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Higher paternal age at offspring conception increases de novo genetic

mutations. Based on evolutionary genetic theory we predicted older fathers’

children, all else equal, would be less likely to survive and reproduce, i.e.

have lower fitness. In sibling control studies, we find support for negative

paternal age effects on offspring survival and reproductive success across

four large populations with an aggregate N . 1.4 million. Three populations

were pre-industrial (1670–1850) Western populations and showed negative

paternal age effects on infant survival and offspring reproductive success. In

twentieth-century Sweden, we found minuscule paternal age effects on survi-

val, but found negative effects on reproductive success. Effects survived tests

for key competing explanations, including maternal age and parental loss,

but effects varied widely over different plausible model specifications and

some competing explanations such as diminishing paternal investment and

epigenetic mutations could not be tested. We can use our findings to aid in pre-

dicting the effect increasingly older parents in today’s society will have on their

children’s survival and reproductive success. To the extent that we succeeded in

isolating a mutation-driven effect of paternal age, our results can be understood

to show that de novo mutations reduce offspring fitness across populations and

time periods.
1. Background
A child carries on average about 60 genetic de novo single nucleotide mutations

(SNMs), which were not present in either of the biological parents’ genomes

[1,2]. Of those that are not functionally neutral, most reduce evolutionary

fitness, as random changes to well-calibrated systems usually do [3,4]. Impor-

tantly, de novo mutations can be dominantly lethal or sterility-inducing early

in life, unlike inherited deleterious variants. The older a father is, the more
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de novo mutations his child will tend to carry. This is dictated

by the fundamental fact that cell replication engenders errors

[5], and male spermatogonial, but not female oogonial, stem

cells replicate frequently, beginning a regular schedule of one

division per 16 days in puberty [6].

Kong et al. sequenced the genomes of parent–child

triplets and quartets, so that they could pinpoint mutations

and their parental origin [1]. They found that a child’s

number of de novo SNMs could be predicted very well (94%

non-stochastic variance explained) by the father’s age at the

child’s birth, henceforth paternal age. Mothers appear to trans-

mit only a third to half as many SNMs per year as fathers [4,7].

Thus, paternal age appears to be the main predictor of varying

offspring de novo mutation load, in part because of its causal

role and to a lesser extent because of its correlation with

maternal age. SNMs are the most common mutational event,

but copy number variants also increase with paternal age;

other structural variants tend to come from the father too

[8]. Aneuploidies (aberrant chromosome counts) are a well-

known exception: they occur more often when older mothers

conceive [2]. Subsequent studies have confirmed the central

role of paternal age for mutations [4,6].

In clinical research, paternal age has shown usefulness as a

placeholder variable for de novo mutations: after initial epi-

demiological studies reported paternal age effects on autism

[9], sibling comparison studies confirmed they were not due

to inherited dispositions [10]. Then, exome-sequencing studies

corroborated the paternal age effects by directly counting

mutations that were not present in either parent’s exome and

found a higher mutational burden in autistic children than in

unaffected siblings [11]. These findings elucidated disease

aetiology both from an evolutionary and a clinical standpoint,

by explaining how an early-onset disease linked to very low

reproductive success could linger in the face of natural selection.

Given the links enumerated above, paternal age should,

via increased mutations, decrease offspring fitness. By fitness,

we mean each offspring’s average contribution to the gene

pool of successive generations. We can approximate this con-

tribution through the offspring’s number of descendants [12].

So far, most paternal age effect studies have focused on

medical, psychological and behavioural traits, such as physical

and psychiatric disease, or intelligence [10,13–16]. Though

many of these traits plausibly affect evolutionary fitness

now, it is not always clear how they affected fitness before

the twentieth century. Moreover, there are scant records on

such traits from this time, and they are not necessarily compar-

able to modern records. Births and deaths, or baptisms and

burials, on the other hand, have been meticulously recorded

in churches. Survival and reproductive success were and still

are good measures of evolutionary fitness. Fitness is the

most ‘downstream’ phenotype of all, in the sense that all

non-neutral mutations affect it by definition [17].

