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Abstract
Predicting strains, stresses and swelling in nuclear power plant components exposed to 
irradiation directly from the observed or computed defect and dislocation microstructure 
is a fundamental problem of fusion power plant design that has so far eluded a practical 
solution. We develop a model, free from parameters not accessible to direct evaluation or 
observation, that is able to provide estimates for irradiation-induced stresses and strains on 
a macroscopic scale, using information about the distribution of radiation defects produced 
by high-energy neutrons in the microstructure of materials. The model exploits the fact that 
elasticity equations involve no characteristic spatial scale, and hence admit a mathematical 
treatment that is an extension to that developed for the evaluation of elastic fields of defects 
on the nanoscale. In the analysis given below we use, as input, the radiation defect structure 
data derived from ab initio density functional calculations and large-scale molecular dynamics 
simulations of high-energy collision cascades. We show that strains, stresses and swelling 
can be evaluated using either integral equations, where the source function is given by the 
density of relaxation volumes of defects, or they can be computed from heterogeneous partial 
differential equations for the components of the stress tensor, where the density of body 
forces is proportional to the gradient of the density of relaxation volumes of defects. We 
perform a case study where strains and stresses are evaluated analytically and exactly, and 
develop a general finite element method implementation of the method, applicable to a broad 
range of predictive simulations of strains and stresses induced by irradiation in materials and 
components of any geometry in fission or fusion nuclear power plants.
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1. Introduction

One of the challenges associated with the design, construction 
and operation of a fusion or an advanced fission power plant 
is the need to predict stresses, strains, and swelling resulting 
from the exposure of structural components of a reactor to 
irradiation during operation [1–5]. These stresses and strains 
have a microscopic origin and stem from the fact that radia-
tion defects have substantial elastic relaxation volumes  
[6, 7], which give rise to strong local deformation of the lattice. 
For example, the elastic relaxation volume of a self-interstitial 
atom defect in tungsten, predicted by density functional theory, 
is Ωrel = 1.67Ω0, where Ω0 is the volume of an atom, whereas 
the relaxation volume of a vacancy is Ωrel = −0.37Ω0 , see 
e.g. [7, 8]. The large positive mismatch between elastic relax-
ation volumes of self-interstitial and vacancy type defects in 
metals, which accumulate in the microstructure as a result of 
irradiation, gives rise to the local volumetric expansion, and 
produces stresses in materials exposed to irradiation, resulting 
in macroscopic swelling and heterogeneous deformation of 
reactor components.

Models for swelling developed since the 1970s focus on 
one particular aspect of the phenomenon, the diffusion-medi-
ated preferential absorption of self-interstitial atom defects 
by dislocations [6, 9–11]. There is extensive literature on the 
dynamics of accumulation of defects in microstructure and 
particularly on the evaluation of dislocation bias factors [6, 
12–17], which are then used as input parameters for mean-
field rate theory models describing the dynamics of growth 
of voids in materials exposed to irradiation [9–11, 18]. These 
mean-field models do not require, and do not evaluate, the 
macroscopic stresses and strains resulting from the accumula-
tion of defects. Neither do they take into account the fact that 
elastic relaxation of complex defect configurations involves 
the accumulation of very strong local deformation of the lat-
tice near the defects, with a consequence that the relaxation 
volume of a complex defect cluster is not equal to the sum of 
relaxation volumes of constituting defects. The defect config-
urations formed in collision cascades initiated by high-energy 
neutrons [19–24] have a fairly complex structure, and their 
relaxation volumes, and local strains and stresses are sensitive 
to the relative proximity of individual defects.

A particularly significant practical aspect of the problem 
of accumulation of radiation defects in structural materials 
exposed to high-energy neutron irradiation during power 
plant operation, which has so far eluded a satisfactory solu-
tion, is related to the fact that in a treatment of deformation 
of a comp onent exposed to irradiation, not only the presence 
of defects in the bulk of the material, but also boundary con-
ditions at surfaces, define the final configuration of stresses 
and strains. For example, it is known that the magnitude of 
the total elastic relaxation volume of a point defect depends 
on boundary conditions at surfaces of the material where it 
resides and, surprisingly, the role of boundary conditions does 
not diminish in the macroscopic limit [25, 26].

Below we develop a real-space multi-scale model for 
strains and stresses produced in reactor components by spa-
tially distributed complex configurations of radiation defects 

produced by irradiation. We show that if the properties of 
materials are reasonably isotropic, it is the defect relaxation 
volume density, i.e. the real-space distribution of relaxation 
volumes of self-interstitial and vacancy defects and clusters 
of such defects in a reactor component, that fully defines the 
resulting macroscopic strains and stresses. Individual defects 
and clusters of defects act as sources of strains and stresses, 
which are determined self-consistently, taking into account 
the appropriate boundary conditions. The fundamental notions 
relating macroscopic strains and stresses to microstructure are 
the dipole tensor and relaxation volume of a defect object, 
which can be an individual point defect or a large cluster of 
such defects formed in a collision cascade. We show that the 
dipole tensor of a defect, which has so far only been applied 
to nano-scale point defects [7, 25, 27], can in fact be used 
for characterizing defect objects of arbitrary size. This is a 
mere consequence of the fact that there is no characteristic 
spatial scale in elasticity equations. At a large distance from 
an arbitrarily complex configuration of defects, for example, 
a cluster of defects containing thousands of individual point 
defects, the elastic strain generated by the cluster equals

εij(r) = −Pkl
∂2

∂xj∂xl
Gik(r − R), (1)

where R  is the position of the defect cluster, Gik(r − R) is 
Green’s function of elasticity equations  [28], and Pkl is the 
dipole tensor of the defect configuration. Equation  (1) fully 
defines the strain field generated by a defect cluster at dis-
tances that are much greater than its characteristic spatial 
extent.

It is well established how to compute elastic dipole ten-
sors of point defects [7, 27, 29]. Below, we show how elastic 
dipole tensors can be defined and evaluated for defect clusters 
produced by the collapse of entire high-energy collision cas-
cades. The condition that makes it possible to apply the dipole 
tensor concept to the treatment of strains and stresses in a 
reactor component is that the spatial scale of a defect object in 
the radiation-induced microstructure is always small in com-
parison with the spatial scale of a component.

Historically, elastic dipole tensors were introduced in order 
to treat long-range elastic fields of nano-scale point defects, 
and elastic interactions between such defects, as well as 
between defects and dislocations [25, 30, 31]. Still, the fact 
that the universal scale-free nature of elasticity equations ena-
bles extending the notion of elastic dipole tensor of a defect to 
mesoscopic and macroscopic scales, does not appear to have 
been recognized.

In the treatment of a spatially-localized defect configura-
tion, which may include defects produced by the collapse of 
an entire cascade or even a group of cascades, it is only neces-
sary to take into account the discreteness of the atomic lattice 
in the most strongly distorted core regions of defect structures. 
At large distances from a defect configuration, lattice discrete-
ness is no longer significant and the rate of variation of atomic 
displacements as a function of spatial coordinates is small 
|∂ui/∂xj| � 1. In this limit, the strain and stress fields gen-
erated by a defect configuration are fully characterized by a 
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symmetric 3 × 3 tensor Pkl. The volume dipole tensor density, 
and the density of relaxation volumes of defects, vary from 
one point in the material to another, depending on the local 
degree of exposure of a material to irradiation. The dipole 
tensor can be defined independently of the nature of a defect 
object, for example, it can be defined for a point defect, a dis-
location loop [7, 27, 31], or a fairly complex configuration 
of atomic displacements produced by a collision cascade as 
a whole. In the latter case, although the volume of the spa-
tial region involved in the calculation of Pkl contains a large 
number of atoms, it is still small in comparison with the size 
of a reactor component, justifying the fundamental approx-
imation on which equation (1) is based.

