
 

Accepted Manuscript

Designing and Implementing an Environment for Software Start-up
Education: Patterns and Anti-Patterns

Fabian Fagerholm, Arto Hellas, Matti Luukkainen, Kati Kyllönen,
Sezin Yaman, Hanna Mäenpää

PII: S0164-1212(18)30174-2
DOI: https://doi.org/10.1016/j.jss.2018.08.060
Reference: JSS 10215

To appear in: The Journal of Systems & Software

Received date: 2 November 2017
Revised date: 18 August 2018
Accepted date: 31 August 2018

Please cite this article as: Fabian Fagerholm, Arto Hellas, Matti Luukkainen, Kati Kyllönen,
Sezin Yaman, Hanna Mäenpää, Designing and Implementing an Environment for Software Start-
up Education: Patterns and Anti-Patterns, The Journal of Systems & Software (2018), doi:
https://doi.org/10.1016/j.jss.2018.08.060

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.jss.2018.08.060
https://doi.org/10.1016/j.jss.2018.08.060


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights1

• 16 patterns and 16 anti-patterns for experiential project based start-up2

education.3

• Physical and virtual environments as well as pedagogics are covered.4

• Student, teacher, and customer perspectives are considered.5

• Based on seven years of experience with educational reform and course6

development.7

1



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Designing and Implementing an Environment for8

Software Start-up Education: Patterns and9

Anti-Patterns10

Fabian Fagerholm1,∗, Arto Hellas1, Matti Luukkainen1, Kati Kyllönen1, Sezin11

Yaman1, Hanna Mäenpää1
12

aDepartment of Computer Science, University of Helsinki, Helsinki, Finland13

Abstract14

Today’s students are prospective entrepreneurs, as well as potential employees in

modern, start-up-like intrapreneurship environments within established compa-

nies. In these settings, software development projects face extreme requirements

in terms of innovation and attractiveness of the end-product. They also suffer

severe consequences of failure such as termination of the development effort and

bankruptcy. As the abilities needed in start-ups are not among those traditionally

taught in universities, new knowledge and skills are required to prepare students

for the volatile environment that new market entrants face. This article reports

experiences gained during seven years of teaching start-up knowledge and skills

in a higher-education institution. Using a design-based research approach, we

have developed the Software Factory, an educational environment for experien-

tial, project-based learning. We offer a collection of patterns and anti-patterns

that help educational institutions to design, implement and operate physical

environments, curricula and teaching materials, and to plan interventions that

may be required for project-based start-up education.

Keywords: start-up education, project-based learning, experiential learning,15

curriculum, software engineering, computer science16

∗Corresponding author
Email addresses: fabian.fagerholm@helsinki.fi (Fabian Fagerholm),

arto.hellas@helsinki.fi (Arto Hellas), matti.luukkainen@helsinki.fi (Matti
Luukkainen), kati.a.kyllonen@helsinki.fi (Kati Kyllönen), sezin.yaman@helsinki.fi
(Sezin Yaman), hanna.maenpaa@helsinki.fi (Hanna Mäenpää)

Preprint submitted to Journal of Systems and Software August 31, 2018



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1. Introduction17

Entrepreneurship has been identified as a key solution for future employment.18

For example, to support the development of entrepreneurial skills, knowledge, and19

attitudes, the European Commission’s Entrepreneurship 2020 Action Plan puts20

special emphasis on entrepreneurial education [1]. Even though software start-ups21

may be prime examples of the entrepreneurial world, higher-education institutions22

must still decide on their role in providing timely and useful education on how to23

introduce entrepreneurial aspects alongside the core expectations of the computer24

science program. Designing, implementing and operating environments for start-25

up education needs to be taken seriously, as poorly executed education can cause26

students to distrust themselves, the teacher, and the learning environment.27

University courses do not often provide students with the chance to see the link28

between their actions and real-life outcomes, although it would be possible [2].29

Many of the important relationships and effects in software engineering are30

learnt best when students gain personal experience of the practical application31

of the methodologies. Therefore, teaching start-up-related knowledge and skills32

requires an environment where students can experience the consequences of their33

actions. This both gives meaning to students’ experiences and solidifies their34

prior knowledge, creating a fertile ground for posing questions that motivate35

further learning.36

Since 2010, the “Software Factory” courses at the University of Helsinki [3, 4]37

have provided students with opportunities to experience software development38

in a start-up-like environment. Here, teams of Master’s-level students use39

contemporary tools and processes to deliver working software prototypes in close40

collaboration with practitioners. The goal of the learning environment is to41

allow students to apply their advanced skills in an environment with working42

life relevance and to deliver meaningful results for their customers [4]. Software43

Factory projects face extreme constraints on schedule and resources, along with44

high ambitions on the innovativeness and attractiveness of the end product.45

They offer potential for very high pay-off in the event of success through, e.g.,46

