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Abstract

The Higgs boson is a cornerstone of the standard model (SM) of particle physics, thus it comes as
no surprise that the announcement of its discovery on July 2012 by ATLAS and CMS marked a
very important date for particle physics. All the pieces of the SM have finally been observed and
the parameters of the theory measured. However, we know that the SM is far from a complete
theory and the fact that the Higgs boson has been, up to date, the only discovery of the LHC
may be seen as unfortunate by many. In fact, the LHC is just confirming with exceptional
accuracy the predictions of the SM, pushing the scale of new physics to larger and larger values,
giving us no hints about its correct extension.

Having measured all the parameters of the SM we can assume its validity to an arbitrarily
high energy scale and extrapolate its behavior using the renormalization group equations. It
turns out that the value of the Higgs mass is low enough to allow this extrapolation and the
SM remains consistent up to the Planck scale. However, this computation reveals yet another
puzzle: our universe does not lie in the global minimum of the Higgs potential; instead a much
deeper vacuum exists at large field values. In principle, quantum tunneling into the true vacuum
is possible but fortunately the decay time is about 10130 times the age of our universe. For all
practical purposes our vacuum is not in danger and the decay will not happen any time soon.
This peculiar situation is called metastability.

Since the decay time is very long, new physics modifying the Higgs potential at high energies
is not needed. The situation, however, changes dramatically if we want to understand why the
Higgs ended up in such an energetically disfavored state in the framework of big bang cosmology.
It is clear that some sort of fine-tuning is required in order to put the Higgs in the false vacuum.
Not only that: the evolution of the universe goes through violent periods, such as inflation and
reheating, where the Higgs may experience large fluctuations, making it difficult to justify why
it did not decay into the true vacuum without assuming the existence of physics beyond the
SM (BSM).

The Higgs is a natural window into particles which are not part of the SM. In fact, it is the only
particle with spin-0 and the only field which can form a dimension-2 gauge and Lorentz invariant
operator: H†H. Within the SM this property is used to write a mass term for the Higgs which
generates spontaneous breaking of the electroweak symmetry, while in BSM models it allows to
write interaction terms at the renormalizable level with gauge singlets and with gravity. In this
thesis and in the papers attached we explore the effects that these renormalizable BSM operators
have on the Higgs dynamics in the early universe. We show that stabilization of the Higgs field
can be obtained in models of inflation if we allow the existence of Higgs-inflaton couplings or
non-minimal coupling with gravity. The same models are then studied at the reheating stage,
when all the particles that compose the present day universe are produced. On the other hand,
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we also explore the possibility that the Higgs mixes with the inflaton. The mixing can stabilize
the Higgs potential at all energies and generates two scalar eigenstates. The lighter one is
identified with the boson discovered in 2012 and the other could be observed at the LHC or at
future colliders.

This thesis is organized as follows. Chapter 1 serves as a brief introduction to the topics in
cosmology and particle physics relevant for this thesis. In Chapter 2 we show how the problem of
the Higgs metastability arises in the SM, what the implications for the present universe are and
demonstrate how the Higgs coupling with a hidden scalar can cure the instability. Implications
of metastability for the Higgs dynamics during inflation are discussed in Chapter 3, where we
also consider some mechanisms induced by BSM operators which can stabilize the Higgs. In the
same chapter we show that a mixing with the inflaton can cure the metastability problem of
the SM. In Chapter 4 we study what happens to a metastable universe after inflation, namely
during reheating and preheating. In fact, during those stages, couplings of the Higgs to gravity
can lead to destabilization of the Higgs field.
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Chapter 1

Cosmology and particle physics

This chapter serves as an introduction to the topics of cosmology and particle physics which are
relevant for the studies performed in this thesis and in the papers attached. We begin with a
description of the homogeneous and isotropic universe. We then introduce the motivations for
having a period of inflation in the early universe and describe the properties of particle physics
models of inflation. We end the chapter with a brief introduction to the standard model of
particle physics and introduce the Higgs boson and the Higgs mechanism.

In this thesis we use natural units, by setting � = c = kB = 1, and take MPl = (8πGN )−1/2 = 1.

1.1 The Friedman-Robertson-Walker universe

The most important fact about our universe is that it looks homogeneous and isotropic on large
scales. Homogeneous since the physical conditions are the same at each point, and isotropic since
the physical conditions look the same in all directions when viewed from a given point. This
implies that the evolution of the universe can be represented geometrically as a sequence of three-
dimensional space-like hypersurfaces, where each hypersurface is homogeneous and isotropic.

The metric of such homogeneous and isotropic universe is called Friedman-Robertson-Walker
(FRW) metric and is determined by the following equation

ds2 = −dt2 + a2(t)
[

dr2

1 − kr2 + r2
(
dθ2 + sin2 θ dϕ2

)]
, (1.1)

where k is related to the spatial curvature of the space-like hypersurface, with k = −1, 0, 1
corresponding to an open, flat or closed universe. The scale factor a(t) characterizes the relative
size of hypersurfaces at different times.

Observations tell us that the universe is expanding according to the Hubble law, that is the

1
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distance between two objects A and B evolves according to

ṙAB = H(t) rAB . (1.2)

The quantity H is called the Hubble parameter and represents the velocity of expansion of the
universe. The relation between the scale factor and the Hubble parameter is

ȧ

a
= H , (1.3)

where a dot means derivative with respect to the time t.
According to General Relativity, the dynamics of the universe can be determined starting

from the Einstein-Hilbert action

S =
∫

d4x
√−g

(1
2R + Lmatter

)
, (1.4)

where g is the determinant of the metric gμν that determines the spacetime interval ds2 in (1.1),
R is the Ricci scalar of curvature and Lmatter is the Lagrangian density of the matter content of
the universe. The variation of the action with respect to the metric gives the Einstein equations

Rμν − 1
2gμνR = Tμν , (1.5)

where R is the Ricci tensor and Tμν is the stress-energy tensor of matter.
The Einstein equations determine the dynamics of the universe as soon as the explicit form

of the stress-energy tensor is given. Assuming that matter behaves like a perfect fluid, equa-
tions (1.5) take the form of the Friedman equations(

ȧ

a

)2
= 1

3 ρ − k

a2 , (1.6)

ä

a
= −1

6(ρ + 3p) , (1.7)

where ρ and p are the energy density and pressure of the fluid in its rest frame.
If we combine the Friedman equations (1.6) and (1.7) and assume that there is no intrinsic

curvature of space k = 0, we can write the continuity equation
d ln ρ

d ln a
= −3(1 + w) , (1.8)

where the equation of state parameter is defined as

w ≡ p

ρ
. (1.9)

Integrating equation (1.8) yields
ρ ∝ a−3(1+w) . (1.10)

The most important classes of perfect fluid that we will encounter in this thesis are three: non-
relativistic matter (or dust), radiation and vacuum energy. We briefly describe their properties.
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Non-relativistic matter Non relativistic matter, or dust, is characterized by an equation
of state parameter w = 0, which gives ρ ∝ a−3. Introducing this energy scaling into the first
Friedman equation (1.6) we get that the universe expands as a ∝ t2/3 if it is dominated by dust.

Radiation Relativistic matter, or radiation, is characterized by w = 0, which implies ρ ∝ a−4.
We immediately notice that the energy density of radiation decreases faster with the expansion
of the universe than the energy density of non-relativistic matter. For a radiation dominated
universe, the first Friedman equation (1.6) yields a ∝ t1/2.

Vacuum energy The equation of state parameter of vacuum energy is w = −1. Consequently
its energy density does not scale with the expansion of the universe and remains constant.
From (1.6) we observe that the expansion of the universe is exponential a ∝ eHt if vacuum
energy dominates.

1.1.1 The Concordance Model

The Concordance Model, also known as the ΛCDM model, is the theoretical model that best
fits cosmological observations. In this section we describe what its properties are.

Observations of the cosmic microwave background (CMB) and large-scale structures find that
the universe is flat. An equivalent statement is that the energy density of the universe is very
close to the critical density ρc, which is defined from the first Friedman equation (1.6) by taking
k = 0 as

ρ ∼ ρc = 3H2
0 , (1.11)

where the subscript 0 denotes the present value of the Hubble ratei. In particular, observations
show that the energy density of the universe is composed of 30% matter, 70% vacuum energy and
a negligible amount of radiation [5]. The contribution of matter is further divided in ordinary
baryonic matter, which amounts only to 5% of the total energy density of the universe, and the
remaining 25% in the form of invisible matter, the so-called cold dark matter. In particular,
cold dark matter (CDM) and vacuum energy Λ are the reason for the name ΛCDM.

An important consequence of the domination of vacuum energy is that the universe expansion
is accelerating. In fact, the equation of state parameter for vacuum energy is w = −1, which
implies p = −ρ. If we introduce this value into the second Friedman equation (1.7) we get

ä

a
= 2ρ

3 > 0 . (1.12)

We note that this is true only for vacuum energy. A matter dominated or radiation dominated
universe experiences decelerated expansion.

iWe note here that the value of the critical density is not a constant in time but depends on the value of the
Hubble parameter, which is an evolving quantity.
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In the previous section we noted that ρ for dust and radiation decreases as the universe
expands while that of vacuum energy remains constant. In particular, the energy density of
radiation decreases faster than that of dust. This implies that, if we go backward in time, the
universe was initially dominated by radiation and subsequently by non-relativistic matter. Only
at a later time vacuum energy began to dominate.

1.2 Inflation

1.2.1 ΛCDM puzzles

Although the concordance model is successful in describing many aspects of our universe, there
are some things which are left unexplained. Among these puzzles we discuss here the horizon
and the flatness problems.

Horizon problem

The horizon problem is the problem to explain why the universe was extremely homogeneous at
the time of last-scattering, as observed from the CMB. This fact seems to imply that the whole
portion of the universe which is probed by the CMB was in causal contact at the time of CMB
formation. Unfortunately, according to the ΛCDM model the CMB sky was composed of many
causally disconnected regions and it is not possible to justify its homogeneity.

The maximum distance that a light ray can travel between time 0 and time t is called the
particle horizon τ , it determines the causal structure of space-time and is defined as [6, 7]

τ ≡
∫ t

0

dt′

a(t′) =
∫ a

0

da

a2H
. (1.13)

For a universe dominated by a perfect fluid with equation of state parameter w, the particle
horizon scales as

τ ∝ a
1
2 (1+3w) . (1.14)

We immediately notice that for matter and radiation the particle horizon increases monotonically
with time. In the concordance model, the universe was dominated first by radiation and then
by matter, and only relatively recently by vacuum energy. The particle horizon thus has always
increased its size, meaning that regions of the sky that are in causal contact today were not in
the past. In particular at the time of CMB formation, large portions of the sky were not in
causal contact and therefore there is no reason why the temperature of two arbitrary points in
the CMB sky should look so homogeneous.
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Flatness problem

The flatness problem is related to the question: why the energy density today is so close to the
critical density ρc? In fact, the first Friedman equation (1.6) can be divided by H2 to get

1 − Ω = − k

(aH)2 , (1.15)

where we defined Ω ≡ ρ/ρc. The value of Ω observed today is very close to one which implies
that the universe is almost flat. From eq. (1.15) we see that if the universe is not exactly flat the
right-hand side grows in time for a matter or radiation dominated universe. This means that
if Ω is close to one today, in the past it was even closer. In particular, to explain the value of
Ω observed today we would have to fine-tune its value in the early universe in such a way that
|Ω(aPl) − 1| ≤ O(10−61), where Ω is taken at the Planck scale. This is a huge fine-tuning in the
initial conditions which the concordance model fails to explain.

1.2.2 Inflation to the rescue

The idea of a period of accelerated expansion in the early universe, dubbed inflation, was
developed to solve the problems that we have described in the previous section [8–10]. The idea
comes from a very simple observation. The horizon and flatness problems stem essentially from
the fact that the comoving Hubble radius, (aH)−1, increases with time in a matter dominated
universe, where the expansion is decelerating. On the other hand, when the universe expands
with increasing velocity, the comoving Hubble radius becomes smaller.

When the comoving Hubble radius shrinks, regions that are in causal contact lose their causal
relation. The horizon problem can then be solved if we assume that the whole CMB sky was in
causal contact in the early universe and that a period of inflation made it causally disconnected
later on. With this assumption the fact that the CMB has approximately the same temperature
everywhere stops to be surprising.

