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Abstract: The use of metabolomics profiling to understand the metabolism under different
physiological states has increased in recent years, which created the need for robust analytical
platforms. Here, we present a validated method for targeted and semiquantitative analysis of
102 polar metabolites that cover major metabolic pathways from 24 classes in a single 17.5-min assay.
The method has been optimized for a wide range of biological matrices from various organisms,
and involves automated sample preparation and data processing using an inhouse developed
R-package. To ensure reliability, the method was validated for accuracy, precision, selectivity,
specificity, linearity, recovery, and stability according to European Medicines Agency guidelines.
We demonstrated an excellent repeatability of retention times (CV < 4%), calibration curves (R2 ≥ 0.980)
in their respective wide dynamic concentration ranges (CV < 3%), and concentrations (CV < 25%)
of quality control samples interspersed within 25 batches analyzed over a period of one year.
The robustness was demonstrated through a high correlation between metabolite concentrations
measured using our method and the NIST reference values (R2 = 0.967), including cross-platform
comparability against the BIOCRATES AbsoluteIDQp180 kit (R2 = 0.975) and NMR analyses
(R2 = 0.884). We have shown that our method can be successfully applied in many biomedical research
fields and clinical trials, including epidemiological studies for biomarker discovery. In summary,
a thorough validation demonstrated that our method is reproducible, robust, reliable, and suitable
for metabolomics studies.

Keywords: high-throughput; targeted; semiquantitation; metabolomics; LC-MS; multianalyte
method; validation; cross-platform comparability; automation; biomarkers

1. Introduction

Metabolomics has a great influence on many disciplines, as metabolites are intermediates or end
products of cellular functions. Hence, metabolomics can be used as a powerful tool in understanding,

Metabolites 2018, 8, 44; doi:10.3390/metabo8030044 www.mdpi.com/journal/metabolites

http://www.mdpi.com/journal/metabolites
http://www.mdpi.com
https://orcid.org/0000-0001-8607-9191
http://www.mdpi.com/2218-1989/8/3/44?type=check_update&version=1
http://dx.doi.org/10.3390/metabo8030044
http://www.mdpi.com/journal/metabolites


Metabolites 2018, 8, 44 2 of 22

diagnosing, and managing different pathophysiological conditions. It is therefore essential to be able to
identify and measure metabolites from different biological matrices [1]. Although global metabolomics
has been widely used in discovery studies for understanding cellular responses to normal and abnormal
biological conditions, targeted metabolomics has more advantages for addressing biological questions
in a more hypothesis-driven manner than global untargeted metabolomics [2]. Furthermore, targeted
metabolomics can quantify metabolites that are low in abundance, which are difficult to assess using
an untargeted approach.

An appropriate sample pretreatment is required to obtain reproducible and high-quality
quantitative data in targeted metabolomics. However, metabolites are present in a wide dynamic range
with great diversity in physicochemical properties in the biological matrices [3]. Recent advancements
in extraction techniques and automated approaches for sample preparation have partially satisfied the
demands of targeted metabolomics. However, there are still many outstanding challenges, such as
the matrix effect and laboratory-to-laboratory variations associated with sample preparation. Hence,
standardization of sample preparation is a fundamental requirement in metabolomics studies [4].

Secondly, a robust analytical methodology is required for an accurate quantification of metabolites
with good reproducibility over an extended period of time [5]. Molecular diversity is a major problem
that hinders the separation of all preselected metabolites in a single chromatographic run and
the detection of all separated metabolites with a minimum technical variation [6]. Tandem mass
spectrometry (MS) is a technique used predominantly due to its high sensitivity and high throughput
for the detection of metabolites. A combination of MS and separation techniques is used to increase
the sensitivity and reliability of analytical methods for the analysis of metabolites from complex
biological matrices [7]. In addition, the latest developments in triple quadrupole instrumentation
strengthened the possibilities to develop multianalyte methods in a single injection that yield reliable
and quantitative data [8]. Several analytical methods have also been developed for semiquantitative
measurement of large number of metabolites in a single run [9–15].

Even though liquid chromatography-MS (LC-MS) is a method of choice in targeted metabolomics,
obtaining an accurate quantification and long-term data reproducibility remains an analytical challenge.
This is due to limitations such as matrix effect, MS performance drift, and LC column contamination
and aging [16]. Finally, although instrument vendor software for data processing provides some
crucial functions, such as peak integration (rendering the data from high-throughput metabolomics
experiments into numerical values that represent metabolite concentrations), the lack of automation
in downstream data processing and quality control remains a major bottleneck in high-throughput
analyses. Thus, an efficient pipeline is necessary to enable rapid, accurate, and standardized processing
of these data. Such a pipeline should facilitate automated analyses, while at the same time allowing
the user to fine-tune the parameters for accurate data processing. Taken together, there is a need
for development and validation of standardized, robust, and quantitative methods for large-scale
targeted metabolomics studies in a high-throughput manner to minimize the bias associated with
sample preparation and the analytical technique used.

