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Abstract
Aim: Our aim involved developing a method to analyse spatiotemporal distributions 
of Arctic marine mammals (AMMs) using heterogeneous open source data, such as 
scientific papers and open repositories. Another aim was to quantitatively estimate 
the effects of environmental covariates on AMMs’ distributions and to analyse 
whether their distributions have shifted along with environmental changes.
Location: Arctic shelf area. The Kara Sea.
Methods: Our literature search focused on survey data regarding polar bears (Ursus 
maritimus), Atlantic walruses (Odobenus rosmarus rosmarus) and ringed seals (Phoca 
hispida). We mapped the data on a grid and built a hierarchical Poisson point process 
model to analyse species’ densities. The heterogeneous data lacked information on 
survey intensity and we could model only the relative density of each species. We 
explained relative densities with environmental covariates and random effects re-
flecting excess spatiotemporal variation and the unknown, varying sampling effort. 
The relative density of polar bears was explained also by the relative density of seals.
Results: The most important covariates explaining AMMs’ relative densities were ice 
concentration and distance to the coast, and regarding polar bears, also the relative 
density of seals. The results suggest that due to the decrease in the average ice con-
centration, the relative densities of polar bears and walruses slightly decreased or 
stayed constant during the 17-year-long study period, whereas seals shifted their 
distribution from the Eastern to the Western Kara Sea.
Main conclusions: Point process modelling is a robust methodology to estimate dis-
tributions from heterogeneous observations, providing spatially explicit information 
about ecosystems and thus serves advances for conservation efforts in the Arctic. In 
a simple trophic system, a distribution model of a top predator benefits from utilizing 
prey species’ distributions compared to a solely environmental model. The decreas-
ing ice cover seems to have led to changes in AMMs’ distributions in the marginal 
Arctic region.
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1  | INTRODUC TION

The decline of the sea ice has changed the Arctic landscape and the 
habitats of the marine species in the Arctic marginal seas (Durner 
et al., 2009; Gaston, Gilchrist, & Hipfner, 2005; Laidre et al., 2015). 
Longer ice-free periods and less ice have facilitated marine traffic and 
extraction of natural resources (Smith & Stephenson, 2013), creating 
environmental risks such as oil spills (Nevalainen, Helle, & Vanhatalo, 
2017). Accurate information on species’ distributions helps to assess 
species’ vulnerability to changes in their habitats (Laidre et al., 2008) 
and to prevent their exposure to human caused hazards (Helle, 
Jolma, & Venesjärvi, 2016). Arctic marine mammals (AMMs) spend 
most or all of the year in sea areas (Laidre et al., 2008) and their 
specific activities (foraging, moving, breeding and denning) depend 
on ice cover and type (Bluhm & Gradinger, 2008; Kovacs, Lydersen, 
Overland, & Moore, 2011). By inferring how habitat characteristics 
(sea ice, depth, distance to the coast and hydrography) correlate 
with the abundances of AMMs, we can predict the distributions of 
AMMs. The predictions can be utilized in planning conservation ac-
tions and in assessing the risks of different species-human interac-
tions (Wilson, Regehr et al., 2017; Wilson, Trukhanov et al., 2017), 

whereas habitat utilization functions can underpin spatially explicit 
demographic analysis for better population assessments (Kearney & 
Porter, 2009; Lunn et al., 2016). In areas with high survey costs and 
little designed survey data, flawed population assessments may lead 
to improper conservation or harvest actions (Regehr, Wilson, Rode, 
Runge, & Stern, 2017).

Species distribution modelling (SDM) is a cost-efficient method 
for studying how species respond to environmental covariates and 
where they occur (Elith & Leathwick, 2009). The scarcity of in situ 
observations on AMMs has so far restricted the attempts to assess 
their densities in large areas (as in Matishov, Chelintsev, Goryaev, 
Makarevich, & Ishkulov, 2014). Utilizing species observations from 
complementary sources poses a high potential to overcome the data 
shortage (Pacifici et al., 2017) but increases the uncertainty about 
the spatiotemporal accuracy of observations and about the survey 
effort, and thus evokes the need for methodological development 
(Guillera-Arroita, 2017; Warton, Renner, & Ramp, 2013).

We developed distribution models for three AMMs, polar bears 
(Ursus maritimus), Atlantic walruses (Odobenus rosmarus rosmarus) 
and ringed seals (Phoca hispida), and studied their seasonally varying 
areal densities in the Kara Sea (Figure 1). We analysed previously 

F IGURE  1 The study transect lines (red) and species observations (green) for polar bears (a–c), walruses (d–f) and seals (g). A grid cell 
through which a transect goes or at which there is a species observation is treated as a cell with observation. The observation is the number 
of reported individual species members and zero otherwise. Other grid cells are treated as missing data and do not contribute to the analysis. 
The s1 and s2 axis (h) denote the axes of the coordinate system used in spatiotemporal model

(a) (b) (c) (d)

(e) (f) (g) (h) (i)
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published data on species observations that had been collected by 
heterogeneous sampling methods and were incompletely reported, 
for example in some cases containing presence-only observations. 
The lack of well-tailored survey data highlighted the need to develop 
a hierarchical Bayesian SDM, which models the species observa-
tions as functions of environmental covariates, spatiotemporal loca-
tion and sampling effort (Chakraborty, Gelfand, Wilson, Latimer, & 
Silander, 2011; Dorazio, 2014; Fithian, Elith, Hastie, & Keith, 2015; 
Giraud, Calenge, Coron, & Julliard, 2016).