For what concerns the horizon problem, the crucial observation is that when the universe
expands exponentially the right-hand side of (1.15) becomes smaller and smaller, pushing to
zero the value of |1 − Ω|. This can explain why we find today that Ω ≈ 1.

In order to get inflation the comoving Hubble radius has to decrease:

d
dt

(aH)−1 < 0 . (1.16)

Some algebra can show this to be equivalent to require accelerated expansion of the universe

ä > 0 . (1.17)

From the second Friedman equation (1.7) we immediately notice that accelerated expansion
requires p < −ρ/3, or equivalently an equation of state parameter w < −1/3. This condition
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is fulfilled by vacuum energy. Thus, inflation can be obtained if we find a mechanism that can
generate a vacuum energy-like equation of state.

1.2.3 Slow-roll inflation

The simplest model of inflation involves a scalar field φ. Since this field is responsible for inflation
it is usually called inflaton. The Einstein-Hilbert action (1.4) with the matter sector completely
dominated by a scalar field has the form

S =
∫

d4x
√−g

[1
2R − 1

2gμν∂μφ∂νφ − V (φ)
]

, (1.18)

where V (φ) is the inflaton potential and we assume that the scalar field is minimally coupled
with gravity, i.e. that there are no direct couplings between φ and R. The stress-energy tensor
for the scalar field is

Tμν = ∂μφ∂νφ − gμν

(1
2∂σφ∂σφ + V (φ)

)
, (1.19)

and the equation of motion

δS

δφ
= 1√−g

∂μ(
√−g∂μφ) + V ′(φ) = 0 , (1.20)

where a prime denotes derivative with respect to the field φ. Assuming FRW metric (1.1) and
homogeneity in the spatial component of the inflaton field φ(t, x) = φ(t), the energy density and
pressure take the form

ρφ = 1
2 φ̇2 + V (φ) , (1.21)

pφ = 1
2 φ̇2 − V (φ) . (1.22)

The equation of state parameter is then given by

wφ = φ̇2 − 2V (φ)
φ̇2 + 2V (φ)

. (1.23)

It is easy to see that accelerated expansion, or equivalently wφ < −1/3, can be obtained if the
potential energy is much larger than the kinetic energy of the inflaton. We note that, if the
potential energy dominates, we have wφ ≈ −1, which is the same equation of state parameter
as that of vacuum energy.

The inflaton equation of motion and the Hubble rate evolution can be obtained from (1.6)
and (1.20)

φ̈ + 3Hφ̇ + V ′(φ) = 0 and 3H2 = 1
2 φ̇2 + V (φ) . (1.24)
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The inflaton slowly rolls if the conditions |φ̈| � |3Hφ| and φ̇2 � V are fulfilled. When this
happens the slow-roll parameters

εV (φ) = 1
2

(
V ′

V

)2
, (1.25)

ηV (φ) = V ′′

V
, (1.26)

are much smaller than unityii. Inflation ends when ε ≈ 1 or |η| ≈ 1.
We now turn to consider a simple model of inflation by considering a scalar potential V (φ) =

m2
φφ2/2. This is known as squared chaotic inflation. In this model inflation ends when εV (φend) ≈

1, which happens when the inflaton takes the value

φend =
√

2 . (1.27)

Therefore, in order to get inflation, we must consider super-Planckian values for the inflaton
field.

The number of e-folds to the end of inflation is defined as

N(φ) ≡ ln aend
a

. (1.28)

In order to solve the horizon and flatness problem the required number of e-folds should be
larger than Ntot ≥ 40 − 60, depending on the uncertainty in the reheating dynamics and the
scale of inflation. The requirement puts a lower bound on the initial value of the inflaton φi,
that in the model at hand translates into φi > 15.

1.2.4 Quantum fluctuations during inflation

So far, in our discussion of inflation we considered only the homogeneous inflaton. However, the
world we live in is not classical and thus we expect the inflaton to be a quantum field. Probably
the biggest success of inflation is determined by its ability to explain the generation of the small
inhomogeneities that later evolved into the structures that we observe in the universe today.
This is made possible by the fact that, during inflation, quantum fluctuations are stretched
to macroscopic scales [13, 14]. These fluctuations become classical and eventually lead to the
formation of galaxy clusters and other large scale structures.

The best probe for the quantum fluctuations are the temperature perturbations observed in
the CMB. A discussion of how these fluctuations are generated is beyond the scope of this thesis.
Nevertheless, quantum fluctuations have a very important implication on the issue of the Higgs

iiStrictly speaking these are necessary but not sufficient conditions to ensure slow-roll of the inflaton. An
alternative version of the slow-roll approximation based on the Hamilton-Jacobi formulation [11] exists which is
both necessary and sufficient [12].
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instability, that is the primary focus of this thesis, because we can determine the value of the
Hubble rate from them.

Quantum fluctuations of wavelength k evolve only when k > aH, that is when the scale k is
inside the horizon. During inflation aH increases and an increasing number of ultraviolet scales
exits the horizon. When fluctuations are outside the horizon, i.e. k < aH, they get frozen to a
constant value and stop evolving. In particular, scales that exit the horizon at the time of CMB
formation determine completely the value of the temperature perturbations. It turns out to be
possible to relate the power spectrum of the CMB perturbations PR with the Hubble rate at
the time of CMB formation

PR =
(

H2

2π φ̇

)2

, (1.29)

where both H and φ̇ are evaluated at the time of CMB formation. The measured value of the
power spectrum PR = 2.2×10−9 [15] is thus an important constraint not only on the parameters
of the inflaton potential but also on the value of the Hubble rate during inflation. In Section 3.1
we will see that the size of the Hubble rate is relevant for the dynamics of the Higgs during
inflation.

1.3 The Standard Model of particle physics

After the discussion of the cosmological topics which are relevant for this thesis, it is now time
to turn our focus to particle physics, in particular to the Standard Model.

The Standard Model (SM) of particle physics is the theory that describes interactions between
particles, the fundamental indivisible components of matter. It has been proven successful in
describing the physics of particles up to energies of today’s most powerful collider, the LHC.
The mathematical framework on which the SM is built is provided by quantum field theory.
The construction of any quantum field theory proceeds by first postulating the symmetries of
the system and then writing down the most general renormalizable Lagrangian that respects
these symmetries. The symmetries of the SM are Lorentz and gauge invariance. In particular,
the gauge group of the SM is SUc(3) ⊗ SUL(2) ⊗ UY (1). The different subgroups are related to
three of the four fundamental forces of nature, respectively strong, weak and electromagnetic.
Thus, the SM does not unify all three fundamental forces under the same description. In fact,
it leaves out gravity, which is described by General Relativity.

Particles in the SM are completely characterized by their spins, masses and charges. Quarks
and leptons are SM particles with half-integer spins and interact via the strong, weak and
electromagnetic interactions, which are mediated by the gauge bosons that have integer spin
equal to 1. The Higgs is another boson, the only one that does not mediate any gauge interactions
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and the only spin-0 particle of the SM. All fermions of the SM except neutrinos are massiveiii.
On the other hand, only two gauge bosons have non-zero mass: the W ± and Z bosons, which
are the mediators of the weak forces.

The way in which gauge bosons and fermions get their masses in the SM is very peculiar.
An explicit mass term for these particle would in fact break the gauge invariance of the theory.
Therefore, we have to resort to a trick in order to introduce fermions, leptons and weak gauge
boson masses. This trick is the Higgs mechanism.

1.4 The Higgs Mechanism

The Higgs mechanism was formulated independently by Higgs [18, 19], Brout and Englert [20],
Guralnik, Hagen and Kibble [21] in order to generate masses for the gauge bosons and fermions
via the so-called spontaneous symmetry breaking of the gauge symmetry. This mechanism is
useful in order to break the gauge subgroup SUL(2) ⊗ UY (1) of the SM into the electromagnetic
group Uem(1) and is at the foundation of the electroweak (EW) theory.

Spontaneous symmetry breaking is obtained in the SM with the introduction of a complex
scalar doublet H, the Higgs doublet, charged under SUL(2)⊗UY (1), that is made of four scalars

H = 1√
2

⎛
⎝ η1 + iη2

η3 + iη4

⎞
⎠ . (1.30)

The potential for this field is gauge invariant and can be written as

V (H) = −μ2
hH†H + λh

(
H†H

)2
. (1.31)

However, the parameters of the potential are chosen in such a way that the doublet develops a
non-zero vacuum expectation value (VEV)

〈H〉 =

⎛
⎝ 0

v/
√

2

⎞
⎠ , (1.32)

that does not respect the gauge symmetry. The choice of which component obtains non-zero
VEV is dictated from the requirement that the vacuum must have zero electric charge, in such
a way to preserve electromagnetic gauge invariance.

In this thesis we will usually use gauge symmetry by rewriting the Higgs doublet in the
so-called unitary gauge as

H(x) = 1√
2

⎛
⎝ 0

v + h(x)

⎞
⎠ , (1.33)

iiiThis turns out to be a shortcoming of the SM. In fact, neutrino oscillations indicate that at least some of the
neutrinos have non-zero mass [16,17]
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where h(x) is a real scalar degree of freedom, the Higgs boson, and the other three degrees
of freedom of H are rotated in the gauge boson sector, where they become the longitudinal
polarization of the W ± and Z gauge bosons.

The Higgs mechanism introduces two parameters in the SM: the Higgs VEV v, which is
determined by the weak gauge boson masses, and the Higgs self-coupling λh, which can be
related to the Higgs boson mass as mh =

√
2λhv. The measurement of the Higgs boson mass at

the LHC on July 2012 [22,23] allowed us to determine all the parameters of the SM model. We
will show in the next chapter that the value of the mass is deeply connected with the problem
of the EW vacuum metastability.

Cosmological drawbacks of the Standard Model

Since this thesis focuses on the connections between particle physics and cosmology, we briefly
discuss what the cosmological drawbacks of the SM are.

In the previous sections we have encountered the notion of dark matter. This is a particular
kind of non-relativistic matter that does not interact with light. Unfortunately, the SM does
not accommodate any candidate that can explain the observed abundance of dark matter. The
only particles in the SM that do not interact with photons are neutrinos but unfortunately their
abundance is much less than that of dark matter. We are then forced to consider beyond the
SM (BSM) theories in order to explain dark matter.

Another shortcoming of the SM is that it cannot explain how the matter-antimatter asym-
metry generated. In fact, we observe a large amount of baryonic matter but no anti-baryonic
matter in the universe. The SM lacks a mechanism that provides the origin of the observed
matter-antimatter asymmetry [24].

Finally, the SM does not have a mechanism that can provide inflation. The only scalar particle
of the SM, the Higgs boson, has an unstable potential at high energies, as we will see in the
next chapter, and therefore some BSM physics is required in order to get a flat potential that
can sustain inflation. Therefore, the SM must be extended in order to get inflation.

We thus see that the SM is far from a complete theory and extensions to the SM must be
postulated if we want to be able to describe the universe we live in. In this thesis we follow a
very minimalistic approach. We do not try to find a solution to all problems of the SM, but we
decide to focus only on inflation and on the Higgs vacuum metastability, leaving out from our
discussion the nature of dark matter and the origin of the matter-antimatter asymmetry.



Chapter 2

The Higgs instability

In this chapter we introduce the issue of the EW vacuum metastability in the SM. Metastability
means that the EW vacuum is not the global minimum of the SM Higgs potential and that the
decay time is much longer than the age of the universe. The problem of the EW vacuum
metastability is deeply connected with the history of our universe. As we will see in Chapters 3
and 4, it has important implications on the Higgs dynamics in the early universe. In this
chapter we review the literature on this topic and in the final section provide a mechanism that
can stabilize the Higgs potential by adding just an additional singlet to the SM. This mechanism
turns out to be useful in connecting the Higgs boson with cosmology when we identify the singlet
with the inflaton.