We have previously developed a robust, reproducible, and high-throughput targeted method
for measuring 102 polar metabolites from various biological classes semiquantitatively in a single
injection [17,18]. Furthermore, the method has been used in many biomedical and clinical studies
for biomarker discovery [17–39]. The metabolites were selected according to the following criteria:
have important roles in many biological processes, are known biomarkers in several diseases and
technical feasibility for developing an analytical method that covers all the metabolites in a single
assay. The selected metabolites come from 24 different classes (Table 1), covering a wide range of
metabolic pathways. We created an inhouse metabolite database by manually curating all the available
information (i.e., names, HMDB, PUBCHEM, KEGG Ids, chemical properties, reported normal and
abnormal concentration ranges, links to their structures) from the Human Metabolome Database
(HMDB). The selected metabolites were separated by Hydrophilic Interaction Liquid Chromatography
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(HILIC) and measured using triple quadrupole tandem MS. A detailed method description is provided
in the supplementary text.

Table 1. Median concentration levels (µmol/L) measured in pooled healthy adult serum samples.

Population Median (µmol/L)

95% Credibility Interval

Class and Metabolite Name HMDB Id Estimate Lower Upper

1. Alpha Amino Acids and Derivatives

2-Aminoisobutyrate HMDB0001906 1.128 0.809 1.509
4-L-Hydroxyproline HMDB0000725 15.895 11.300 21.184

5-Hydroxytryptophan HMDB0000472 0.043 0.031 0.058
ADMA HMDB0001539 0.963 0.248 2.230
Alanine HMDB0000161 477.946 339.667 635.383

Aminoadipate HMDB0000510 2.121 1.502 2.818
Arginine HMDB0000517 84.902 60.795 113.172

Asparagine HMDB0000168 47.204 33.635 62.727
Aspartate HMDB0000191 26.932 18.786 35.424

Betaine HMDB0000043 100.045 72.251 134.758
Citrulline HMDB0000904 27.815 19.812 36.972
Creatine HMDB0000064 61.180 44.481 82.161

Creatinine HMDB0000562 66.085 47.095 88.066
Cystathionine HMDB0000099 0.131 0.093 0.174

Dimethylglycine HMDB0000092 3.541 2.521 4.733
GABA HMDB0000112 0.195 0.138 0.259

G-Glutamylcysteine HMDB0001049 2.966 2.116 3.946
Glutamate HMDB0000148 53.446 37.691 70.613
Glutamine HMDB0000641 791.142 560.999 1050.605

Glutathione HMDB0000125 0.021 0.015 0.028
Glycine HMDB0000123 243.717 172.929 325.417

Guanidoacetate HMDB0000128 2.635 1.880 3.498
Histidine HMDB0000177 88.616 62.718 117.848

Homocysteine HMDB0000742 0.480 0.124 1.153
Homoserine HMDB0000719 0.337 0.240 0.448

Hydroxykynurenine HMDB0000732 0.096 0.068 0.128
Isoleucine HMDB0000172 83.316 58.352 110.232

Kynurenine HMDB0000684 1.146 0.813 1.520
Leucine HMDB0000687 126.072 90.139 167.353
Lysine HMDB0000182 176.519 127.474 236.393

Methionine HMDB0000696 29.201 21.081 39.249
Ornithine HMDB0000214 90.177 65.043 120.796

Phenylalanine HMDB0000159 88.326 63.916 117.977
Proline HMDB0000162 251.689 180.529 335.079
SDMA HMDB0003334 2.862 2.060 3.834
Serine HMDB0000187 148.482 107.012 198.507

Threonine HMDB0000167 152.013 108.810 203.651
Tryptophan HMDB0000929 33.961 24.104 45.261

Tyrosine HMDB0000158 65.558 45.778 86.262
Valine HMDB0000883 394.932 282.460 526.776

2. Benzoic Acids and Derivatives

3-Hydroxanthranilate HMDB0001476 0.188 0.134 0.251
Hippurate HMDB0000714 6.101 4.362 8.124

3. Beta Amino Acids and Derivatives

Carnosine HMDB0000033 0.014 0.010 0.019
Pantothenate HMDB0000210 0.310 0.220 0.411

4. Bile Acids, Alcohols and Derivatives

Chenodeoxycholate HMDB0000518 53.661 38.588 71.987
Cholate HMDB0000619 0.676 0.483 0.900

Glycocholate HMDB0000138 0.373 0.267 0.498
Taurochenodesoxycholate HMDB0000951 0.507 0.359 0.673
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Table 1. Cont.