In the next section we outline the formalism involved in 
the evaluation of stress and strain fields associated with spa-
tially distributed defect structures. We derive the fundamental 
equations  defining strains, stresses and displacements in an 
arbitrary volume of a material containing spatially distrib-
uted defects. If the material is elastically isotropic and defects 
have no preferred orientation, the strains and stresses are fully 
determined by the distribution of spatially-varying density 
of elastic relaxation volumes, a dimensionless function that 
acts as a source term in equations for the irradiation-induced 
stresses and strains. Then we show how the relaxation vol-
umes of individual point defects can be computed using ab 
initio density functional theory methods, and provide accurate 
values of relaxation volumes computed for several metals with 
cubic crystal structure. Subsequently, we compare accuracy 
of ab initio and atomic relaxation methods using semi-empir-
ical interatomic potentials, and show how to obtain accurate 
values of dipole tensors for entire configurations of defects 
produced by the collapse of collision cascades initiated by 
high-energy neutrons. For both cases, we discuss a practical 
way of defining the density of relaxation volumes of defects 
and relate it to a measure of exposure of a material to neu-
tron irradiation. We then give a comprehensive derivation of 
the macroscopic elasticity equations including the density of 
body forces associated with the accumulation of defects, and 
provide a full exact solution of these equations  for the case 
of a spherical shell with a source of irradiation at its centre. 
The solution makes it possible to determine swelling, strains 
and stresses everywhere in the shell, and it also illustrates the 
pivotal part played by the boundary conditions for the elas-
ticity equations. Finally, we discuss a finite element imple-
mentation of the method and examine a possible application 
of our approach to the in silico evaluation of operational per-
formance of a fusion power plant.

2. General methodology

At a large distance from a strongly deformed atomic configu-
ration, for example a defect or a cluster of defects, the field of 
displacements of atoms from their equilibrium positions in the 
lattice is given by the equation [25]

ui(r) = −Pkl
∂

∂xl
Gik(r − R). (2)

In this equation, Pkl is the elastic dipole tensor of the 
defect configuration that, according to (2), fully defines the 
elastic field that the configuration generates in the material. 
Gik(r − R) is the elastic Green’s function [28], which in the 
isotropic elasticity approximation has the form

Gik(r) =
1

16πµ(1 − ν)r

[
(3 − 4ν)δik +

xixk

r2

]
. (3)

Here, μ is the shear modulus of the material and ν is the 
Poisson ratio, see [32]. From (2) and (3) we find

ui(r) =
1

16πµ(1 − ν)|r − R|2

× [2(1 − 2ν)Pilηl − ηiPkk + 3ηi(ηkPklηl)] ,
 (4)

where summation over repeated indexes is assumed, and 
ηi = (r − R)i/|r − R|.

Equations similar to (4) have been extensively explored 
in connection with the treatment of elastic fields of point 
defects on the nano-scale [7, 27, 33, 34]. However, as the 
form of equation  (4) suggests, there is no specific spatial 
scale at which it should be applied, as elastic fields have no 
intrinsic spatial scale associated with them. For example, 
using formula (4) one can approximate the elastic field of a 
fairly large defect structure just as easily as one can do this 
for a point defect.

The magnitude and the angular anisotropy of elastic field is 
described by the matrix elements of tensor Pkl, which can be 
evaluated using atomistic simulations with periodic boundary 
conditions, using the equation [7, 25, 29]

Pkl = −
∫

V
σkl(r)d3r = −Vσkl, (5)

where V  is the volume of the simulation cell containing the 
defect structure, and σkl  is the volume average stress tensor. 
In the literature [25, 29], equation  (5) has so far been only 
applied to point defects, and hence the size of the cell used in 
simulations was relatively small, in most cases not exceeding 
103 atoms. However, since the notion of the dipole tensor 
defined above is entirely general, equation (5) can be applied 
to a defect structure of arbitrary size, potentially involving 
millions of atoms and many individual point defects and clus-
ters of defects.

It is convenient to represent Pkl in the following form

Pkl = CklmnΩmn, (6)

where Ωmn is an auxiliary 3 × 3 tensor, also uniquely charac-
terizing the defect structure, and Cijkl is the tensor of elastic 
constants. The advantage that this representation offers is that 
it provides a simple and robust way of computing the relax-
ation volume of an arbitrary complex defect configuration as a 
whole. Indeed, the relaxation volume of a defect configuration 
in a body with surfaces free of tractions equals [25]

Ωrel = SmmklPkl = Ωmm = TrΩ, (7)

where Sijkl = (Cijkl)
−1 is the elastic compliance tensor [35]. 

Tensor Ωmn can be expressed in terms of its eigenvectors and 
eigenvalues as
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Ωmn =

3∑
s=1

Ω(s)e(s)
m e(s)

n , (8)

where eigenvectors e(s) form a mutually orthogonal set, and 
eigenvalues Ω(s) have the meaning of partial relaxation vol-
umes. They satisfy the condition

Ωrel =

3∑
s=1

Ω(s), (9)

which, if the defect configuration has been formed as a 
result of a collision cascade event initiated by an energetic 
neutron, gives the total relaxation volume of cascade debris. 
Swelling, often occurring under neutron irradiation, results 
from the accumulation of uncompensated relaxation volumes 
of defects and defect clusters produced in collision cascades 
initiated by neutrons.

In engineering applications, where the scale of effective 
volumes containing defects is large, and defects and defect 
clusters adopt random spatial orientations, the eigenvectors of 
tensor Ωmn may point in any spatial direction with equal prob-
ability. For example, consider the relaxation volume tensor of 
a crowdion defect [7] shown schematically in figure 1

Ωmn = Ω(1)lmln +
Ω(2)

3
δmn. (10)

The direction vector l of the axis of the defect can adopt any 
of the four 〈1 1 1〉 type directions. As a result, the average over 
defect orientations relaxation volume tensor is diagonal with 
respect to m and n.

Similarly, we can define an average over orientations for 
the relaxation volume tensor of a complex defect

〈Ωmn〉 =
3∑

s=1

Ω(s)〈e(s)
m e(s)

n 〉. (11)

Here 〈...〉 denotes averaging over all the directions in the solid 
angle of 4π, namely

〈 f (θ,φ)〉 = 1
4π

∫
f (θ,φ) sin θdφdθ.

For a unit vector in 3D space e = (sin θ cosφ, sin θ sinφ, cos θ), 
we find that

〈ei〉 = 0,

〈eiej〉 =
1
3
δij,

 (12)

and

〈Ωmn〉 =
1
3
Ωrelδmn. (13)

Substituting this into equation (6) we arrive at

〈Pkl〉 =
Ωrel

3
Cklmm, (14)

which for crystals of cubic symmetry becomes

〈Pkl〉 =
Ωrel

3
(C11 + 2C12)δkl.

 (15)
In the isotropic elasticity limit the above equation  for the 
dipole tensor reduces to [7, 31]

〈Pkl〉 =
2µ
3
Ωrel

1 + ν

1 − 2ν
δkl = BΩrelδkl, (16)

where B is the bulk modulus of the material.
In applications, where macroscopic elastic fields are 

formed as a result of superposition of microscopic fields cre-
ated by millions of individual defects and defect clusters, 
which all adopt arbitrary orientations in the lattice, it is often 
sufficient to use the above isotropic approximation for the 
dipole tensor. The advantage offered by this approximation 
is that a defect object is characterized by only one parameter, 
its relaxation volume Ωrel. In some cases, for example in crys-
tals with non-cubic symmetry or in the presence of significant 
external aniso tropic elastic strain field, it may prove necessary 
to take into account the anisotropy of defect structures.