2.1 Stability of the Higgs effective potential

The discussion of the EW vacuum metastability is deeply connected with the quantum nature
of the SM. The SM is a quantum field theory which cannot be solved exactly and thus has to be
computed using perturbation theory. During the computation of higher orders of the perturba-
tive expansion, we encounter divergences in some processes due to the so-called loop integrals.
The systematic approach for eliminating divergences from measurable quantities is called renor-
malization. Renormalization requires to regularize a theory by introducing sensitivity to a cutoff:
a parameter that allows to make the divergences finite. In the limit that the cutoff disappears,
physical quantities diverge. Thus, it seems that the procedure of regularization introduces an
additional parameter to the theory, the cutoff. However, when we compute measurable quan-
tities, we see that a change in the cutoff can be compensated by a change in the couplings so
that physical quantities are left invariant. Therefore, couplings develop a dependence on the
energy scale at which the renormalization procedure is performed. This dependence is given by
the renormalization group equations.

11
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The EW vacuum metastability originates precisely from the scale dependence of the Higgs
self-coupling introduced by the renormalization group. Let us show how this scale dependence
is computed in the SM.

Quantum corrections can be found by computing the effects of virtual particle emission and
reabsorption on the interaction energy. The result of this computation is the effective poten-
tial [25]. In the Landau gauge at one loop, the SM effective potential takes the form [26]

Veff = V0 + Vgauge + Vscalar + Vfermion (2.1)

where

V0 = −1
2μ2

hh2 + 1
4λhh4 , Vgauge = 3

(
2g4 + (g2 + g′ 2)2)

1024π2 h4 ln h2

M2

Vscalar = 1
64π2

(
−μ2

h + 3λhh2
)2

ln −μ2
h + 3λhh2

M2 + 3
64π2

(
−μ2

h + λhh2
)2

ln −μ2
h + λhh2

M2 ,

Vfermion = − 3y4
t

64π2 h4 ln h2

M2 ,

(2.2)

where g and g′ are the gauge couplings, yt is the top Yukawa coupling and M is the renor-
malization scale. The expression of the effective potential has been divided into four different
parts, where V0 is the tree level potential. The other three parts are the loop contributions
which correspond to the different virtual particles that we are considering when computing loop
corrections. In particular, we see that all particles that couple with the Higgs contribute. The
scalar part is further divided into the contribution coming from the Higgs boson itself and the
Goldstones, the other scalar degrees of freedom of the Higgs doublet. Contributions from other
fermions have been neglected since their Yukawa couplings are much smaller than yt.

We immediately notice from equations (2.2) that there are two competing effects. On the
one hand, Higgs and gauge bosons loops give a positive contribution to the effective potential.
On the other hand, fermions give a negative contribution. For very large h these can push the
potential towards positive or negative values depending on the relative size of the couplings. It
has long been noted that fermions could destabilize the potential, and in fact many attempts
to find upper bounds on the fermion masses, or equivalently lower bounds on the Higgs mass,
were made in the literature by demanding stability of the SM vacuum up to some arbitrary
scale [27–35].

Unfortunately, the effective potential as is written in (2.2) cannot give reliable predictions on
the large field behavior of the model. The reason is that the loop expansion depends on the
combination

α(n+1)
[
ln

(
h2/M2

)]n
, (2.3)

where α is the largest coupling in the model and n is the number of loops. If we suppose the
renormalization scale M is much smaller than h the logarithm can become very large and con-
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sequently the combination (2.3) bigger than unity. This would make the perturbative expansion
unreliable because higher order terms would matter as much as lower order terms.

In order to give reliable predictions we can resort to the renormalization group to find a
renormalization group improved expression for the effective potential. As we mentioned at the
beginning of the section, the renormalization group provides the dependence on the renormal-
ization scale of the different couplings. The dependence can be obtained as follows.

The renormalization scale M in (2.2) is completely arbitrary and therefore the effective po-
tential cannot be affected by a change in M . This statement allows us to write the following
renormalization group equation for the effective potential[

M
∂

∂M
+ βλh

∂

∂λh
+ βgi

∂

∂gi
+ βyt

∂

∂yt
+ βμ2

h
μ2

h

∂

∂μ2
h

− γh
∂

∂h

]
Veff = 0 , (2.4)

where the beta functions define the dependence of the couplings with the respect to the renor-
malization scale M . For instance, the Higgs self coupling beta function is given by

βλh
= M

∂λh

∂M
, (2.5)

and there are similar expressions for the mass parameter μ2
h, for the gauge couplings gi and

for the Yukawa couplings. The γ function is the anomalous dimension and depends on the
wave function renormalization Z [36]. Equation (2.4) is a special case of the Callan-Symanzik
equation [37,38].

It is possible to solve (2.4) and find a general expression for Veff that is solution to the Callan-
Symanzik equationi. Since the instability scale of the SM appears only for very large values of
the field h, for which h 
 μh, we can consider just an approximated form for the renormalization
group improved effective potential. At one loop it takes the form [40]:

Veff(h) � 1
4λh(t) [G(t)h]4 , (2.6)

where t = ln(h/M) and

dλh

dt
= βλh

(gi(t), λh(t)), dgi

dt
= βgi(gi(t), λh(t)),

G(t) = exp
(

−
∫ t

0
dt′γ(gi(t), λh(t))

)
.

(2.7)

We see from (2.6) that the study of the SM instability reduces to the study of the sign of
λh(t) for large t. In particular, we can solve the differential equation determined by the beta
function βλh

giving the evolution of λh and check at what scale Λinst the Higgs self coupling
turns negative

λh(Λinst) � 0 . (2.8)
iFor details on the computation we refer for instance to [39].
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The beta function for λh cannot be solved exactly because it depends on all other couplings of the
model for which there are similar beta functions governing their evolution. Numerical methods
are thus needed for solving a system of coupled differential equations in order to find Λinst.
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Figure 2.1: Evolution of λh as a function of the energy scale. Shaded regions represent
the different uncertainties. Image taken from [41].

In Fig. 2.1 we report the result that we would obtain by solving the system of coupled differ-
ential equations determined by the beta functions of the couplings and assuming that the SM is
valid up to the Planck scale. The result is taken from [41]ii, where the extrapolation of the SM
model parameters is performed with 3-loop precision. We observe that, for the current measured
value of the QCD coupling constant, Higgs boson and top mass the Higgs self coupling turns
negative at a scale which is roughly Λinst � O(1010).

Much of the uncertainty in the quoted results comes from the determination of the SM param-
eters at the EW scale. Results in Fig. 2.1 are obtained from a 2-loop extraction from physical
observables. We see that the largest uncertainty on the instability scale is given by the value
of the top mass. This has basically to do with the difficulty to define a pole mass for the top
quark because, being a colored particle, it does not actually exist as an asymptotic state. Sup-
posing that the top is about 1 GeV lighter than the current measured value, the SM can still be
completely stable. Thus, a better measurement of the top quark mass would be very important
in determining the stability of the SM. Better precision on the top quark mass will be reached
only at future electron-positron colliders where the uncertainty will be pushed from one GeV to

iiSimilar studies can be found for instance in [42–48].
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hundreds of MeV [49–52].

2.2 The metastable universe

The existence of a deeper minimum in the SM opens up the possibility for the Higgs to decay
via quantum tunneling. Perhaps surprisingly, the parameters of the SM are such that the decay
time is much longer than the age of the universe. This peculiar state goes with the name of
metastability. The long lifetime implies that no new physics is needed to explain why we live in
such an energetically disfavored state and the existence of our universe is perfectly consistent
with metastability.

The theory of vacuum decay for a scalar theory with two classically stable minimum configu-
rations was first developed in [53–55] and applied to the case of the SM for example in [45,49,56].
The qualitative picture of the decay is similar to that of a superheated fluid. Bubbles of true
vacuum can form due to quantum fluctuations and, if a large enough bubble forms, it starts to
grow and expands over the whole universe converting the false vacuum to true. The bubble has
to be large enough such that the internal energy is larger than the surface energy, because the
formation of the bubble wall has an energy cost that can kill it.

The computation of the decay rate per unit volume γ of the false vacuum decay yields the
following expression

γ = Ae−B , (2.9)

where B is the Euclidean action of the bounce, the solution of the classical field equations that
interpolates between the false vacuum and the opposite side of the barrier, i.e. the bubble, and
A is a pre-factor which takes account of the fluctuations around the bounce.

The bounce action is easily computed in the case of the SM Higgs. Let us denote with h the
radial component of the Higgs doublet. The bounce is a solution H = h(r) that depends only
on the radius r of the 4D Euclidean space which obeys

− ∂μ∂μh + V ′(h) = −d2h

dr2 − 3
r

dh

dr
+ V ′(h) = 0 , (2.10)

satisfying boundary conditions
h′(0) = 0, h(∞) = 0 , (2.11)

where in the second condition we assume the false minimum of the potential is at 0 rather than
at v. This is due to the large h assumption for which we approximate V (h) � λhh4/4. For
λh < 0 the tree level computations gives [57]

h(r) =
√

2
|λh|

2R

r2 + R2 , B = 8π2

3|λh| , (2.12)
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where R is an arbitrary scale. The arbitrariness is a consequence of the scale invariance of the
potential in the quartic approximation. There is also an ambiguity on which scale μ we have
to take to evaluate the running coupling λh(μ). These can be resolved when a complete loop
computation is performed. In particular, the scale R is integrated to get an expression for the
decay rate and, to make the integral finite in the infrared, μ has to be chosen as the scale at
which the beta function βλh

(μ) vanishes [58].
We note that taking λh < 0 makes h = 0 a maximum of the potential. This might seem quite

odd but in quantum field theory the tunneling requires non-zero kinetic energy, and therefore it
is suppressed even in absence of a barrieriii.

The computation of the pre-factor A is instead much more involved, and the complete treat-
ment would be out of the scope of this thesis. For details on the most recent computations of
the SM vacuum decay we refer to [58, 60]. Here we limit to quote some of the results obtained
in those papers.
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Figure 2.2: Phase diagram in the top and Higgs mass plane. Ellipses show the 68%, 95%
and 99% contours based on the experimental uncertainties on the Higgs and top pole
masses. The shaded bands on the phase boundaries, framed by the dashed lines and
centered on the solid lines, are combinations of the αs experimental uncertainty and the
theory uncertainty. Images taken from [58].

Figure 2.2 shows the phase diagram in the top and Higgs mass plane. The SM lies in a small
band of metastability between absolute stability and complete instability.

iiiThe same argument can be used to explain why cosmic rays or a single Higgs particle with momentum larger
than Λinst do not destabilize our vacuum [59].
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The lifetime of the universe is given by γ−1/4, for which the SM parameters yield [58]

τSM = 10139 years . (2.13)

This has to be compared with the age of our universe which is of the order of 109 years. We thus
see that the difference is really huge and the metastability does not endanger to the existence of
our universe today. The largest uncertainty in the determination of τSM, which is not reported
in (2.13), comes from the determination of the top mass, strong coupling constant and theory
uncertainty due to the matching of the pole masses and MS parameters at the EW scale.

2.3 Stabilization of the EW vacuum by a singlet

While the existence of a much deeper minimum in the SM potential is not a problem in itself, it is
hard to justify how the Higgs ended up in the false vacuum in the early universe. Understanding
the implications of metastability on the cosmological history of our universe will be in fact
the main subject of the following chapters. However, here we would like to introduce a very
simple mechanism that can provide a way to stabilize the Higgs EW vacuum completely. This
mechanism requires just a minimal assumption of physics beyond the SM, namely the addition
of a new scalar. Scalars give a positive contribution to the Higgs effective potential and thus
can modify the RGE running of λh by giving a positive correction to its beta function. The
mechanism that we introduce, however, is more powerful and relies on the fact that the singlet
develops a large VEV. In that case the singlet scalar gives a tree level correction that can make
the Higgs self-coupling positive all the way up to the Planck scale [61,62].