Along with the hierarchical modelling, the Poisson point process 
(PPP) has become an important modelling methodology for data with 
varying and potentially uncontrolled sampling effort (Dorazio, 2014; 
Fithian et al., 2015; Warton & Shepherd, 2010). In a spatially discret-
ized (grid based) model setup PPP is an efficient tool for modelling 
species’ density per area, which is a more intuitive and accurate mea-
sure of density than the scale dependent density (Maxent; Renner & 
Warton, 2013) or occurrence probability (logistic regression; Fithian 
& Hastie, 2013) per grid cell. The novelty of our work is in tailoring a 
recently developed SDM methodology to answer a question that has 
been out of reach with past modelling tools.

We quantified the utilized habitat characteristics of the species, 
created a hindcast of density predictions and based on predictions, 
evaluated potential changes in species’ relative densities in the Kara 
Sea during the study period. This is essential information in the 
Siberian shelf area, which has been little studied compared to other 
marginal regions of the Arctic (Wassmann, Duarte, Agustí, & Sejr, 
2011). The examined species are high in the marine food web and 
represent the full diversity of marine mammals in the Kara Sea ex-
cluding beluga whales (Delphinapterus leucas). The predator species 
are essential for the functioning of the marine ecosystem as they 
control populations of species below them in the food web and the 
balance in utilization of resources (Baum & Worm, 2009; Myers, 
Baum, Shepherd, Powers, & Peterson, 2007). Despite earlier esti-
mates of the population sizes of polar bears (3,200 ± 1,100 individ-
uals [Matishov et al., 2014]), ringed seals (90,000–150,000 [Kelly 
et al., 2010]) and walruses (<500 [Born, Gjertz, & Reeves, 1995]) in 
the Kara Sea, there are no rigorous distribution estimates for these 
species. Previous studies on polar bear distributions (Durner et al., 
2009; Lone, Merkel, Lydersen, Kovacs, and Aars (2018); Matishov 
et al., 2014; Wilson, Horne, Rode, Regehr, & Durner, 2014; Wilson, 
Regehr et al., 2017), have not provided a spatiotemporally explicit 
fine scale prediction about the density of polar bears, whereas 

estimates for densities of seals and walruses are mostly missing in 
the entire Arctic.

Our results contribute to the Arctic research with assessment of 
changes of AMMs’ distributions in the Arctic shelf area and advance 
the topical development of SDMs for presence-only and other het-
erogeneous species observation data. As more species observation 
records with varying accuracies become available through interna-
tional cooperation (e.g., GBIF: The Global Biodiversity Information 
Facility, 2017), the methodological issues around incompletely 
known sampling efforts (Warton et al., 2013), the lack of reasonable 
covariates or a mismatch of spatiotemporal scales between covari-
ates and observation records still constrain the utilization of the 
data (Rocchini et al., 2011). There are also other poorly documented 
Arctic areas alongside the Kara Sea, where biodiversity estimates 
would benefit from a more efficient use of available data (Laidre 
et al., 2015).

2  | METHODS

2.1 | Data

Our data consist of species observations from the years 1996 to 
2013 and of environmental data (the covariates). We use bathymetry, 
distance to the coast, ice concentration and sea surface salinity (SSS) 
as environmental covariates to explain species observations. The co-
variates were selected based on their accessibility and hypothesized 
impact on species occurrence (see Tables 1 and 2). The study area 
was defined as a region between the Eurasian continent, Novaya 
Zemlya and Severnaya Zemlya (see Figure 1). We used a 5 × 5 km 
lattice grid over the Kara Sea as our modelling layer (see Section 2.2) 
and a temporal resolution of 1 month. The spatial and temporal reso-
lutions compromise between computational effort and a temporal 
range of ecosystem responses to environmental variation (Mannocci 
et al., 2017). More information about the spatiotemporal scaling and 
spatiotemporal variation of covariates is provided in the supplemen-
tary material (Appendix S1).

We collected the species data from scientific articles and books 
(see Table 3). Most of the species observations were made from 
survey cruise ships, and hence the data consisted of maps showing 
where the survey cruises had taken place and of tables and maps 
showing where and how many individual species members had been 
detected.

Data Format Resolution Source

Sea ice concentration Grid 5 km² (original 
25 km²)

Cavalieri, Parkinson, 
Gloersen, and Zwally (1996)

Bathymetry Grid 5 km² (original 
0.5 km²)

Jakobsson et al. (2012)

Distance to the coast Grid 5 km² Calculated based on 
bathymetric chart

Sea surface salinity Grid 5 km² Mäkinen and Vanhatalo 
(2016)

TABLE  1 List of environmental 
covariates with the source information



4  |     MÄKINEN and VANHATALO

Most of the species sightings (positive valued observations) were 
published as tables with precise information on location, timing and 
number of individuals observed. The absence observations were 
created by digitizing the survey transect lines from the maps. Each 
grid cell, which was in contact with a transect line was treated as an 
observed cell (i.e., an area where a survey had been conducted). The 
original publications did not report their study effort in detail, so we 
did not know the probability of observing an individual or a group 
of individuals of a species if they were present in a cell intersecting 
with a transect line. However, the transect lines had been accompa-
nied with information on the timing of the cruise which allowed us to 
link them with the species sightings. Hence, grid cells along a transect 
line which did not overlap with any of the sightings during that survey 
were treated as having zero observations. Those that overlapped with 
species sightings were treated as having a positive count observation.