The field of elastic displacements generated by a defect 
object, the dipole tensor of which has the form (16), equals

ui(r) =
Ωrel

12π

(
1 + ν

1 − ν

)
(r − R)i

|r − R|3
. (17)

The strain field, corresponding to this field of displacements, 
is

εij(r) =
Ωrel

4π|r − R|3
1 + ν

1 − ν

(
1
3
δij − ηiηj

)
. (18)

To compute the elastic stress associated with the strain field 
given by (18), we need to multiply the strain tensor by the 
four-index tensor of elastic constants, which in the isotropic 
elasticity approximation equals [26]

Cijkl = µ
2ν

1 − 2ν
δijδkl + µ (δikδjl + δilδjk) . (19)

The resulting expression for the stress field generated by a 
defect object at R  is

Figure 1. A sketch of a self-interstitial crowdion defect, where the 
axis of the defect is parallel to the [1 1 1] crystallographic direction.
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σij(r) =
µΩrel

2π|r − R|3
1 + ν

1 − ν

(
1
3
δij − ηiηj

)
, r �= R. (20)

We now define the central notion of our treatment, the den-
sity of relaxation volumes of defects, which is a dimensionless 
quantity equal to the total relaxation volume of all the defect 
configurations in a unit volume of material

ωrel(r) =
∑

a

Ω
(a)
rel δ(r − Rα), (21)

where summation is performed over all the defect clusters a 
in the material. Because of the properties of the Dirac delta-
function, if we integrate ωrel(r) over a certain volume ele-
ment in the material, only the defect clusters contained in that 
volume element are going to contribute to the integral. There 
is a fundamental relation between the notion of the number 
of displacements per atom [36], which is a measure of expo-
sure of a material to irradiation, and the density of relaxation 
volumes of defects that such exposure produces. Below, we 
show that function ωrel(r) provides a quantitative measure of 
the magnitude of sources of stresses and strains produced in 
materials by radiation defects.

A quantity similar to (21) was introduced by Caturla et al 
[37, 38] in the context of modelling microstructural evo-
lution and swelling of materials under irradiation. To explain 
swelling, in [37, 38] the density of relaxation volumes of 
vacancies was taken as a positive quantity. This does not agree 
with ab initio calculations, showing that vacancies have nega-
tive relaxation volumes whereas self-interstitial atom defects 
have positive relaxation volumes. Swelling results from the 
agglomeration of self-interstitial defects into dislocation loops 
and extended dislocation network; vacancies aggregate into 
voids, the relaxation volume of which in the macroscopic 
limit is negative and small [39].

The elastic strain, generated by all the defects produced by 
irradiation and distributed with certain density in the bulk of a 
reactor component, can be computed by integrating the point 
source function (18) with the density of relaxation volumes of 
defects (21) as

εij(r) =
1

4π
1 + ν

1 − ν

∫
ωrel(R)

|r − R|3

(
1
3
δij − ηiηj

)
d3R. (22)

We note that equation  (18) follows from (22) if we assume 
ωrel(R) = Ωrelδ(R − R0).

Computing the stress generated in a material by a con-
tinuous distribution of defects involves an element of math-
ematical subtlety. First, we re-write equation  (22) in the 
form

εij(r) = − 1
12π

1 + ν

1 − ν

∫
ωrel(R)

∂2

∂xi∂xj

1
|r − R|

d3R. (23)

To find the elements of the stress tensor

σij(r) = Cijklεkl(r), (24)

we multiply (23) by the four-index tensor of elastic constants 
(19). This gives

σij(r) =− µ

6π
1 + ν

1 − ν

∫
ωrel(R)

∂2

∂xi∂xj

1
|r − R|

d3R

− µ

12π

(
1 + ν

1 − ν

)(
2ν

1 − 2ν

)
δij

×
∑

k

∫
ωrel(R)

∂2

∂x2
k

1
|r − R|

d3R,

 

(25)

where the second term, proportional to δij, arises from the first 
term in (19). Noting that

∑
k

∂2

∂x2
k

1
|r − R|

= ∆
1

|r − R|
= −4πδ(r − R),

we find the stress produced by a continuous distribution of 
defects

σij(r) =− µ

6π
1 + ν

1 − ν

∫
ωrel(R)

∂2

∂xi∂xj

1
|r − R|

d3R.

+
µ

3

(
1 + ν

1 − ν

)(
2ν

1 − 2ν

)
δijωrel(r).

 
(26)

The density of body forces arising from a continuous distribu-
tion of defects can now be found by differentiating the stress 
tensor with respect to xj, namely [40]

fi(r) = −
∂σij(r)
∂xj

=
2µ
3

(
1 + ν

1 − ν

)
∂

∂xi
ωrel(r)

− µ

3

(
1 + ν

1 − ν

)(
2ν

1 − 2ν

)
∂

∂xi
ωrel(r).

 

(27)

Deriving the first term in the above equation involved integra-
tion by parts

− µ

6π
1 + ν

1 − ν

∫
ωrel(R)

∂

∂xi

∂2

∂x2
j

1
|r − R|

d3R

=
µ

6π
1 + ν

1 − ν

∫
ωrel(R)

∂

∂xi
[4πδ(r − R)]d3R

= − µ

6π
1 + ν

1 − ν

∫
ωrel(R)

∂

∂Xi
[4πδ(r − R)]d3R

=
2µ
3

1 + ν

1 − ν

∂

∂xi
ωrel(r).

 

(28)

The addition of the two terms in (27) gives the density of 
body forces resulting from the accumulation of defects in the 
material

fi(r) = −2µ
3

(
1 + ν

1 − 2ν

)
∂

∂xi
ωrel(r). (29)

This equation is one of the key findings of this work.
For completeness, we also note the expression for the field 

of elastic displacements produced by the defects distributed 
in the bulk of a reactor component with relaxation volume 
density (21), namely

ui(r) = − 1
12π

(
1 + ν

1 − ν

)
∂

∂xi

∫
ωrel(R)

|r − R|
d3R

=
1

12π
1 + ν

1 − ν

∫
ωrel(R)

(r − R)i

|r − R|3
d3R.

 
(30)
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Equations (22)–(25) fully define the elastic field gener-
ated directly by the sources of stresses and strains associated 
with relaxation volumes of spatially distributed radiation 
defects. However, these equations  do not take into account 
the boundary conditions at surfaces, which give a surpris-
ingly large contrib ution to the observed strains, stresses, and 
swelling. It is known that in the treatment of elastic fields of 
point defects, strains and stresses associated with boundary 
conditions have the same magnitude as strains and stresses 
(22)–(25) generated by the defects themselves, see for example 
[25, 26]. Below we show that, for example, in tungsten only 
59% of the observed swelling comes directly from the sources 
in the integral equations  representing relaxation volumes of 
defects. The remaining 41% of the swelling effect comes from 
strains and stresses associated with boundary conditions.

In the next section we describe how function ωrel(r) can be 
computed or estimated using ab initio methods and molecular 
dynamics simulations, and generic assumptions about the 
spatial distribution of radiation damage. We then investigate 
the case of a spherical shell containing an isotropic neutron 
source, representing for example a vacuum vessel of a fusion 
power plant or the casing of a fissile fuel element, and solve 
the above equations for the stress and strain analytically. We 
then develop a finite element implementation of the approach 
described above, to enable computing strains and stresses in 
components of arbitrary shape and size exposed to irradiation.