Let us suppose that the SM plus singlet scalar potential in the unitary gauge is

V (φ, h) = λh

4 h2 − μ2
h

2 h2 + λhφ

2 h2φ2 + λφ

4 φ4 − μ2
φ

2 φ2 , (2.14)

where we have assumed a Z2 symmetry for the singlet. We are interested in the situation where
both fields develop a VEV: 〈h〉 = v and 〈φ〉 = u. Provided that the minimum of the potential is
situated in (v, u), the VEVs generate a mixing between the Higgs and the singlet into two scalar
eigenstates with masses given by

m2
1,2 = λhv2 + λφu2 ∓

√
(λφu2 − λhv2)2 + 4λ2

hφu2v2 . (2.15)

Assuming that the lighter state is “Higgs-like” and expanding for u � v, we have

m2
1 � 2

(
λh − λ2

hφ

λφ

)
v2 . (2.16)

The presence of the Higgs-singlet coupling generates a negative correction to the mass squared
of the Higgs implying, for a given Higgs mass, a larger value of λh than in the SM case. The
Higgs self coupling therefore can remain positive at all scales, ensuring stability of the potential.
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A similar effect can be obtained for a singlet scalar with no discrete symmetries. Let us
consider for example the following potential

V (φ, h) = λh

4 h2 − μ2
h

2 h2 + λhφ

2 h2φ2 + σh2φ + λφ

4 φ4 + b3
3 φ3 − μ2

φ

2 φ2 + b1φ . (2.17)

We have included all terms up to dimension four and allowed by the symmetries of the SM.
This potential has a symmetry φ → φ + c, with c constant, accompanied by the corresponding
shift in the parameters which leaves the potential formally invariant [63,64]. The symmetry can
be used to get u = 〈φ〉 = 0. Even in the absence of singlet VEV we obtain a mixing between
the Higgs and the singlet due to the presence of the trilinear coupling σ that can stabilize the
Higgs potential. This mechanism was actually employed in [4] by assuming that the stabilizing
singlet is the inflaton field. This is an exciting example of how the Higgs can act as a link
between cosmology and particle physics, enabling direct detection of the inflaton at colliders.
The inflationary dynamics of such model will be analyzed towards the end of the next chapter.



Chapter 3

Higgs dynamics during inflation

The inflationary period can be dangerous for a metastable universe. The main reason is that, if
no new physics enters before the inflationary scale, the Higgs is a light field and its fluctuations
are proportional to the Hubble rate. If this is too large, the Higgs might be pushed beyond the
instability barrier of the SM. In this chapter we describe the evolution of a metastable Higgs
during inflation: under which conditions the field decays into the true vacuum and what are the
minimal solutions to this problem. At the end of the chapter we briefly discuss the evolution of
a stable Higgs and show the implications of mixing with a light inflaton.

3.1 Higgs fluctuations and vacuum decay

Quantum fluctuations are dangerous for the EW vacuum because they can push the Higgs
over the instability barrier. During inflation, the wavelength of quantum fluctuations grows
as the universe expands. When the wavelength of a particular fluctuation crosses the horizon,
its amplitude freezes and remains unchanged. This corresponds to the creation of a classical
field with an average amplitude proportional to H/2π. Every fluctuation that exits the horizon
contributes to the classical field, but the phases of different fluctuations are not the same. This
makes the evolution of the classical field resemble that of a particle in Brownian motion. The
evolution of the Higgs can therefore be computed with a stochastic approach, where the long
wavelength modes behave as a classical field, and the quantized short wavelength modes provide
a stochastic term for the equation of motion of the classical field. The classical part is assumed
constant within each causally connected patch that forms during inflation and evolving in time
according to the stochastic nature of the process.

Understanding the behavior of h is crucial for understanding whether the Higgs decays into
the true vacuum of its potential during inflation. The nature of the decay depends on the
size of H with respect to the instability scale of the SM Higgs potential Λinst. If H is smaller
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than Λinst, the EW vacuum can decay according to the Coleman-de Luccia bubble nucleation
process [65], while the transition is well described by the Hawking-Moss instanton [66] if H is
comparable to Λinst. In the literature these methods have been applied to the case of the EW
vacuum instability for instance in [67–69]. In this thesis, we describe the Higgs dynamics using
the so-called stochastic approach. This is done by modeling the probability distribution to find
the Higgs at a given value h at time t, which is denoted with P (h, t). This computation had been
performed in the literature either by studying the evolution of P (h, t) using the Fokker-Planck
equation [70–73], or by computing the evolution of h via the Langevin equation [74,75]. Here we
discuss the approach followed in [75] and model the evolution of h using the Langevin equation.
The noise source of the equation is given by the quantum fluctuations of the Higgs field.

The Langevin equation for the long wavelength modes for the effectively massless Higgs can
be written as

dh

dN
+ 1

3H2 V ′(h) = η(N) , (3.1)

where for simplicity we have replaced the time with the number of e-folds N = Ht, and where
η(N) is Gaussian random noise satisfying

〈η(N) η(N ′)〉 = H2

4π2 δ(N − N ′) . (3.2)

The Langevin equation allows to generate iteratively many random realizations of the Higgs
evolution at a given number of e-folds N starting from an initial value h(0). This is done using

h(N + dN) = h(N) − V ′

3H2 dN + r , (3.3)

where r are random numbers which are extracted from a Gaussian distribution with zero mean
and variance σ2 = H2 dN/4π2. The quantity r is generated by the Gaussian noise and depends
completely on the properties of the quantum fluctuations.

Suppose that at the beginning of inflation the Higgs is found at the origin, that is h(0) = 0.
Using (3.3) we find the position of the Higgs at a given e-fold N . By repeating this process
many times, we are able to extract the probability distribution P (h, N). Provided that we take
H � Λinst, what we find is a Gaussian with mean 0 and variance that grows with

√
N . The

motivation for this behavior is the following: the quantum noise term in eq. (3.3) dominates the
Higgs evolution since, near the instability scale, the Higgs quartic coupling vanishes making the
gradient of the potential negligible. This allows the Higgs to fluctuate beyond the instability
barrier during inflation without feeling the slope of the potential and preventing the decay into
the true vacuum. The decay happens when the Higgs value becomes so large that the potential
term dominates.

When the Higgs starts to fall into the true vacuum of the SM potential, the energy density
of the causally connected patch becomes negative creating an AdS bubble. This stops inflation
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locally and initiates a crunching process inside the bubble. However, this happens only inside the
bubble, in fact the shell of the negative energy region expands into the surrounding spacetime
making it possible for the bubble to persist after inflation is over. Therefore, at the end of
inflation, this AdS bubble starts to expand at the speed of light and swallows up all the other
regions that enter in causal contact with it. The presence of one of such bubbles in our past
light-cone would be incompatible with the existence of our universe. Requiring that no bubble
formed in our past lightcone results in the following bound on the Hubble rate and the value of
the Higgs at the local maximum of its potential: H/hmax � 0.07 [76].

The situation differs for patches of the universe where the Higgs is found close to the maximum
hmax at the end of inflation but where the fall into the true vacuum has not started yet. The fate
of these regions strongly depends on post-inflationary dynamics. Thermal effects, which would
kick in during reheating, might lift the true vacuum and push the Higgs towards the origin. In
that case we can expect that, as the temperature decreases, the Higgs will find itself trapped in
the EW vacuum.

Before closing this section we would like to make one final remark. Changing the initial
Higgs value from h(0) = 0 to a different value increases the probability of the decay because
the resulting Gaussian has a shifted mean towards the instability barrier. This would require
a lower Hubble rate during inflation in order to avoid vacuum decay. What is more important
is that the actual initial Higgs value is not fixed by any dynamics and, thus, it is completely
arbitrary. As a matter of fact, assuming that the Higgs starts in the EW vacuum corresponds to
a fine-tuning of the Higgs initial conditions. This introduces an additional problem connected
to the vacuum stability related to the initial conditions of the Higgs field. The assumption that
the Higgs starts at the origin is in principle just an assumption. Requiring that the Hubble rate
is small during inflation is not enough to ensure stability if we cannot explain why the Higgs
started its evolution in the EW vacuum and not in the true vacuum in the first place.

3.2 Stabilizing the Higgs during inflaton

The problem described in the previous section stems essentially from the fact that the Higgs
mass is typically much smaller than the Hubble rate during inflation. Therefore, the simplest
solution would be to assume the existence of a mechanism that generates a positive effective
mass for the Higgs which is larger than the Hubble rate during inflation. In this thesis we
focus on two BSM operators that can produce such a mass: a direct coupling of the Higgs to the
inflaton in the form λhφφ2H†H, and a non-minimal coupling of the Higgs with gravity ξhH†HR.
It is remarkable that both couplings are dimension 4 and also perfectly consistent with the
symmetries of the SM.

We begin by discussing the implications of a Higgs mass mh larger than the Hubble rate on
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the Higgs dynamics in a toy model. In this model we have only the Higgs field and the inflaton.
In the unitary gauge the scalar sector potential takes the form

V (φ, h) = V (φ) + 1
2m2

hh2 + 1
4λhh4 . (3.4)

Note that we do not specify any particular form for the inflaton potential. The Hubble rate
for the Higgs-inflaton system is determined from the first Friedman equation (1.6) and can be
written as

3H2 = 1
2 ḣ2 + 1

2 φ̇2 + V (φ, h) . (3.5)

Since we are interested in the inflationary stage, the time derivative of the inflaton is negligible
because it is slowly rolling. In addition, we require that m2

hh2/2 dominates the Higgs potential
and that the Higgs self-interaction is negligible.

When h is large, the Hubble rate is dominated by the Higgs effective mass term and the Higgs
equation of motion becomes

ḧ +
√

3
2

√
ḣ2 + m2

hh2 ḣ + m2
hh = 0 . (3.6)

Let us follow the solution of this equation presented in [6]. In this regime the Hubble rate
evolution is given by

6H2 � ḣ2 + m2
hh2 . (3.7)

This allows us to use the Hubble rate H and θ as the radius and the angle of a new polar
coordinate system satisfying the following relations

ḣ =
√

6H sin θ , (3.8)

mhh =
√

6H cos θ . (3.9)

In terms of these new variables and from (3.6) we get the following differential equations

Ḣ = −3H2 sin2 θ , (3.10)

θ̇ = −mh − 3
2H sin 2θ . (3.11)

The first of these equations tells us that H decays in time. Thus, for large t, we can neglect the
last term on the right-hand side of (3.11) and integrate it

θ � −mht . (3.12)

Substituting this into (3.10) we obtain

H(t) � 2
3t

(
1 − sin(2mht)

2mht

)
. (3.13)



23

This solution is valid only in the limit mht 
 1, therefore we can expand the term in round
brackets in powers of (mht)−1. Substituting (3.12) and (3.13) into (3.9), we obtain

h(t) �
√

8
3

cos(mht)
mht

+ O
(
(mht)−2

)
. (3.14)

We see from (3.14) that the amplitude of h decreases with time, thus pushing the Higgs towards
the origin. When h decreases enough and m2

hh2/2 becomes smaller than the inflaton potential
V (φ), we enter in another regime, where the Hubble rate evolution is well approximated by

3H2 � V (φ) . (3.15)

During inflation the inflaton slowly rolls and maintains approximately a constant value, implying
that also the Hubble rate remains constant in time. The Higgs equation of motion

ḧ + 3Hḣ + m2
hh = 0 (3.16)

during that regime has the two solutions

h± = C± exp
[
− t

2

(
3H ±

√
9H2 − 4m2

h

)]
. (3.17)

Since we are assuming m2
h 
 H we get |h(t)| � |h(0)| e−3Ht/2, showing that the Higgs amplitude

goes to zero exponentially.
We have seen that the easiest way to overcome problems related to the EW vacuum instability

during inflation is to assume a mechanism that generates a Higgs effective mass larger than the
Hubble rate. This mechanism allows us to solve the issues that were raised in the previous
section: the problem of the Higgs initial conditions and the decay due to large quantum fluctu-
ations. At the beginning of this section we quoted two BSM operators that can generate a large
mass term for the Higgs. Let us see how these work in details.

3.2.1 Stabilization via Higgs-inflaton couplings

Let us first consider the Higgs-inflaton coupling and take quadratic chaotic inflation as the
inflationary model [77]. This way of stabilizing the Higgs was first discussed in [78]. In this
model the scalar potential has the form

V (φ, h) = m2

2 φ2 + λhφ

2 φ2h2 + λh

4 h4 . (3.18)

As the first constraint we should require that the portal coupling λhφ does not lead to large
radiative corrections to the inflaton potential, as that would spoil the predictions of the infla-
tionary model. The radiative corrections can be estimated, for instance, via the computation of
the Coleman-Weinberg effective potential [25]. The largest correction comes from the term

ΔV � λ2
hφ

16π2 φ4 log λhφφ2

m2
φ

. (3.19)
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When we take the typical values m � 10−5 and φ ∼ 10, we get the following upper bound for
the portal coupling

λhφ � 10−6 . (3.20)

Secondly, we require that the Higgs potential is dominated by the coupling with the inflaton.
This puts a lower bound on the inflaton field value:

φ >

√
|λh|
2λhφ

h . (3.21)

A well motivated assumption is to take the Higgs initial value smaller than the Planck scale,
that is h(0) � 0.1, in order to keep higher dimensional operators unimportant. In addition,
taking also |λh| � 0.1 we get from (3.21) that φ � 20. We just note here that this is just
a representative value, in fact the initial value of the Higgs can be lower and thus also the
lower bound of the inflaton can decrease accordingly. However, the values we find are perfectly
consistent with those we quoted in Section 1.2.3.