3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

increased chances of future employment due to demonstrated abilities. The47

Software Factory environment offers a safe learning experience, as practical48

consequences of failure are limited, compared to being employed by an actual49

start-up. Some of the chaotic traits that many real start-ups have are not present50

in the educational setting, allowing students to focus mostly on the questions51

and uncertainties of software product development.52

In keeping with the idea of reflective practice (e.g., [5, 6]), we look back at53

the past seven years of Software Factory projects and extract insights related to54

start-up education. The material is presented as a collection of patterns and anti-55

patterns for five purposes: designing, implementing, and maintaining i) physical56

and virtual environments, ii) course design and curricula, iii) learning materials,57

iv) teacher guidance and v) educational interventions for start-up education.58

This article extends a previous paper that concerned only the patterns [7].59

The remainder of this paper is structured as follows. In Section 2, we discuss60

entrepreneurship and pedagogical theory. Section 3 describes our research context61

and approach. The main result, a collection of educational patterns and anti-62

patterns, is given in sections 4 and 5. We discuss the result in relation to theory63

and a framework for entrepreneurial education in Section 6, and conclude the64

paper in Section 7.65

2. Background66

Entrepreneurship combines “the mindset and process to create and develop67

economic activity by blending risk-taking, creativity and innovation with sound68

management, within a new or an existing organisation” [8]. In an era where the69

formerly dominating large firms are restructuring, downsizing and creating new70

strategies for growth and survival, fostering positive attitudes and entrepreneurial71

skills are key in creating new jobs and a society that values entrepreneurship72

and innovation [8].73

To prepare for this, the European Union’s Joint Research Centre’s “En-74

trepreneurship Competence Framework” defines 15 competences that should be75

4



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

integrated into the educational fabric [9]. These include both motivation and76

team-work skills, but also several personal traits such as creativity, self-awareness,77

self-efficacy, and perseverance. Strengthening these in software engineering educa-78

tion is not straightforward and requires integrating new pedagogical approaches79

with knowledge from entrepreneurial research into the core subject areas.80

2.1. Start-up education for software engineers81

Previous research suggests that entrepreneurs are a very heterogeneous82

group [10] and thus new pedagogical approaches that allow both extremely83

creative as well as less creative individuals to thrive are called for [11]. Flexible84

educational structures that can cater to both group-level and individual needs85

are suggested [12]. While management and business research suggests general86

principles for entrepreneurship and start-up education, few papers have investi-87

gated the topic within the scope of software engineering. Here, we briefly outline88

the most important findings.89

Entrepreneurship education should focus on developing personal attributes90

and skills as well as tasks [13]. Concrete experience through active participation91

should be offered, e.g. by project work. The literature clearly indicates that92

entrepreneurship can be taught, and that teaching methods can be enhanced93

through active participation. There is evidence to support the notion that94

educational programs can positively influence entrepreneurial attributes and that95

they can build awareness of entrepreneurship as a career option and encourage96

favourable attitudes towards entrepreneurship. However, Gorman [13] notes that97

there is strong evidence that small business owners and managers resist start-up98

training.99

Inducing learning by involving students in start-up firms, e.g. as interns, may100

at first appear to be a good solution, but may not be beneficial in all cases. There101

are indications that start-ups with immature processes may be detrimental to102

undergraduate students’ understanding of the software development process and103

its relationship to high-quality software products [14]. This may be worsened by104

the aforementioned resistance to training among entrepreneurs. It may be more105

5



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

beneficial to have start-up education occur in an environment where the host106

university has more control of the pedagogical content and quality.107

Several universities have established project-based courses for teaching soft-108

ware engineering, with capstone courses being a typical educational pattern.109

There are a few recent examples of such courses with special focus on entrepreneur-110

ship and start-ups. Järvi et al. [15] report on experiences with organizing a111

course on Lean Start-up, focusing on ideation, innovation, and subsequent prod-112

uct and business development. They describe a course design that supports113

experiential teaching of product and service development using the Lean Start-up114

approach, and find that the course is promising for teaching software business115

and intrepreneurship skills to both software engineering and business students.116

Harms [16] reports on results from a B.Sc.-level Lean Start-up project. In that117

report, self-regulated learning was positively related to individual-level assess-118

ment, and team-based learning and psychological safety were positively related to119

group-level assessment. In other words, there were indications that self-regulated120

learning is favourable for individual students, and that peer collaboration and a121

safe peer group are favourable for learning as viewed on the group level.122

2.2. Personal traits and motivation in education123

Self-efficacy relates to the individual’s emotional evaluation of their own124

worth [17, 18]. The belief that one’s own actions have an influence is crucial125

for any learner, and also affects individual response to stressful situations [19].126

Therefore, in flexible learning environments, the motivation of students is highly127

influenced by the degree of freedom to choose what to work on and with whom [20].128

Self-efficacy influences choices when facing challenges: students with high self-129

efficacy tend to perform better than those with lower self-efficacy [21, 22, 23].130

Consequently, self-efficacy contributes to whether a person can face the challenges131

given [17, 18]. It plays a role in whether a student believes that they can learn,132

and in whether they will invest themselves into learning [21, 24].133

Luckily, self-efficacy can be improved through training [21]. One approach134

that has been shown to improve self-efficacy is behavioural modelling, which135

6



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

refers to a process where students are given a model of the process that is136

required to perform a given task [25]. This approach is prominent in many137

learning theories. Cognitive apprenticeship, the theory of how a master teaches138

a skill to an apprentice, suggests that modelling would be used as the first step139

when learning a new task [26, 27]. Cognitive apprenticeship outlines multiple140

teaching methods that are relevant to learning complex tasks. Here, modelling is141

used to provide the apprentice with an overview of the problem solving process.142