This created a list of observations with information on the count 
of individual species members, coordinates, timing and environmen-
tal covariates. Grid cells for months that were not in contact with 
a survey transect or at which no positive species observation was 
located were treated as missing data (see Section 2.2.). The monthly 
distribution of species observations is presented in the supplemen-
tary material (Appendix S1). The observations cover all seasons of 
the year and thus we can observe the seasonally varying distribu-
tions of the species.

There were some exceptions in the data quality between source 
studies (see Table 3). The observations of Matishov et al. (2014) had 
been made between January and March in 2013 without a spe-
cific time stamp and so each observation was located to February 
2013. The study of Svetochev and Svetocheva (2008) contains 
presence-only data as location descriptions based on local people’s 

TABLE  2 The a priori assumed covariate impact on species occurrence and reasons for including it in the model

Covariate/
Response Polar bear Walrus Ringed seal

Sea ice 
concentration

Sea ice is a platform for foraging, denning 
and moving. Polar bears possess seasonal 
variation in their functional responses to 
sea ice cover and type

Walruses inhabit sea ice in winter. 
They occupy pack ice close to 
polynyas and leads that allow them 
to access benthic prey

Seals use ice for resting, breeding, 
pupping and moulting. Annual land 
fast and pack ice are inhabited by 
ringed seals from the freezing to ice 
break up

References Ferguson et al. (2000), Lone et al. (2018), 
Mauritzen et al. (2003), and Stirling, 
Andriashek, and Calvert (1993)

Born, Acquarone, Knutsen, and 
Toudal (2005), Freitas, Kovacs, Ims, 
Fedak, and Lydersen (2009) and 
Stirling (1997)

Pilfold et al. (2014), Reeves (1998), 
Smith, Hammill, and Taugbol (1991) 
and Tynan and DeMaster (1997)

Sea surface 
salinity (SSS)

SSS is a surrogate for the productivity of the marine ecosystem in the Kara Sea. SSS is a regionally important covariate for the 
ecosystem functioning and its’ spatial trend may be one factor determining the distribution of Arctic marine mammals

Ref. Bluhm and Gradinger (2008) and Miquel (2001)

Distance to the 
coast

Polar bears inhabit coastal or pelagic areas 
according to the subpopulation. In many 
parts of the Arctic and in the Kara Sea 
polar bears inhabit coastal land fast ice 
and avoid open sea

In summer walruses stay on the coast 
and dive in the coastal zone for 
benthic prey. Mostly they do not 
follow the marginal ice zone. This 
means that they do not leave too far 
from the coast

Ringed seals are mostly coastal, but 
their density varies according to the 
distance to the coast. They are not 
dependent on depth but more on the 
ice type varying along with the 
distance to the coast

Ref. Born and Knutsen (1997), Ferguson et al. 
(2000), Mauritzen et al. (2002, 2003) and 
Pilfold et al. (2014)

Freitas et al. (2009) Freitas, Kovacs, Ims, and Lydersen 
(2008), Krafft et al. (2007) and Reeves 
(1998)

Relative seal 
density

Ringed seal is the most important prey for 
polar bears and foraging habitat of polar 
bear follows the distribution of seal 
denning

– –

Ref. Born and Knutsen (1997), Derocher, Wiig, 
and Andersen, (2002) and Stirling and 
Oritsland (1995)

– –

Bathymetry Not included. Bathymetry is an important 
covariate in Arctic wide studies 
reflecting shelf edges and basins but our 
study area is located mostly in the shelf 
area where the effect of bathymetry on 
the density of polar bears is less 
important than in other shelf seas

Walruses feed on benthic species, 
which makes them dependent on 
the bathymetry. Walruses are able 
to dive deeper than 250 m, which is 
enough for them to access the 
bottom in the most of the shelf area 
in the Kara Sea

Not included. See the explanation for 
polar bears

Ref. – Born et al. (2005) and Freitas et al. 
(2009)

–
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observations. We linked this information to our study grid by manu-
ally setting presence observations to the grid cells corresponding to 
the reported locations at the reported time.

2.2 | Data analysis

We used the hierarchical Bayesian PPP model to analyse the data. 
A rationale for using a Bayesian approach is that it provides tools to 
combine heterogeneous data through hierarchical model structures 
that account for variations in data originating from spatiotemporal 
dynamics in species’ density and differences between data collec-
tion methods (Gelfand et al., 2005; Latimer, Banerjee, Sang, Mosher, 
& Silander, 2009). A PPP is a point process that is a widely used build-
ing block for many spatial abundance data (Banerjee, Gelfand, & 
Carlin, 2015; Gelfand, 2010) and in recent years its potential for ana-
lysing opportunistic, non-design based data has been demonstrated 
by several authors (Dorazio, 2014; Warton et al., 2013; Yuan et al., 
2017). Here we give an overview about the hierarchical model struc-
ture and how covariates and random effects were included in the 
model. More information on how our methodology arises from the 
PPP framework is given in the supplementary material (Appendix 
S2).