The portal coupling λhφ has a lower bound which is given by requiring the Higgs effective
mass to be larger than the Hubble rate. Clearly, if the Hubble rate is dominated by m2

hh2 the
condition is automatically satisfied for h < 1. On the other hand, when the Hubble rate is
dominated by the inflaton mass, the Higgs effective mass is larger than the Hubble rate only if

m2
h > H2 −→ λhφ >

m2
φ

6 � 10−10 . (3.22)

The coupling λhφ is not the only Higgs-inflaton coupling affecting the Higgs dynamics. In
principle, also a trilinear coupling of the form σH†Hφ is present if the inflaton does not possess
any symmetry preventing it. We would like, however, to point out that stabilization with that
coupling is a bit trickier in the sense that the mechanism is operative depending on the sign of
the inflaton field and on the sign of σ. Therefore, although it is possible to stabilize the Higgs
with the trilinear coupling, we prefer to focus only on the quartic coupling.

To summarize, we have seen that the Higgs-inflaton coupling can provide a natural mechanism
for explaining why the universe ends up in the EW vacuum at the end of inflation. The coupling
must be found in the range

10−10 � λhφ � 10−6 , (3.23)

where the upper bound is to avoid too large radiative corrections to the inflaton potential, and
the lower bound by requiring that the Higgs effective mass is larger than the Hubble rate during
inflation.

3.2.2 Stabilization via non-minimal coupling with gravity

In this section we explain how a Higgs non-minimally coupled with gravity can develop a mass
which is Higher than the Hubble rate. This mechanism was first suggested in [71] and later
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discussed also in [79]. The non-minimal coupling of the Higgs with gravity has the interesting
property of being generated via loop corrections and thus it runs with the renormalization scale
according to equations that can be found in [79–82]. The fact that it runs implies that even if
we suppose that at some scale is set to zero, a non-zero value will be generated at a different
scale. Therefore, if we want to consider a realistic model for the Higgs evolution, we must take
its effect into consideration. Besides, we would like to point out that also the Higgs-inflaton
coupling runs with the energy [1], and thus must be taken into account for the same reasons. In
a realistic setting we thus expect both couplings to be present at the same time. Nevertheless,
in this section we restrict our discussion to the case where the Higgs-inflaton coupling λhφ is
neglected.

The starting point is the action of the system in the so-called Jordan frame

S =
∫

d4x
√−ĝ

[
1
2(1 − ξhh2)R − 1

2∂μ φ∂μφ − 1
2∂μh ∂μh − m2

φ

2 φ2 − λh

4 h4
]

, (3.24)

where ξh is a dimensionless coupling constant and a hat denotes the metric in the Jordan frame.
Again we consider quadratic chaotic inflation even though the results is applicable to other
models as well.

The usual procedure to follow when we have a scalar field non-minimally coupled with gravity
is to perform a conformal transformation of the metric [83],

gμν = Ω2ĝμν , (3.25)

where the rescaling factor is defined as

Ω2(h) = 1 − ξhh2 . (3.26)

The resulting frame is called the Einstein frame and the action becomes

S =
∫

d4x
√−g

[
1
2R − 1

2Ω2 ∂μ φ∂μφ − 1
2

6(ξhh)2 + Ω2

Ω4 ∂μh ∂μh − m2
φ

2Ω4 φ2 − λh

4Ω4 h4
]

. (3.27)

In this frame the gravity part of the action takes the usual Einstein-Hilbert form that we
introduced in (1.4), at the expense of introducing non-canonical kinetic terms for the inflaton
and the Higgs. Unfortunately, the field space is curved and therefore it is not possible to get
two canonically normalized fields at the same time. In our discussion we choose to canonically
normalize only the Higgs field via the transformation

dhc =

√
6ξ2

hh2 + Ω2

Ω4 dh , (3.28)

where the canonically normalized field is denoted with the subscript c. The differential equa-
tion 3.28 can be solved analytically. However, we are interested only in the regime where hc is
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much smaller than the Planck scale and we make the approximation

ξhh2
c , ξ2

hh2
c � 1 . (3.29)

In this regime the Higgs in the Jordan frame and the canonically normalized Higgs in the Einstein
frame are related as follows

hc � h

[
1 +

(
ξh + 1

6

)
ξhh2

]
. (3.30)

The potential in the Einstein frame becomes

U(φ, hc) = V (φ, hc)
Ω4 =

m2
φ

2 φ2 + ξhm2
φ φ2h2

c + λh

4 h4
c + . . . , (3.31)

where dots denote higher than 4 dimensional operators which are small and therefore neglected.
It is then apparent from (3.31) that the Higgs-inflaton and the non-minimal coupling with

gravity are equivalent in this model. In fact, the equivalence between the model described in
the previous section and the one we are discussing becomes manifest when we perform the
substitution

ξhm2
φ → λhφ

2 (3.32)

in the potential. The constraints we found in (3.23) can then be applied also to ξh and the
resulting allowed range becomes

0.1 � ξh � 104 , (3.33)

where again the upper bound is given by requiring small radiative corrections to the inflaton
potential and the lower bound by requiring that the Higgs effective mass is larger than the
Hubble rate during inflation. We note that in this approximation additional corrections come
from other operators such as h2

c ∂μφ ∂νφ. These can be neglected because they lead only to
higher derivative interactions and small corrections to the kinetic terms.

We return to the relation between the EW vacuum stability and the Higgs-inflaton and non-
minimal coupling with gravity in the next chapter, when we discuss the Higgs evolution during
reheating.

3.3 Higgs evolution in a stable potential

So far we have discussed the implications of the EW vacuum instability on the Higgs evolution
during inflation. We have discussed temporary solutions to the instability problem, where the
Higgs potential is modified during inflation but left untouched at lower energies. However,
we showed in Section 2.3 that just adding a SM gauge singlet is enough to make the Higgs
completely stable. In such a case, the quantum fluctuations and the initial conditions would not
be a problem for the universe evolution because the EW vacuum would be the global minimum
of the Higgs potential.
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At the beginning of inflation the Higgs value can be slightly below the Planck scale and thus
much higher than the Hubble rate. In that case the Higgs is effectively massive and oscillates
with decreasing amplitude similar to the one we described in Section 3.2. Eventually the Higgs
value becomes small such that its effective mass drops below the Hubble rate. From that point on
the Higgs becomes effectively massless and its dynamics can be described following the stochastic
approach introduced in Section 3.1. The resulting probability distribution for the Higgs value
has zero mean, due to the symmetricity of the potential, but non-zero variance [74, 84] which
corresponds to the creation of a Higgs condensate. This condensate will eventually decay into
SM particles after inflation. This is what happens if the stable Higgs is just a spectator during
inflation. However, its role can be much more active in the early universe.

The exciting possibility that the Higgs itself can be the inflaton opens up if the SM Higgs
potential is completely stable [82,85–88]. In this model the Higgs is coupled non-minimally with
gravity in the same fashion as in (3.24) with the field φ absent. In order to get the correct size of
temperature perturbations in the CMB spectra, the non-minimal coupling with gravity has to
take a very large value, that is of the order of 104 [89]. A very nice feature of the model, besides
explaining inflation with just the particle content of the SM, is that the predicted tensor-to-
scalar ratio r lies right in the sweet spot of the data observed by PLANCK [15]. Unfortunately,
models with a non-minimally coupled Higgs-like fieldi have cutoff scale lower than the Planck
scale [90–93]. The problem lies essentially in the fact that the energy scale of inflation in these
models 1/

√
ξh is higher than the lowered cutoff scale 1/ξh. However, some authors disagree

on the actual existence of the unitarity problem. The proposed argument is that the cutoff
of the model depends on the background field value of the Higgs. During Higgs-inflation that
value is large and this increases the cutoff to values larger than 1/ξh [94, 95]. Apart from these
considerations, it is easy to find solutions to the unitarity problem by adding new degrees of
freedom. For instance, we can assume the existence of an additional real scalar that completes
the theory of Higgs-inflation in the ultraviolet [96, 97]. Completing the theory increases the
cutoff, thus preserving unitarity during inflation. Unfortunately, the addition of new degrees of
freedom makes the Higgs-inflation scenario less appealing because the biggest advantage, that
is the minimality of the model, is lost.

3.4 Higgs-inflaton mixing

In the last section of this chapter we discuss a very simple model that shows how the Higgs can
relate collider physics to early universe cosmology. In this model the Higgs potential is made
completely stable via the mechanism described in Section 2.3, where the role of the singlet field

iWe refer to fields with a quartic potential as Higgs-like.
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is played by the inflaton. We suppose that both fields are non-minimally coupled with gravity
and that all operators up to dimension 4, Lorentz invariant and allowed by the SM gauge groups
are present in the model. The action in the Jordan frame takes the form

S =
∫

d4x
√−ĝ

[1
2Ω2R̂ − 1

2 ĝμν∂μφ∂νφ − 1
2 ĝμν∂μh∂νh − V (φ, h)

]
, (3.34)

where

Ω2 = 1 + ξφφ2 + ξhh2 , (3.35)

V (φ, h) = λh

4 h4 − μ2
h

2 h2 + λhφ

2 h2φ2 + σh2φ + λφ

4 φ4 + b3
3 φ3 − μ2

φ

2 φ2 + b1φ . (3.36)

Actually, also the term φR̂ should be included in the action (3.34) since it respects all the criteria
of dimensionality and symmetry that we are considering. However, it is possible to eliminate it
by a field redefinition of φii.

The study of the model proceeds in the usual way. We first make a conformal transformation
gμν = Ω2 ĝμν in order to go to the Einstein frame and then introduce canonically normalized
fields. Unfortunately, as was the case in Section 3.2.2, it is not possible to canonically normalize
both fields simultaneously. Moreover, the non-minimal couplings introduce kinetic mixing in the
form ξφ ξh gμν∂μh ∂νφ [83], which makes the disentanglement of the two fields even more compli-
cated. To keep the model tractable we are thus forced to make some simplifying assumptions.

We first assume that inflation is driven only by the inflaton in a way similar to that of Higgs-
inflation. This assumption has two main benefits. The first one is that the model, as is the
case for Higgs-inflation, fits PLANCK data very well [15], since the predicted tensor-to-scalar
ratio is very small. The second is that λφ is a free parameter and it is possible to find a sizable
region of parameter space for which the energy scale of inflation is lower than the cutoff scale,
thus preserving unitarity. A second assumption is that the Higgs is heavy during inflation,
which makes its value smaller than that of the inflaton, h � φ, via the mechanism described
in Section 3.2. Also, we assume that the Higgs non-minimal coupling is smaller than that of
the inflaton, |ξh| � ξφ. Finally, assuming the dimensionful parameters are far below the Planck
scale, all terms except λφφ4 and ξφφ2R can be neglected during inflation [4].

Our assumptions allow us to introduce a canonically normalized inflaton field via the trans-
formation

dχ

dφ
=

√
1 + ξφ(1 + 6ξφ)φ2

1 + ξφφ2 , (3.37)

which, for large ξφφ 
 1, gives χ �
√

2
3 ln ξφφ2 and scalar potential

U(χ) � λφ

4ξ2
φ

(
1 − e−

√
2
3 χ

)2
, (3.38)

iiSee [98] for a recent study with also φR present.
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where U ≡ V/Ω4. The constraints on ξφ and λφ coming from the CMB normalization [89] and
unitarity are

λφ � 2 × 10−5 , (3.39)

ξφ � 2 × 102 . (3.40)

Further constraints are imposed on the parameter λhφ. One is imposed by requiring that ra-
diative corrections to the inflaton potential generated by Higgs loops are small. Secondly, λhφ

contributes to the RGE running of λφ with a positive sign. This makes the value of λφ grow
with the energy scale and violate the unitarity bound during inflation. In [4] it was found that
the second requirement gives a more severe constraint.