3. Relaxation volumes of point defects  
in bcc transition metals and gold

In this section  we summarize results of ab initio density 
functional theory calculations of relaxation volumes of self-
interstitial atoms (SIA) and vacancy defects in several bcc 
transition metals and in gold. The availability of such data 
is still relatively limited as the majority of density functional 
calcul ations of defects performed so far focused on the accu-
rate evaluation of energies of defects [42–45], rather than on 
the evaluation of elastic properties of defects [7, 8, 27, 29, 46]. 
The relaxation volume of a Frenkel pair can be approximated 
by the sum of relaxation volumes of an SIA and a vacancy. 
In non-magnetic bcc transition metals, the 〈1 1 1〉 dumbbell 
is the most stable SIA defect configuration [47]. We have 
evaluated the relaxation volumes of SIA and vacancy defects 
in vanadium, niobium, molybdenum, tantalum and tung-
sten using equation  (5). DFT calculations were performed 
using the approach described in [7]. Relaxation volumes of 
vacancies were computed using simulation boxes containing 
3 × 3 × 3 bcc unit cells, using a 5 × 5 × 5 k-point mesh and 
the GGA-PBE functional.

Results of ab initio calculations of relaxation volumes of 
defects are summarised in table 1. The relaxation volume of 
a vacancy is negative whereas the relaxation volume of a SIA 
defect is positive, and in most cases larger than the volume 
of an atom. The data given in the table show that the relaxa-
tion volume of a Frenkel pair is close to one atomic volume. 
Relaxation volumes of point defects in fcc gold (Au) were 

evaluated in [41]. In gold, the most stable configuration of a 
SIA defect is a 〈1 0 0〉 dumbbell. The relaxation volume of a 
Frenkel pair in gold is close to 1.64 atomic volume, larger than 
in bcc transition metals.

4. Validation of MD data against DFT calculations

To compare defect dipole tensors computed using semi-
empirical many-body interatomic potentials with ab initio 
results derived from density functional calculations, we evalu-
ated dipole tensors of point defects in tungsten.

All the ab initio calculations were performed using Vienna 
Ab initio Simulation Package (VASP) [48–51]. We used the 
PBE [52, 53] and AM05 [54–56] exchange-correlation func-
tionals. The plane wave energy cutoff was 450 eV. We used a 
supercell containing 4 × 4 × 4 bcc unit cells, and a 5 × 5 × 5 
k-points mesh. First, we created perfect lattice cells con-
taining 128 atoms and fully relaxed them, to find the equi-
librium lattice parameter. Then, we created cells containing 
point defects. Ionic positions were relaxed, but the cell size 
and shape remained the same as in the perfect lattice case. 
Elastic dipole tensors were computed from macro-stresses 
using equation (5). The computed values are given in tables 2 
and 3.

We have also evaluated dipole tensors of point defects 
using molecular statics and semi-empirical interatomic poten-
tials. We used the Marinica (EAM4) [57] and DND potentials 
[47]. Similarly to ab initio calculations, we first fully relaxed a 
simulation box containing 80 × 80 × 80 perfect bcc unit cells. 
Then, we inserted or removed atoms in the cell, creating point 
defects. This was followed by the relaxation of atomic con-
figurations, where again we did not change the cell size and 
shape. The dipole tensors were computed using equation (5). 
The computed values are given in tables 4 and 5. Comparison 
of elements of dipole tensors computed using density func-
tional theory and semi-empirical potentials in tables  2–5,  
show that whereas the results agree qualitatively, there are 
significant differences between the absolute values. This is 
perhaps not surprising since the main criterion used in fit-
ting the semi-empirical potentials to ab initio data has been 

Table 1. Relaxation volume of 〈1 1 1〉 self-interstitial atom (SIA) 
dumbbell defects and vacancies in non-magnetic bcc transition 
metals, and of a 〈1 0 0〉 self-interstitial dumbbell defect and a 
vacancy in fcc gold. The relaxation volume of a Frenkel pair is 
approximated by the sum of relaxation volumes of a SIA defect and 
a vacancy. Data are given in atomic volume units; defect relaxation 
volumes in gold are taken from [41].

ΩSIA
rel ΩV

rel ΩFP
rel

V 1.472 −0.493 0.979
Nb 1.554 −0.405 1.149
Mo 1.538 −0.353 1.185
Ta 1.524 −0.410 1.114
W 1.712 −0.345 1.367
Au 2.02 −0.38 1.64
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the agreement between the energies of atomic configurations. 
Elastic properties of defects have so far received relatively 
little attention although, as we show in this study, they play 
a pivotal role in determining the magnitude of strains and 
stresses in reactor components under irradiation.

To evaluate the density of relaxation volumes of radiation 
defects (21), it is not enough to know the number of Frenkel 
pairs per unit volume. It is only in the limit where self-inter-
stitial atom defects and vacancies are distributed randomly as 
an ideal gas of defects that the density of relaxation volumes 
can be estimated as

ωrel(r) = ΩSIA
rel nSIA(r) + ΩV

relnV(r), (31)

where nSIA(r) and nV(r) are the volume densities of self-inter-
stitial atom and vacancy defects, and where the relaxation 
volume of a SIA defect ΩSIA

rel  is positive and the relaxation 
volume of a vacancy ΩV

rel is negative.
If defects form clusters, for example dislocation loops 

or voids, the relaxation volume of a cluster of defects is dif-
ferent from the sum of relaxation volumes of defects forming 
the cluster. For example, the volume of a dislocation loop in 
the macroscopic limit equals the scalar product of its Burgers 

Table 3. Elastic dipole tensors of point defects in tungsten. The values were computed using density functional theory and the AM05 
exchange-correlation functional. All the values are in eV units.

AM05 P11 P22 P33 P12 P23 P31

100dumbbell 66.34 53.85 53.85 0.00 0.00 0.00
110dumbbell 57.37 53.71 53.71 0.00 11.77 0.00
111crowdion 53.84 53.84 53.84 13.24 13.24 13.24
111dumbbell 53.84 53.84 53.84 13.22 13.22 13.22
Octa 53.26 53.26 68.30 0.00 0.00 0.00
Tetra 48.13 59.93 59.93 0.00 0.00 0.00
Vacancy −10.95 −10.95 −10.95 0.00 0.00 0.00

Table 4. Elastic dipole tensors of point defects in tungsten. The values given in this table were computed using the Marinica (EAM4)  
semi-empirical interatomic potential for tungsten. All the values are in eV units.

Marinica P11 P22 P33 P12 P23 P31

100dumbbell 49.85 40.12 40.12 0.00 0.00 0.00
110dumbbell 52.91 53.69 53.69 0.00 13.24 0.00
111crowdion 35.16 35.16 35.16 14.82 14.82 14.82
111dumbbell 37.16 37.16 37.16 16.59 16.59 16.59
Octa 45.10 45.10 59.77 0.00 0.00 0.00
Tetra 48.02 49.94 49.94 0.00 0.00 0.00
Vacancy −1.07 −1.07 −1.07 0.00 0.00 0.00

Table 5. Elastic dipole tensors of point defects in tungsten. The values given in this table were computed using the  
Derlet–Nguyen-Manh–Dudarev (DND) semi-empirical interatomic potential for tungsten. All the values are in eV units.