The Bayesian hierarchical framework allows us to model the ob-
servations, density processes and process parameters at separate 
levels (Wikle, 2003). In the observation model level, we describe 
the conditional distribution of the number of individuals, y(s,t,j), 
observed in a grid cell with coordinates s (kilometres) and at time 
t (months) during survey j (in total three surveys of polar bears and 
walruses each, and one survey of seals are summarized in Table 3) 
with a negative Binomial distribution function, 

where the latent function, f(s,t,xs,t), denotes the logarithm of the 
relative density of a species, xs,t the vector of environmental co-
variates at grid cell s at time t, εj the effect of sampling effort of 
survey j and r the overdispersion parameter. The negative Binomial 
distribution is an overdispersed version of the Poisson distribution. 
We parameterized it as in Vanhatalo et al. (2013) with a quadratic 
mean-variance relationship so that mean E[y(s,t,j)]=ef(s,t,xs,t)+�j and 
variance Var[y(s,t,j)] = E[y(s,t,j)] + E[y(s,t,j)]2/r. Hence, increasing r 
corresponds to decreasing variance, and at the limit, as r approaches 
infinity, the negative binomial approaches a Poisson distribution. 
The overdispersion parameter r accounts for spatially and tempo-
rally uncorrelated variation that is not explained by covariates or 
spatiotemporal random effect or sampling effect (to be described 
below).

The original publications do not contain information on the prob-
ability of observing an individual nor on sampling effort. The only 
information about these is by Matishov and Dzhenyuk (2007) who 
mention that the observing range in their surveys had been approx-
imately 2 km which would cover 80% of the grid cell if the transect 
goes through its middle. However, there is no estimate for observ-
ing probability. Hence, we assume that cells have not been scanned 
through completely and that each grid cell visited during a survey 
might not have been sampled with the same effort. However, ac-
cording to the original publications, we can assume that there is no 
systematic variability in sampling effort during any survey. Hence, 
in the process level of our model, we do not model the expected 
abundance of a species as an absolute count of individuals in a cell, 
but we interpret it as a relative density index. Hence, the latent 
function f(s,t,xs) corresponds to the log average relative density of 
a species in a grid cell at time t (hereafter log relative density). The 
expected relative density of species is proportional to the expected 
absolute density, and hence the estimated effects of environmental (1)y(s,t,j)|f(s,t,xs,t),r, �j∼Negative − Binomial(ef(s,t,xs,t)+�j ,r),

Species Years Season Source Non-zero/total Map

Polar bear 2013 Winter Matishov et al. 
(2014)

11/327 A

Polar bear 2005–2013 Winter, 
spring, 
autumn

Matishov et al. 
(2013)

66/66 B

Polar bear 1996–2005 All seasons Matishov and 
Dzhenyuk 
(2007)

170/8616 C

Walrus 2010–2012 Summer, 
autumn

Glazov et al. 
(2013)

17/816 D

Walrus 1996–2005 All seasons Matishov and 
Dzhenyuk 
(2007)

31/8477 E

Walrus 2004–2006 Summer, 
autumn

Svetochev and 
Svetocheva 
(2008)

5/5 F

Seal 1996–2005 All seasons Matishov and 
Dzhenyuk 
(2007)

517/8963 G

TABLE  3 Summary of species data and 
references to data sources. Matishov, 
Goryaev, and Ishkulov (2013) and 
Svetochev and Svetocheva (2008) have 
only positive abundance information and 
lack the information of total survey area. 
Months of seasons are as following: 
winter (12, 1, 2), spring (3, 4, 5, 6), summer 
(7, 8, 9), autumn (10, 11)
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covariates on both density metrics follow the same functional form. 
Also, the differences in expected relative and absolute densities be-
tween locations or time points are proportional to each other. The 
analysis of expected relative densities allows us to assess the effects 
of environmental covariates on species’ densities and the spatiotem-
poral trends of species’ densities, but it does not allow us to assess 
the expected population sizes.

The spatiotemporally constant parameter for sampling effect εj 
adjusts for the variability in the abundance counts originating from 
the varying sampling methodologies between different surveys (that 
is, different data sources). The sampling effect was modelled as in-
dependently and identically distributed Gaussian random variables, 
�j∼N(0,σ2

s
), where σ2

s
 is the variance that governs the variation in the 

sampling effects. The effect is included in the distribution models of 
polar bears and walruses. Seal observations originate from a single 
source and, hence do not vary depending on the survey. The un-
structured random variation in sampling effect in grid cells within 
a single survey is modelled with the overdispersion of Negative 
Binomial distribution.

The log relative density was modelled with an additive function 

where α is a constant intercept for the areal and temporal average, 
β = [β1, β2…,βN,]T is an N × 1 vector of coefficients and g(s,t) is a spa-
tiotemporal random effect which captures spatiotemporal variation 
that cannot be explained by the covariates (Gelfand et al., 2005; 
Vanhatalo, Hosack, & Sweatman, 2017). We standardized all covari-
ates to have zero mean and standard deviation of one in order to 
help the assessment of their relative importance for explaining the 
data. The vector of covariates, xs,t, included all the covariates and 
their squares so that the responses along covariates were assumed 
to be quadratic. This is justified as the studied species may have fa-
vourable conditions in the middle of the environmental gradients 
and thus their responses would follow a hump-shaped form (Elith & 
Leathwick, 2009). A spatiotemporally varying random effect is given 
a Gaussian Process (GP) prior. GPs are a family of stochastic pro-
cesses, which define probability distribution over functions. They 
are a flexible tool for modelling dependency between observations 
in space, time and covariate space (Golding, Purse, & Warton, 2016; 
Rasmussen & Williams, 2006; Vanhatalo, Veneranta, & Hudd, 2012; 
Vanhatalo et al., 2013). A GP is defined by its mean and covariance 
function. Here we used mean zero and a separable covariance func-
tion that is a product of squared exponential spatial and exponential 
temporal covariance functions 

where σ2
ST
 is the process variance and li, i = 1, 2 and ls are the length-

scale parameters governing how fast the correlation between g(s,t) 
and g(s′,t′) decreases (Rasmussen & Williams, 2006).