Paternal age effects on mutations should in principle be

universal across species, but non-human animal studies have

thus far been restricted to birds [18,19] and have, with one

exception [19], been studied under the broader topic of senes-

cence, without attempts to separate mutational or epigenetic

effects from behavioural effects of parental senescence on

breeding capability. Studies on humans have examined iso-

lated fitness components such as infant survival, longevity,

marriage or reproduction in single populations in one place

and at one time [20–23]. Some such studies have focused on

longevity, which has an ambiguous relationship to
evolutionary fitness owing to life-history trade-offs, such as

trading off higher early-life reproduction for earlier mortality

[24]. Some have examined maternal age or birth order, but

ignored paternal age [25]. Some focused on environmental

explanations, such as decreased parental investment [26], but

these are not necessarily sufficient to explain paternal age

effects. In wild house sparrows, the age of the biological

parents had negative consequences even in a cross-fostering

experiment [19]. Such experiments are not possible in

humans, but we can statistically adjust for proxy measures of

parental investment. In all, owing to variable methodology

and sample sizes across studies, we cannot reliably compare

findings to discover theoretically meaningful moderators.
(a) The present study
Here we investigated paternal age effects on offspring fitness,

focusing on the offspring’s reproductive success, i.e. their

number of children. To be able to compare all children of a

father, we also included children who had no children

themselves, even if they died young. Reproductive success

is a good predictor of an individual’s contribution to the

next generation’s gene pool [12]. In addition, we separately

examined early survival, marriage success and reproductive

success as successive episodes across the lifespan during

which natural and sexual selection occur. Based on evolution-

ary genetic theory, we predicted that in aggregate we would

find small, negative effects of paternal age on offspring fit-

ness throughout the lifespan [27]. Some de novo mutations

will have large negative effects early on, but many more

will be (nearly) neutral. In aggregate, on the population

level, this implies a small stochastically variable increase in

deleterious effects with paternal age.

Because humans do not time their reproduction randomly,

paternal age effects may be confounded by social and genetic

factors [28–30] that are associated with both age of reproduc-

tion and offspring reproductive success. Because we aimed to

isolate mutation-driven effects of paternal age as thoroughly as

possible, we analysed the paternal age effect within full bio-

logical sibships and adjusted for a between-family effect. This

effectively controls for many potential confounds. Full siblings

share a parental gene pool, so that genetic load, which accumu-

lated over generations, is distributed across them randomly.

Siblings also usually share much of their early environment,

and access to resources such as wealth and land. Because

social convention may additionally link inheritance to birth

order, we also adjusted for other social factors, such as

birth order and parental loss. Additionally, we examined

grandpaternal age effects where possible.

In doing so, we try to accomplish two goals: first, to iso-

late a potential biological, mutation-driven effect of paternal

age on offspring fitness, and second, to compare different

populations in different times and places, with high statistical

power and comparable methodology.
2. Methods
(a) Populations
To test our hypotheses before the turn of the twentieth century, we

used genealogies drawn from church records in the Saint-

Lawrence valley, Québec (Canada), the Krummhörn (Germany)

and four historical Swedish regions. To compare these populations

http://rspb.royalsocietypublishing.org/


Table 1. Descriptive statistics. RS, reproductive success; IS, infant survival. Numbers in parentheses are standard deviations. Years refer to the birth years of the
anchors. For twentieth-century Sweden, fertility-related numbers are from 1947 to 1959 (first N given) and mortality numbers are from 1969 to 2000 (second N
given).