DND P11 P22 P33 P12 P23 P31

100dumbbell 55.70 23.49 23.49 0.00 0.00 0.00
110dumbbell 32.60 33.97 33.97 0.00 3.70 0.00
111crowdion 36.98 36.98 36.98 13.64 13.64 13.64
111dumbbell 38.21 38.21 38.21 13.65 13.65 13.65
Octa 25.54 25.54 60.66 0.00 0.00 0.00
Tetra 18.15 43.65 43.65 0.00 0.00 0.00
Vacancy −3.33 −3.33 −3.33 0.00 0.00 0.00

Table 2. Elastic dipole tensors of point defects in tungsten. The values were computed using density functional theory with the PBE 
exchange-correlation functional. All the values are in eV units.

PBE P11 P22 P33 P12 P23 P31

100dumbbell 65.92 53.38 53.38 0.00 0.00 0.00
110dumbbell 56.96 52.56 52.56 0.00 11.28 0.00
111crowdion 52.74 52.74 52.74 13.15 13.15 13.15
111dumbbell 52.75 52.75 52.75 13.13 13.13 13.13
Octa 52.74 52.74 67.21 0.00 0.00 0.00
Tetra 47.36 59.11 59.11 0.00 0.00 0.00
Vacancy −9.98 −9.98 −9.98 0.00 0.00 0.00
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vector and its vector area (b · A), and can be positive or nega-
tive, depending on the interstitial or vacancy character of the 
loop [7, 31]. The relaxation volume of a void, which is a large 
cluster of vacancies, vanishes in the macroscopic limit [39]. The 
relaxation volume of a vacancy-helium cluster depends on the 
relative number of vacancies and helium atoms in a cluster [8].

In the next section we evaluate relaxation volumes of clus-
ters of defects formed in collision cascades. We show that the 
total relaxation volume of cascade debris is still proportional 
to the number of Frenkel pairs produced in a cascade event, 
however it is not given by equation (31) above.

5. Evaluation of dipole tensors of defects  
and clusters of defects by atomistic calculations

5.1. The dipole tensor for a large, complex defect

Equation (2) gives the displacement field at a position r, 
which is sufficiently far away from a defect so it can be treated 
as a point source of elastic deformation. If there are m such 
point sources, the displacement field at r is simply the sum 
over their contributions. Contributing point sources could be a 
substitutional atom whose local environment induces a stress 
upon it, but equally could be a point defect, or a cluster of 
defects, viewed from a distance. The dipole tensor of a large, 
complex defect therefore has the same simple physical inter-
pretation as that of a point defect or a small defect cluster—it 
can be approximated by a point source of stress which pro-
duces the same displacement field (to leading order) as the 
sum of its contributing parts.

Figure 2. Typical high-energy displacement cascades in tungsten, 
evolved to 40 ps and then atomically relaxed at constant volume. 
The initial energies of recoil atoms giving rise to a cascade event: 
top to bottom: 100 keV PKA, 150 keV, 200 keV. Vacancies (blue) 
and interstitials (red) have been identified using a Wigner–Seitz 
cell analysis. The defect clusters introduce both compressive and 
rarefactive stresses. Yellow isosurfaces show the region where 
atoms contribute Tr(P)  =  +0.15 eV per atom to the dipole tensor 
(compressive stress), blue isosurfaces where Tr(P)  =  −0.05 eV per 
atom (rarefactive) computed using equation (34). Details of these 
simulations are given in the text and table 6. The classic cascade 
structure of vacancy-rich core surrounded by interstitial clusters 
can be observed. From a distance, the structure of the cascade is 
immaterial, and the long-range elastic field of the cascade can be 
computed from a single dipole tensor capturing the sum of the 
contributions from each defect cluster formed in a cascade. Images 
rendered using Ovito [62].

Table 6. Results for the dipole tensor for three representative 
displacement cascades simulated using molecular dynamics. The 
energy of the initial primary knock-on atom (PKA) is given in 
kiloelectron-Volts (keV), the number of Frenkel pairs was computed 
by the Wigner–Seitz cell analysis of the final cascade configuration. 
The partial relaxation volumes were computed using equation (8). 
The total relaxation volume of a cascade is also reported as a 
multiple of the volume per atom, Ω0. Elements of dipole tensors and 
relaxation volumes are converged to better than 1%.

PKA energy (keV) 100 150 200

Number of Frenkel pairs 199 174 198
Elements of the dipole tensor (eV)
P11 2340 3080 3640
P22 1480 2860 3410
P33 2030 2450 3140
P23 −907 62 −1420
P31 −1580 −335 351
P12 −367 1700 −714

Partial relaxation volumes Ω(s) (Å
3
)

Ω1 −1570 −1150 −908
Ω2 505 331 2220

Ω3 2040 2220 2240

Relaxation volumes Ωrel/Ω0 61.4 88.2 107.0
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We can say that a complex defect is a group of m contribu-
tors, where the a = {1, 2, . . . , m}th contributor has dipole 
tensor Pa

kl  and position Ra. We would like to represent this 
with a single dipole tensor Pkl at position R . The displacement 
at r due to the group of m contributors is

ui(r) = −
m∑

a=1

Pa
kl

∂

∂xl
Gik(r − Ra)

= −
m∑

a=1

Pa
kl

∂

∂xl
Gik(r − R)

+
m∑

a=1

(
Ra

j − Rj
)

Pa
kl

∂2

∂xl∂xj
Gik(r − R)

+O

(
(Ra − R)

2

R5

)
.

 

(32)

We recognize the first term as the displacement field due to a 
single defect of strength Pkl =

∑
a Pa

kl  at R , and the second 
term as the first-order correction due to the spatial extent of 
the defect. The spherical average of the second derivative of 
Gik is zero, so to minimise the second term we choose

R = argmin

∥∥∥∥∥
m∑

a=1

(Ra − R) Pa
kl

∥∥∥∥∥

�
∑m

a=1 ‖Pa‖Ra
∑m

a=1 ‖Pa‖
 

(33)

where ‖P‖ =
√

Tr(P2)  is the Frobenius norm, used here as 
a measure of the strength of the ath contributor. In this way 
we can define a single dipole tensor and single position for a 
complex defect.

5.2. Dipole tensor for defects generated by a collision  
cascade

In this section  we compute the dipole tensors for collision 
cascades in bulk tungsten simulated with classical molecular 
dynamics. It is not our intention here to provide an exhaustive 
database of values of dipole tensors, only to describe the rela-
tive ease of such a calculation. For an empirical potential we 
can define the energy as a sum over all atoms a, and so [58]

Pkl ≡
∑

a

Pa
kl = −1

2

∑
a,b

fab,krab,l,

 

(34)

where fab,k is the kth Cartesian component of the force acting 
on atom a due to atom b and rab,l is the lth Cartesian comp-
onent vector separation between them. The second derivative 
of energy with respect to strain gives the (fourth-rank) elastic 
constant tensor, needed for evaluating the relaxation volume 
given by equation (7).

