathymetry Not	included.	Bathymetry	is	an	important	
covariate	in	Arctic	wide	studies	
reflecting	shelf	edges	and	basins	but	our	
study	area	is	located	mostly	in	the	shelf	
area	where	the	effect	of	bathymetry	on	
the	density	of	polar	bears	is	less	
important	than	in	other	shelf	seas

Walruses	feed	on	benthic	species,	
which	makes	them	dependent	on	
the	bathymetry.	Walruses	are	able	
to	dive	deeper	than	250	m,	which	is	
enough	for	them	to	access	the	
bottom	in	the	most	of	the	shelf	area	
in	the	Kara	Sea

Not	included.	See	the	explanation	for	
polar	bears

Ref. – Born	et	al.	(2005)	and	Freitas	et	al.	
(2009)

–
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observations.	We	linked	this	information	to	our	study	grid	by	manu-
ally	setting	presence	observations	to	the	grid	cells	corresponding	to	
the	reported	locations	at	the	reported	time.

2.2 | Data analysis

We	used	the	hierarchical	Bayesian	PPP	model	to	analyse	the	data.	
A	rationale	for	using	a	Bayesian	approach	is	that	it	provides	tools	to	
combine	heterogeneous	data	through	hierarchical	model	structures	
that	account	for	variations	 in	data	originating	from	spatiotemporal	
dynamics	 in	 species’	density	and	differences	between	data	collec-
tion	methods	(Gelfand	et	al.,	2005;	Latimer,	Banerjee,	Sang,	Mosher,	
&	Silander,	2009).	A	PPP	is	a	point	process	that	is	a	widely	used	build-
ing	 block	 for	 many	 spatial	 abundance	 data	 (Banerjee,	 Gelfand,	 &	
Carlin,	2015;	Gelfand,	2010)	and	in	recent	years	its	potential	for	ana-
lysing	opportunistic,	non-	design	based	data	has	been	demonstrated	
by	several	authors	(Dorazio,	2014;	Warton	et	al.,	2013;	Yuan	et	al.,	
2017).	Here	we	give	an	overview	about	the	hierarchical	model	struc-
ture	and	how	covariates	and	 random	effects	were	 included	 in	 the	
model.	More	information	on	how	our	methodology	arises	from	the	
PPP	 framework	 is	 given	 in	 the	 supplementary	material	 (Appendix	
S2).

The	Bayesian	hierarchical	framework	allows	us	to	model	the	ob-
servations,	 density	 processes	 and	 process	 parameters	 at	 separate	
levels	 (Wikle,	 2003).	 In	 the	 observation	model	 level,	 we	 describe	
the	 conditional	 distribution	 of	 the	 number	 of	 individuals,	 y(s,t,j),	
observed	 in	 a	 grid	 cell	with	 coordinates	 s	 (kilometres)	 and	at	 time	
t	(months)	during	survey	j	(in	total	three	surveys	of	polar	bears	and	
walruses	each,	and	one	survey	of	seals	are	summarized	 in	Table	3)	
with	a	negative	Binomial	distribution	function,	

where	 the	 latent	 function,	 f(s,t,xs,t),	 denotes	 the	 logarithm	 of	 the	
relative	 density	 of	 a	 species,	 xs,t	 the	 vector	 of	 environmental	 co-
variates	at	 grid	 cell	 s at time t,	εj	 the	effect	of	 sampling	effort	of	
survey	j and r	the	overdispersion	parameter.	The	negative	Binomial	
distribution	is	an	overdispersed	version	of	the	Poisson	distribution.	
We	parameterized	it	as	in	Vanhatalo	et	al.	 (2013)	with	a	quadratic	
mean-	variance	 relationship	 so	 that	 mean	 E[y(s,t,j)]=ef(s,t,xs,t)+�j and 
variance	 Var[y(s,t,j)]	=	E[y(s,t,j)]	+	E[y(s,t,j)]2/r.	 Hence,	 increasing	 r 
corresponds	to	decreasing	variance,	and	at	the	limit,	as	r	approaches	
infinity,	 the	 negative	 binomial	 approaches	 a	 Poisson	 distribution.	
The	overdispersion	parameter	r	accounts	for	spatially	and	tempo-
rally	 uncorrelated	 variation	 that	 is	 not	 explained	by	 covariates	or	
spatiotemporal	random	effect	or	sampling	effect	 (to	be	described	
below).

The	original	publications	do	not	contain	information	on	the	prob-
ability	of	observing	an	 individual	nor	on	sampling	effort.	The	only	
information	about	these	is	by	Matishov	and	Dzhenyuk	(2007)	who	
mention	that	the	observing	range	in	their	surveys	had	been	approx-
imately	2	km	which	would	cover	80%	of	the	grid	cell	if	the	transect	
goes	through	its	middle.	However,	there	is	no	estimate	for	observ-
ing	probability.	Hence,	we	assume	that	cells	have	not	been	scanned	
through	completely	and	 that	each	grid	cell	 visited	during	a	 survey	
might	 not	 have	been	 sampled	with	 the	 same	effort.	However,	 ac-
cording	to	the	original	publications,	we	can	assume	that	there	is	no	
systematic	variability	 in	sampling	effort	during	any	survey.	Hence,	
in	 the	process	 level	 of	 our	model,	we	do	not	model	 the	 expected	
abundance	of	a	species	as	an	absolute	count	of	individuals	in	a	cell,	
but	 we	 interpret	 it	 as	 a	 relative	 density	 index.	 Hence,	 the	 latent	
function	 f(s,t,xs)	corresponds	to	the	 log	average	relative	density	of	
a	species	in	a	grid	cell	at	time	t	(hereafter	log	relative	density).	The	
expected	relative	density	of	species	is	proportional	to	the	expected	
absolute	density,	and	hence	the	estimated	effects	of	environmental	(1)y(s,t,j)|f(s,t,xs,t),r, �j∼Negative − Binomial(ef(s,t,xs,t)+�j ,r),