This is followed by coaching and scaffolding, a process where a teacher provides143

feedback and support, employing meaningful strategies and activities to support144

further learning. Once a student engages in learning, the support from the145

teacher is slowly faded and the teacher engages with new learners.146

In general, the teacher acts as a guide, facilitating the development of147

expertise, instead of “handing out knowledge” [26, 27, 28]. This emphasis on148

the students’ effort is echoed in situated cognition theory which is intertwined149

with the cognitive apprenticeship theory. Situated cognition theory posits that150

while knowledge is constructed by the student, it is always linked to the activity,151

context, and culture that the learning environment is surrounded by [29]. In152

general, it is suggested that learning occurs through social interaction and shared153

language [29]. While students may at first work on tasks individually, it is154

crucial that interaction with the community and a shared language is formed.155

Approaches such as project-based learning and problem-based learning can be156

used to adjust the level of exploration and to provide team-based experiences157

where students can articulate and reflect on their decisions [30].158

3. Research approach159

This article aims to answer the research question: “What are the ingredients160

of successful software start-up instruction in higher education?”.161

To address this question, we extract potentially reusable patterns and anti-162

patterns for project-based software start-up education from our experiences with163

arranging both B.Sc. and M.Sc. level courses.164

7



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3.1. Context of the study165

Higher-education institutions may lack the incentives to keep up with the166

fast-paced developments of the IT industry. This may lead to using outdated167

technologies and development practices no longer used by practitioners [31]. Af-168

ter recognizing this threat in 2009, our department started an ongoing reform of169

educational goals for the B.Sc. degree. The goal was set so that “any graduating170

bachelor from our department should be able to perform efficiently in a modern171

software development context”. At the start of the reform, we interviewed our172

alumni, discovering the following problems in our education of the time:173

174

• Programming skills of the graduates were not at an adequate level and175

good programming practices were barely known.176

• Students lacked knowledge of software architectures and needed more177

experience in building web applications.178

• The students’ knowledge of modern software processes and agile practices179

was limited.180

• Students lacked knowledge about quality assurance methods: behaviour-181

and test-driven development, continuous integration, and continuous de-182

ployment.183

• Students lacked administration and maintenance skills.184

185

The reform started with the most fundamental problem: the poor skills in186

programming. Our lecture-based “Introduction to programming” course was187

redesigned to create an active role for the students and to position the teacher188

only as an enabler of their learning. We used the cognitive apprenticeship the-189

ory [26, 27] to establish our foundational pedagogical approach, re-designing our190

courses to incorporate best practises, along with programming-related methods191

and activities. Subsequently, this approach was scaled up to the masses by192

empowering more experienced students to teach their peers [32]. The cognitive193

apprenticeship cycle was incorporated into multiple levels of instruction from194

introduction of elementary programming concepts to the highest level of the195

8



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

curriculum, giving the ultimate goal for instructors to “fade for good”.196

In parallel with the fundamental reform of our B.Sc. level education, we197

developed a spearheading course on the M.Sc. level. The first such “Software198

Factory” project course in 2010 was designed as a response to the need for a199

modern environment that would link software engineering education, research,200

and entrepreneurship in a university setting [3]. The course was offered as a short201

and intensive experiential project that required presence equivalent of full-time202

employment. Students would focus on the project for one period (half a term,203

i.e., roughly two months), yielding credit points equivalent to the amount of204

work performed. During this time, students could choose to take other courses205

simultaneously, usually only one. However, by opting for a shorter work week,206

they could manage additional studies, according to their preferences. By keeping207

the intensive project short, the impact on student workload across the academic208

year was kept reasonable. Still, the course was designed to be challenging and to209

require students to manage their personal schedule well.210

At the time, a major concern for continuing our curriculum reform was the fact211

that most university teachers lacked recent industrial experience or direct contact212

with practitioners. Thus, awareness of emerging software engineering practises213

was lacking and teachers were not capable of conveying the methodologies214

in their teaching [31]. We were forced to employ an unusual strategy for a215

research university. The tenured associate professor that was driving the reform216

participated in a Software Factory project, assuming the role of a normal student217

and engaging in a real, industry-relevant project. Later, this faculty member218

spent a year-long sabbatical immersing himself in professional start-up software219

development. This experience was key in redesigning our curriculum and driving220

the idea of entrepreneurial education further [31].221

As the software engineering skills of our B.Sc. level students have im-222

proved, the pre-conditions and expectations for the Software Factory course have223

also changed throughout the years although its core ideas have remained the224

same. These developments and related experiences have given us confidence to225

present emergent patterns, best practises and issues to avoid when arranging226

9



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

entrepreneurial education in the context of software engineering education.227

3.2. Methodology228

Design-based research [33, 34] is a dual-purpose methodology that studies229

education in its authentic context. It aims at developing both the design and230

the context of the education with an iterative process that begins by an initial231

problem analysis, followed by cycles of evaluation and improvement that deepen232

understanding [35, 36, 37]. Design-based research relates to educational action233

research [38] and design science, linking paradigms in use in the information234

technology field at large (c.f. [39]). Its emphasis, however, is on educational235

improvement [38].236

Our research started in 2009 by building and implementing an initial design,237

followed by the first Software Factory course in 2010. The initial design comprised238

everything from the physical facility and visual materials to project management239

and course plans, and these have subsequently evolved. Each succeeding project240

can be seen as a single case in a multiple-case study, providing triangulation241

of viewpoints, data and researchers [40]. By reflective practice (c.f. [5, 6]), we242

abstract our experiences into education design patterns and anti-patterns that243

help teachers to implement similar learning environments.244

3.3. Data collection and analysis245

We have collected a longitudinal record of documents and observations that246

span from the initiation of the Software Factory, and the projects that followed,247

to this day. Table 1 outlines the projects that form the data set for this study,248

representing various types of start-ups and start-up-like environments. Our249

related research data comprises of:250

1) Design documents for the facility and its work processes.251

2) Software assets, their documentation, and project documents – these are252

created by student teams and their customers.253

10



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 1: Projects in the longitudinal data set.