Collision cascades were simulated with the classical molec-
ular dynamics code PARCAS. A simulation supercell of 6.8 
million atoms at 0 K was established with periodic stress-free 
boundary conditions, then a cascade was initiated by giving 
a single atom a large kinetic energy (100 keV–200 keV)  

in a random direction. The DND interatomic potential for 
tungsten by Derlet et  al [47], stiffened at short range by 
Björkas et al [59], was used for the simulations, and a non-
local friction force was applied to atoms with a kinetic energy 
above 10 eV to account for energy loss due to electronic stop-
ping [60]. A Berendsen thermostat [61] set to 0 K was applied 
to the atoms in a 1.5 unit cell thick region along all periodic 
boundaries. Cascades were followed for 40 ps, at which point 
further defect evolution is thermal rather than ballistic. Details 
of the simulation method can be found in [20]. Similar cas-
cade simulations have been shown to reproduce the observed 
experimental cluster size-frequency distribution [21, 23] and 
spatial extent [24]. A typical relaxed cascade configuration is 
shown in figure 2. To compute the dipole tensor for the atomi-
cally relaxed configuration, the atoms in the supercell could 
in principle be directly relaxed with conjugate gradients or a 
similar method, but in practice we have found that the dipole 
tensor converges rather slowly in a large box, and a standard 
convergence criterion based on force-per-atom or total energy 
difference alone may return without a well-converged dipole 
tensor. Instead we take the calculation as a three-stage proce-
dure: first the atoms deviating more than 1/4 lattice parameter 
from crystal positions were identified, and a buffer of four 
unit cells in all directions was added. A smaller rectangular 
cell containing these atoms was cropped from the cascade and 
fully relaxed. At this point the dipole tensor is converged to 
within 10%. The smaller cell was then re-embedded into a 4 
million atom perfect crystal supercell (128 × 128 × 128 unit 
cells), and relaxed again. The dipole tensor is computed after 
the second relaxation. Finally the dipole tensor computed for 
the perfect crystal lattice at the original supercell size was 
computed and subtracted—this may not be exactly zero if the 
lattice parameter is only specified to a fixed precision, and 
needs removing as it scales with system size. We find conv-
ergence in the dipole tensor to better than 1% precision after 
a few hours cpu time. We expect this precision to be signifi-
cantly better than the accuracy of the potentials or the descrip-
tion of the cascade structure.

Dipole tensors were computed for isolated defects and 
relaxed cascade configurations using the stress method, equa-
tion (5). Results for idealised isolated defects are given in sec-
tion 4, from which we conclude that empirical potentials give 
reasonable results. We note that the relaxation volume for a 
single tungsten SIA is around 1.7 Ω0, but for a large loop con-
taining N interstitials the relaxation volume drops to NΩ0, in 
agreement with elasticity analysis [7, 31]. Defect dipole ten-
sors for the full cascades are given in table 6. We conclude that 
the relaxation volume of a cascade scales with the number of 
Frenkel pairs, with the DND potential giving

Ωrel(E) � 0.5NFP(E) Ω0. (35)

The elastic relaxation volume density ωrel(r) of cascades 
resulting from atomic recoils of energy E can be computed as

ωrel(r) =
∫

n(r, E)Ωrel(E)dE, (36)

where n(r, E) is the spatial density of cascades with energy E 
and Ωrel(E) is the relaxation volume of defects produced in 
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a cascade initiated by a recoil atom of energy E. In practice, 
this function can be computed using neutron transport calcul-
ations for a realistic reactor geometry [63, 64] followed by the 
evaluation of local spectra of primary knock-on atoms [65] 
and the treatment of the subsequent evolution of microstruc-
ture, including modelling dislocation climb [66], self-climb 
[67], and the formation of a network of dislocations, voids 
and gas bubbles.

6. Strains, stresses and swelling in a spherical 
shell: an exact solution

Above, we showed how to compute the relaxation volume 
density (21) using ab initio calculations and molecular 
dynamics simulations of high energy collision cascades. In 
this and the next sections we show how to solve the elasticity 
equations and compute strains, stresses and swelling of comp-
onents assuming that function ωrel(r) is known. In this section, 
we show how to solve equations (23)–(30) analytically in the 
limit where the problem has spherical symmetry, and in the 
next section we describe a general numerical finite element 
approach suitable for the treatment of arbitrary configurations.

Consider a component, for example the vacuum vessel of a 
fusion power plant or the cladding of a fuel cell containing fis-
sile nuclear fuel, which we assume has the form of a spherical 
shell sketched in figure 3.

If the source of neutrons inside the shell is isotropic, then 
the distribution of defect relaxation volumes in the material 
depends only on the distance r to the centre of the shell and is 
independent of the polar and azimuthal angles θ and φ of the 
spherical system of coordinates, the origin of which is at the 
centre of the shell.

The solution that we are interested in is defined on the 
interval R1 � r � R2, where R1 is the inner radius of the 
shell and R2 is its outer radius. The field of displacements 
is radially-symmetric and the vector of displacements can 
be written as u(r) = ur(r)n, where n = r/r . Differentiating 
equation (30), we find

∂

∂xi
ui(r) = − 1

12π

(
1 + ν

1 − ν

)
∂2

∂x2
i

∫
ωrel(R)

|r − R|
d3R

=
1

12π

(
1 + ν

1 − ν

)∫
ωrel(R)[4πδ(r − R)]d3R

=
1
3

(
1 + ν

1 − ν

)
ωrel(r).

 

(37)

The above equation  has a simple meaning, namely that it 
is the density of relaxation volumes of defects that causes 
the material to expand or contract as a result of accumula-
tion of defects in the material. Note the remarkable prefactor 
(1/3)(1 + ν)/(1 − ν) in the above equation, the numerical 
value of which is close to 0.6 for tungsten. This prefactor 
shows that the direct deformation of the lattice caused by the 
accumulation of defects is only partially responsible for the 
observed dimensional changes occurring as a result of irra-
diation. The other, similar in magnitude, contribution comes 
from the boundary conditions at surfaces, as we prove below.

Since the field of displacements is radially symmetric, we 
apply the divergence theorem to equation (37) and write

4πr2ur(r) =
4π
3

(
1 + ν

1 − ν

)∫ r

R1

R2ωrel(R)dR, (38)

for R1 � r � R2.
Noting that in the absence of radiation defects the diver-

gence of u(r) is a harmonic function of coordinates [40], we 
write the field of displacements as a sum of the partial solution 
of heterogeneous equation (37) and a general solution of the 
corresponding homogeneous equation, namely

ur(r) = ar +
b
r2 +

1
3r2

(
1 + ν

1 − ν

)∫ r

R1

R2ωrel(R)dR. (39)

Here a and b are constants that need to be determined from 
boundary conditions at r  =  R1 and r  =  R2. Assuming that 
pressure at R1 and R2 is negligible in comparison with the 
stresses developing in the material due to the accumulation of 
defects, we adopt the traction free boundary conditions [25] 
σij(r)nj = 0 at r  =  R1 and r  =  R2.

Strains can be found by differentiating (39). They have the 
form

εij(r) = aδij +
b
r3 (δij − 3ninj)

+
1

3r3

(
1 + ν

1 − ν

)
(δij − 3ninj)

∫ r

R1

R2ωrel(R)dR

+
1
3

(
1 + ν

1 − ν

)
ninjωrel(r).

 

(40)

To find stresses, we need to multiply the above expression for 
the strain tensor by the four-index tensor of elastic constants 
(19). The resulting expression has the form

Figure 3. A sketch of a spherical shell containing a source 
of neutrons in its central part. The solution described in this 
section gives the distribution of stresses and strains in the material 
of the shell for R1 � r � R2.
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σij(r) = 2µa
(

1 + ν

1 − 2ν

)
δij +

2µb
r3 (δij − 3ninj)

+
2µ
3r3

(
1 + ν

1 − ν

)
(δij − 3ninj)

∫ r

R1

R2ωrel(R)dR

+
µ

3

(
1 + ν

1 − ν

)
ωrel(r)

(
2ν

1 − 2ν
δij + 2ninj

)
.

 

(41)

Applying the traction-free boundary conditions at r  =  R1 and 
r  =  R2 to (41), we find parameters a and b, namely

a =
1

6π

(
1 − 2ν
1 − ν

)
Ωtot

R3
2 − R3

1
, (42)

and

b =
1

12π

(
1 + ν

1 − ν

)
R3

1

R3
2 − R3

1
Ωtot, (43)

where

Ωtot = 4π
∫ R2

R1

R2ωrel(R)dR

is the total relaxation volume of all the defects in the material 
of the shell.