1720 – 1850
Krummhörn

1670 – 1750
Québec

1760 – 1850
Sweden twentieth-century Sweden

population N 80 808 459 591 271 130 8 201 968

anchor N 14 034 79 895 56 947 1 419 282/3 428 225

anchors/families (RS models) 9447/2186 68 724/12 205 56 663/14 746 1 408 177/884 975

anchors/families (IS models) 9447/2186 61 493/11 940 56 010/14 708 363 744/200 000

paternal age 35.23 (7.56) 36.28 (8.48) 34.37 (7.69) 31.84 (7.05)

maternal age 31.53 (5.88) 29.58 (6.66) 31.54 (6.32) 28.34 (6.11)

female/male infant mortality 11.1/12.9% 19.0/23.2% 12.0/14.1% 0.5/0.7%

fertility (married women) 3.66 (2.89) 7.71 (4.57) 3.6 (3.17) 2.15 (1.11)

male age at first child 29.29 (5.36) 27.92 (5.29) 28.13 (5.18) 28.07 (5.6)

male age at last child 39.6 (7.5) 44.19 (8.59) 37.52 (8.29) 33.57 (6.14)
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with twentieth-century Sweden, we used a population-based linkage

study from Swedish national health registers. To ensure minimal

censoring we drew subsets with adequately complete records.

We used computerized and linked registers of births (and bap-

tisms), deaths (and burials) and marriages to reconstruct family

pedigrees and life histories for individuals. We call the individuals

whose father’s age we compared with their siblings’ ‘anchors’

wherever it aids comprehension. Further descriptive statistics

can be found in table 1 and on the online supplementary website

at https://rubenarslan.github.io/paternal_age_fitness/ [31].

The first population are inhabitants of the Krummhörn in

contemporary Germany [32]. They were quite isolated and had

a stable population size. We focused on the 14 034 anchors

born between 1720 and 1835. Married female anchors from this

period had on average 3.7 children.

The second population are the French settlers of the Saint-

Lawrence valley in contemporary Québec, Canada [33,34]. They

were an isolated frontier population in a harsh climate but they

also had access to abundant resources and unsettled land. We

focused on the 79 895 anchors born between 1670 and 1740. Mar-

ried female anchors from this period had on average 7.7 children.

In this dataset, we had access to deep pedigrees, allowing us to

compare not only siblings for paternal age, but also cousins for

grandpaternal age in a within-extended-family design.

The third population are Swedes in the Sundsvall, Northern

Inland (Karesuando to Undersåker, includes Sami people),

Linköping and Skellefteå regions [35,36]. All individuals in Skel-

lefteå and most individuals in Sundsvall were linked between

church parishes. In the other regions, some individuals appeared

in more than one parish. We focused on the 56 947 anchors born

between 1737 and 1850. Married female anchors from this period

had on average 3.6 children.

Our modern data are the whole population of Sweden. The

Swedish Multi-Generation Register includes records of individuals

born after 1932 and alive by 1962, as well as their parents. The data-

set was linked to the Cause of Death register that includes death

dates. Information about marriages was derived from the popu-

lation register and the Longitudinal Integration Database for

Health Insurance and Labour Market Studies [37]. Individuals

who ever had the civil status of married, widowed or divorced

were counted as ever married. Because of censoring in this dataset,

we focused on the 1 419 282 anchors born between 1947 and

1959 for reproductive outcomes and the 3 428 225 anchors born

between 1969 and 2000 for survival outcomes. Ever married

female anchors from the earlier period had on average 2.2 children
(never married: 1.1). Hormonal contraception was widely

available to and used by anchors born between 1947 and 1959.

(b) Statistical approach
We employed generalized mixed-effect regressions with a group-

level effect per family to compare full biological siblings within

families. We used the R package brms [38] to fit Bayesian

regression models using the probabilistic programming language

Stan [39], and adjusted for average paternal age within families

to isolate the effect of paternal age differences between siblings.

We adjusted for birth cohort in 5-year groupings (small group-

ings at the edge of the range were lumped) to account for

secular changes in mortality and fertility, as well as residual cen-

soring. We adjusted for parental deaths in the first 45 years of life

to remove effects related to orphanhood and parental senescence

(0–1, 2–5, 6–10, . . . , 45þ, unknown). We adjusted for maternal

age (up to 20, 21–34, 35þ), which we binned to reduce multicolli-

nearity with paternal age and to capture nonlinear effects. We also

adjusted for number of siblings, number of older siblings (0–5,

5þ), and being born last. We used weakly informative priors

that are documented in detail in the online electronic supplemen-

tary material. The modelling assumptions reflected herein were

tested for robustness, as documented below.