Each project is one period long (7-8 weeks) unless otherwise indicated. Data is

from January 2010 to May 2017.

Year Projects Students Types of partners

2010 5 45 a) A start-up simulation, b) a project with a small start-

up, c) early product development from a student’s idea.

2011 4 33 a) Supporting an internal start-up, b) a 2-part project

with a small start-up and c) one with an established com-

pany.

2012 5 26 a) An internal start-up, b) a 2-part project with a small

start-up c) a collaboration with 2 established companies.

2013 2 15 a) 2 projects for participating in open source software de-

velopment projects.

2014 3 21 a) Participating in open source projects, b) a 2-part pro-

totype project for a small start-up.

2015 3 22 a) Participating in open source projects b) a 2-part

project for working on an open source spin-off.

2016 3 10 a) 2 continuing projects on the spin-off software, b) a

research driven prototyping project.

2017 1 6 a) Research-driven product prototyping.

Total 26 178

3) Meeting memos and retrospective documents produced by the students and254

their customers during the execution of the projects.255

4) Group interview data from post-project debriefing sessions – these provide a256

timeline of actions for each project. All participating students and at least257

one customer representative have participated in these sessions, with a small258

number of exceptions due to absences for personal reasons.259

5) Individual interviews with students and customers. All customers have260

been interviewed at least once during their projects. Approximately 80%261

of students have been individually interviewed, with interviews occurring262

during or after the project. Some of the interviews have been conducted in263

conjunction with other research, as reported elsewhere (e.g. [4, 41, 42, 43]).264

6) Anonymous feedback from students.265

7) Personal notes of the course staff.266

11



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The present authors have a variety of viewpoints on the course of actions of the267

Software Factory. The first author coordinated the design and operation of the268

Software Factory throughout its existence. Two authors have coached the student269

teams and one has participated in projects as an observing researcher. In addition270

to their role as teaching and research staff, some authors have participated in271

the Software Factory projects as students. From these perspectives, we have272

gradually and iteratively synthesized the set of patterns and anti-patterns that273

are given in the following two sections.274

4. Patterns for Software Start-up Education275

This section provides patterns for software start-up education. For each276

pattern, we provide contextual information and illustrative examples that should277

help applying and adapting the patterns to similar courses.278

4.1. The physical and virtual environment279

Simulating a software start-up requires attention to creating an authentic280

learning environment. To accomplish this, we constantly follow the evolving281

state of the art of software development tools and environments and keep the282

Software Factory infrastructure up to date accordingly.283

Pattern 1: Team Room284

• Have a team room.285

• Equip it properly for start-up education.286

A well equipped office room that exceeds the standard level of classrooms287

resembles a real workplace and increase the students’ ambition. We have put288

emphasis on a functional, aesthetic interior design and providing students with289

modern equipment and ample wall space with whiteboards. This allows informal290

and transparent communication and co-creation. The room should also be291

furnished to encourage relaxing, taking breaks, and communicating casually.292

Pattern 2: Studying is like work293

12



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

• Create realism by simulating working life.294

• Require working hours according to local conventions.295

We give students the freedom to choose their working hours, but expect them to296

work an average of 6 hours per working day. They can choose between a full 5-day297

working week and a shorter 4-day working week. In special cases, an even shorter298

working week can be arranged if this fits with the project. The students should299

spend time together and be present in all meetings. We encourage students to300

work between 9 and 17. Supporting a regular schedule, with suitable flexiblity301

for individual preferences, tends to lead to increased productivity, a safe working302

environment, and an atmosphere for increased creativity.303

We maintain norms and standards related to working life practices and skills.304

Examples of these range from relatively mundane to more intricate. As an305

example, we encourage clear and effective communication in both speech and306

writing. Students should inform others of being late or away on sick leave. They307

are expected to keep their promises and give notice if they are unable to achieve308

what has been agreed upon. Students are made aware that these aspects are309

vital both for team climate and for managing the project. Being pro-active and310

maintaining a professional attitude towards others are recommended. Good311

concentration on tasks at hand is indicated to increase productivity, creativity312

and to create a safe working environment. Finally, co-operation and asking313

for help are recognized as behaviours that can be benefited from in both the314

classroom and in work life.315

Pattern 3: The virtual Development Environment316

• Provide a common base infrastructure for all projects.317

• Upgrade continuously and stay with latest versions.318

• Choose technology pragmatically and based on evidence.319

A common, up-to-date development infrastructure helps students to start projects320

more smoothly. With this provided, students are required to decide on their321

13



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

own project’s communication and collaboration tools. While each project has322

particular needs with respect to its software development tools, students are323

expected to build and maintain their project’s own tool-set as a part of their324

learning process. This typically entails integrating version control, automatic325

build and test suites, and deployment automation, but may vary greatly between326

projects.327

A base infrastructure is also beneficial for the project itself. Using personal328

laptops, other equipment, or various incompatible tools, such as different code329

editors or personal git work flows, often lead to compatibility issues at some point.330