Species Years Season Source Non- zero/total Map

Polar bear 2013 Winter Matishov	et	al.	
(2014)

11/327 A

Polar bear 2005–2013 Winter,	
spring,	
autumn

Matishov	et	al.	
(2013)

66/66 B

Polar bear 1996–2005 All	seasons Matishov	and	
Dzhenyuk	
(2007)

170/8616 C

Walrus 2010–2012 Summer,	
autumn

Glazov	et	al.	
(2013)

17/816 D

Walrus 1996–2005 All	seasons Matishov	and	
Dzhenyuk	
(2007)

31/8477 E

Walrus 2004–2006 Summer,	
autumn

Svetochev	and	
Svetocheva	
(2008)

5/5 F

Seal 1996–2005 All	seasons Matishov	and	
Dzhenyuk	
(2007)

517/8963 G

TABLE  3 Summary	of	species	data	and	
references	to	data	sources.	Matishov,	
Goryaev,	and	Ishkulov	(2013)	and	
Svetochev	and	Svetocheva	(2008)	have	
only	positive	abundance	information	and	
lack	the	information	of	total	survey	area.	
Months	of	seasons	are	as	following:	
winter	(12,	1,	2),	spring	(3,	4,	5,	6),	summer	
(7,	8,	9),	autumn	(10,	11)
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covariates	on	both	density	metrics	follow	the	same	functional	form.	
Also,	the	differences	in	expected	relative	and	absolute	densities	be-
tween	locations	or	time	points	are	proportional	to	each	other.	The	
analysis	of	expected	relative	densities	allows	us	to	assess	the	effects	
of	environmental	covariates	on	species’	densities	and	the	spatiotem-
poral	trends	of	species’	densities,	but	it	does	not	allow	us	to	assess	
the	expected	population	sizes.

The	spatiotemporally	constant	parameter	for	sampling	effect	εj 
adjusts	for	the	variability	in	the	abundance	counts	originating	from	
the	varying	sampling	methodologies	between	different	surveys	(that	
is,	different	data	sources).	The	sampling	effect	was	modelled	as	in-
dependently	and	identically	distributed	Gaussian	random	variables,	
�j∼N(0,σ2

s
),	where	σ2

s
	is	the	variance	that	governs	the	variation	in	the	

sampling	effects.	The	effect	is	included	in	the	distribution	models	of	
polar	bears	and	walruses.	Seal	observations	originate	from	a	single	
source	 and,	 hence	 do	 not	 vary	 depending	 on	 the	 survey.	 The	 un-
structured	 random	variation	 in	 sampling	effect	 in	 grid	 cells	within	
a	 single	 survey	 is	 modelled	 with	 the	 overdispersion	 of	 Negative	
Binomial	distribution.

The	log	relative	density	was	modelled	with	an	additive	function	

where α	is	a	constant	intercept	for	the	areal	and	temporal	average,	
β	=	[β1, β2…,βN,]T	is	an	N × 1	vector	of	coefficients	and	g(s,t)	is	a	spa-
tiotemporal	random	effect	which	captures	spatiotemporal	variation	
that	 cannot	 be	 explained	 by	 the	 covariates	 (Gelfand	 et	al.,	 2005;	
Vanhatalo,	Hosack,	&	Sweatman,	2017).	We	standardized	all	covari-
ates	 to	have	zero	mean	and	standard	deviation	of	one	 in	order	 to	
help	the	assessment	of	their	relative	importance	for	explaining	the	
data.	The	vector	of	 covariates,	xs,t,	 included	all	 the	 covariates	 and	
their	squares	so	that	the	responses	along	covariates	were	assumed	
to	be	quadratic.	This	is	justified	as	the	studied	species	may	have	fa-
vourable	 conditions	 in	 the	middle	 of	 the	 environmental	 gradients	
and	thus	their	responses	would	follow	a	hump-	shaped	form	(Elith	&	
Leathwick,	2009).	A	spatiotemporally	varying	random	effect	is	given	
a	Gaussian	Process	 (GP)	 prior.	GPs	 are	 a	 family	 of	 stochastic	 pro-
cesses,	 which	 define	 probability	 distribution	 over	 functions.	 They	
are	a	flexible	tool	for	modelling	dependency	between	observations	
in	space,	time	and	covariate	space	(Golding,	Purse,	&	Warton,	2016;	
Rasmussen	&	Williams,	2006;	Vanhatalo,	Veneranta,	&	Hudd,	2012;	
Vanhatalo	et	al.,	2013).	A	GP	is	defined	by	its	mean	and	covariance	
function.	Here	we	used	mean	zero	and	a	separable	covariance	func-
tion	that	is	a	product	of	squared	exponential	spatial	and	exponential	
temporal	covariance	functions	

where σ2
ST
	is	the	process	variance	and	li,	i	=	1,	2	and	ls	are	the	length-	

scale	parameters	governing	how	fast	the	correlation	between	g(s,t)	
and g(s′,t′)	decreases	(Rasmussen	&	Williams,	2006).