The total macroscopic change of volume resulting from the 
accumulation of defects in the materials of the shell is given 
by the integral of the trace of the full strain tensor (40) over the 
volume of the component

∆V =

∫
εii(r)dV =

∫ [
1
3

(
1 + ν

1 − ν

)
ωrel(r) + 3a

]
dV

=

∫ R2

R1

[
1
3

(
1 + ν

1 − ν

)
ωrel(r) + 3a

]
4πr2dr,

 

(44)

where we noted that δii = 3 and nini = 1. The integration of the 
first term in square brackets over the volume of the shell gives

∆V1 =
1
3

(
1 + ν

1 − ν

)
Ωtot,

whereas the second term in (44), proportional to a and arising 
from the boundary conditions, contributes

∆V2 =
2
3

(
1 − 2ν
1 − ν

)
Ωtot

to the total macroscopic swelling of the shell. The sum of 
these two terms equals Ωtot, confirming that swelling is as 
much an effect of direct expansion of the lattice due to the 
accumulation of defects in the material, as it is an effect asso-
ciated with boundary conditions and arising from long-range 
stresses and strains of defects interacting with the boundaries 
of the component.

Substituting (42) and (43) into (39), we find radial dis-
placements of the inner and outer surfaces of the shell

ur(R1) =
1

4π
R1

R3
2 − R3

1
Ωtot

ur(R2) =
1

4π
R2

R3
2 − R3

1
Ωtot.

 
(45)

These displacements satisfy the condition

4πR2
2ur(R2)− 4πR2

1ur(R1) = Ωtot, (46)

which provides an alternative way of evaluating the total 
volumetric swelling of the shell. A remarkable property of 
equation (45) is that they show that both the inner and outer 
surfaces of an irradiated spherical shell relax outwards. The 
magnitude of surface displacements can be substantial. For 
example, the surface of a vacuum vessel with the inner radius 
of R1  =  5 metres, after exposure to neutron irradiation, pro-
ducing constant homogeneous defect relaxation volume 
density ωrel = 1% in the material, moves outwards by approx-
imately ur(R1) = ωrelR1/3 ≈ 1.6 cm.

We can now find elements of the stress tensor developing 
in the spherical shell as a result of its exposure to irradiation. 
The radial diagonal element of the stress tensor is

σrr(r) =
µ

3π

(
1 + ν

1 − ν

)[
Ωtot

R3
2 − R3

1

(
1 − R3

1

r3

)]

− µ

3π

(
1 + ν

1 − ν

)[
4π
r3

∫ r

R1

R2ωrel(R)dR
]

+
2µ
3

(
1 + ν

1 − 2ν

)
ωrel(r).

 

(47)

The circumferential (hoop) components σθθ(r) and σφφ(r) of 
the stress tensors are

σθθ(r) =
µ

3π

(
1 + ν

1 − ν

)[
Ωtot

R3
2 − R3

1

(
1 +

R3
1

2r3

)]

+
µ

6π

(
1 + ν

1 − ν

)[
4π
r3

∫ r

R1

R2ωrel(R)dR
]

+
µ

3

(
1 + ν

1 − ν

)(
2ν

1 − 2ν

)
ωrel(r).

 

(48)

Due to the spherical symmetry of the problem, we have 
σθθ(r) = σφφ(r). The above formulae are valid for any dis-
tribution of defect relaxation volume density ωrel(r) in the 
spherical shell, which is a function of radial variable r.

As the density of defects vanishes in the immediate vicinity 
of free surfaces, ωrel(R1) = ωrel(R2) = 0. The radial stress 
(47) also vanishes at surfaces at r  =  R1 and r  =  R2, but the 
hoop stress (48) remains finite everywhere on the interval 
R1 � r � R2. The high radial and hoop stresses developing as 
a result of accumulation of defects in the material are respon-
sible for the loss of structural integrity of the comp onent in the 
limit where the relaxation volume density of defects exceeds 
a certain critical level.

Applications of the above equations  to the evaluation of 
stresses developing in a steel vacuum vessel with inner radius 
R1  =  3 m and outer radius R2  =  3.5 m as a result of irradiation 
are illustrated in figure 4. The form of function ωrel(r) used 
as input reflects the fact that neutron flux from an isotropic 
source varies as a function of r as ωrel(r) ∼ r−2 and also that 
neutrons are absorbed in steel over a characteristic distance of 
a fraction of a metre.

Figure 4 shows that particularly high stresses develop close to 
the internal surface of the steel shell even if the amount of damage 
accumulated in the material is relatively small. The magnitude 
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Figure 4. Top: two assumed distributions of relaxation volume 
densities of defects ωrel(r), referred to as case studies 1 and 2, and 
their integrals 

∫ r
R1 ωrel(R)dV  in a spherical steel shell with inner 

radius of R1  =  3 m and outer radius of R2  =  3.5 m. Middle (case 
study 1) and bottom (case study 2) graphs show radial and hoop 
stresses in the component computed using equations (47), (48) and 
FEM using the relaxation volume densities, given in the top graph, 
as input. The shear modulus of steel is µ = 80 GPa, ν = 0.29. For 
comparison, the yield strength of Eurofer97 ferritic-martensitic steel  
is 530 MPa [68].

Figure 5. The radial stress σrr  calculated using FEM with the top of 
the sphere shielded, ω(r, θ) = 0 for θ < 20◦. The deformed mesh is 
superimposed with the deformation scaled by 200. Parameters as in 
case study 1. The σθθ and σφφ components are shown in the middle 
and lower figure with the same colour scale as each other.
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of radiation-induced stresses can be estimated by evaluating the 
product of the shear modulus of the material and function ωrel(r), 
suitably averaged over the volume of the component.

7. General finite element implementation

In the preceding section, to find analytical solutions for the 
displacements, strains and stresses in a hollow spherical shell 
exposed to irradiation, we used equation  (30) as a starting 
point for the analysis. In this section, we develop a general 
finite element implementation of the method, using which 
one can evaluate stresses, strains and displacements in any 
reactor geometry. In the finite element method (FEM), it is 
more convenient to use the equation  for body forces gener-
ated by defects (29) rather than the formula for displacements 
(30). The two approaches are entirely equivalent, as confirmed 
by the comparison of numerical solutions derived using ana-
lytical and FEM implementations for the same reactor geom-
etry and same density of relaxation volumes of defects (see 
figure 4).

The finite element implementation of the mathematical 
formalism for computing strains, stresses and swelling of irra-
diated reactor components developed above, is based on equa-
tion (29), which can be written in the form

fi(r) = −B
∂

∂xi
ωrel(r), (49)

where B = 2µ(1 + ν)/[3(1 − 2ν)] is the bulk modulus of the 
material and ωrel(r) is the density of relaxation volumes of 
defects (21).

The fundamental equation for the stress tensor, defining the 
condition of mechanical equilibrium, has the form

∂

∂xj
σij(r) + fi(r) = 0. (50)

To find the displacement field which satisfies (50) using the 
FEM, this expression for mechanical equilibrium is recast as 
a virtual work expression [69]; for completeness this is out-
lined here. Multiplying (50) by an arbitrary displacement field 

δui which satisfies δui = 0 on the displacement boundary Su, 
and integrating over the body V  gives:

∫

V

(
∂σij

∂xj
+ fi

)
δuid3R = 0. (51)

Consider the first term
∫

V

∂σij

∂xj
δuid3R =

∫

V

∂

∂xj
(σijδui) d3R

−
∫

V
σij

∂

∂xj
δuid3R.