Solving these provides an excellent learning experience, yet is not productive at331

all.332

4.2. Course design and role in the curriculum333

Experiential, project-based learning in an open-ended environment brings334

about several challenges with respect to course design. The first concern is the335

placement of the course in the curriculum.336

With respect to this, we have employed a flexible solution where learning337

goals are customized according to the students’ current stage of studies. Early-338

stage students receive more mentoring and are motivated to choose their further339

studies based on their experiences. Later-stage students are directed towards340

gaining closure for their studies and finding inspiration for their M.Sc. thesis.341

We have previously reported on trials with assessment strategies [44]. The fit342

to the curriculum can be ensured through careful selection of the projects and343

customers.344

Pattern 4: No Teacher, Only Learners345

• Teachers should encourage self-directed learning.346

• Think of teachers as participants in the start-up.347

• Teachers should set their own learning goals.348

• Guidance is needed to avoid detrimental effects.349

14



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

In the beginning of each project, the problem and solution spaces are largely350

unknown, and no-one can tell students exactly what to do. Here, teachers351

should be posited as co-learners while more knowledge about the project’s goals352

emerges. Teachers can bring in knowledge on software engineering practices,353

project management, and general approaches that support problem and solution354

space exploration. The modelling-scaffolding-fading cycle should be performed355

rapidly in several areas at once, and responsibility of running the project and356

meeting its goals should be transferred to students as soon as possible.357

The teacher should initiate communication with the customer, ensuring that358

students set up communications tools and project tracking through, e.g., a359

Kanban board. From there, students should be responsible for running the360

project and setting their first goals. Teachers can use learnings from previous361

projects to help students overcome obstacles quicker. Coaching should help362

navigating the inherently uncertain and ill-defined start-up environment and363

emphasise deliberate learning as a value. For this, coaches can formulate and364

discuss problem statements, aid in gathering evidence for decisions and help365

evaluate the consequences of decisions.366

Pattern 5: Continuous Formative Assessment367

• Formative assessment provides feedback to improve the ability to execute368

the project.369

• Everyone continuously assesses everyone.370

Increasing self-efficacy of the students and helping them build their professional371

identity as software developers should be focal for startup education. Also, there372

are several non-technical skills that should be developed to help navigate the373

problem and solution spaces of the project. These include teamwork, the ability374

to lead and follow, communicating, self-awareness, perseverance and showing375

initiative. Linking assessment to such learning goals is difficult, but can be376

accomplished through reflective assessment for and by all project participants.377

We encourage such assessment not only as part of formal meetings, but also378

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

during everyday activities. A culture of constructive feedback is built by teachers379

by example.380

Sprint retrospectives can play an important role in formative assessment.381

They provide regular opportunities for feedback. Students need to be helped to382

notice where they have been successful, as they often are stuck with incomplete383

artefacts or negative experiences. In cases of a failed sprint, it is helpful to have384

a moment to discuss it and reach closure. Then, the focus should be shifted385

back to learning – what would students now do differently – and then start a386

new sprint with a renewed enthusiasism.387

Pattern 6: 360-degree Summative Assessment388

• Include all project stakeholders in assessment.389

• Assess learning goals through observable behaviour.390

• Provide opportunities for expressing personal strengths and accomplish-391

ments.392

In our summative assessment (c.f. [44]), we emphasise a 360-degree self-, peer-,393

and observer (teacher) perspective. Teaching staff often do not have a complete394

picture of the performance of each individual student, but multiple views can395

increase assessment accuracy. The assessment should focus on observable be-396

haviour that indicates fulfilment of the learning goals. Here, self-assessment can397

help students to express their strengths and accomplishments.398

In our Software Factory course, the learning goals are set to be general enough399

to apply to all projects, but to allow for them to be tailored to each project.400

Although it would be possible to focus on group assessment, we have chosen401

to focus on the individual student, as our aims are to advance their learning402

as individuals situated in a group. The learning goals are divided into a set403

of factors that begin with basic behaviours and progress towards higher levels404

of involvement and skill [44]. The basic factors include presence and activity,405

implying that students take part in and actively influence project activities. At406

a slightly higher level are an attitude of taking the initiative and committing to407

16



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

perform planned tasks. At the highest level are actual contributions which impact408

the project, in the form of code, documentation, or other deliverables, or in the409

form of project management, customer communication, or support tasks. These410

are assessed primarily through analysis of artefacts. Also at the highest level is411

how the person performed in their expert role and how they collaborated. These412

can be observed through each student’s social behaviour in the team. Concretely,413

the factors are assessed by collecting ratings on behavioural descriptions and414

written statements from each project stakeholder.415

In summary, we place emphasis on what the student does and how, but also416

on the results each of them produced. However, we place less emphasis on how417

the results are utilised outside the project. For example, the start-up partner418

may fail after the project, which we see as being largely outside the students’419

sphere of influence. It is thus not a focus of our assessment. We also note that420

this type of assessment is an an area for further research, and we continue to421

evolve our methods.422

4.3. Learning materials423

Learning materials need to be reconsidered for start-up-like learning environ-424

ments. Their choice and creation is dependent on students’ prior knowledge of425

topics arising in each project.426

Pattern 7: The World is the Learning Material427

• Learning materials should be discovered and created on demand.428

• The coach has a key role in highlighting and critiquing potential learning429

materials.430

• Maintain a basic set of learning materials common to all projects. Use431

student-created learning materials in future projects.432

• Create a culture by collective material maintenance.433

A majority of the learning materials is created during the project, which empha-434

sises the knowledge acquisition skills of the students. They should also learn to435