Population Median (µmol/L)

95% Credibility Interval

Class and Metabolite Name HMDB Id Estimate Lower Upper

5. Carbohydrates and Carbohydrate Conjugates

D-Ribose-5-P HMDB0001548 1.273 0.919 1.710
Glyceraldehyde HMDB0001051 239.946 172.630 322.782

Sucrose HMDB0000258 1.417 1.015 1.886

6. Dialkylamines

Spermidine HMDB0001257 33.601 23.958 44.759

7. Dicarboxylic Acids and Derivatives

Succinate HMDB0000254 7.912 5.597 10.491

8. Fatty Acyls

Acetylcarnitine HMDB0000201 9.709 2.323 22.264
Decanoylcarnitine HMDB0000651 0.305 0.087 0.720
Hexanoylcarnitine HMDB0000705 0.055 0.015 0.129
Isobutyrylcarnitine HMDB0000736 0.248 0.061 0.578
Isovalerylcarnitine HMDB0000688 0.102 0.027 0.240
Octanoylcarnitine HMDB0000791 0.297 0.076 0.691
Propionylcarnitine HMDB0000824 0.423 0.119 0.998

9. Folates

Folate HMDB0000121 0.011 0.003 0.027

10. Glucuronic Acid and Derivatives

Glucuronate HMDB0000127 1.960 1.404 2.627

11. Imidazoles

1-Methylhistamine HMDB0000898 0.006 0.004 0.008
Allantoin HMDB0000462 2.447 1.741 3.254

12. Indoles and Derivatives

5-Hydroxyindoleacetate HMDB0000763 0.074 0.053 0.099

13. Keto Acids and Derivatives

Acetoacetate HMDB0000060 6.713 4.798 8.988

14. Organic Phosphoric Acids and Derivatives

Phosphoethanolamine HMDB0000224 3.316 2.356 4.420

15. Organosulfonic Acids

Taurine HMDB0000251 221.359 156.971 294.936
Taurocholate HMDB0000036 0.083 0.060 0.112

16. Oxides

Trimethylamine N-oxide HMDB0000925 1.477 1.055 1.973

17. Phenols

Homogentisate HMDB0000130 0.115 0.082 0.153
Normetanephrine HMDB0000819 0.0010 0.0007 0.0014

18. Pteridines and Derivatives

Neopterin HMDB0000845 0.005 0.004 0.007

19. Purines and Derivatives

Adenine HMDB0000034 0.007 0.005 0.009
Adenosine HMDB0000050 0.008 0.006 0.011

AMP HMDB0000045 0.106 0.075 0.140
cAMP HMDB0000058 0.005 0.003 0.006
cGMP HMDB0001314 0.009 0.002 0.026

Guanosine HMDB0000133 0.445 0.315 0.593
Hypoxanthine HMDB0000157 58.838 41.908 78.087

IMP HMDB0000175 0.212 0.151 0.282
Inosine HMDB0000195 36.061 25.798 48.008

Xanthine HMDB0000292 3.926 2.790 5.211
Xanthosine HMDB0000299 0.352 0.249 0.466
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Table 1. Cont.

Population Median (µmol/L)

95% Credibility Interval

Class and Metabolite Name HMDB Id Estimate Lower Upper

20. Pyridines and Derivatives

4-Pyridoxate HMDB0000017 0.057 0.042 0.077
Cotinine HMDB0001046 0.531 0.382 0.710

NAD HMDB0000902 0.015 0.011 0.020
Niacinamide HMDB0001406 0.395 0.279 0.524

Nicotinate HMDB0001488 0.012 0.009 0.017
Pyridoxine HMDB0000239 0.0007 0.0005 0.0009

21. Pyrimidines and Derivatives

Cytidine HMDB0000089 0.003 0.002 0.004
Cytosine HMDB0000630 0.080 0.056 0.106

Deoxycytidine HMDB0000014 0.871 0.440 1.461
Deoxyuridine HMDB0000012 0.543 0.391 0.726

Orotate HMDB0000226 0.036 0.006 0.096
UDP Glucose HMDB0000286 0.232 0.165 0.308

Uracil HMDB0000300 0.058 0.042 0.078

22. Quaternary Ammonium Salts

Carnitine HMDB0000062 85.669 61.210 114.060
Choline HMDB0000097 95.170 67.565 126.279

23. Quinolines and Derivatives

Kynurenate HMDB0000715 0.044 0.031 0.058

24. Sugar Alcohols

Myo-inositol HMDB0000211 16.989 12.075 22.606
Sorbitol HMDB0000247 3.692 2.617 4.904

The primary objective of this work is to show the robustness of our previously developed
analytical method through a thorough validation according to European Medicines Agency (EMA)
guidelines. We also demonstrate the automation of tedious and manual data-processing tasks in
high-throughput metabolomics analyses using an inhouse developed R-package. The R-package
automates various corrections and normalization steps to convert the raw peak area data to molecular
concentrations for each compound in each sample and also provides quality evaluation of the data
and reduces the manual workload significantly.