 
(52)

Using the divergence theorem, the first term on the right 
hand side is

∫

V

∂

∂xj
(σijδui) d3R =

∫

S
σijδuinjd2R

=

∫

St

δuītid2R,
 

(53)

where t̄i = σijnj are the specified surface tractions on St and 
by definition the virtual displacement δui = 0 on Su and so the 
surface integral vanishes there. Therefore, after multiplying 
by  −1, (51) becomes

∫

V
σij

∂

∂xj
δuid3R −

∫

V
fiδuid3R −

∫

St

t̄iδuid2R = 0. (54)

Expressing the stress tensor in terms of displacements,

σij =
1
2

Cijkl

(
∂uk

∂xl
+

∂ul

∂xk

)
= Cijkl

∂uk

∂xl
, (55)

due to the symmetry of Cijkl. Therefore
∫

V
Cjikl

∂uk

∂xl

∂δui

∂xj
d3R −

∫

V
fiδuid3R

−
∫

St

t̄iδuid2R = 0.
 

(56)

This is the expression for virtual work in the presence of a body 
force fi. This can be discretised and solved at the FE nodes 
located at ra

i  where 1  <  a  <  m, for the unknown displacement 

-30.0
-20.8
-11.7
-2.50
6.67
15.8
25.0
34.2
43.3
52.5
61.7
70.8
80.0
82.2

σ (MPa)rθ 

Figure 6. The in plane shear stress component σrθ calculated using FEM close to the interface between the shielded and unshielded region 
at θ = π/9 = 20◦, where a stress concentration is observed. Displacements are scaled by a factor of 100. The highest value of stress σrθ 
is found close to the inner surface of the shell at θ = π/9. The segment of the shell shown in this figure is a magnified part of the structure 
shown in figure 5.
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at each node Ua
i . The virtual displacement and its derivative 

are interpolated using the shape functions

δui(r) =
m∑

a=1

Na(r)δUa
i , (57)

∂δui(r)
∂xj

=

m∑
a=1

∂Na(r)
∂xj

δUa
i . (58)

The displacement derivative is interpolated in a similar 
manner, namely

∂uk(r)
∂xl

=

m∑
b=1

∂Nb(r)
∂xl

Ub
k , (59)

where Na(r) is the nodal shape function of node a which 
satisfies

Na(rb) = δab. (60)

Substituting (57)–(59) into (56) gives
[∫

V
Cijkl

∂Nb(r)
∂xl

Ub
k
∂Na(r)
∂xj

d3R

−
∫

V
fi(r)Na(r)d3R −

∫

St

t̄i(r)Na(r)d2R
]
δUa

i = 0,
 

(61)

and as the virtual displacement δUa
i  is arbitrary, the term in 

square brackets must be zero. In matrix form, the following 
system of equations is obtained

Kab
ik Ub

k = Fa
i if rb

k not on Su

Ub
k = ūk(rb) if rb

k on Su,
 (62)

where

Kab
ik =

∫

V
Cijkl

∂Na(r)
∂xj

∂Nb(r)
∂xl

d3R

Fa
i =

∫

V
fi(r)Na(r)d3R +

∫

St

t̄i(r)Na(r)d2R.
 

(63)

Kab
ik  is the global stiffness matrix. Fa

i  is the global force vector 
which includes a body force contribution at every node not 
on Su, and surface traction contribution t̄i for every node on 
St. Substituting the body force fi(r) from (49) into (63) gives

Fa
i = −B

∫

V

∂ωrel(r)
∂xi

Na(r)d3R +

∫

St

t̄i(r)Na(r)d2R. (64)

The advantage of using the body force is that it has a remark-
ably simple form (49). Furthermore any desired traction and 
displacement boundary conditions on the surface can be 
applied directly without modification. If ωrel(r) is an ana-
lytic function which can be differentiated then the global 
force vector Fa

i  can be specified exactly, and the nodal dis-
placements obtained by solving [69] (62). If only numerical 
values ωa

rel are known at the nodal positions ra, then the gra-
dient of the density of defect relaxation volumes required 
to obtain the body force can instead be evaluated using the 
finite element shape functions, in the same manner as for the 
displacements,

∂

∂xi
ωrel(r) =

n∑
a=1

∂Na(r)
∂xi

ωa
rel. (65)

A body force can easily be implemented in a commercial 
finite element code such as Abaqus [70] through the DLOAD 
user subroutine to specify fi(r) at the integration points. The 
finite element implementation was first validated by simu-
lating the spherical shell solved analytically in section 6. Due 
to the symmetry of the problem only one quarter of the shell 
was simulated with symmetry boundary conditions applied. 
An elastic isotropic material law was used with ν = 0.29 
and µ = 80 GPa. A convergence study was performed, and 
2.55 × 106 antisymmetric elements (CAX4) of 1 mm in size 
were found to produce excellent agreement with the analytic 
solution, as shown in figure 4.

Since the FEM implementation is not constrained by any 
symmetry considerations and can be applied to compute 
stresses and strains for any distribution of radiation defects, 
here we also performed FEM simulations for a case where 
ω(r) is no longer a function of only radial variable r but also 
depends on the polar angle θ. We consider the density of relax-
ation volumes of the form

ωrel(r) = ωrel(r, θ) =
{

0, if 0 � θ � π/9
ωrel(r), if π/9 < θ � π. (66)

This density of relaxation volumes of defects represents the 
case where the material in the shell is shielded from neutrons 
in a segment of the solid angle within 20◦ of the upper pole of 
the spherical shell. As the body force is no longer spherically 
symmetric and explicitly depends on θ, σθθ now differs from 
σφφ as shown in figure 5. Also, the stress field now has a non-
vanishing σrθ(r, θ) component, the magnitude of which is the 
largest at the boundary of the shielded region corresponding 
to θ = π/9. The problem still has the axial symmetry as the 
density of relaxation volumes of defects is independent of 
angle φ.

Half of the spherical shell was simulated at sufficiently 
high resolution, requiring 5.10 × 106 elements. Unlike in the 
spherically symmetric cases 1 and 2 illustrated in figure 4, the 
shear stress σrθ is now non-zero. Near the interface between 
the shielded and unshielded regions a stress concentration of 
σrθ is clearly visible, as shown in figure 6. Away from the the 
shielded region the stress is very close to the the analytical solu-
tion and the symmetric FEM solution; this is as expected. This 
case study demonstrates that the FEM implementation of the 
method based on equations (49) and (50) is completely general 
and can be applied to any reactor geometry and boundary con-
ditions, provided a sufficiently fine FE mesh is used.

8. Conclusions

The treatment developed in this paper shows how to com-
pute stresses, strains and swelling in components of a nuclear 
fusion or fission reactor resulting from the accumulation of 
defects in materials exposed to irradiation. By deriving the 
fundamental macroscopic equations  from the atomic scale, 
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we show that populations of radiation defects accumulating 
in the materials produce internal body forces (29) and (49) 
that result in the build-up of internal stresses and cause mac-
roscopic deformation of components. The central notion of 
the treatment is the spatially varying density of relaxation 
volumes of defects (21), which acts as a source of stresses 
and strains, and the gradient of which generates the spatially 
distributed body force (29). We illustrate applications of the 
method using exact analytical solutions and numerical finite 
element implementations, which suggest that the method is 
able to provide a reasonably accurate first-principles based 
foundation for the in silico engineering assessment of opera-
tional performance of a fusion power plant and its design.
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