17



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

assess the materials and manage knowledge repositories as needed. Here, the436

coaches can help students by highlighting and critiquing materials. A common437

base set of materials provides efficiency and consistency in projects.438

Student-created materials from previous projects, such as learning diaries,439

presentations and notes from retrospectives and debriefing sessions, can aid440

subsequent projects. This is crucial especially if the same start-up company441

returns for a new project, but such materials can be beneficial for unrelated442

projects as well. A tradition has emerged where students prepare tips and443

cautions (“do’s and dont’s”) to be delivered to students in future projects.444

We have found this to be useful and fun: students enjoy writing tips for the445

newcomers, perhaps because they leave a legacy behind. Also, we have observed446

new students receiving the materials with a slight sense of respect; it is as if447

they perceive a personal connection to the trials and tribulations experienced448

by their predecessors. Such materials can become part of a student-to-student449

culture in the learning environment even though they may never meet in person.450

4.4. Teacher guidance451

As previously mentioned, our pedagogical approach is that the teacher452

and teaching assistant are facilitators for building expertise. The patterns in453

this section concern how teachers can be guided to contribute to the learning454

environment.455

Pattern 8: Role-play the Start-up456

• Roles of teachers are defined by the start-up context.457

• Realism in role naming promotes the role function.458

As teachers are participants in the start-up (see Pattern 4), it is also beneficial459

to consider what their role entails. The coordinator role corresponds to a senior460

executive, e.g. a CEO or COO of a small company proving software development461

services to customers. The coordinator manages projects on the portfolio level,462

handles project selection and initiation, and leads the communication with the463

customer. The coordinator role would usually be filled by a senior teacher.464

18



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Coaches work with students on a regular basis and correspond to roles with465

the same name in companies. They are mediators between the student teams466

and the customer and thus assist the coordinator in customer communication.467

The most important task for the coaches, however, is to guide the students in468

executing the project. Coaches usually are teaching assistants. Mentoring entails469

reflection and takes a longer and sometimes more personal perspective than the470

coaching. Thus, mentor is a crucial role for promoting learning.471

Pattern 9: An Exit From the Simulation472

• Teaching staff must sometimes intervene to ensure that the project can473

proceed.474

Situations sometimes arise that would either not occur in a real start-up or that475

would require more time to solve in a real situation than what is available in the476

learning environment. The teacher must step forward to handle such situations477

and to override project priorities. For instance, students may have to withdraw478

from the project temporarily or permanently due to personal circumstances. The479

roles suggested in the previous pattern must then be set aside – but often, it is480

possible to use the seniority of the coordinator role to provide a positive way to481

“exit the simulation”.482

An example of a situation where this pattern can be activated is when a483

student does not contribute to the project despite repeated attempts at bringing484

them into the team. It may then be necessary to interrupt their involvement485

in the project in order to find out what the actual problem is. In some cases,486

students have overcommitted themselves and have already realised that they487

need to focus on other courses. In these cases, providing an amicable way for488

them to drop the course can be the best option.489

Pattern 10: The Reflective Teacher Team490

• Establish a community of teaching practice.491

• Teaching staff must coordinate behind the scenes.492

19



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

• Teaching staff need a safe environment of their own.493

Whereas students learn by being embedded into their project, the continuous494

cycle of improvement requires that teachers maintain a larger perspective. In495

order to achieve learning in the teaching organisation, it is important to establish496

a community of teaching practice. In addition, the intensive nature of the course497

means that teachers also need a safe environment of their own, where they can498

vent feelings and reflect on their own efforts to facilitate teaching and improve499

the learning environment.500

In the Software Factory, teaching staff meet during and between projects as501

needed to discuss both ongoing projects and future ones. There is often a need502

for teachers to coordinate behind the scenes in their own environment while503

projects are ongoing, in order to validate observations as well as to prepare504

for and carry out project-level interventions. A reflective teacher team for this505

kind of learning environment may, in the best case, propagate insights to other506

courses, and we have seen examples of such transfers as discussed in Section 3.1.507

4.5. Educational interventions508

A set of project-level interventions have been developed to address some509

recurring situations. These are structural elements on the syllabus level that can510

be repeated from one course instance to the next. Some of the interventions are511

used in all projects, while others can be activated when needed. The interventions512

are not meant to be mechanically followed, and we suggest that they, too, need513

to be learnt by teachers in the same manner as students learn: through activities514

in the authentic context guided by more experienced teachers. We have discussed515

some of the interventions in a previous publication [4].516

Pattern 11: The Project Blueprint517

• Develop and maintain a blueprint to give structure to projects and enable518

their enactment with minimal effort.519

• Address at least project and student selection as well as project start and520

end activities.521

20



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

• Customise the blueprint for each project as needed.522

The Software Factory project phases are depicted in Figure 1. The process starts523

with project selection (1) followed by a student selection phase (2). After the524

selection, a project kick-off event (3) is organized, starting the agile software525

development project with all parties present (4). A final demo (5) is typically526

held on the last day of the project, followed by the project debriefing session (6).527

5 6

4

Develop

Plan

Re
vie
w

1 2 3
Figure 1: Software Factory Project Blueprint. 1: project selection, 2: student selection, 3:

kick-off, 4: project execution, 5: end demo, 6: debriefing.