In addition to abiotic effects, we explained the log relative den-
sity of polar bears also with the maximum a posteriori (MAP) esti-
mate of relative density of seals. The relative density of seals was 
treated in the model as a spatiotemporally varying covariate. To 

some extent, polar bears follow the distribution of seal lairs (Pilfold, 
Derocher, Stirling, & Richardson, 2014). Although, polar bears may 
reduce the seal population (Stirling & Oritsland, 1995), according to 
previous studies, the spatial correlation between the two species 
is dictated merely by polar bear presence being dependent on seal 
presence and not the other way around (Ferguson, Taylor, & Messier, 
2000). Hence, we assumed that the species interaction works only 
in one direction. We modelled the effect of seals’ relative density 
on polar bears’ log relative density with a Michaelis-Menten func-
tion, f(xs,t) = axs,t/(b + xs,t), which is commonly used in ecology for re-
sponses that first increase or decrease and then saturate. It defines 
an asymptotic response between the log relative density of polar 
bears and the relative density of seals where a is for saturation level 
and b for half-saturation point.

The last level of hierarchy is the parameter model which defines 
the prior distributions for the parameters of the process model 
(Wikle, 2003). We gave vague priors for the intercept and regres-
sion coefficients encoded by mutually independent zero mean 
Gaussian distributions with large variance; that is, βi ~ N(0,10) for 
all i and a ~ N(0,10). The variance of study effects and the pro-
cess variance were given weakly informative half Student-t pri-
ors, σ2

s
,σ2

ST
∼Student− t+(0,1). Similarly, the inverse length-scales 

of the spatiotemporal random effect were given Student-t priors, 
1/li ~ Student − t+(0,0.1) which favours smooth spatiotemporal 
trends. The overdispersion parameter of the negative Binomial dis-
tribution was given a gamma distributed prior with r ~ Gamma(2,.1). 
The half-saturation point of the Michaelis-Menten function was 
given a Gaussian prior b ~ N(0,10).

The models’ hyperparameters were estimated with Markov 
chain Monte Carlo (MCMC) sampling using the GPstuff toolbox 
(Vanhatalo et al., 2013). The convergence of Markov chains was 
analysed with the Gelman-Rubin Potential Scale Reduction Factor 
(PSRF). The models were validated with posterior predictive checks 
and cross-validation (Gelman et al., 2014). In addition, we compared 
two polar bear models using leave-one-out cross-validation; the one 
described above and another where the relative density of seals was 
removed leaving only environmental covariates.

The models were used to predict the relative density of the 
species in the Kara Sea in each month in the years 1997 to 2013. 
In order to assess the effect of spatiotemporal random effect, we 
made two separate predictions: one with the full model and an-
other based solely on the covariate effects (for discussion on this 
kind of separate predictions see e.g., Vanhatalo et al., 2017). If the 
spatiotemporal random effect has a significant effect there should 
be difference between these two predictions. We summarized these 
predictions by calculating the average relative densities in four sea-
sons (December–February, March– June, July–September, October–
November) by averaging the expected values of relative densities 
over the Kara Sea over the months of a specific season. We also 
made a comparison between average relative densities in spring sea-
son between the first (1997–2004) and the second half (2005–2013) 
of the study period. This comparison was done using the predictions 
based solely on the covariate effects in order to estimate the effect 

(2)f(s,t,xs,t) = α + xs,t
Tβ + g(s,t),

(3)kST((s,t),(s
�,t�)) = σ2

ST
e
−

√
∑2

i=1
(si−s

�
i
)
2
∕l2

i e
−�t−t��∕l3 ,
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of changing environment. The spring season is best represented by 
observations of all species and moreover, it is a denning and hunting 
season for seals and polar bears, respectively (Stirling & Derocher, 
2012).

3  | RESULTS

The posterior predictive checks did not show significant deviations 
between predicted and observed species’ abundancies. All the model 
parameters identified well with MCMC sampling and the model re-
sults were consistent in cross-validation tests where leaving subsets 
of data out did not alter the results significantly. At least for polar 
bears and seals, the results are in line with earlier knowledge on the 

distributions and hence, the data used in this study was adequate for 
inferring their responses to environmental covariates.

The standard deviation of the spatiotemporal random effects was 
at the same order of magnitude as the variation of the log relative den-
sity along the environmental covariates (Figure 2; Table 4) which indi-
cates that there were significant deviations in the species’ distribution 
patterns from that predicted only by the environmental covariates. 
The spatial length-scale parameters were in the order of tens to hun-
dreds of kilometres indicating smooth spatial random effects across the 
study region. However, the temporal length-scales were significantly 
<1 month which indicates that the spatiotemporal variations did not 
contain temporal trends. The variance of the study effect term in the 
polar bear and walrus models was of the same order of magnitude as 
that of the spatiotemporal random effect which indicates significant 

F IGURE  2 The posterior of species’ 
responses to environmental covariates 
with the 95% confidence intervals. The 
responses are plotted as changes of 
log relative density over the range of 
covariate values in the data. The curves 
are scaled to start from zero. In case 
of quadratic responses, the location 
with width zero confidence interval 
corresponds to the empirical mean of 
covariate values in the data where the 
unscaled curve would cross the zero

TABLE  4 The posterior mean and 95% confidence interval (in parenthesis) of hyperparameters of the distribution models. Spatial length 
scales are in kilometres and temporal length-scales in months. The directions for the length scales are shown in Figure 1