2. Materials and Methods

2.1. Chemicals and Reagents

All metabolite standards were purchased from Sigma-Aldrich (St. Louis, MO, USA). Internal
standards were ordered from Cambridge Isotope Laboratory. Inc. (Tewksbury, MA, USA). LC-MS-grade
solvents, 2-proponol, acetonitrile, and methanol (HiPerSolv) were obtained from VWR International
(Helsinki, Finland). Analytical-grade chemicals (formic acid, ammonium formate, and ammonium
hydroxide) were obtained from Sigma-Aldrich. Deionized water (18 MΩ·cm at 25 ◦C) used for solution
preparation was made using a Milli-Q water purification system (Bamstead EASYpure RoDi ultrapure
water purification system, Thermo scientific, Waltham, OH, USA). Mouse tissues, including heart,
liver, brain, spleen, and muscles were obtained from Innovative Research Laboratory (Novi, MI, USA).
The whole blood, from which serum was prepared during method optimization and validation,
was obtained from the Finnish Red Cross blood service (Helsinki, Finland). Cell samples were provided
by our research collaborators. NIST Standard reference material (SRM) 1950 plasma was purchased
from Sigma-Aldrich (Gillingham, UK).
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2.2. Metabolite Extraction Protocol and Instrumentation

All metabolites were extracted, separated with HILIC (Acquity BEH amide, 2.1 × 100 mm, 1.7 µ),
and analyzed with a Waters Xevo TQ-S triple quadrupole mass spectrometer using our previously
published protocol [18]. The protocol for tissues and adherent cells was optimized for better recovery
and chromatography and to cover a wide range of tissue and cell types with a single protocol.
For tissue sample extractions, 90/10% ACN/H2O + 1% formic acid was used instead of 80/20%
ACN/H2O + 1% formic acid during the second step of extraction. Additionally, during cell pellet
sample extraction, 80/20% ACN/H2O + 1% formic acid was replaced with 90/10% ACN/H2O
+ 1% formic acid. After optimization, we used the tissue protocol for analysis of various biological
matrices, such as heart, liver, placenta, brain, muscles, spleen tissues, dental carries, and Drosophila
larvae (weight 10–20 ± 5 mg), C. elegans (2000–4000 worms/sample), dried blood spots (12–15 punched
spots), and fecal samples (weight 20–50 ± 5 mg). The cell pellet protocol was used for all types of
adherent cells (around 1 million cells/sample) and E. coli (3-day old bacterial lawns) and S. cerevisiae
(OD600nm ~ 2.2) samples. The biofluid protocol was used for all types of biofluids, such as blood,
plasma, serum, cell culture supernatant, CSF, and urine (sample volume 50–100 µL).

2.3. Method Validation

Validation of the method was performed to verify various parameters and the reliability of the
developed method for the analysis of a large number of samples. The method was validated according
to EMA guidelines for bioanalytical method validation in terms of selectivity, specificity, linearity,
accuracy, precision, extraction recovery, matrix effect, and stability [40]. In addition, we used pooled
healthy human serum samples as internal quality control (QC) samples in all studies to correctly signal
drift during sample runs and to improve confidence in the statistical data. QC samples at high, medium,
and low (for serum) or high and low concentration levels (for tissues) were prepared by spiking
a mixed standard solution in their respective homogenized biological matrices to perform all the
method validation experiments. We performed the validation for commonly used biological samples
in metabolomics analyses, such as biofluid (serum), tissue (liver, brain and spleen), and cell samples.
An aqueous calibration curve was used to calculate the concentration values during the method
validation. The instrument performance for response reproducibility and sensitivity was always
verified by 6 consecutive injections of a medium concentration solution at the start of any experiment.

2.3.1. Selectivity and Specificity

The selectivity and specificity for each metabolite were investigated using serum-spiked samples
(N = 6) with known amount of standard. Chromatographic interferences from other endogenous
compounds of the biological matrix at the retention time of the target analyte for a particular metabolite
were verified. The chromatographic peaks from spiked samples were compared with the standards by
the retention times and if required from their respective MRM spectra.

2.3.2. Linearity, Accuracy, and Precision

To assess the linearity, accuracy, and precision, six replicates of spiked QC samples at high,
medium, and low concentrations along with calibration curve standards were injected on three
separate days. Calibration curve standards of 11 points were prepared via serial dilution and each
calibration curve has over 1000-fold dynamic concentration range. The curve was plotted by using
the peak area response ratios (standard/labeled standard) versus the concentrations of the individual
metabolites. Each calibration curve was statistically evaluated and constructed using appropriate
regression models, weighing factors and transformations. The accuracy was calculated as the measured
value divided by the nominal value at each concentration level of the calibration curve standards in all
three batches. Inter- and intrabatch variability was calculated by measuring coefficient of variation
(%CV) at each QC concentration level.
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2.3.3. Recovery and Matrix Effect

The recovery efficiencies for each analyzed metabolite were determined by comparing analytical
results from QC samples spiked with a standard mixture before and after extraction using different
concentrations. The spike concentrations covered the calibration range. The matrix effect (percentage
of ion suppression or enhancement of the MS signal) was determined by comparing the analytical
response of the QC samples that were spiked after extraction with the analytical response of aqueous
spiked samples (diluent spiked with respective concentrations of QCs). Since there were endogenous
metabolites, we subtracted the endogenous concentrations from the samples that were spiked.
This experiment was performed using 6 QC replicates.

2.3.4. Stability of the Metabolites

Wet extract, freeze-thaw, and stock solution stability for all metabolites were determined to check
the integrity of the analytes in solvents and in QC samples at different conditions. To determine the
wet extract stability, six replicates of extracted QC samples were kept in the autosampler at 5 ◦C.
The same samples in the same sequence were reinjected with freshly extracted QC samples and the
results were compared.