Pattern 12: Student Selection As Job Interviews528

• Adapt start-up job interview elements to student selection.529

• Even those who are not selected can learn something from the feedback.530

Unlike most other courses in our department, the Software Factory applies a531

student selection process before admission. The process mimics some elements532

of the hiring process we have observed in software companies: hands-on skill533

demonstrations and an element of character assessment. We ask students to534

implement a programming task and give a self-assessment of their skills. The535

purpose is to assess students’ ability to perform a basic task promptly and536

correctly and to be able to make a first formulation of their identity as a software537

developer. The programming task is tailored to each project and students are538

usually free to use any programming language. The difficulty level of the selection539

is set to include all students who are likely to be able to participate meaningfully540

21



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

in the course. It also aims to provide feedback to students on how to develop541

their knowledge and skills to that basic level. Additional interviews can be542

conducted depending on project-specific requirements. The selection is done543

collaboratively by the coordinator and the coaches based on a ranking scheme.544

However, selection is not based on a quota – all students who pass the selection545

are admitted.546

Pattern 13: Kick-off!547

• Focus on igniting students’ entrepreneurial spirit and starting team build-548

ing.549

• The kick-off session is an early and easy opportunity to enhance students’550

self-efficacy beliefs.551

Students often meet each other, the coaches, and the customer for the first552

time in the kick-off meeting. This event is crucial as the onboarding requires a553

large amount of information to be assimilated, including introduction of each554

participant and the industry project as well as performing formal tasks such555

as signing NDAs. In order not to overwhelm students, the kick-off has to be556

carefully planned. We found it particularly useful to organize a pre-meeting557

with students to focus on team building before meeting the customer. We558

have also combined team-building with a dry run of the development process:559

using a Kanban approach to define sensibly-sized tasks for carrying out a pizza560

order, necessitating steps such as learning team members’ names, determining561

tasks, and executing them, giving the students a feeling that they can master562

collaboration.563

Pattern 14: Start the Process Engine564

• Transfer the responsibility of enacting the development process to students.565

• Keep repeating the basic process until it becomes routine.566

The first two weeks of the project are critical for transferring the enactment567

of the process, grooming students into their project roles and transferring568

22



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

project ownership to students. Students are encouraged by the coaches and the569

coordinator to see the project as their own. Students must be active themselves570

in identifying tasks that would create customer value. They must also assimilate571

a large amount of material. To frame this activity, it is advisable to create572

time-boxed tasks. In our experience, guiding students to work in pairs has been573

an efficient way of overcoming disbelief in personal skills, and also acts to balance574

differences in skill levels. We also observed that rotating the responsibilities575

among students gives them a chance to step out of their own comfort zone576

and often results in self-realization of their personal strengths and weaknesses.577

Noticing this and giving credit to students can positively impact their self-efficacy.578

Moments of success nourish a positive spirit within the team.579

In practice, unexpected situations occur that threaten to disrupt the flow of580

the project. Changes in participants have occurred in the early weeks of several581

of our projects, when students re-prioritise their commitments or register late582

for courses. This needs to be managed carefully and possible newcomers need583

special attention to be integrated well into the team.584

Pattern 15: Let Them Talk585

• Put effort into connecting the students and the customer.586

• Continue to nurture the communication and promote the idea of a single587

team.588

Building effective communication between the customer and student team is589

essential for project success. Students are often hesitant to contact the customer,590

and coaches should encourage them. Contrary to what students might think,591

customers often appreciate being asked questions which lead to “clever discus-592

sions”, as one of the customers put it. More urgent issues have been handled593

via phone or video calls. As complementary communication channels, students594

use messaging services, phone calls, voice over IP, e-mails, file-sharing services,595

electronic task boards as well as physical kanban boards. The main responsibility596

of the communication is given to the students already during the kick-off event597

23



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(see Pattern 13), and the role of coaches is to act as enablers when needed. We598

have tried to minimize coaches’ interventions when the customer is present to599

avoid bypassing the students in communication. Sometimes, however, coaches600

have intervened to help to focus the discussion.601

Apart from daily communication, we have encouraged weekly customer602

meetings where students present their progress, typically through a demo. To603

make the occasion slightly more formal, the coordinator has also been present.604

Weekly demos might not be prepared perfectly by students in the beginning.605

They might fail, and often last-minute changes in functionality have to be606

implemented. However, the demos tend to improve throughout the project, and607

experiencing the failures makes it obvious to students that they need to think608

and plan ahead. It is useful to rehearse the demo internally before the final609

demo session with the customer, and coaches can help here.610

Pattern 16: Closure: The Story of Our Project611

• Hold a debriefing session after the project has ended.612

• Use a participatory method to build a collective story of the project.613

• Leave students with a feeling of accomplishment.614

After each project, we organise a debriefing session for all project participants.615

Placing the debriefing session after the end of the project helps delineate and616

separate it from the project, giving students some distance to the project.617

Debriefings involve a retrospective look at the project both from the customer618

and team points of view. First, we solicit the often diverging memories of how619

the project unfolded, then process different perspectives and underlying reasons,620

and arrive at a collectively accepted version of “our project story”. The aim is621

not to arrive at objective fact, but rather to increase understanding of why events622

occurred and decisions were made in a certain way. A successful debriefing session623

leaves participants, and particularly students, with some degree of crystallised624

learning – insights into their own actions and their consequences for the project625

in a form that applies elsewhere – and a heightened, healthy sense of self-efficacy626