Model component Hyperparameter Polar bears Walrus Seal

Spatiotemporal term Variance σ2
ST

4.45 (2.91–6.71) 10.61 (5.60–18.54) 23.70 
(16.70–34.25)

Length scale along s1: l1 784.35 (229.53–1,886.30) 544.93 
(84.40–1,414.39)

78.44 
(62.22–100.18)

Length scale along s2: l2 581.00 (261.44–977.41) 84.84 (42.82–160.35) 102.15 
(79.79–128.52)

Length-scale along t  
(months): l3

0.03 (0.00–0.08) 0.05 (0.00–0.15) 0.09 (0.03–0.17)

Research effort term Variance σ2
s

5.48 (1.12–18.94) 21.25 (4.60–70.72) –

Observation model Overdispersion parameter r 6.89 (1.57–29.00) 0.63 (0.23–1.46) 2.31 (1.75–3.09)

Seal abundance effect Seal relative intensity 
required to achieve half of 
the saturation level: b

1.63 (1.08–2.40) – –

Saturation level: a 4.33 (3.65–5.01) – –
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variation in detection or reporting probability between studies. Lastly, 
the overdispersion parameter was small indicating significant overdis-
persion compared to a Poisson model.

The log relative density of polar bears was explained the most 
by the relative density of seals. We compared models with and 
without the seal parameter with a leave-one-out cross-validation 
using the log predictive density statistics (Vanhatalo et al., 2012) 
(−0.1053 with the predicted relative density of seals and −0.1137 
without one). The cross-validation log predictive density measures 
how well the model predicts test data and has the greater value 
the better the prediction is. The response of polar bears to seals 
was estimated to saturate around the seals’ relative density of 4.3 
(Table 4). However, this estimate was outside the range of pre-
dicted seals’ relative densities for which reason the response is 
almost linear in that range. The log relative density of seals was ex-
plained mostly by ice concentration (Figure 2). The response to ice 
concentration peaked around 70% ice cover with high certainty. 
The inference of the log relative density of walruses suffered from 

the lack of data, and the estimates of responses to covariates came 
with high uncertainty. Walruses’ log relative density was explained 
mostly by distance to the coast (Figure 2) as their density drops 
further than 70 km from the coast.

According to the predicted hindcast of each species, the relative 
densities of seals varied the most between the spring seasons of the 
first and the second half of the study period (Figure 3). Their relative 
densities decreased in the Northeastern Kara Sea and increased close 
to the eastern coast of Novaya Zemlya. The changes in relative densi-
ties of seals and polar bears had a similar spatial pattern, but for polar 
bears, the changes were smaller. The relative densities of walruses de-
creased slightly across the Kara Sea.

4  | DISCUSSION

The hierarchical Bayesian model framework provided us with 
tools to treat the assumed inaccuracies in the heterogeneous data. 

F IGURE  3 The average relative densities of polar bears, walruses and seals averaged over the winter (months 12, 1, 2), spring (3, 4, 5, 6), 
summer (7, 8, 9) and autumn (10, 11) seasons in 1997–2013 and relative change of average relative densities over spring seasons between 
time periods 1997–2004 (characterized by high ice concentration) and 2005–2013 (characterized by low ice concentration). The seasonal 
average relative densities are calculated with the full model whereas the relative changes are calculated based on predictions that are made 
solely with fixed covariates
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Applying a linear model on logit transformed presence and absence 
observations would have exposed the response estimates on bias 
originating from spatiotemporal autocorrelation and varying survey 
effort. Utilizing data from many seasons allowed us to track the sea-
sonally varying species’ densities across the Kara Sea, which is of 
interest for conservation actions.

In previous studies, polar bears’ abundance and population 
trends have mostly been related to ice cover and type (Lunn et al., 
2016; Regehr, Lunn, Amstrup, & Stirling, 2007) and attempts to 
relate polar bears’ occurrence to seals have not proved a spatial 
dependency between them (Ferguson et al., 2000). However, ac-
cording to the estimated covariate responses and model compari-
son, the effect of relative density of seals outweighs the effect of 
ice concentration on the log relative density of polar bears. Even 
though the effects of the relative density of seals and ice concen-
tration cannot be fully disentangled, as seals are heavily depen-
dent on ice, the results indicate that the relative density of seals 
has a clear positive effect on the relative density of polar bears. 
When excluding the seal covariate, polar bears’ response to ice 
concentration becomes hump-shaped peaking around 70% of ice 
cover (see Appendix S1), which is similar to the responses found 
by Durner et al. (2009) and Lone et al. (2018). Thus polar bears and 
seals follow a similar hump-shaped relationship to ice concentra-
tion. When the relative density of seals is included in the model, the 
response to ice concentration is linearly increasing and assumingly 
shows the independent effect of ice concentration. This indicates 
that in a simple trophic system or in case of a highly specialized 
predator, the occurrence of a prey species is a more informative 
covariate than an environmental variable for predicting the density 
of a predator. This has also been recognized in more diverse marine 
systems (Reisinger et al., 2018). Assessments of polar bears’ distri-
bution could be improved by linking areal estimates of seals’ den-
sity to a RSF (Resource Selection Function) of polar bears (Durner 
et al., 2009; Lone et al., 2018; Wilson et al., 2014). Reviewers of 
the manuscript were interested in the reasons to leave bathymetry 
out from the models of relative densities of polar bears and seals. 
We assumed that bathymetry would not have a strong effect on 
their relative densities, as the effect has been recognized mostly 
in the shelf breaks and our study area does not cover a shelf break 
zone. We also carried out a model comparison, which supported 
choosing the models not having bathymetry as a covariate.