Freeze-thaw stability was evaluated up to three cycles by freezing and thawing the spiked QC
samples stored at –80 ◦C (for 12–16 h) and comparing the concentrations against the freshly thawed
and spiked QC samples.

Long-term stock solution stability for metabolite stock solutions and intermediate solutions were
checked by comparing the mean peak area of freshly prepared solutions with stored solutions at 4 ◦C.
All stability experiments were performed with 6 replicates of QCs.

2.3.5. Carryover

The carryover was evaluated by injecting the highest standard concentration (ULOQ) of the
metabolites in the calibration curve followed by a series of blank injections and lowest standard
concentration (LLOQ). The blank samples were evaluated for any signal at the retention time of
particular metabolites and signal intensities of the blank samples were compared with the LLOQ
samples. The acceptance criteria for carryover was set at 20% of the peak area corresponding to the
LLOQ level as per the EMA guidelines for bioanalysis.

2.3.6. QC Samples

Internal QC samples were prepared after separating serum from pooled healthy human blood
samples. A volume of 350 µL of serum was aliquoted and stored at –80 ◦C after providing a lot number
and QC number. The concentration of QC samples that were incorporated in batches during the
metabolomics studies was calculated for all the metabolites along with the experimental samples.
Average concentrations (µmol/L) and %CV of the QC samples were calculated for each metabolite.
The data were saved along with QC lot numbers, batch name, and run date. The QC data were
collected from six different lots for a period of 5.5 years (N = 539 replicates). An internal QC database
has been maintained and used for quality checks.

2.3.7. Comparison with Reference Material

To evaluate the performance of our semiquantitative method, commercially available standard-reference
plasma (NIST SRM 1950) [41] was analyzed using our method (N = 8 replicates). The concentration
values from the matched 17 metabolites were compared with the given standard reference values.

2.3.8. Cross-Platform Comparison

To further evaluate the robustness and performance of our method, we performed a cross-platform
comparison using two completely different analytical platforms: (1) the commercially available
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AbsoluteIDQ p180 targeted metabolomics assay kit using LC-MS/MS and (2) a nuclear magnetic
resonance (NMR) platform. We sent our internal QC samples to the BIOCRATES Life Sciences AG
(Innsbruck, Austria) (N = 3 replicates) and to the NMR Metabolomics Laboratory, School of Pharmacy,
University of Eastern Finland (Kuopio, Finland) (N = 3 replicates). Our QC samples were extracted
and analyzed as described previously for the AbsoluteIDQ p180 kit [42] and for the NMR analysis
of small molecules [43]. We compared these results with the results obtained from our method
(N = 4–5 replicates).

2.4. Statistical Analyses

To estimate the median concentration values (µmol/L) of the metabolites from the QC samples
(N = 539), we fitted a linear mixed model with the MCMCglmm R-package [44] using an expanded
parameter formulation and default settings. Observed data were assumed to be log-normally
distributed and corrected for the six different QC lots. Credibility intervals (95%) of the median
concentration values were computed from 20,000 samples of the posterior distribution. Error bars
shown in the scatter plots are 95% confidence intervals, while the coefficient of determination R2 was
obtained from the linear regression between the variables. Coefficient of variation (CV) percentages
was calculated as a measure of variability. To automate the downstream processing of data produced
by the instrument vendor software (TargetLynx, v4.1), we built a data-processing package called
“Unlynx” in R statistical programming language. The R-package is available upon request.

2.5. Automated Data Processing

The “Unlynx” package parses the output of TargetLynx software (i.e., raw data containing the
concentration values in PPB units) and produces a processed dataset in an Excel spreadsheet after
performing a series of preprocessing operations.

The preprocessing steps included the following:

(i) Molecular weight normalization, in which the ppb values are normalized by the molecular weight
of each compound, thereby converting the data from ppb units to µmoles.

(ii) Process efficiency correction for the semiquantification of metabolites without internal standards.
(iii) Normalization using dilution factor for specific sample type if dilution was needed.
(iv) Cell number normalization (for cell samples) to convert the concentration values per million cells.
(v) Calculation of mean, standard deviation, and relative standard deviation (RSD) of molecular

concentrations (resulting from the previous steps) for each phenotypic group.
(vi) Outlier detection in each phenotypic group; if the concentration value of a compound in a sample

is more than one or two standard deviations (SD) away from the mean of the phenotypic group,
then it is marked as an outlier in the Excel data set in two different colors.

(vii) QC check by comparing the RSD of QC samples in the current dataset against the internal
database of QC sample RSDs (based on interday RSDs recorded over one year).

3. Results and Discussions

3.1. Extraction Method Optimization

The primary objective of this work was to optimize and validate our previously published
protocol for different types of biological matrices. For tissue samples (placenta, liver, heart, brain,
spleen, and muscles), the sample volumes of the tissues and extraction solvent volumes were optimized
to fit the concentrations of most of the metabolites within the linearity of calibration curve for reliable
results. We observed that most of the metabolites could be semiquantified within the calibration curve
range with 20 ± 5 mg of sample weight.