This model introduces a mixing between the Higgs and the inflaton at low energies which
opens up the exciting possibility to observe the inflaton at colliders such as the LHC. In fact,
the mixing creates two scalar particles with different masses and the lighter one can be identified
with the scalar particle that has been observed at the LHC. On the other hand, the heavier
scalar state could be observed in the future via its decay into the lighter state [64, 99–101].
Furthermore, the mixing can be observed as a universal reduction of the Higgs couplings to
gauge bosons and fermions [102].
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Chapter 4

Higgs dynamics after inflation

The reheating stage is very important for the universe evolution. This is the moment in the
cosmic history when particles we observe today are produced. Unfortunately, reheating dynamics
strongly depends on the underlying particle theory we are assuming, making it very hard to draw
generic conclusions. Nevertheless, it is possible to identify salient features of preheating and their
implications on the issue of vacuum metastability.

4.1 Inflaton evolution after inflation

Our study of reheating starts from understanding the inflaton evolution at the end of inflation.
After inflation the universe is in a cold and empty state where the energy density is dominated by
the inflaton φ. The inflaton can still be regarded as homogeneous since spatial inhomogeneities
have been washed away by the accelerated expansion. This means that the inflaton equation of
motion can be written as

φ̈ + 3Hφ̇ + dV

dφ
= 0 , (4.1)

where V (φ) is the inflaton potential. The Hubble rate is given by the first Friedman equa-
tion (1.6) and, since the universe is dominated by the inflaton field, is equal to

H2 = 1
3

(1
2 φ̇2 + V (φ)

)
. (4.2)

For definiteness we consider a simple model of chaotic inflation where the inflaton potential has
the form m2

φφ2/2. We choose to work with a very simple model to highlight all the relevant
features of reheating dynamics. The results that we obtain here and in the following sections
can then be generalized to other large field inflationary models.

We immediately notice from the inflaton equation of motion (4.1) and the form of the Hubble
rate (4.2) that the system evolution resembles that we described in Section 3.2 for the case of a

31
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massive Higgs. In the limit mφt 
 1, we get from (3.14) that the inflaton evolves as

φ(t) � Φ0
mφt

cos(mφt) , (4.3)

where in this chapter the subscript 0 denotes quantities at the initial stage of reheating. Intro-
ducing (4.3) in the Friedman equation (4.2) and averaging over several oscillations, we see that
the evolution of the scale factor is a(t) ≈ a0(t/t0)2/3, which is that of non-relativistic matter.
The amplitude of oscillations of the inflaton decreases with the expansion as Φ = Φ0/a3/2. Re-
heating occurs when the energy density of the inflaton is transferred to the energy density of
other particles and its amplitude decreases much faster than a−3/2.

4.2 Perturbative reheating

The theory of perturbative reheating was first developed in [103–105]. Nowadays it is known
this is usually preceded by a stage of non-perturbative production of particles which can be very
efficient. These considerations are always model dependent but usually the perturbative decay
of the inflaton remains the last stage of reheating, in which the transfer of the energy density
into other particles completes. In this section we describe the features of perturbative reheating
and in the next sections we study the non-perturbative stage.

Soon after inflation and before particle production becomes effective, the inflaton is a homo-
geneous scalar field oscillating with frequency mφ. This can be considered as a coherent wave of
φ-particles with zero momenta and with particle density nφ = ρφ/mφ, where ρφ = (φ̇2+m2

φφ2)/2
is the inflaton energy density. We note that in absence of particle production the inflaton energy
density decreases as ρφ ∼ a−3 as we would expect from non-relativistic matter.

Let us assume that the inflaton couples with two other fields, a fermion ψ and a scalar h, with
bare mass much smaller than that of the inflaton, in such a way that the inflaton perturbative
decay is allowed. Specifically, the inflaton coupling with the two additional fields is given by the
following operators:

Lint = −σφh2 − gφψ̄ψ , (4.4)

where σ and g are the couplings.
For the homogeneous inflaton, the equation of motion including non-gravitational quantum

corrections is [106]
φ̈ + 3Hφ̇ +

[
m2

φ + Σ(ω)
]

φ = 0 , (4.5)

where Σ(ω) is the self-energy of the inflaton field with four-momentum kμ = (ω, 0, 0, 0), where
ω = mφ. The self-energy operator has a real part that contributes to the renormalization of
the inflaton mass and, for mχ, mh < mφ/2, an imaginary part, which we denote with Im Σ(ω).
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Since after inflation m2
φ 
 H2, assuming that m2

φ 
 Im Σ and neglecting the time dependence
of H and Σ(ω), we find from (4.5) that near the point φ = 0 [106]

φ ≈ Φ0 exp(imφt) exp
[
−1

2

(
3H + Im Σ(mφ)

mφ

)
t

]
. (4.6)

From the unitarity relations [36,107], it follows that

Im Σ(mφ) = mφΓ , (4.7)

where Γ is the total decay rate of φ particles. Thus we see that two regimes are possible. When
Γ � 3H, the inflaton decreases as a−3/2 and no particle production occurs. On the other hand,
when Γ 
 3H, the decrease of the inflaton amplitude is mainly driven by its decay. Note that
in this regime the inflaton energy density decreases exponentially, i.e. ρφ ∼ e−Γt, which is what
we would expect interpreting φ as a coherent wave.

The total decay rate can be computed as the sum of the two decay channels available for the
inflaton, which are given by the two operators in eq. (4.4). Assuming the inflaton mass is much
larger than that of the decay products, we obtain the decay rates:

Γ(φ → ψψ) = g2mφ

8π
, Γ(φ → hh) = σ2

8πmφ
. (4.8)

The couplings that enter into these quantities cannot be arbitrarily large. In fact, they are
bounded from above by requiring that radiative corrections do not spoil the inflaton potential
during inflation. This implies that initially Γ < H and the decrease in the energy density of the
inflaton φ is determined only by the expansion of the universe. During this period particles can
still be produced but their contribution to the energy density remains negligible. This is due
to the fact that they are relativistic and their energy density decreases faster than that of the
inflaton. Hence in this model, the energy density will be dominated by the produced particles
only when the inflaton decay is complete. This happens when Γ ∼ 3H and at that point the
energy density takes the value

ρr = Γ2

3 , (4.9)

where the subscript r tells us that this is the energy density when reheating is complete. If
the relativistic particles that are produced interact strongly enough with each other, they reach
thermodynamic equilibrium and acquire a temperature Tr, the so-called reheating temperature.
If thermalization is instantaneous, ρr does not have time to decrease because of the expansion
and the reheating temperature is determined by the relation [106]

ρr ∼ π2

30N(Tr)T 4
r ∼ Γ2

3 , (4.10)
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where N(Tr) represents the number of relativistic degrees of freedom at temperature Tr. For re-
alistic models we have N(Tr) ∼ 102−103, so that the relation between the reheating temperature
and the inflaton decay rate is given by

Tr ∼ 0.2
√

Γ . (4.11)

4.2.1 Reheating and the Higgs inflaton couplings

Here we would like to briefly discuss what are the implications of reheating for the Higgs boson.
Having successful reheating means that all the energy density stored in the inflaton sector
transfers completely into the SM sector. This requires the inflaton to couple in some way to
SM particles via some BSM operator. An important consequence is that these operators induce
the Higgs-inflaton couplings radiatively. In fact, if we take any realistic reheating model and
compute quantum corrections we observe that operators of the form λhφφ2H†H and σφH†H

are generated at loop level [1].
In these models we introduce couplings of the inflaton with BSM or SM fields in order to

provide a decay channel for the inflaton into SM particles. The Higgs-inflaton couplings are then
generated via loops because the Higgs couples with SM particles. The loops are divergent and the
introduction of counterterms is needed in order to renormalize the model. The renormalization
group thus implies that the couplings run with the energy, meaning they cannot be set to zero
at all energies.

These considerations tell us that a consistent study of the Higgs dynamics in the early universe
must be done taking into account the Higgs-inflaton couplings. In fact, they can have dramatic
consequences during inflation and, as we will see in the next sections, during the subsequent
stage of non-perturbative particle production.

4.3 General theory of preheating

In Section 4.2 we discussed the formalism of perturbative reheating. That formalism however
does not take into account the coherent nature of the inflaton field. For this reason a new for-
mulation of reheating was developed in [108, 109] that took into account quantum mechanical
particle production in a classical background inflaton field. These ideas were then developed
further in [110,111] and then analyzed in detail in [112]. In those papers the authors discovered
that at the beginning of the inflaton oscillations the inflaton decays explosively into other parti-
cles. In particular, they noted that this stage of particle production, that they called preheating,
cannot be described by the usual approach based on perturbation theory. In the following
subsections we are going to describe preheating in detail and show how this non-perturbative
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phenomenon proceedsi. Later we will also discuss what are the implications on the Higgs insta-
bility of explosive particle production.

4.3.1 Preheating in Minkowski space

In this section we start by considering the simplified situation of a non-expanding universe.
This approximation contains all the interesting features of preheating and the translation to the
expanding universe will require only slight modifications. Preheating was first introduced for
the case of a scalar field coupled to the inflaton. It is possible to have preheating for fermions as
well [116–119], however we neglect them here because we are ultimately interested in the Higgs
dynamics only. Let us consider the operator

Lint = −1
2λhφφ2h2 . (4.12)

The dynamics of the quantum field h can be studied in Fourier space by expanding it in its
eigenmodes hk as

h(t, x) =
∫

d3k
(
âkhk(t)e−ikx + â†

kh∗
k(t)eikx

)
. (4.13)

where â†
k and âk are the usual creation and annihilation operators. The functions hk are solutions

to the classical equation of motion,

ḧk +
(
k2 + λhφΦ2 cos2 mφt

)
hk = 0 , (4.14)

where we substituted in an explicit form the inflaton field. Note that the amplitude of oscillations
of Φ is constant because we are not taking into account the universe expansion.

It is possible to rewrite eq. (4.14) in the following form

h′′
k + (Ak − 2q cos(2z)) hk = 0 , (4.15)

where primes denote derivative with respect to the rescaled time z = mφt − π/2 and the param-
eters Ak and q are defined as

Ak ≡
(

k

mφ

)2

+ 2q ,

q ≡ λhφΦ2

4m2
φ

.

(4.16)

Equation (4.15) is known in the literature as the Mathieu equation [120]. Solutions to the
Mathieu equation are periodic functions multiplying the exponential of μk z, where μk is a
complex number, which depends on the parameters Ak and q, usually known as the Floquet
exponent. When μk is purely imaginary the solution hk is just a product of two periodic

iFor reviews on preheating, see for instance [113–115]
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Figure 4.1: Stability and instability regions of the Mathieu equation. The horizontal
axis is the parameter q, while the vertical axis Ak. The shaded regions corresponds to
exponentially growing solutions.

functions, whereas if μk has a non-zero real part, the amplitude of oscillation of the solution hk

grows exponentially as
hk ∝ eRe(μk)z . (4.17)

This growth is known in the literature as parametric resonance [121].
Since the exponential growth depends exclusively on the value of the parameters Ak and

q, one can plot charts like that in Fig. 4.1, where the shaded regions represent values of the
parameters that lead to parametric resonance. The strength of the resonance is determined
by the parameter q. In fact, it can be seen from the plot that when q � 1 the resonance
happens only for narrow bands of modes k, while instability bands become much broader when
q 
 1. The case q 
 1 is the more interesting since it is relevant for preheating in an expanding
universe.

The Higgs effective mass is given by mh(t) =
√

λhφφ(t). This is much larger than the inflaton
mass mφ and during one inflaton oscillation the field h oscillates many times. This means that
the effective mass mh(t) is changing adiabatically. However, adiabaticity is lost when φ becomes
small, and when this happens particle production occurs. In particular, adiabaticity is violated
when

|ω̇k| � ω2
k , (4.18)

where ωk =
√

k2 + m2
h(t). By taking the explicit form of the inflaton φ(t) = Φ cos mφt, we see

that φ ≈ 0 when t is close to tj = m−1
φ (j + 1)π/2. Condition (4.18) can be rewritten in the
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Figure 4.2: Evolution of the eigenmode hk and its occupation number nk as a function of
mφt in the broad resonance regime. The resonance appears in bursts when the inflaton
crosses the minimum of its potential as described in the text. Note that the occupation
number nk is an adiabatic quantity and it is well defined only when φ is far from zero.
Ticks on the horizontal axes correspond to φ = 0.

vicinity of tj for Δt � 1/m as

Δt/Δt∗
(k2Δt2∗ + (Δt/Δt∗))3/2 � 1 , (4.19)

where
Δt∗ � (

√
λhφΦmφ)−1/2 . (4.20)

The adiabaticity condition is thus violated only for modes

k < k∗ � Δt−1
∗ � mφ(

√
λhφΦ/mφ)1/2 , (4.21)

during short time intervals Δt ∼ Δt∗.
The growth of the modes hk leads to a growth of the occupation number of the h particles.