In	addition	to	abiotic	effects,	we	explained	the	log	relative	den-
sity	of	polar	bears	also	with	the	maximum	a	posteriori	 (MAP)	esti-
mate	of	 relative	density	of	seals.	The	relative	density	of	seals	was	
treated	 in	 the	 model	 as	 a	 spatiotemporally	 varying	 covariate.	 To	

some	extent,	polar	bears	follow	the	distribution	of	seal	lairs	(Pilfold,	
Derocher,	Stirling,	&	Richardson,	2014).	Although,	polar	bears	may	
reduce	the	seal	population	(Stirling	&	Oritsland,	1995),	according	to	
previous	 studies,	 the	 spatial	 correlation	 between	 the	 two	 species	
is	dictated	merely	by	polar	bear	presence	being	dependent	on	seal	
presence	and	not	the	other	way	around	(Ferguson,	Taylor,	&	Messier,	
2000).	Hence,	we	assumed	that	the	species	interaction	works	only	
in	one	direction.	We	modelled	 the	effect	of	 seals’	 relative	density	
on	polar	bears’	 log	 relative	density	with	a	Michaelis-	Menten	 func-
tion,	f(xs,t)	=	axs,t/(b	+	xs,t),	which	is	commonly	used	in	ecology	for	re-
sponses	that	first	increase	or	decrease	and	then	saturate.	It	defines	
an	 asymptotic	 response	 between	 the	 log	 relative	 density	 of	 polar	
bears	and	the	relative	density	of	seals	where	a	is	for	saturation	level	
and b	for	half-	saturation	point.

The	last	level	of	hierarchy	is	the	parameter	model	which	defines	
the	 prior	 distributions	 for	 the	 parameters	 of	 the	 process	 model	
(Wikle,	2003).	We	gave	vague	priors	 for	 the	 intercept	and	 regres-
sion	 coefficients	 encoded	 by	 mutually	 independent	 zero	 mean	
Gaussian	 distributions	 with	 large	 variance;	 that	 is,	 βi ~ N(0,10)	 for	
all i and a ~ N(0,10).	 The	 variance	 of	 study	 effects	 and	 the	 pro-
cess	 variance	 were	 given	 weakly	 informative	 half	 Student-	t	 pri-
ors,	 σ2

s
,σ2

ST
∼Student− t+(0,1).	 Similarly,	 the	 inverse	 length-	scales	

of	 the	 spatiotemporal	 random	 effect	were	 given	 Student-	t	 priors,	
1/li	~	Student	−	t+(0,0.1)	 which	 favours	 smooth	 spatiotemporal	
trends.	The	overdispersion	parameter	of	the	negative	Binomial	dis-
tribution	was	given	a	gamma	distributed	prior	with	r	~	Gamma(2,.1).	
The	 half-	saturation	 point	 of	 the	 Michaelis-	Menten	 function	 was	
given	a	Gaussian	prior	b ~ N(0,10).

The	 models’	 hyperparameters	 were	 estimated	 with	 Markov	
chain	 Monte	 Carlo	 (MCMC)	 sampling	 using	 the	 GPstuff	 toolbox	
(Vanhatalo	 et	al.,	 2013).	 The	 convergence	 of	 Markov	 chains	 was	
analysed	with	 the	Gelman-	Rubin	Potential	 Scale	Reduction	Factor	
(PSRF).	The	models	were	validated	with	posterior	predictive	checks	
and	cross-	validation	(Gelman	et	al.,	2014).	In	addition,	we	compared	
two	polar	bear	models	using	leave-	one-	out	cross-	validation;	the	one	
described	above	and	another	where	the	relative	density	of	seals	was	
removed	leaving	only	environmental	covariates.

The	 models	 were	 used	 to	 predict	 the	 relative	 density	 of	 the	
species	 in	 the	Kara	Sea	 in	each	month	 in	 the	years	1997	to	2013.	
In	order	 to	assess	 the	effect	of	 spatiotemporal	 random	effect,	we	
made	 two	 separate	 predictions:	 one	 with	 the	 full	 model	 and	 an-
other	based	 solely	on	 the	 covariate	effects	 (for	discussion	on	 this	
kind	of	separate	predictions	see	e.g.,	Vanhatalo	et	al.,	2017).	 If	the	
spatiotemporal	random	effect	has	a	significant	effect	there	should	
be	difference	between	these	two	predictions.	We	summarized	these	
predictions	by	calculating	the	average	relative	densities	in	four	sea-
sons	(December–February,	March–	June,	July–September,	October–
November)	 by	 averaging	 the	 expected	 values	 of	 relative	 densities	
over	 the	Kara	 Sea	 over	 the	months	 of	 a	 specific	 season.	We	 also	
made	a	comparison	between	average	relative	densities	in	spring	sea-
son	between	the	first	(1997–2004)	and	the	second	half	(2005–2013)	
of	the	study	period.	This	comparison	was	done	using	the	predictions	
based	solely	on	the	covariate	effects	in	order	to	estimate	the	effect	

(2)f(s,t,xs,t) = α + xs,t
Tβ + g(s,t),

(3)kST((s,t),(s
�,t�)) = σ2

ST
e
−

√
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�
i
)
2
∕l2

i e
−�t−t��∕l3 ,



     |  7MÄKINEN aNd VaNHaTaLO

of	changing	environment.	The	spring	season	is	best	represented	by	
observations	of	all	species	and	moreover,	it	is	a	denning	and	hunting	
season	for	seals	and	polar	bears,	respectively	 (Stirling	&	Derocher,	
2012).