We analysed reproductive success for all offspring, including

those who died in childhood or never married. We used a two-

process hurdle-Poisson family with a log link. In such a model,

zeroes in the outcome variable are modelled as arising from a

different process, e.g. not clearing the hurdle of survival and mar-

riage before attempting reproduction. In the twentieth-century

Swedish data, we fitted a simpler Poisson model because child

mortality was very low.

We separated effects into four successive episodes of natural

and sexual selection. To separate the episodes, we adjusted for suc-

cess in the preceding episode: e1 survival of the first year; e2
survival until age 15 conditional on e1 survival of the first year;

e3 marriage conditional on e2; and e4 number of children,

conditional on e3. For e4, we included only ever-married anchors

and adjusted for their number of spouses. In twentieth-century

Sweden, we also examined e5 divorce, conditional on e3, even

though this is arguably not clearly an episode of selection. All

models were fitted using a Bernoulli regression with a cauchit

link to decrease the influence of extreme values [40], except e4
which was fitted using a Poisson regression with a log link. In twen-

tieth-century Sweden, we could not fit our survival models to the
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Figure 1. Paternal age effects on number of surviving children. Marginal effect plots for paternal age effect splines estimated in m4. Covariates were set to their
mean or reference level, respectively. The solid lines show the posterior median; the dashed line is a linear line fit over the spline and inversely weighted by
standard error to examine whether the spline fit deviates from linearity. The shaded areas show the 95% credibility intervals for the reference individuals and
include uncertainty related to covariate effect sizes.
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whole available dataset for computational reasons and hence used a

randomly drawn subset (approx. 10% of the 3.4 million available).

We used approximate leave-one-out cross-validation [41] as

implemented in brms to compare four models: m1 with a linear

effect of paternal age, without the group-level effect for family;

m2 without a paternal age effect, but with the group-level effect;

m3 like m2 but with a linear paternal age effect; and m4, like m3,
but additionally with a thin-plate spline smooth [42] on the

paternal age effect to capture nonlinearity. Comparing m1 and

m3 allows us to assess the usefulness of group-level effects; com-

paring m2 and m3, we test whether the inclusion of paternal age

improves the model fit; comparing m3 and m4, we test the paternal

age effect for nonlinearity.

After this, we ran several robustness checks to test the model-

ling assumptions in our main models, using m3 as the baseline

model. We carried out the following analyses: r1 relaxed exclusion

criteria (not in twentieth-century Sweden); r2 had only birth cohort

as a covariate; r3 adjusted for birth order continuously; r4 adjusted

for number of dependent siblings (younger than 5, alive at anchor

birth) instead of birth order; r5 interacted birth order with number

of siblings; r6 did not adjust for birth order; r7 adjusted only for

parental loss in the first 5 years; r8 adjusted for being the first- or

last-born adult son; r9 adjusted for a continuous nonlinear thin-

plate spline smooth [42] for birth year instead of 5-year bins; r10
added a group-level slope for paternal age; r11 included separate

group-level effects for each parent instead of one per marriage;

r12 added a moderation by anchor sex; r13 adjusted for paternal

age at first birth; r14 compared a model with linear group fixed

effects; r15 added a moderator by region and group-level effects

by church parish (not in twentieth-century Sweden); r16 was

restricted to the region Skellefteå (only in historical Sweden); r17
tested whether hypothetical cases of Down’s syndrome could

explain the effects; r18 reversed hurdle Poisson and Poisson distri-

bution for the respective populations; r19 assumed a normal

distribution for the outcome; r20 did not adjust for maternal age;

r21 adjusted for maternal age continuously; r22 relaxed exclusion

criteria and included 30 more years of birth cohorts, allowing for

more potential censoring; r23 used different weakly informative
priors; r24 used non-informative priors (comparable with maxi-

mum likelihood); r25 controlled for migration status (not in

twentieth-century Sweden); r26 separated parental age contri-

butions (only in twentieth-century Sweden). More detailed

descriptions of all robustness analyses can be found in the elec-

tronic supplementary material §6.2, code and detailed results are

on the online supplementary website [31].