This can be seen from the explicit expression of the number density nk, which is defined as usual
as the energy density of the particles with momentum k divided by the energy of each particle:

nk = 1
2ωk

(
ḣ2

k + ω2
k|hk|2

)
− 1

2 , (4.22)

where the last term accounts for the subtraction of the zero-point energy of the mode. In the
broad resonance regime the occupation number nk remains constant during most of the inflaton
oscillation. When the change in the frequency of oscillation ωk ceases to be adiabatic, particles
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with the corresponding momentum are produced. This happens at each zero crossing of the
inflaton field. In Fig. 4.2 we plot the evolution in time of a solution of the Mathieu equation hk

and its occupation number nk for k in the range (4.21).

4.3.2 Preheating in an expanding universe

The case of an expanding background can be studied with the methods applied in the previous
section, by expanding the field h in its Fourier modes hk and writing their equations of motion.
It turns out that their evolution equations take a much simpler form if we introduce the rescaled
modes Xk defined as Xk ≡ a3/2hk, where a is the scale factor. In a matter dominated universe,
we obtain the following equation

Ẍk + ω2
kXk = 0 , (4.23)

where
ω2

k =
(

k

a

)2
+ λhφΦ2 cos2(mφt) , (4.24)

and Φ(t) ≈ Φ0/mφt as found in section 4.1. The equation of motion can be rewritten in the
form of a Mathieu equation provided that we perform the substitutions Ak = (k/amφ)2 + 2q,
q = λhφΦ2/4m2

φ and z = mφt − π/2.
The parameters Ak and q decrease in time because of their dependence on k/a and Φ. Thus,

in contrast to the situation of a static universe, a generic solution Xk of eq. (4.23) moves along
a line on the Mathieu plane of Fig. 4.1. The movement points toward the origin of the plane
because both Ak and q decrease. When they get inside the stability region near the origin,
preheating for that particular mode stops and its occupation number remains constant.

To get a better understanding of the physics involved let us start by looking at numerical
solutions to the system. In Fig. 4.3 we plot the evolution in time of a particular Xk and
its corresponding occupation number nk. The whole evolution of the mode up to the end of
preheating is depicted on the left-hand side of the figure, whereas on the right-hand side we find
the initial stages of preheating.

We begin the discussion by first focusing on the initial instants of the time evolution. In the
simplest models of preheating, Ak and q start with values much higher than O(100). In this
situation the behavior of the system resembles that of broad resonance but with an important
modification. As can be seen from the right plot of Fig. 4.3 the occupation number nk does
not increase every time the inflaton crosses the minimum of the potential. In fact, sometimes
it decreases. This behavior is mainly due to the fact that ωk changes dramatically at every half
oscillation of the inflaton due to its dependence on k/a and Φ. We can compare the behavior of
Xk in Fig. 4.3 with that in Fig. 4.2. We see that the number of Xk oscillations changes every half
inflaton oscillation because of the changing in ωk. This makes it hard to find Xk with the right
phase in order to be excited when adiabaticity is broken. Sometimes destructive interference
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Figure 4.3: Evolution of a particular Xk and its occupation number nk in an expanding
background as a function of mφt. One the left-hand side the evolution is followed up to
mφt = 400, while on the right-hand side only the first 8 zero crossing of the inflaton are
plotted. Parameters are the same in both sides and correspond to an intial q0 ∼ 3 × 103 .
The different features of the plots are described in the text. Ticks on the horizontal axes
of the plots in the right-hand side correspond to tj for which φ(tj) = 0.

occurs and the occupation number decreases. Unfortunately, when adiabaticity is broken it is
not possible to predict whether the mode will be excited or not. This gives some randomness
to the process and for this reason this is called stochastic resonance. The random nature of the
process is relevant only at the first moments of preheating, when q 
 100.

As q becomes smaller the behavior of the system gets closer to that of broad resonance in
Minkowski space. Unstable regions become less dense and sometimes it is possible to find
the mode Xk inside stable bands at the inflaton crossing. This can be seen in the left panel
of Fig. 4.3. In the evolution of nk we have a plateau for mφt ∼ 60 − 80 where the occupation
number remains constant. At that moment the momentum Xk is crossing the stable band before
the last unstable region closer to the origin of the plane in Fig. 4.1. After the plateau, the mode
Xk crosses the last instability band where the stochastic behavior of the resonance disappears
and the growth remains exponential during the whole crossing. This continues until the mode
reaches the stable region close to the origin, where the resonance stops and the magnitude of
the occupation number remains constant.
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4.3.3 Analytic theory of preheating

In this section, we present an analytic study of preheating in an expanding background as done
in ref. [112]. The results will be relevant later when we apply them to the Higgs dynamics during
preheating.

We have seen from the previous section that the modes Xk evolve adiabatically when the
inflaton is far from the minimum of its potential. Using the adiabatic approximation the modes
can be rewritten as

Xk(t) ≡ αk(t)√
2ω

e−i
∫ t

ω dt + βk(t)√
2ω

ei
∫ t

ω dt , (4.25)

where the coefficients αk(t) and βk(t) are analogous to the coefficients of the Bogolyubov trans-
formation that diagonalize the Hamiltonian of the field h at each instant t. We assume a vacuum
initial condition for the h modes with αk = 1 and βk = 0.

With our choice of the initial conditions, the occupation number of the mode Xk defined by

nk = ωk

2

(
|Ẋk|2

ω2
k

+ |Xk|2
)

− 1
2 . (4.26)

is given by nk = |βk|2. The coefficients αk(t) and βk(t) are constant in the adiabatic regime and
change their value only when the inflaton crosses the minimum of its potential. We label the
evolution during two consecutive zero crossing tj−1 and tj with the label j, for j = 1, 2, 3, . . . .

The interaction term λhφφ2(t) in eq. (4.23) can be approximated in the vicinity of tj as

λhφφ2(t) ≈ k4
∗(t − tj)2 , (4.27)

where k∗ = (
√

λhφΦm)1/2 as in eq. (4.21), and Φ is the current amplitude of the inflaton
oscillations.

We introduce a rescaled time variable τ = k∗(t − tj) and momentum κ = k/ak∗ for simplicity.
With this notation eq. (4.21) reduces for each j to

d2Xk

dτ2 +
(
κ2 + τ2

)
Xk = 0 . (4.28)

We see that near the zeros of the function λhφφ(t) the problem reduces to the scattering of the
plane wave Xk(τ) on a parabolic potential.

A general solution to eq. (4.28) is the linear combination of the parabolic cylinder func-
tion [122]: W (−κ2/2; ±√

2τ). The reflection and transmission coefficients for the scattering on
the parabolic potential can be found from these analytic solutions and are

Rk = − ieiϕk√
1 + eπκ2

, (4.29)

Dk = e−iϕk√
1 + eπκ2

, (4.30)
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with the angle ϕk given by

ϕk = arg Γ
(

1 + iκ2

2

)
+ κ2

2

(
1 + ln 2

κ2

)
, (4.31)

where Γ is the Gamma function.
The reflection and transmission coefficients are used to determine the relation between the

incoming wave Xj
k and the outgoing wave Xj+1

k . In particular, they give the following mapping
between the Bogolyubov coefficients:

⎛
⎝ αj+1

k

βj+1
k

⎞
⎠ =

⎛
⎝ 1

Dk

R∗
k

D∗
k
e−2iθj

k

Rk
Dk

e2iθj
k

1
D∗

k

⎞
⎠

⎛
⎝ αj

k

βj
k

⎞
⎠ , (4.32)

where θj
k =

∫ tj

0 dt ω(t) is the phase accumulated at tj .
The occupation number nj+1

k = |βj+1
k |2 after tj can be obtained from nj

k:

nj+1
k = e−πκ2 +

(
1 + 2e−πκ2)

nj
k − 2e−πκ2/2

√
1 + e−πκ2

√
nj

k(1 + nj
k) sin θj

tot , (4.33)

where the phase θj
tot = 2θj

k − ϕk + arg βj
k − arg αj

k. The Floquet exponent μj
k is defined by the

formula
nj+1

k = nj
k exp

(
2πμj

k

)
, (4.34)

and, in the limit nk 
 1, it takes the form

μj
k = 1

2π
ln

(
1 + 2e−πκ2 − 2 sin θj

tot e−πκ2/2
√

1 + e−πκ2
)

. (4.35)

The first two terms in the logarithm are always positive and contribute to the growth of the
modes. The second term can have either signs depending on the argument of the sine. In
particular, its sign and size determine whether the occupation number increases or decreases.
The variable θj

tot has a complicated time dependence and can be treated as a random variable.
It it is thus clear from where the randomness of the process arises.

4.3.4 Estimating fluctuations of h and the end of the resonance

The growth in the occupation number of the modes contributes to the size of the field fluctuations
〈h2〉, where the average is taken on the vacuum. Using the methods developed in the previous
section we have the possibility to find an estimate for the fluctuations. This turns out to be
useful when we want to understand the implications of preheating for the Higgs instability.
Strictly speaking 〈h2〉 is a divergent quantity in quantum field theory, due to the presence of
the vacuum fluctuations, that has to be renormalized. However, we restrict our study only to
momenta that are excited during preheating, for which nk 
 1. This implies that we have a
natural cutoff on the momentum which gives us a finite 〈h〉2 without the need to renormalize it.
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In the adiabatic regime, ω̇k � ω2
k, the occupation number nk and the eigenmodes hk are

related by eq. (4.26) as follows:
nk � a3ωk |hk|2 . (4.36)

Using eq. (4.13) we get the following expression for the field fluctuations

〈h2〉 =
∫ d3k

(2π)3 |hk|2 � 1
(2πa)3

∫
d3k

nk

ωk
. (4.37)

In order to estimate the size of the fluctuations it is necessary to find the expression of nk in
order to perform the integral. The occupation number nk can be estimated from the results
obtained in the previous section, in particular eqs. (4.34) and (4.35). For simplicity we take
the term involving the sine in eq. (4.35) to be zero and consider the fluctuations at late times
(aj 
 1).

Within our approximations the Floquet exponent at the j-th zero crossing can be expressed
from eq. (4.35) as

2πμj
k � ln 3 − 2π

3 κ2 , (4.38)

where κ = k/ak∗ and k∗ was defined in eq. (4.21). The occupation number is then

nj+1
k = nj

ke2πμj
k � 3je−2π

∑
i

μi
k ≡ 3j e−μ̄jk2/m2

φ , (4.39)

where we defined
μ̄j =

√
6 a

3√
q0Φ0

, (4.40)

with q0 being the value of the Mathieu parameter of eq. (4.16) at the beginning of preheating.
Higgs fluctuations can then be estimated as

〈h2〉 � 3jm2
φ

4π2a3

∫ ∞

0
dk

e−μ̄j(k/mφ)2+2 ln(k/mφ)

cos
√

(k/mφ a)2 + 4q cos2 mφt
. (4.41)

The integrand function has a maximum at some kmax that gives the biggest contribution to
the integral. The value of kmax is well approximated by the minimum of the function in the
exponential and is found to be k2

max ≈ m2
φ/μ̄j . The integrand function can then be expanded

around this value and the problem is reduced to the computation of a Gaussian integral. The
fluctuations are easily obtained

〈h2〉 � 3jk3
max

23/2mφ e π3/2a3
√

(kmax/mφa)2 + 4q cos2 mφt
. (4.42)

4.4 Higgs evolution during preheating

The copious production of particles during preheating can be dangerous for the unstable Higgs
since it can lead to vacuum decay. The decay during preheating happens in a different way
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compared to that during inflation and a qualitative description can be given as follows. The
Higgs effective mass squared during preheating is

m2
h = λhφφ2 + 3λhh2 , (4.43)

where the first term on the right-hand side comes from the Higgs-inflaton coupling and the
second from the Higgs potential. At the beginning of preheating, the Hartree approximation
can be used and the last term can be written as 3λh〈h2〉. In this case the equations of motion
for different momentum modes decouple and can be studied according to the theory that we
developed in the previous sections. The EW mass term for the Higgs is neglected here because
it is much smaller than the other two terms we are considering.