3  | RESULTS

The	posterior	predictive	checks	did	not	show	significant	deviations	
between	predicted	and	observed	species’	abundancies.	All	the	model	
parameters	identified	well	with	MCMC	sampling	and	the	model	re-
sults	were	consistent	in	cross-	validation	tests	where	leaving	subsets	
of	data	out	did	not	alter	the	results	significantly.	At	 least	for	polar	
bears	and	seals,	the	results	are	in	line	with	earlier	knowledge	on	the	

distributions	and	hence,	the	data	used	in	this	study	was	adequate	for	
inferring	their	responses	to	environmental	covariates.

The	standard	deviation	of	the	spatiotemporal	random	effects	was	
at	the	same	order	of	magnitude	as	the	variation	of	the	log	relative	den-
sity	along	the	environmental	covariates	(Figure	2;	Table	4)	which	indi-
cates	that	there	were	significant	deviations	in	the	species’	distribution	
patterns	 from	 that	 predicted	 only	 by	 the	 environmental	 covariates.	
The	spatial	length-	scale	parameters	were	in	the	order	of	tens	to	hun-
dreds	of	kilometres	indicating	smooth	spatial	random	effects	across	the	
study	region.	However,	 the	temporal	 length-	scales	were	significantly	
<1	month	which	 indicates	 that	 the	 spatiotemporal	 variations	did	not	
contain	temporal	trends.	The	variance	of	the	study	effect	term	in	the	
polar	bear	and	walrus	models	was	of	the	same	order	of	magnitude	as	
that	of	 the	 spatiotemporal	 random	effect	which	 indicates	 significant	

F IGURE  2 The	posterior	of	species’	
responses	to	environmental	covariates	
with	the	95%	confidence	intervals.	The	
responses	are	plotted	as	changes	of	
log	relative	density	over	the	range	of	
covariate	values	in	the	data.	The	curves	
are	scaled	to	start	from	zero.	In	case	
of	quadratic	responses,	the	location	
with	width	zero	confidence	interval	
corresponds	to	the	empirical	mean	of	
covariate	values	in	the	data	where	the	
unscaled	curve	would	cross	the	zero

TABLE  4 The	posterior	mean	and	95%	confidence	interval	(in	parenthesis)	of	hyperparameters	of	the	distribution	models.	Spatial	length	
scales	are	in	kilometres	and	temporal	length-	scales	in	months.	The	directions	for	the	length	scales	are	shown	in	Figure	1

Model component Hyperparameter Polar bears Walrus Seal

Spatiotemporal	term Variance	σ2
ST

4.45	(2.91–6.71) 10.61	(5.60–18.54) 23.70	
(16.70–34.25)

Length	scale	along	s1:	l1 784.35	(229.53–1,886.30) 544.93	
(84.40–1,414.39)

78.44 
(62.22–100.18)

Length	scale	along	s2:	l2 581.00	(261.44–977.41) 84.84	(42.82–160.35) 102.15	
(79.79–128.52)

Length-	scale	along	t  
(months):	l3

0.03	(0.00–0.08) 0.05	(0.00–0.15) 0.09	(0.03–0.17)

Research	effort	term Variance	σ2
s

5.48	(1.12–18.94) 21.25	(4.60–70.72) –

Observation	model Overdispersion	parameter	r 6.89	(1.57–29.00) 0.63	(0.23–1.46) 2.31	(1.75–3.09)

Seal	abundance	effect Seal	relative	intensity	
required	to	achieve	half	of	
the	saturation	level:	b

1.63	(1.08–2.40) – –

Saturation	level:	a 4.33	(3.65–5.01) – –
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variation	in	detection	or	reporting	probability	between	studies.	Lastly,	
the	overdispersion	parameter	was	small	indicating	significant	overdis-
persion	compared	to	a	Poisson	model.

The	log	relative	density	of	polar	bears	was	explained	the	most	
by	 the	 relative	 density	 of	 seals.	We	 compared	models	with	 and	
without	the	seal	parameter	with	a	leave-	one-	out	cross-	validation	
using	the	log	predictive	density	statistics	(Vanhatalo	et	al.,	2012)	
(−0.1053	with	the	predicted	relative	density	of	seals	and	−0.1137	
without	one).	The	cross-	validation	log	predictive	density	measures	
how	well	 the	model	predicts	 test	data	and	has	the	greater	value	
the	better	the	prediction	is.	The	response	of	polar	bears	to	seals	
was	estimated	to	saturate	around	the	seals’	relative	density	of	4.3	
(Table	4).	 However,	 this	 estimate	 was	 outside	 the	 range	 of	 pre-
dicted	 seals’	 relative	 densities	 for	which	 reason	 the	 response	 is	
almost	linear	in	that	range.	The	log	relative	density	of	seals	was	ex-
plained	mostly	by	ice	concentration	(Figure	2).	The	response	to	ice	
concentration	peaked	around	70%	 ice	cover	with	high	certainty.	
The	inference	of	the	log	relative	density	of	walruses	suffered	from	

the	lack	of	data,	and	the	estimates	of	responses	to	covariates	came	
with	high	uncertainty.	Walruses’	log	relative	density	was	explained	
mostly	by	distance	 to	 the	coast	 (Figure	2)	 as	 their	density	drops	
further	than	70	km	from	the	coast.