Furthermore, we optimized the protocol with extraction solvent for tissues and adherent cells.
Some of the metabolites (in particular inositol, GABA, asymmetric dimethylarginine, symmetric
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dimethylarginine, spermidine, ribose-5-phosphate, and orotic acid) had poor separation and
irreproducible chromatography. Interference of isobaric compounds with other metabolites was
also observed due to poor separation. Thus, different compositions of the extraction solvent were
assessed to achieve the acceptable chromatography. We observed that modification of acetonitrile
content from 80% to 90% and applying longer equilibration time for the HILIC column yielded
acceptable chromatography and also good separation for most of the metabolites.

We also optimized the extraction protocol for different sample types from various organisms
(human, mouse, rat, dog, drosophila, nematode, yeast, bacteria), such as tissue types (spleen, pancreas,
muscles, adipose, endometrium, testicles, lung), biofluids (plasma, blood, urine, cyst fluid, bile,
CSF, saliva), cell types (adherent cells, cell suspension, bone marrow cells, extracellular vesicles,
mitochondrial isolates, E. coli, and S. cerevesiae) and other sample types such as fecal samples, dried
blood samples, dental carries, biofilm, drosophila (larvae and whole flies), and C. elegans.

A flowchart describing various stages of our workflow (preanalytical stage, sample analysis,
analytical stage, data processing, and automation with quality checks) is shown in Figure 1.
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3.2. Method Validation

3.2.1. Selectivity and Specificity

There were no significant interference peaks from the matrix components in their respective
retention-time windows, indicating the selectivity of the metabolites in our method. We repeated the
injections for five times from all different serum samples and confirmed every peak to have eluted
only from the target analyte, indicating that they are specific to their corresponding MRM transitions.
The chromatograms for all the 102 metabolites of QC sample were given in Supplementary Figure S1.

3.2.2. Linearity, Accuracy, and Precision

To cover a broad concentration range, when fitting the heteroscedastic calibration data, linear or
quadratic regression models with appropriate weighing factors (1/x) and transformations (log-log)
were used [45]. The coefficient of determination (R2) value for each metabolite was greater than
0.980 at their respective concentration range, except for some metabolites such as aspartate, uracil,
2-deoxyuridine sucrose, and chenodeoxycholic acid (likely due to their broad peak shapes and poor
recovery at lower concentration, Table S1).

The concentration precision for QC samples was calculated by measuring %CV at high, medium,
and low concentration level of QCs (N = 6 replicates). In general, intra- and interday precision (CV)
values were within 15% for 94 metabolites except acetoacetic acid, folic acid, sucrose, homoserine,
2-deoxyuridine, and cholic acid at high concentration (Figure 2). However, at low concentrations,
more than 20% CV was observed for NAD and myo-inositol. This might be due to low recoveries
of these compounds. Hence, these compounds cannot be measured reliably with this method
even semiquantitatively.
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3.2.3. Recovery and Matrix Effect

For 85–90 metabolites, recoveries were found to be between 50 to 120% with good repeatability at
all three concentrations levels (low, medium, and high) in both biofluid (serum) and tissues (brain, liver,
and spleen). However, compounds such as UDP-glucose, IMP, cGMP, D-ribose 5-phosphate, NAD,
AMP, homocysteine, carnosine, and glutathione had recoveries less than 30% in serum. However,
CV of recoveries at low, medium, and high concentration levels was within 25% except for cGMP
in serum. Metabolites such as 1-methylhistamine, aspartate, glutamine, adenosine, and glutathione
had recoveries over 120%. Histidine, ornithine, cystathionine, 3-OH-DL-kynurenine, carnosine, AMP,
NAD, cGMP, IMP, and UDP-glucose had less than 30% recovery in some tissues types, indicating
matrix effect or degradation (Figure 3). However, CV of repeatability at every concentration level was
within 15% except for 1-methylhistamine, aspartate, glutamine, glutathione, NAD, and UDP-glucose
in some tissues.
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The matrix effect values were observed to be within the range of 0.6 to 1.8 (below 1 indicates
ion suppression and above 1 indicates ion enhancement) for the metabolites in serum and tissues.
The challenge of the matrix effect can be overcome by having individual isotope-labeled internal
standards for each individual compound for true quantification. However, this is not practically
possible for high-throughput metabolomics analyses. This is due to high costs and also because not all
internal standards are commercially available. In our method, we selected 12 labeled internal standards
(Table S1), which represent chemically similar classes for optimal correction. This is because the matrix
effect was expected to be the same for an analyte and its labeled isotope analogue. The process efficiency
percentages were calculated for the metabolites without internal standards. The analyte concentrations
determined through the external calibration were divided with the total process efficiency values to
correct the concentration values of the analyte in the given biological sample. The repeatability of the
matrix effect in terms of CV was also less than 25% for most of the compounds. Reliable measurements
are accordingly possible.