At the beginning of preheating the Higgs-inflaton coupling dominates the effective mass be-
cause the Higgs variance is small. However, preheating increases the value of the fluctuations and
the Higgs self interaction term becomes more and more relevant each time the inflaton crosses
the zero of its potential. The Higgs self coupling runs according to the renormalization group
and the appropriate value that we have to consider is λh(

√〈h2〉), where the relevant energy scale
is set by the Higgs variance. When the energy scale becomes larger than the SM instability scale
Λinst, a negative contribution to the Higgs effective mass (4.43) appears. If the negative term
comes to dominate, the Higgs field becomes tachyonic and gets exponentially amplified leading
to vacuum decay [2, 123].

The subtlety here is that the inflaton oscillates and therefore the first term of the Higgs effective
mass (4.43) gets very close to zero during a short interval of time. During these instants the
negative term dominates the effective mass. Clearly, the time interval in which the Higgs self
interaction dominates grows in time because the inflaton amplitude of oscillations decreases and
preheating increases the Higgs variance. The EW vacuum can survive only if the resonance
stops before the exponential amplification becomes too effective.

We can quantify these statements as follows. The Higgs effective mass is dominated by the
tachyonic term during the time interval Δt given by

|Δt| <

√√√√ 3|λh|〈h2〉
λhφΦ2m2

φ

. (4.44)

When this relation is fulfilled, the Higgs field is exponentially amplified by a factor e|mhΔt|, where
the modulus is taken because mh is imaginary in this regime. The amplification is insignificant
as long as

|mhΔt| �
√

3|λh|〈h2〉|Δt| < 1 . (4.45)

If we plug (4.44) and (4.42) into (4.45), and use the fact that at the end of the resonance
q = λhφΦ2/4m2 ≈ 1, we obtain the following upper bound [2]

λhφ � 1.5 × 10−8 . (4.46)
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This is lower than the upper bound we obtained in (3.23) by requiring small radiative corrections
to the inflaton potential. The Higgs-inflaton coupling stabilizes the Higgs potential during
inflation but during preheating it has the opposite effect. For this reason the upper bound on
λhφ must be lowered.

Understanding whether destabilization is triggered at later times is much more involved. The
Higgs particles that are produced during the resonance can decay into other SM particles which
can then create a thermal bath. This would generate a thermal mass for the Higgs that can
stabilize the EW vacuum [123]. In addition, the Higgs variance might be reduced via non-
perturbative production of particles via the Higgs couplings to gauge bosons and fermions [124].
These and possibly other effects may enter into play after preheating making it difficult to draw
any conclusions without specific models and a careful investigation. However, we have seen that
the situation remains quite well understood during the preheating stage.

In the next section we are going to show how to generalize the discussion to the other important
couplings such as the non-minimal coupling with gravity ξh and the trilinear Higgs-inflaton
coupling σ.

4.4.1 Gravitational and tachyonic preheating

The non-minimal coupling of the Higgs with gravity ξh plays an important role during preheating
because it can lead to destabilization as in the case of the Higgs-inflaton coupling. Studies of
preheating with only ξh applied to the Higgs instability can be found in [123, 125–129]. Let us
consider here the system where the Higgs-inflaton coupling λhφ and the non-minimal coupling
ξh are considered simultaneously as was done in [3] and let us show how the dynamics change
from that we described so far.

The action in the so-called Jordan frame has the form

S =
∫

d4x
√

g

[1
2(1 − ξhh2)R − 1

2∂μφ ∂μφ − 1
2∂μh ∂μh − V (φ, h)

]
, (4.47)

where again h is the Higgs in the unitary gauge. The inflaton evolves as in the previous section,
whereas the Higgs evolution gets modified due to the presence of ξh. The additional term we
introduced can be viewed as a mass term proportional to the Ricci scalar R.

Since the universe is dominated by the inflaton, the Ricci scalar can be written as

R =
(
2m2

φφ2 − φ̇2
)

. (4.48)

Substituting φ ≈ Φ cos(mt) into R we immediately notice that the sign of the Ricci scalar changes
in time because of the inflaton oscillation. This generates a negative mass term for h. When
this happens, particle production is very efficient due to the tachyonic nature of the field h.
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Expanding the field h in its comoving eigenmodes yields an equation for Xk’s similar to (4.23),
where now the eigenfrequency takes the form

ω2
k =

(
k

a

)2
+

(
λhφ + 2ξhm2

)
Φ2 cos2 mt − ξhm2Φ2 sin2 mt . (4.49)

Here we have neglected terms proportional to H since they are small at the beginning of pre-
heating and decrease with time. Also, the term due to the Higgs self-interaction is neglected
because of the initial smallness of the Higgs variance. With the help of some trigonometric
identities we can rewrite the equation of motion of Xk as a Mathieu equation with parameters

Ak ≡
(

k

a m

)2
+ Φ2

2m2

(
λhφ + ξhm2

)
, (4.50)

q ≡ Φ2

4m2

(
λhφ + 3ξhm2

)
. (4.51)

Two main differences arise from the situation described in the previous sections. The first one
is that the resonance can be killed completely. This happens when λhφ ≈ −3ξhm2 and thus
the resonance parameter q becomes very close to zero. In this case the system evolves very
close to the vertical line in the (Ak, q) plane of Fig. 4.1 and never crosses any instability bands.
The second difference is that, as we noted earlier, ξh introduces the possibility to get tachyonic
particle production. For some values of the parameter the system evolves in the (Ak, q) plane
much deeper in the instability bands making particle production much stronger.

The joint effect of ξh and λhφ can therefore be dual. On the one hand, parametric resonance
can be enhanced by tachyonic particle production and, on the other hand, the value of the
couplings can be such that particle production is completely suppressed. Thanks to this second
feature the parameter space for which the Higgs remains in the EW vacuum throughout pre-
heating is much larger [3] than in the case where only λhφ or ξh are present [2,123]. In particular,
the upper bounds on the couplings is essentially set by requiring small radiative corrections to
the inflaton potential rather than avoiding excessive particle production.

4.4.2 The effect of the trilinear coupling

The trilinear coupling is the last missing piece in our picture of the Higgs evolution during
preheating. Preheating of a scalar field with trilinear coupling to the inflaton was considered
in [130], while the simultaneous presence of quartic and trilinear interactions was considered
in [131]. For simplicity, let us put aside for a moment the Higgs non-minimal coupling with
gravity and focus only on the trilinear and quartic coupling. The Higgs effective mass squared
in this case takes the form

m2
h = λhφφ2 + 2σφ + 3λhh2 . (4.52)

The first thing we observe is that the term dependent on the trilinear interaction is negative
during half oscillation of the inflaton field because φ enters linearly in the effective mass. This,
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analogously to the non-minimal coupling case, can generate a tachyonic effective mass leading
to to very efficient particle production and exponential amplification of the Higgs field. We thus
see that the presence of the trilinear coupling creates additional danger for the EW vacuum
stability.

The decomposition into Higgs comoving eigenmodes allows us to write an equation of motion
for Xk in the form (4.23). The eigenfrequency of the modes is

ω2
k =

(
k

a

)2
+ λhφΦ2 cos2 mt + 2σΦ cos mt , (4.53)

where we neglect the Higgs-self interaction terms because at the beginning of preheating is
very small. We note immediately that it is not possible to reduce (4.53) to the Mathieu equa-
tion because there are two different frequencies of oscillation: mt and 2mt, since cos2 mt =
(1 + cos 2mt)/2. Nevertheless, we can rescale the time as mt = z and do some trigonometric
manipulation in order to rewrite the equation of motion as

X ′′
k + (Ak + 2p cos z + 2q cos 2z) Xk = 0 . (4.54)

Here Ak and q are defined as in (4.16), while

p ≡ σΦ
m2 . (4.55)

Equation (4.54) is known as the Whittaker-Hill equation. Detailed analyses of the Whittaker-
Hill equation can be found in [131–134]. The Whittaker-Hill equation does not have a simple
two dimensional representation for the instability bands, since it depends on three parameters.
Nevertheless, the qualitative picture remains the same. The parameters move in a three di-
mensional space and during their evolution pass through many instability bands where they get
exponentially amplified.

Studies of preheating in this setup with without the non-minimal coupling to gravity can be
found in the attached papers [2,3]. The behavior of the Higgs field does not change qualitatively
from the Mathieu case. Particle production increases the value of the Higgs variance, which in
turn increases the importance of the self-interaction term generating a large tachyonic mass for
the Higgs. The difference is that the strength of the resonance is determined by two parameters,
q and p. In order to avoid EW vacuum decay the resonance must be suppressed, and this can be
achieved only for small initial q and p. This sets an upper bound on the trilinear coupling [2]:

σ � 108 GeV . (4.56)
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Conclusions

In this thesis we have considered the implications of metastability for the Higgs dynamics in
the early universe. We have seen in Chapter 2 that metastability is not dangerous because the
decay time exceeds by far the age of our universe. For this reason physics beyond the SM is not
needed in order to stabilize the Higgs potential and our existence is completely consistent with
metastability. However, the situation is different if we want to justify how the universe evolved
in the EW vacuum during its cosmological history.

In Chapter 3 we showed that large Higgs fluctuations that form during inflation are harmful
for the EW vacuum, and that avoiding the decay into the true vacuum puts strong constraints
on the Hubble rate during inflation. In our discussion we also highlighted the fact that the
problem of the fluctuations is not the only one connected to the EW vacuum metastability. In
fact, there is no reason to assume that the Higgs started its evolution in the false minimum,
implying that also small field inflationary models are not exempt from complications deriving
from the metastability. In fact, they cannot justify the fine-tuning required to put the Higgs in
such an energetically disfavored state.

Solutions to these issues may lie in the scalar nature of the Higgs and in the possibility to
write interactions with BSM particles or with gravity at the renormalizable level. In this thesis
we discussed the case of direct Higgs-inflaton couplings and non-minimal coupling with gravity.
These interactions can modify the Higgs potential at all scales or during inflation only. We
have shown that mixing of the Higgs with a SM gauge singlet can stabilize the Higgs potential
completely and that identifying the singlet with the inflaton allows for the exciting possibility
to observe such a particle at the LHC or at future colliders. On the other hand, we have also
demonstrated that Higgs couplings to the inflaton or gravity can modify the shape of the Higgs
potential during inflation by generating a large effective mass that pushes the field to very small
values. Unfortunately, while being able to stabilize the Higgs during inflation, they can create
an additional source of instability at a later time, namely during preheating.

47
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In Chapter 4 we have shown that the couplings allow for copious production of Higgs particles,
leading to large field fluctuations. These can trigger the decay into the true vacuum if their size
gets comparable to that of the instability scale of the SM. In our work we have shown that it is
possible to find reasonable parameter space in order to stabilize the Higgs during inflation and
avoid destabilization during preheating.

The Higgs instability remains a very interesting topic which has important implications for
early universe physics. If the instability is there, we are led to the conclusion that some operators
which are not part of the SM must be added if we want to justify the existence of the universe
we observe today. In this work we explored the simplest realistic scenario which allows to treat
consistently the Higgs evolution in the framework of an inflationary universe. We have found
that consistency is made possible by the special nature of the Higgs which allows us to write
renormalizable BSM couplings with the inflaton or gravity. Some uncertainty still remains as
to whether metastability of the SM is there or not. An improvement in the accuracy of the
top quark mass measurement and a better understanding of its relation with the top Yukawa
coupling will certainly help us to determine the existence of this problem. Besides, a discovery
of BSM physics at colliders might change the picture we have of particle physics from the TeV
to the Planck scale and show us that the Higgs potential gets modified at lower energies than
the SM instability scale. In addition, cosmology might give us further insights of the particle
physics laws that govern the dynamics in the early universe. Therefore, we must watch closely
what comes from experiments at many different scales, from the infinitesimally small to the
infinitely large, because they can give us new hints on the nature of the Higgs boson.
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