According	to	the	predicted	hindcast	of	each	species,	the	relative	
densities	of	seals	varied	the	most	between	the	spring	seasons	of	the	
first	and	the	second	half	of	the	study	period	(Figure	3).	Their	relative	
densities	decreased	in	the	Northeastern	Kara	Sea	and	increased	close	
to	the	eastern	coast	of	Novaya	Zemlya.	The	changes	in	relative	densi-
ties	of	seals	and	polar	bears	had	a	similar	spatial	pattern,	but	for	polar	
bears,	the	changes	were	smaller.	The	relative	densities	of	walruses	de-
creased	slightly	across	the	Kara	Sea.

4  | DISCUSSION

The	 hierarchical	 Bayesian	 model	 framework	 provided	 us	 with	
tools	to	treat	the	assumed	inaccuracies	in	the	heterogeneous	data.	

F IGURE  3 The	average	relative	densities	of	polar	bears,	walruses	and	seals	averaged	over	the	winter	(months	12,	1,	2),	spring	(3,	4,	5,	6),	
summer	(7,	8,	9)	and	autumn	(10,	11)	seasons	in	1997–2013	and	relative	change	of	average	relative	densities	over	spring	seasons	between	
time	periods	1997–2004	(characterized	by	high	ice	concentration)	and	2005–2013	(characterized	by	low	ice	concentration).	The	seasonal	
average	relative	densities	are	calculated	with	the	full	model	whereas	the	relative	changes	are	calculated	based	on	predictions	that	are	made	
solely	with	fixed	covariates
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Applying	a	linear	model	on	logit	transformed	presence	and	absence	
observations	would	 have	 exposed	 the	 response	 estimates	 on	bias	
originating	from	spatiotemporal	autocorrelation	and	varying	survey	
effort.	Utilizing	data	from	many	seasons	allowed	us	to	track	the	sea-
sonally	 varying	 species’	 densities	 across	 the	Kara	Sea,	which	 is	 of	
interest	for	conservation	actions.

In	 previous	 studies,	 polar	 bears’	 abundance	 and	 population	
trends	have	mostly	been	related	to	ice	cover	and	type	(Lunn	et	al.,	
2016;	 Regehr,	 Lunn,	 Amstrup,	 &	 Stirling,	 2007)	 and	 attempts	 to	
relate	polar	 bears’	 occurrence	 to	 seals	 have	not	 proved	 a	 spatial	
dependency	between	them	(Ferguson	et	al.,	2000).	However,	ac-
cording	to	the	estimated	covariate	responses	and	model	compari-
son,	the	effect	of	relative	density	of	seals	outweighs	the	effect	of	
ice	concentration	on	the	log	relative	density	of	polar	bears.	Even	
though	the	effects	of	the	relative	density	of	seals	and	ice	concen-
tration	 cannot	 be	 fully	 disentangled,	 as	 seals	 are	 heavily	 depen-
dent	on	 ice,	 the	results	 indicate	that	the	relative	density	of	seals	
has	a	clear	positive	effect	on	 the	 relative	density	of	polar	bears.	
When	 excluding	 the	 seal	 covariate,	 polar	 bears’	 response	 to	 ice	
concentration	becomes	hump-	shaped	peaking	around	70%	of	 ice	
cover	 (see	Appendix	S1),	which	 is	 similar	 to	 the	 responses	 found	
by	Durner	et	al.	(2009)	and	Lone	et	al.	(2018).	Thus	polar	bears	and	
seals	follow	a	similar	hump-	shaped	relationship	to	 ice	concentra-
tion.	When	the	relative	density	of	seals	is	included	in	the	model,	the	
response	to	ice	concentration	is	linearly	increasing	and	assumingly	
shows	the	independent	effect	of	ice	concentration.	This	indicates	
that	 in	 a	 simple	 trophic	 system	or	 in	 case	of	 a	highly	 specialized	
predator,	 the	occurrence	of	 a	prey	 species	 is	 a	more	 informative	
covariate	than	an	environmental	variable	for	predicting	the	density	
of	a	predator.	This	has	also	been	recognized	in	more	diverse	marine	
systems	(Reisinger	et	al.,	2018).	Assessments	of	polar	bears’	distri-
bution	could	be	improved	by	linking	areal	estimates	of	seals’	den-
sity	to	a	RSF	(Resource	Selection	Function)	of	polar	bears	(Durner	
et	al.,	 2009;	 Lone	 et	al.,	 2018;	Wilson	 et	al.,	 2014).	 Reviewers	 of	
the	manuscript	were	interested	in	the	reasons	to	leave	bathymetry	
out	from	the	models	of	relative	densities	of	polar	bears	and	seals.	
We	assumed	that	bathymetry	would	not	have	a	strong	effect	on	
their	 relative	densities,	as	 the	effect	has	been	recognized	mostly	
in	the	shelf	breaks	and	our	study	area	does	not	cover	a	shelf	break	
zone.	We	also	carried	out	a	model	comparison,	which	supported	
choosing	the	models	not	having	bathymetry	as	a	covariate.