For the twentieth-century Sweden data, we used a random

subset of 80 000 families in the robustness analyses for compu-

tational reasons. We re-ran analyses with all data if the

paternal age effect deviated strongly from the m3 estimate.

We also ran two sensitivity analyses to test whether results

could be explained by late-life mortality or reproductive timing of

the anchors. To contextualize contemporary reproductive timing

trends, we also compared reproductive timing across populations.

Effect sizes were calculated as the median effect estimate of a

10-year increase in paternal age with a 95% credibility interval.
3. Results
In our main model m3, we found negative effects of paternal

age on anchor’s number of children in all four populations: a

decrease per decade of paternal age of 23.0% (95% credibility

interval [26.1, 0.2]) in Québec, 23.4% [25.9, 20.9] in

twentieth-century Sweden, 27.3% [213.4, 21.1] in historical

Sweden, and 28.4% [224.8, 12.0] in the Krummhörn. These

effects appeared to be fairly linear in m4 (figure 1), although

visual inspection and approximate leave-one-out cross-validation

[41] showed the effect tapering off after age 45 in twentieth-

century Sweden (approx. 4% of children were born to fathers

older than 45, see electronic supplementary material, §5.4.5.1)

and after age 50 in Québec in (approx. 8% of children, see

electronic supplementary material, §3.4.5.1). In historical

Sweden, paternal age had a slight positive effect in m1
before using sibling comparisons, in the other populations

http://rspb.royalsocietypublishing.org/
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the effect was negative in all models. In the Krummhörn

population, the effects of birth order, maternal and paternal

age could not be disentangled well, as credible intervals

were very wide when these covariates were considered

together. Credible intervals (95%) for paternal age excluded

zero for m3 in both Swedish populations and for m4 in

Québec and twentieth-century Sweden. These main models

are detailed in the electronic supplementary material, §§2–5.

In our selective episode analyses (figure 2), we consist-

ently found small negative associations between paternal

age and anchor’s survival to the first year of life in the pre-

industrial populations (e1). Comparing children of 25- and

35-year-old fathers yielded percentage decreases of 22.1

(95% credible interval [20.2, 25.4]), 21.0 [20.7, 21.5], and

21.8 [21.1, 23.1] in the Krummhörn, Québec and historical

Sweden respectively. In the twentieth-century Swedish popu-

lation, infant mortality was very low, and the effect size of

paternal age on infant survival, though negative, was corre-

spondingly small (20.05 [20.03, 20.06]). Survival to age 15

years (e2) was not associated with paternal age (effects ran-

ging from 20.2 to 0.1). Probability of ever marrying (e3)

was inconsistently associated with paternal age, negatively

in the Krummhörn population (25.2), positively in historical

Sweden (7.9), with negligible associations in Québec and

modern Sweden (0.0 and 0.8), and the association in historical

and twentieth-century Sweden turned negative when not

accounting for parental loss (not shown). Number of children

(e4), after accounting for marriage success, was negatively

associated with paternal age in twentieth-century Sweden

(23.8 [24.6; 23.0]) and historical Sweden (25.4 [28.9;

21.6]), but non-robustly positively associated in the Krumm-

hörn population (15.62, negatively when not adjusting for

birth order, not shown) and negligibly associated in Québec

(0.9 [21.3; 3.2]). Paternal age did not predict probability of

divorce in twentieth-century Sweden (20.3 [20.78; 0.17]).

In the grandpaternal age analyses in Québec, we

found negative effects of both the paternal and maternal
grandfather’s age, which were roughly equal in size (paternal

grandfather: 27% [24, 29%], maternal grandfather: 25%

[22, 28%] fewer children).

In our robustness analyses (figure 3), estimated paternal

age effect sizes varied with our modelling assumptions.