3.2.4. Stability

Some of the endogenous metabolites are not stable due to degradation or conversion reactions.
Hence, the stabilities of all metabolites were assessed under different conditions. For wet extract
stability, approximately 90% of the metabolites were stable (stabilities range between 85 and 115%) for
35 h at 5 ◦C in the autosampler (Figure 4A).

For freeze and thaw cycle stability, most of the metabolites were stable even after three freeze and
thaw cycles, with the exception of cGMP, succinate, glutathione, and homocysteine (stability below
30%, Figure 4B). This information is particularly important for clinical studies, where samples are often
thawed once or twice.

To determine the stability of working solutions, we started evaluating the stability from
intermediate solutions for all the metabolites. Most of the metabolites were stable for 245 days
at intermediate concentration when stored at 4 ◦C. However, 16 metabolites had low stability at
intermediate concentration; stabilities were thus determined at stock-level concentration for these
compounds. We observed that the stock solutions were stable for 56 days except taurocholic acid,
sucrose, UDP-glucose, and glutamine (Figure 5). Hence, these stock solutions were freshly prepared
during the analysis. The stability of internal standards solutions was also assessed and they were
stable for one year.

3.2.5. Carryover

In general, for the majority of the analyte MRM channels neither a peak nor any interference in
the blank samples was detected after injection of the metabolite standard with high concentration.
For compounds such as spermidine, succinate, AMP, and IMP, carryover eluted constantly even after
washing but was not significantly high. Other than these compounds, we can conclude that the column,
needle, syringe, and seal washes were sufficient to avoid any intersample carryover.

3.2.6. Reproducibility

To ensure good quality of the data, internal QC samples were incorporated to a batch of samples
and run after every tenth experimental sample. QC data were collected from 25 different batches that
were performed during various metabolomics studies over a period of 1 year. Mean concentrations and
%CV values of QC replicates within each batch were calculated for all the 25 batches. We observed that
approximately 80 to 85% of the metabolites were always present within 25% of CV values (Figure 6).
The higher %CV values for the remaining metabolites could be partially explained by low abundance
in human serum, low recovery, or poor chromatography; these were consistently found to be below
LLOQ within the 25 batches.
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In addition, %CV values for retention times and R2 values of calibration curves for each
metabolite in all the 25 batches were calculated to verify the reproducibility. Based on these results,
the repeatability was excellent except for a few compounds over a period of 1 year. No drifting
effect for the retention times (CV < 4%) was observed, and excellent reproducibility was observed for
R2 values of calibration curves (CV < 3%) (Figure 7). On the basis of these results, our method can be
considered accurate, reliable, and reproducible.Metabolites 2018, 8, x 13 of 23 
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3.2.7. Quality Management

To obtain reproducible and accurate data, we set up a strict quality management and electronic lab
notebook system. To reduce the bias from sample analysis, we always double-randomized the samples
(i.e., one before the sample extraction step and one before injecting into the LCMS system across
different phenotypes of the samples). For stabilization of response and retention time, we always
verified a few runs of highest calibration level 11 before injecting the experimental samples. During the
stabilization process, we also verified the chromatography, including peak shape, retention time,
and response of all the metabolites. Any significant changes in the intensity, peak shape, retention time,
and system pressure were thoroughly investigated and corrected by resolving the problems before
injection of experimental samples.

To ensure the integrity of LCMS runs, QC samples were run at every tenth experimental sample
and a blank sample at every fifth run during all the metabolomics studies within a batch. Furthermore,
chromatography and response of QC samples (including chromatography of some metabolites and
IS response variation) and blank runs were always verified after completion of the runs and before
starting data processing. In case of any abnormality observed for particular samples, those samples
were reinjected or reanalyzed. Only after passing these quality checks we proceeded further to process
the data. This included verifying the accuracy of calibration curve standards, chromatography peak
integrations, IS response variation, and verifying LLOQ and ULOQ for each sample for all metabolites
within a batch. The high-throughput targeted metabolomics workflow is shown in Figure 8.
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We collected concentration values (µmol/L) for our QC samples within metabolomics studies
conducted over a period of 5.5 years from six different lots (N = 539 replicates). The median values
of each metabolite together with a 95% credibility interval are presented in Table 1. These represent
a reference level for a population of healthy adult individuals.
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3.2.8. Robustness and Cross-Platform Comparison

To verify the performance of our method, we analyzed the NIST standard reference material SRM
1950 plasma. The correlation coefficient for 17 matched metabolites between the given reference values and
from our semiquantitative method was 0.967, indicating the high performance of our method (Figure 9A).
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Furthermore, we verified cross-platform comparability. This was achieved by comparing
metabolite concentrations analyzed using our method against two completely different analytical
platforms (BIOCRATES AbsoluteIDQ p180 kit and NMR) in our QC samples. We obtained a high
correlation coefficient for matched 38 metabolites measured using BIOCRATES AbsoluteIDQ p180 kit
and our method (R2 = 0.975) (Figure 9B) and for matched 22 metabolites measured using NMR and
our method (R2 = 0.884) (Figure 9C). These results demonstrate the robustness of our method.