The	estimated	covariate	 responses	of	 seals	 support	 the	earlier	
hypothesis	 about	 seals’	 habitat	 characteristics	 in	 spring	 season.	
Their	 utilized	 ice	habitat	 varies	 from	stable	 land	 fast	 and	pack	 ice	
to	more	unstable	and	productive	polynyas	and	leads	depending	on	
their	 sex	and	offspring	 (Krafft,	Kovacs,	&	Lydersen,	2007;	Stirling,	
1997).	This	 is	adequately	shown	by	the	positive	 response	to	mod-
erate	and	high	values	of	ice	concentration.	The	estimated	effect	of	
distance	to	the	coast	speaks	for	seals	inhabiting	more	pelagic	than	
coastal	sites,	which	is	made	possible	by	the	wide	land	fast	ice	zone	in	
the	continental	shelf	(Pavlov	&	Pfirman,	1995).

The	 responses	of	walruses	 to	covariates	come	with	higher	un-
certainty	than	the	responses	of	polar	bears	or	seals.	The	estimated	

responses	of	walruses	support	the	assumption	that	the	Atlantic	wal-
ruses	stay	mostly	in	coastal	shelf	areas,	where	they	feed	on	benthic	
vertebrates	 (Lydersen,	 Chernook,	 Glazov,	 Trukhanova,	 &	 Kovacs,	
2012).	Hence,	ice	concentration	does	not	affect	much	walruses’	den-
sity	pattern	in	the	Kara	Sea.

With	the	covariate	responses,	we	can	estimate	past	changes	in	
the	 expected	 relative	 densities.	 Arctic	 wide	 vulnerability	 assess-
ments	do	not	consider	region	specific	distributional	changes	which	
may	actually	 support	 species	 relocation	 inside	 the	 area	 instead	of	
disappearance	 (Stirling	 &	 Derocher,	 2012;	 Wilson,	 Regehr	 et	al.,	
2017).	We	assume	that	the	shrinking	 ice	cover	has	caused	the	de-
crease	of	polar	bears’	 relative	density	 in	coastal	 regions	 (Figure	3).	
This	highlights	the	sensitivity	of	polar	bears	to	changes	in	 ice	con-
ditions	and	supports	earlier	studies	(Durner	et	al.,	2009;	Lunn	et	al.,	
2016).	The	slight	increase	in	the	relative	density	of	polar	bears	in	the	
Western	and	Eastern	pelagic	Kara	Sea	may	be	due	to	the	increased	
relative	density	of	seals	in	those	regions.

Seals	have	had	opposing	trends	in	the	Eastern	and	Western	Kara	
Sea	 due	 to	 the	 lowering	 ice	 concentration	 in	 both	 regions.	 In	 the	
Western	Kara	Sea,	the	average	ice	concentration	has	been	lowered	
close	to	the	optimum	of	seals’	habitat	characteristics,	whereas	in	the	
Eastern	Kara	Sea	ice	concentration	has	dropped	below	the	optimum	
level.	Seals	are	hypothesized	to	be	less	susceptible	to	suffering	from	
shrinking	 ice	cover	as	 their	habitat	 requirements	are	more	 flexible	
than	 those	of	polar	bears	 (Laidre	et	al.,	 2008),	which	 is	 supported	
by	our	results.	In	addition	to	polar	bears,	also	walruses	are	hypoth-
esized	to	be	site	specific	species	and	thus	sensitive	to	decrease	 in	
ice	cover.	Coastal	habitats	may	maintain	 small	walrus	populations,	
which	may	be	the	case	in	the	Kara	Sea	(Laidre	et	al.,	2008).	However,	
the	lowering	ice	concentration	has	also	decreased	the	relative	den-
sity	of	walruses	in	the	coastal	regions.	According	to	our	results	and	
the	 forecasted	 decline	 of	 the	 average	 ice	 concentration	 (Wang	 &	
Overland,	2012),	each	AMM	may	have	distributional	changes	ahead	
as	 the	Southern	Kara	Sea	becomes	 ice	 free	 for	a	 longer	 season	 in	
the	future.

The	challenge	of	analysing	 incomplete	and	heterogeneous	bio-
logical	data	was	overcome	by	thinning	point	process	 in	 relation	to	
unknown	survey	effort	and	by	explaining	relative	densities	with	spa-
tiotemporal	random	effects.	In	general,	random	effects	can	be	used	
to	correct	for	possible	biases	in	fixed	effect	estimates	in	cases	where	
data	do	not	have	clearly	defined	or	reported	survey	effort.	Properly	
defined	 random	 effects	 capture	 the	 excess	 variability	 in	 species’	
relative	density	that	is	not	explainable	by	environmental	covariates	
and	hence,	 improve	also	the	estimates	for	the	covariate	responses	
(Ovaskainen	et	al.,	2017).	In	the	Kara	Sea,	ice	type	may	affect	spe-
cies’	 densities	 in	 such	a	way	 that	 it	 cannot	be	explained	 solely	by	
ice	concentration.	However,	we	can	expect	that	such	a	variable	has	
a	 spatiotemporally	 structured	 effect	 which	 can	 be	 dealt	 with	 by	
using	a	spatiotemporal	random	effect	(Ovaskainen,	Abrego,	Halme,	
&	Dunson,	2015;	Vanhatalo	et	al.,	2012).	Other	possible	sources	of	
spatiotemporal	variation	are	prey	availability	for	seals	and	walruses	
and	 species’	 seasonally	 varying	 behaviour	 (Ferguson	 et	al.,	 2000;	
Jay,	Fischbach,	&	Kochnev,	2012;	Mauritzen	et	al.,	2003).	Spatially	
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smooth	random	effects	indicated	that	there	is	some	environmental	
variation	that	has	not	been	included	as	a	covariate	in	the	model.	The	
low	 temporal	 variation	 of	 the	 random	 effect	might	 be	 due	 to	 the	
strong	temporal	variation	of	ice	concentration,	which	keeps	the	spe-
cies’	densities	constantly	moving.