The paternal age effect was negative throughout almost all

models in the two Swedish populations, and varied more

widely in the Québec and Krummhörn models. In the

Krummhörn, only the simplest model r2 clearly supported

a negative paternal age effect, but across robustness checks

the estimate tended to be negative.

In our sensitivity analyses, we found mortality could mostly

account for any paternal age effects on reproductive success in

the two non-Swedish populations, but not in the Swedish popu-

lations. Among those who ever reproduced, paternal age did

not predict reproductive success after accounting for anchor’s

age at first and last birth (confer supplement [31]).

Further details, including effect sizes and marginal effect

plots for all covariates, model summaries, and R code for

each of the models, can be found on the online supplemen-

tary website at https://rubenarslan.github.io/paternal_age_

fitness/ [31].
4. Discussion
We found robust evidence for negative paternal age effects on

reproductive success in all four populations. Results held up

after adjusting for numerous covariates that capture alterna-

tive non-genetic explanations, including offspring sex, birth

cohort, number of siblings, number of older siblings,

maternal age, and loss of either parent up to age 45, and

after checking robustness across 26 alternative models. In his-

torical Sweden, a slight positive effect turned negative after

we used sibling comparisons, showing that systematic con-

founding between reproductive timing and unobserved

familial characteristics could obscure an effect. In all
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solid lines show 95% credibility intervals. The point and vertical dashed lines show the estimate from m3. The distance of the numbers to the vertical dashed line
shows how much estimates can vary depending on the model specification. Estimates for the analyses in twentieth-century Sweden are based on a subset of the
data for computational reasons (except models m3, r3, r21, and r26).
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populations, effects were consistent with a roughly linear

dose–response relationship between paternal age and

number of children. Effects were largest in the Krummhörn

(although estimates were uncertain in this smallest popu-

lation), followed by historical Sweden, and similarly sized

effects in Québec and twentieth-century Sweden. These

differences seemed to be mainly driven by differences in

the first selective episode, survival of the first year. The

95% credibility intervals for all effect sizes overlapped

across populations.

Even across three generations, we found negative grand-

paternal age effects on offspring reproductive success for

both grandfathers in Québec.

When we separately examined the selective episodes along

the lifespan, paternal age effects on survival to the first year

were negative across all historical populations (21% in

Québec to 22% in the Krummhörn and historical Sweden),

but negligibly small in twentieth-century Sweden (20.05%).

We found no robust pattern of effects on survival to age

15 and the odds of getting married. Some selective episode

effects changed substantially depending on certain covariates,

which may have resulted from adjusting for a collider, mediator,

or highly collinear variable. Therefore, we advocate only cau-

tious interpretation of the analyses where the estimate

changed substantially upon removal of a covariate, especially

in the Krummhörn. In the Swedish populations, the number of

children was negatively associated with paternal age after

adjusting for marriage success and survival to age 15. Consist-

ent with this, our sensitivity analyses showed that mortality

could not explain the paternal age effect in the Swedish
populations. This may, however, reflect a mere difference in

statistical power to detect remaining effects, as opposed to a

substantive difference between populations.

In twentieth-century Sweden, the effect in the last selective

episode, on number of children, was much stronger than the

effect on infant mortality. Infant mortality in Sweden is

among the lowest in the world. Because more than 99% of chil-

dren brought to term in the years 1969 to 1999 survived, there

was little room for selection during this selective episode.

Future research should examine whether conditions that used

to cause infant mortality, such as preterm birth, are simply

no longer harmful thanks to advances in peri- and postnatal

care, or whether selection has been partly displaced to before

birth or to later in life. We might expect displaced selection to

take place before birth in some cases, as abortions end one-

fifth of all known pregnancies in Western Europe [43]. Most

are elective, not therapeutic [44], but even women electing to

have an abortion may do so selectively after considering their

own age and paternal characteristics, including age [45].

Some paternal-age-linked conditions such as developmental

disorders [4] might be detected in prenatal screening. Some dis-

eases that would have led to early death in our historical

populations might also put the afflicted at a disadvantage in

later episodes of selection in twentieth-century Sweden,

e.g. people with paternal-age-associated [4] developmental

disorders might be less likely to marry and have children.