The estimated covariate responses of seals support the earlier 
hypothesis about seals’ habitat characteristics in spring season. 
Their utilized ice habitat varies from stable land fast and pack ice 
to more unstable and productive polynyas and leads depending on 
their sex and offspring (Krafft, Kovacs, & Lydersen, 2007; Stirling, 
1997). This is adequately shown by the positive response to mod-
erate and high values of ice concentration. The estimated effect of 
distance to the coast speaks for seals inhabiting more pelagic than 
coastal sites, which is made possible by the wide land fast ice zone in 
the continental shelf (Pavlov & Pfirman, 1995).

The responses of walruses to covariates come with higher un-
certainty than the responses of polar bears or seals. The estimated 

responses of walruses support the assumption that the Atlantic wal-
ruses stay mostly in coastal shelf areas, where they feed on benthic 
vertebrates (Lydersen, Chernook, Glazov, Trukhanova, & Kovacs, 
2012). Hence, ice concentration does not affect much walruses’ den-
sity pattern in the Kara Sea.

With the covariate responses, we can estimate past changes in 
the expected relative densities. Arctic wide vulnerability assess-
ments do not consider region specific distributional changes which 
may actually support species relocation inside the area instead of 
disappearance (Stirling & Derocher, 2012; Wilson, Regehr et al., 
2017). We assume that the shrinking ice cover has caused the de-
crease of polar bears’ relative density in coastal regions (Figure 3). 
This highlights the sensitivity of polar bears to changes in ice con-
ditions and supports earlier studies (Durner et al., 2009; Lunn et al., 
2016). The slight increase in the relative density of polar bears in the 
Western and Eastern pelagic Kara Sea may be due to the increased 
relative density of seals in those regions.

Seals have had opposing trends in the Eastern and Western Kara 
Sea due to the lowering ice concentration in both regions. In the 
Western Kara Sea, the average ice concentration has been lowered 
close to the optimum of seals’ habitat characteristics, whereas in the 
Eastern Kara Sea ice concentration has dropped below the optimum 
level. Seals are hypothesized to be less susceptible to suffering from 
shrinking ice cover as their habitat requirements are more flexible 
than those of polar bears (Laidre et al., 2008), which is supported 
by our results. In addition to polar bears, also walruses are hypoth-
esized to be site specific species and thus sensitive to decrease in 
ice cover. Coastal habitats may maintain small walrus populations, 
which may be the case in the Kara Sea (Laidre et al., 2008). However, 
the lowering ice concentration has also decreased the relative den-
sity of walruses in the coastal regions. According to our results and 
the forecasted decline of the average ice concentration (Wang & 
Overland, 2012), each AMM may have distributional changes ahead 
as the Southern Kara Sea becomes ice free for a longer season in 
the future.

The challenge of analysing incomplete and heterogeneous bio-
logical data was overcome by thinning point process in relation to 
unknown survey effort and by explaining relative densities with spa-
tiotemporal random effects. In general, random effects can be used 
to correct for possible biases in fixed effect estimates in cases where 
data do not have clearly defined or reported survey effort. Properly 
defined random effects capture the excess variability in species’ 
relative density that is not explainable by environmental covariates 
and hence, improve also the estimates for the covariate responses 
(Ovaskainen et al., 2017). In the Kara Sea, ice type may affect spe-
cies’ densities in such a way that it cannot be explained solely by 
ice concentration. However, we can expect that such a variable has 
a spatiotemporally structured effect which can be dealt with by 
using a spatiotemporal random effect (Ovaskainen, Abrego, Halme, 
& Dunson, 2015; Vanhatalo et al., 2012). Other possible sources of 
spatiotemporal variation are prey availability for seals and walruses 
and species’ seasonally varying behaviour (Ferguson et al., 2000; 
Jay, Fischbach, & Kochnev, 2012; Mauritzen et al., 2003). Spatially 
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smooth random effects indicated that there is some environmental 
variation that has not been included as a covariate in the model. The 
low temporal variation of the random effect might be due to the 
strong temporal variation of ice concentration, which keeps the spe-
cies’ densities constantly moving.

The other random effect accounted for the survey bias origi-
nating from varying survey protocols (Dorazio, 2014; Fithian et al., 
2015). Sampling bias is typically induced by presence-only obser-
vations, preferential sampling or spatially structured changes in 
the sampling effort. Most of our data were accompanied with both 
presence and absence observations, which already solved questions 
about where and when the sampling had occurred. Moreover, the 
data sources did not allow us to assume that sampling effort could 
have varied systematically or that transects had been chosen pref-
erentially. When the effort had varied randomly, for example, due 
to weather, time of day or other factors not included in the model, 
these variations have been captured by the overdispersion of the 
Negative Binomial model and they have not directly confounded 
with the covariate estimates. However, if there was some system-
atic spatially structured survey bias, the variation would have been 
partly explained by the spatiotemporal random effect.