The	 other	 random	 effect	 accounted	 for	 the	 survey	 bias	 origi-
nating	from	varying	survey	protocols	 (Dorazio,	2014;	Fithian	et	al.,	
2015).	 Sampling	 bias	 is	 typically	 induced	 by	 presence-	only	 obser-
vations,	 preferential	 sampling	 or	 spatially	 structured	 changes	 in	
the	sampling	effort.	Most	of	our	data	were	accompanied	with	both	
presence	and	absence	observations,	which	already	solved	questions	
about	where	and	when	 the	sampling	had	occurred.	Moreover,	 the	
data	sources	did	not	allow	us	to	assume	that	sampling	effort	could	
have	varied	systematically	or	that	transects	had	been	chosen	pref-
erentially.	When	the	effort	had	varied	 randomly,	 for	example,	due	
to	weather,	time	of	day	or	other	factors	not	included	in	the	model,	
these	 variations	 have	 been	 captured	 by	 the	 overdispersion	 of	 the	
Negative	 Binomial	 model	 and	 they	 have	 not	 directly	 confounded	
with	the	covariate	estimates.	However,	 if	 there	was	some	system-
atic	spatially	structured	survey	bias,	the	variation	would	have	been	
partly	explained	by	the	spatiotemporal	random	effect.

By	examining	the	random	effects,	we	can	conclude	that	the	results	
would	have	been	different	if	they	had	been	ignored.	For	example,	the	
survey	effort	varied	a	 lot	between	different	 surveys.	Hence,	 as	 sur-
veys	did	not	cover	equal	environmental	gradients,	ignoring	the	survey	
specific	random	effect	would	have	biased	the	estimates	for	covariate	
effects.	The	lack	of	controlled	survey	data	possibly	increased	also	the	
significance	of	random	effects	relative	to	the	covariate	effects.	In	case	
of	 polar	 bears,	 the	 estimated	 effects	 of	 covariates	 on	 their	 relative	
density	were	supported	by	earlier	studies	and	the	variability	of	random	
effects	was	small.	The	effects	of	covariates	to	the	relative	density	of	
walruses	were	highly	uncertain	and	not	fully	on	line	with	earlier	stud-
ies.	Hence,	a	higher	proportion	of	the	variability	of	the	relative	density	
of	walruses	was	assigned	to	the	random	effects	than	of	the	variability	
of	 the	 relative	density	of	polar	bears.	These	examples	 illustrate	also	
that	by	comparing	 the	strength	of	 random	and	covariate	effects	we	
can	investigate	the	reliability	of	the	data.	For	example,	if	all	variability	
in	 the	data	was	captured	by	 the	survey	specific	 random	effects	and	
overdispersion,	those	data	would	not	contain	any	 information	about	
species’	actual	spatiotemporal	density.

The	 identifiability	of	 covariate	 effects	was	 slightly	 affected	by	
the	collinearity	of	covariates	and	by	 the	spatial	 and	 temporal	mis-
match	between	measured	covariates	and	actual	conditions	related	to	
species	observations.	However,	only	SSS	correlated	mildly	with	ice	
concentration	(0.24–0.28)	and	distance	to	the	coast	(0.39–0.40).	Ice	
concentration,	which	was	the	coarsest	covariate,	averaged	originally	
a	time	interval	over	a	month	and	an	area	over	625	km2	(25	×	25	km),	
in	 which	 the	 species	 was	 observed.	 Ice	 concentration	 along	 with	
other	covariates	varied	smoothly,	so	this	may	not	have	created	much	
uncertainty	in	covariate	effects.

The	 procedure	 of	 creating	 species	 observations	 from	 ta-
bles	 and	 maps	 created	 some	 inaccuracy	 in	 data.	We	 estimated	
the	 digitizing	 error	 by	 calculating	 the	width	 of	 the	 transect	 line	

on	 the	 source	map.	 The	 error	 is	 16	km	 in	Matishov	 et	al.	 (2014)	
and	 Matishov	 and	 Dzhenyuk	 (2007)	 and	 33	km	 in	 Glazov	 et	al.	
(2013),	 which	make	 a	 width	 of	 three	 and	 seven	 study	 cells,	 re-
spectively.	The	temporal	information	of	cruises	was	presented	as	
the	start	and	end	dates	and	many	cruises	covered	periods	from	1	
to	3	months.	We	consistently	chose	the	central	point	of	the	time	
frame	 to	 represent	 the	 cruise	 transect,	which	may	 create	 some	
temporal	 error.	 The	 spatial	 and	 temporal	 uncertainties	 related	
to	 transects	 is	not	expected	 to	produce	 large	errors;	 the	 spatial	
error	was	in	the	same	order	of	magnitude	as	the	resolution	of	the	
original	ice	concentration	data	and	covariates	did	not	vary	signifi-
cantly	 within	 the	 spatial	 error	 or	 along	 survey	 transects	 during	
the	survey	periods.	The	studies	without	survey	transects	(Table	3)	
were	 included	 in	our	analysis	as	 the	recorded	observations	con-
tained	numbers	of	observed	animals	which	is	informative	for	the	
response	of	 the	 log	relative	density	 to	environmental	covariates	
even	when	we	 do	 not	 have	 information	 about	 survey	 transects	
(Dorazio,	2014).	The	benefit	of	combining	systematically	and	op-
portunistically	surveyed	data	is	that	detection	probability	can	be	
estimated	with	the	former	data	and	hence	the	latter	data	can	be	
used	along	with	other	data	for	estimating	a	model’s	fixed	effects	
(Dorazio,	2014;	Giraud	et	al.,	2016;	Pacifici	et	al.,	2017).	The	study	
effect	component	corrects	for	the	fact	that	some	data	sets	did	not	
include	 transects.	 The	 study	 effect	 corresponding	 to	 these	 two	
data	 sources	 was	 positive,	 reflecting	 more	 animal	 observations	
than	on	average	within	all	the	data	sets.