We tried to adjust for all non-biological explanations

that could be modelled using our data. Still, it is possible

that, for example, parental investment declines with paternal

age in such a manner that our adjustments for parental loss,

http://rspb.royalsocietypublishing.org/
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mother’s age, birth order and various other covariates in our

robustness analyses could only insufficiently correct for this.

Such residual confounding might lead to inflated estimates of

any biological paternal age effect.

Moreover, several non-genetic biological explanations for

paternal age effects have been suggested in the literature.

Eisenberg et al. [46] linked advanced paternal age to longer

offspring telomeres, but it remains unclear whether this associ-

ation is causal, whether it would differ between siblings and

whether it could mediate phenotypic effects. Some authors

[47,48] have also speculated that advanced paternal age

might lead to errors in epigenetic regulation or might be

linked to imprinting. Because preimplantation embryos

undergo extensive demethylation and reprogramming

[49,50], such transgenerational effects are controversial. Still,

researchers [51–53] have searched for associations between

paternal age and the methylation of certain genes in sperm

and fetal cord blood. The use of small, clinical samples renders

early work hard to generalize, but some associations have

been reported.

Maternal age is another matter: its effects on aneuploidies

are well established in the literature [54]. Although we adjusted

for maternal age effects, parents’ ages within families increase

in lockstep. Their effects are thus difficult to separate in the lar-

gely pre-industrial monogamous populations. Even though

maternal age is linked to aneuploidies, most aneuploid con-

ceptions are not carried to term and even live-born children

rarely get old. Only children with Down’s syndrome live

longer, but they are rarely fertile. Our robustness checks

suggest Down’s syndrome cannot fully explain the reported

effects. In modern epidemiological data, specific syndromes

could be easily excluded to test their contribution. Recent

studies also estimated small effects of maternal age on single

nucleotide de novo mutations [4,7]. Better understanding the

mechanisms by which parental age is linked to offspring out-

comes therefore seems to be a more worthwhile and

achievable goal than perfectly separating each parent’s contri-

bution. Still, in modern Sweden we could separate parents’

ages better, and in our robustness analyses paternal age still

negatively predicted number of children after accounting for

maternal age continuously, the average parental age for each

parent and a dummy variable for teenage mothers.

Apart from these substantive alternative explanations, we

also considered several methodological concerns. First and fore-

most, the highly collinear covariates maternal age, birth order

and parental loss made it difficult to separate their contributions

from that of paternal age. Standard errors were wide and differ-

ent defensible operationalizations resulted in non-negligible

effect size changes in our robustness analyses. Previous work

rarely adjusted for parental loss to the extent that we did. This

adjustment is debatable, because parental death can be both a

cause and a consequence of offspring death. Still, from our

robustness checks, we concluded that adjusting for parental

loss is usually sensible and results of such adjustments should

be reported in future work. Birth order, on the other hand,

had little effect in most of our models, but adjusting for it

often led to an increase in the paternal age effect size. Second,

our church record data in particular have some shortcomings.

Some children who died before baptism may have gone unrec-

orded, death records may be missing and migration might lead

to unobserved censoring [55]. Fortunately, judging from the

consistency of our robustness analyses, it is at least plausible

that these problems are unrelated to paternal age after adjusting
for covariates in our models, and we assume that by using four

different populations we limited bias.

After all these adjustments, we still found negative

paternal age effects on several measures of evolutionary fit-

ness across populations. But what can explain these effects?

The work of Kong et al. and others [1,6] has demonstrated a

strong and likely causal effect of paternal age on de novo gen-

etic mutations, but it is not clear that the paternal age effects

reported here and in the literature are driven predominantly

by de novo mutations [56]. One approach is to adjust for con-

founders, as we discuss above. Another is to derive expected

effect size estimates from evolutionary genetic calculations.