By examining the random effects, we can conclude that the results 
would have been different if they had been ignored. For example, the 
survey effort varied a lot between different surveys. Hence, as sur-
veys did not cover equal environmental gradients, ignoring the survey 
specific random effect would have biased the estimates for covariate 
effects. The lack of controlled survey data possibly increased also the 
significance of random effects relative to the covariate effects. In case 
of polar bears, the estimated effects of covariates on their relative 
density were supported by earlier studies and the variability of random 
effects was small. The effects of covariates to the relative density of 
walruses were highly uncertain and not fully on line with earlier stud-
ies. Hence, a higher proportion of the variability of the relative density 
of walruses was assigned to the random effects than of the variability 
of the relative density of polar bears. These examples illustrate also 
that by comparing the strength of random and covariate effects we 
can investigate the reliability of the data. For example, if all variability 
in the data was captured by the survey specific random effects and 
overdispersion, those data would not contain any information about 
species’ actual spatiotemporal density.

The identifiability of covariate effects was slightly affected by 
the collinearity of covariates and by the spatial and temporal mis-
match between measured covariates and actual conditions related to 
species observations. However, only SSS correlated mildly with ice 
concentration (0.24–0.28) and distance to the coast (0.39–0.40). Ice 
concentration, which was the coarsest covariate, averaged originally 
a time interval over a month and an area over 625 km2 (25 × 25 km), 
in which the species was observed. Ice concentration along with 
other covariates varied smoothly, so this may not have created much 
uncertainty in covariate effects.

The procedure of creating species observations from ta-
bles and maps created some inaccuracy in data. We estimated 
the digitizing error by calculating the width of the transect line 

on the source map. The error is 16 km in Matishov et al. (2014) 
and Matishov and Dzhenyuk (2007) and 33 km in Glazov et al. 
(2013), which make a width of three and seven study cells, re-
spectively. The temporal information of cruises was presented as 
the start and end dates and many cruises covered periods from 1 
to 3 months. We consistently chose the central point of the time 
frame to represent the cruise transect, which may create some 
temporal error. The spatial and temporal uncertainties related 
to transects is not expected to produce large errors; the spatial 
error was in the same order of magnitude as the resolution of the 
original ice concentration data and covariates did not vary signifi-
cantly within the spatial error or along survey transects during 
the survey periods. The studies without survey transects (Table 3) 
were included in our analysis as the recorded observations con-
tained numbers of observed animals which is informative for the 
response of the log relative density to environmental covariates 
even when we do not have information about survey transects 
(Dorazio, 2014). The benefit of combining systematically and op-
portunistically surveyed data is that detection probability can be 
estimated with the former data and hence the latter data can be 
used along with other data for estimating a model’s fixed effects 
(Dorazio, 2014; Giraud et al., 2016; Pacifici et al., 2017). The study 
effect component corrects for the fact that some data sets did not 
include transects. The study effect corresponding to these two 
data sources was positive, reflecting more animal observations 
than on average within all the data sets.

Even though opportunistic data can provide useful new in-
formation for population surveys, such data are still suboptimal 
compared to carefully designed surveys. For example, the spa-
tial extent of the data used in this study did not cover the whole 
Kara Sea, there were holes in the temporal coverage of the ob-
servations, and the environmental covariates were rather crude 
estimates of the true environment. Hence, when estimating the 
distribution over the whole Kara Sea and for several years, we are 
extrapolating with respect to the environmental covariates. The 
coarseness of data prevented us, for example, from estimating 
seasonal changes in the ice use of polar bears. In order to study 
more specific questions related to AMMs’ distributions, we should 
have better designed survey data. For the future studies on how 
to report their data and survey protocols, we can offer some sug-
gestions based on our study. In addition to presence observations, 
absence observations are also essential for further analysis. If 
absence observations need to be derived based on survey tran-
sects, these should be reported preferably in a digitized format. 
The data repositories support the storage of vast spatiotempo-
ral data. Studies should include details of their detection process, 
such as detection radius and detection probability, in the supple-
mentary material. Hence, later analysis could utilize occupancy 
modelling methodologies and estimate absolute species densities 
and populations.

Our study demonstrated that heterogeneous data sets can be an-
alysed jointly with robust methodologies. Optimally we would have 
used the original data and had intimate knowledge on them which 
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would have eased the model building and analysis. Combining differ-
ent types of data improved the estimates of covariate responses and 
allowed us to make predictive maps of species’ densities. Moreover, 
we were able to quantitatively estimate species’ sensitivity to envi-
ronmental change and to map biologically important areas in a re-
mote region, which would not have been possible with traditional 
design based approaches.

5  | CONCLUSION

We demonstrated how several, heterogeneous, open source data 
sets can be jointly analysed within the PPP framework to produce 
new information on AMMs’ distributions. Our results suggest that 
the relative densities of polar bears and walruses have decreased 
or stayed close to constant in the Kara Sea during the last 20 years 
and that the distribution of seals has shifted from the Eastern to the 
Western Kara Sea. The decrease in the average ice concentration 
across the study region has driven these changes. The spatial de-
pendence of polar bears on seals was significant. This demonstrates 
that in a simple trophic system, modelling the density of a top preda-
tor benefits from taking into account the density of prey species 
compared to using environmental variables.

Combining open data from different sources created a fairly 
large but heterogeneous data set for analysing AMMs’ distribu-
tions. Due to heterogeneity in the data sources and uncertainty 
concerning sampling techniques and effort, the complex spatiotem-
poral variation of the data needed to be modelled with care. After 
accounting for those uncertainties, we were able to produce useful 
new knowledge on AMMs’ distributions during a 17-year-long pe-
riod. The approach is cost-efficient as it allows the analysis of the 
vast amounts of existing environmental data. Hence, our approach 
provides important advances for conservation efforts in these areas 
by providing a method to build improved information on distribu-
tional changes from opportunistic studies.
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