Even	 though	 opportunistic	 data	 can	 provide	 useful	 new	 in-
formation	 for	 population	 surveys,	 such	 data	 are	 still	 suboptimal	
compared	 to	 carefully	 designed	 surveys.	 For	 example,	 the	 spa-
tial	extent	of	the	data	used	in	this	study	did	not	cover	the	whole	
Kara	 Sea,	 there	were	holes	 in	 the	 temporal	 coverage	of	 the	ob-
servations,	 and	 the	 environmental	 covariates	were	 rather	 crude	
estimates	 of	 the	 true	 environment.	Hence,	when	 estimating	 the	
distribution	over	the	whole	Kara	Sea	and	for	several	years,	we	are	
extrapolating	with	 respect	 to	 the	 environmental	 covariates.	 The	
coarseness	 of	 data	 prevented	 us,	 for	 example,	 from	 estimating	
seasonal	changes	 in	 the	 ice	use	of	polar	bears.	 In	order	 to	study	
more	specific	questions	related	to	AMMs’	distributions,	we	should	
have	better	designed	survey	data.	For	the	future	studies	on	how	
to	report	their	data	and	survey	protocols,	we	can	offer	some	sug-
gestions	based	on	our	study.	In	addition	to	presence	observations,	
absence	 observations	 are	 also	 essential	 for	 further	 analysis.	 If	
absence	observations	need	 to	be	derived	based	on	 survey	 tran-
sects,	 these	 should	be	 reported	preferably	 in	a	digitized	 format.	
The	 data	 repositories	 support	 the	 storage	 of	 vast	 spatiotempo-
ral	data.	Studies	should	include	details	of	their	detection	process,	
such	as	detection	radius	and	detection	probability,	in	the	supple-
mentary	 material.	 Hence,	 later	 analysis	 could	 utilize	 occupancy	
modelling	methodologies	and	estimate	absolute	species	densities	
and	populations.

Our	study	demonstrated	that	heterogeneous	data	sets	can	be	an-
alysed	jointly	with	robust	methodologies.	Optimally	we	would	have	
used	the	original	data	and	had	intimate	knowledge	on	them	which	
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would	have	eased	the	model	building	and	analysis.	Combining	differ-
ent	types	of	data	improved	the	estimates	of	covariate	responses	and	
allowed	us	to	make	predictive	maps	of	species’	densities.	Moreover,	
we	were	able	to	quantitatively	estimate	species’	sensitivity	to	envi-
ronmental	change	and	to	map	biologically	 important	areas	 in	a	re-
mote	 region,	which	would	not	have	been	possible	with	 traditional	
design	based	approaches.

5  | CONCLUSION

We	 demonstrated	 how	 several,	 heterogeneous,	 open	 source	 data	
sets	can	be	 jointly	analysed	within	the	PPP	framework	to	produce	
new	 information	on	AMMs’	distributions.	Our	 results	suggest	 that	
the	 relative	 densities	 of	 polar	 bears	 and	walruses	 have	 decreased	
or	stayed	close	to	constant	in	the	Kara	Sea	during	the	last	20	years	
and	that	the	distribution	of	seals	has	shifted	from	the	Eastern	to	the	
Western	Kara	Sea.	The	decrease	 in	 the	 average	 ice	 concentration	
across	 the	 study	 region	has	driven	 these	 changes.	 The	 spatial	 de-
pendence	of	polar	bears	on	seals	was	significant.	This	demonstrates	
that	in	a	simple	trophic	system,	modelling	the	density	of	a	top	preda-
tor	 benefits	 from	 taking	 into	 account	 the	 density	 of	 prey	 species	
compared	to	using	environmental	variables.

Combining	 open	 data	 from	 different	 sources	 created	 a	 fairly	
large	 but	 heterogeneous	 data	 set	 for	 analysing	 AMMs’	 distribu-
tions.	 Due	 to	 heterogeneity	 in	 the	 data	 sources	 and	 uncertainty	
concerning	sampling	techniques	and	effort,	the	complex	spatiotem-
poral	variation	of	the	data	needed	to	be	modelled	with	care.	After	
accounting	for	those	uncertainties,	we	were	able	to	produce	useful	
new	knowledge	on	AMMs’	distributions	during	 a	17-	year-	long	pe-
riod.	The	approach	 is	cost-	efficient	as	 it	allows	 the	analysis	of	 the	
vast	amounts	of	existing	environmental	data.	Hence,	our	approach	
provides	important	advances	for	conservation	efforts	in	these	areas	
by	providing	 a	method	 to	build	 improved	 information	on	distribu-
tional	changes	from	opportunistic	studies.
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