3.3. Automated Data Processing

After the raw data processing using the instrument-coupled software (TargetLynx), an unstructured
flat text file containing information such as sample ids, file name, and concentrations (PPB) for all
metabolites is generated in a complex format. For example, in a single-batch run of 85 samples,
after the data processing, the concentration values for all samples are separately obtained under each
metabolite. This means that, if a data matrix of 85 samples × 100 metabolites is desired, each individual
concentration value must be copied and pasted in another sheet in a tabular format. Then, the PPB
values are to be converted into µm and corrected for process efficiencies and dilution factors (if any)
and normalized with tissue weight or cell number depending on the sample type. Apart from these
steps, as the samples are analyzed in a randomized manner, the next steps would include rearranging
the experimental samples according to phenotypic group and separating the QC samples from the
study samples. This manual data processing creates a ready-to-use data matrix for visualization and
for downstream statistical analyses, but is tedious, time-consuming, and, more importantly, prone
to errors.

To automate the manual data processing, we have implemented a software package “Unlynx”
in R statistical language. This package takes the raw data produced by TargetLynx software as input
and produces processed data into ready-to-use spreadsheets. We use Unlynx to covert the PPB
values to µmol/L, µmol/g, or µmol/million cells by dividing with molecular weight of the respective
metabolites and other correction factors (e.g., weight of tissues, number of cells, and dilution factor)
appropriate for the sample type. In addition, mean concentrations and %CV of QC samples for all the
metabolites are calculated and used to evaluate quality by comparing with the inhouse QC database
constructed based on inter-day %CV. Furthermore, Unlynx retrieves LLOQ, ULOQ, and outlier values
in each phenotypic group according to one and two SDs, retention time values, and R2 values for
each metabolite. With the automated data processing, we reduced a two-day manual workload to
a few minutes.

Thus, after processing the data using TargetLynx, we routinely exported all results for the
automated data processing using Unlynx. Typically, the data resulting from such automated
data processing undergoes more specialized data analyses (such as statistical hypotheses testing,
classification, regression, and clustering) aimed at answering specific scientific questions related to the
study design.

3.4. Applicability of the Method

We have applied our fully validated analytical methodology in various international and national
biomedical research projects, epidemiological studies, clinical studies including dietary interventions,
and clinical trials. We have successfully implemented our technology in the following research
fields, including but not limited to: mitochondrial metabolism/disorders [17,19–25], cancer [26,27],
bone metabolism [18], endocrinology [28,29], psychiatric disorders [30], inflammatory bowel disease [31],
viral infections [32–35], allergies [36,37], circadian rhythms [38], and pain research [39].

4. Conclusions

We validated our high-throughput targeted and semiquantitative analytical method according to
the EMA guidelines for bioanalytical methods. The key features of our method include,
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(i) Optimization: well-characterized protocols for various biological matrices from different
organisms enabled to study wide variety of research projects.

(ii) Accuracy/Precision: the targeted and semiquantitative analysis using 102 external 11-point
calibration curves, including 12 labeled internal standards in every analysis, made it possible to
compare the data within and between the studies.

(iii) Quality management: standard operating protocols, good laboratory practices, strict quality-
management system, and proper documentation using electronic laboratory notebook enabled to
check/retrieve very old data.

(iv) High-throughput: automated sample preparation and short analysis time (17.5 min), enabled
high-throughput capabilities, which is the most desired feature for large-scale analyses.

(v) Stability: long-term stability studies in stock and intermediate solutions, wet extract, and freeze-
thaw stability studies, critical for projects based on clinical/biobank samples.

(vi) Automation: downstream data processing steps in an automated manner reduces the
interbatch variation and human errors, valuable for analyzing population cohorts and in
epidemiological studies.

(vii) Reproducibility: low %CV of concentrations, retention times, correlation coefficient of calibration
curves for an extended period of time, very important in metabolomics studies when comparing
the data produced at different points of time.

(viii) Reliability: as shown by the excellent correlation between metabolite concentrations measured
using our method and the NIST SRM plasma reference values, our method serves a standardised
and reliable platform for metabolomics studies.

(ix) Robustness: Our results demonstrate an excellent cross-platform comparability with two
completely different analytical platforms, a highly desirable criterion in multicenter studies
when comparing the data across different laboratories using different instrumentation, protocols
and analytical platforms.

(x) Data sharing: the huge QC sample database of healthy adults (N = 539) collected for six years and
shared with the scientific community, provide normal reference values such as those provided in
the HMDB database.

The above-mentioned aspects are critical in the metabolomics analysis, as the International
Metabolomics Community has been putting a lot of efforts in data standardization, QC, reproducibility,
robustness, and data sharing with the goal of moving towards applicability and integration of
metabolomics data in precision/personalised medicine. In this context, our method provides a very
timely and important contribution to the field. Furthermore, we have widely applied this method in
many biomedical research projects, clinical trials, epidemiological studies, and in biomarker discovery.
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Table S1: List of metabolites showing molecular weight, retention time, linearity of calibration, and compound
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Chromatograms for all the 102 metabolites of QC sample.
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