Gratten et al. [56] made the point that many reported paternal

age effects in the psychiatric literature are implausibly large

and calculated plausible effect sizes for mutational com-

ponents of paternal age effects. Hayward et al. [22]

estimated a paternal age effect on fitness components and

attempted to compare their effect size with published estimates

of the genome-wide deleterious mutation rate per generation

(U) [3] times the mean selection effect against a deleterious

mutation (�hs), yielding the estimated mutation-caused

decrease in fitness as a percentage [27]. As paternal age

does not perfectly predict the number of de novo mutations

per generation, any estimate of paternal age effects on fitness

would be expected to be slightly lower than U�hs. Unfortu-

nately, no mean selection effect has been estimated for

non-coding mutations yet and many unknowns and approxi-

mately-knowns enter the equation for estimates of the

genome-wide deleterious mutation rate. Thus, only a range

of plausible values can be drawn from the literature.

Hayward et al. estimated values for U�hs based only on

non-synonymous mutations ranging from 0.016 to 0.031

[22,27,57]. Estimates including mutations at all functional

sites are even less certain; 0.11–0.22 are high estimates

based on assuming the same mean selection as against dele-

terious non-synonymous mutations. If we now assume an

increase of two mutations per year of paternal age [1] and

estimate the per-generation decline in fitness from de novo

mutations by comparing the child of an average father aged

30 years, transmitting 60 mutations, with the child of a

hypothetical father transmitting no mutations, for our

models m3 in all four populations, we obtain 0.16, 0.07,

0.20, and 0.14 in the Krummhörn, Québec, historical and

twentieth-century Sweden respectively. Using the arguably

better estimate from our robustness analysis r26, in which

we could better adjust for maternal age in twentieth-century

Sweden, we obtain an estimate of 0.065. Given the imperfect

correlation between paternal age and de novo count, the

variability of estimates in our robustness checks, sampling

error and the plausibility of residual confounding, we think

our estimates are on the high side of the real value, but not

completely at odds with Hayward et al.’s calculations of

U�hs and consistent with their own estimated value of 0.12.

We have also explored the relevant parameter space from

Gratten et al. [56] and found the resulting effect sizes broadly

consistent with the results from our infant survival models.

These plausibility checks are documented in greater detail

in the online supplement [31].
(a) Implications and conclusions
Across four large population-based datasets, we found robust

support for the prediction that higher paternal age linearly
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decreases offspring fitness. Although we cannot be sure that

we succeeded in isolating an effect of de novo mutations

given the multiple alternative explanations and methodologi-

cal caveats, the effects are detectable in all four populations

and hence plausibly caused to some extent by paternal age.

Depending on their cause, but not only if that cause is muta-

tional, paternal age effects could have implications for policy:

descriptive data show a fall from 1930 to 1970 and a steady

rise in maternal and paternal ages since 1970 in Sweden.

However, average parental ages in 2010 were still lower

than in 1737–1880 (electronic supplementary material, §7).

Although people start reproducing later, they also stop ear-

lier. Contrary to common news and lay scientific accounts,

contemporary parents do not reproduce unprecedentedly

late on average [1,45,58]. While advanced parental ages at first
birth may entail smaller families, pre-industrial populations

had similar average ages at birth and were not overwhelmed

by mutational stress. So, we do not predict that contemporary

reproductive timing will lead to unprecedented or unbearable

de novo mutational loads and concomitant changes in the

prevalence of genetic disorders. The decline in fitness with

paternal age suggests that purifying selection is still effec-

tive in a modern population with hormonal contraception,

social transfers and modern medicine. This runs counter

to oft-repeated predictions of mutational doom by relaxed

selection [3,59–61].

Although our design is not ideal for separating the influ-

ence of maternal and paternal age, many secular trends and

policies will affect both. Future research could use genome-

sequenced families with functionally annotated and phased

mutations to better characterize the contribution of paternal

age [4]. Future research could also isolate a biological

paternal age effect on early mortality in non-human animals
with large recorded pedigrees, such as artificially insemi-

nated breeding cattle. This would rule out most social

confounds by design, but the much shorter breeding lifespan

might limit generalizability to humans.
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