24



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

stemming from the experience of a completed project. From the perspective of627

the teaching staff, the debriefing session also provides information that can be628

used in summative assessment (see Pattern 6).629

5. Anti-patterns for Software Start-up Education630

This section provides anti-patterns for software start-up education. As with631

the patterns in the previous section, we provide contextual information and632

illustrative examples that should help applying and adapting the patterns to633

similar courses. We also mention related patterns and anti-patterns. The related634

patterns are possible solutions that could be applied to avoid the anti-pattern or635

reduce its effect. The related anti-patterns are manifestations of problems with636

similar causes or effects. We do not have solutions for all the anti-patterns, but637

we believe that being aware of them may be a step towards avoiding them.638

5.1. The physical and virtual environment639

An experiential course of the kind we have described cannot thrive unless the640

learning environment supports immersion. The anti-patterns in this section alert641

educators to some of the threats against an authentic learning environment.642

Anti-pattern 1: The pointless corner643

• Allocating an inadequate space from leftovers.644

• Failing to equip the team room properly.645

• Related: Team Room646

The pointless corner is a team room that no-one wants to visit. A table and647

two chairs do not make a team room unless they stand out. An authentic team648

room is created by allocating valuable space to it. This demonstrates that the649

university is serious about supporting its students in their education and its650

external partners in their collaboration. That in turn establishes the level of651

ambition for education and learning.652

25



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Valuable space and equipment is a subjective concept. A well-functioning653

team room does not need to be expensive. If it is not possible to allocate654

dedicated space to a team room from university premises, it does not need to655

be a show stopper for the whole project. Other alternatives require organizing656

efforts and flexibility from the teaching staff, customer and students. According657

to our experiences, the office space at customer premises can also be an effective658

learning environment. This requires that not only students, but also the teaching659

staff is able to access the location in a reasonable way to ensure they can provide660

guidance. A “garage approach” where students, teachers, and customers agree on661

where to meet for each project should be considered as a last alternative. It often662

imposes high demands to students self-regulation skills and limits the complexity663

of the development environment. Avoid creating a space which students and664

project stakeholders do not feel comfortable in or that restricts the project scope.665

Anti-pattern 2: Rules for the sake of rules666

• Simulating the wrong kind of working life.667

• Treating rules as an end in themselves.668

• Related: Studying is like work669

The purpose of imposing rules, such as working hours and required methods and670

practies, is to create realism and simulate working life. Unfortunately, rules can671

become detached from their educational purpose and start living their own life.672

Rules that contribute to realism are motivated because they further learning673

goals – the ability to improve one’s own work environment and to experience the674

link between the goals and aims of the project and the means of reaching them.675

Rules must not be mindlessly chosen but must be motivated by their existence676

in a relevant working life context where they serve a function. If the purpose is to677

simulate a start-up in a specific domain, the conventions of similar companies in678

that domain should be followed. Each rule and practice should be motivated by679

a project need rather than being an end in itself. Rules, methods, and practices680

should be chosen and adapted because they contribute to the project’s goals.681

26



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Anti-pattern 3: The decaying development environment682

• Getting stuck in “approved” tools which are no longer up to date.683

• Failing to keep support systems in shape.684

• Related: The virtual development environment; The dream development685

environment686

We have observed a tendency to try to stick with a certain set of default tools687

and development frameworks for each project. For some time, we tried to ensure688

that projects used the same tools and frameworks, but we soon realised that689

this is a fool’s errand. The fallacy may stem from the otherwise sound idea of690

reusing technical knowledge and optimising project setup, but it fails because in691

this environment, each project is supposed to start from scratch, teachers do692

not actually retain project knowledge, and modern tools have all but eliminated693

time-consuming setup. Trying to maintain a standard set of tools and frameworks694

puts unnecessary strain on teachers and university IT, slows down projects, and695

means the technical infrastructure is not synchronised to what students have696

skills in using.697

Simultaneously, certain systems are necessary to provide in a somewhat698

standardised manner. For example, Continuous Integration systems are complex699

to set up and a ready-made system can let projects start from day one using proper700

testing and deployment techniques. This applies especially if the systems need701

hardware components such as dedicated mobile devices for realistic automated702

testing. However, these few crucial systems must be kept up to date. Setting703

them up once and thinking that they will work is a different fallacy that can704

lead to a decaying development environment.705

Anti-pattern 4: The dream development environment706

• Getting stuck in tool selection and evaluation.707

• Being unable to resist trying new tools for the sake of novelty.708

27



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

• Related: The virtual development environment; The decaying development709

environment710

Technology selection and evaluation is an important task that can have long-711

lasting effects for a company. However, the goal of start-ups and start-up712

education is not to build the final system. Learning is the most important goal.713

For start-ups, the goal is to learn what the market and customers need and how714

to provide a product or service that fulfils that need. For start-up education,715

the goal is thus to provide skills that contribute to such start-up goals. We716

have experienced a few projects where significant time was invested on exploring717

technology options, ultimately leading to a set of many options but lack of718

criteria that would allow for a choice. Establishing those criteria first with a719

reasonable hypothesis regarding the technology has, in other projects, proven720

more fruitful.721

Sometimes, both students and customers have had a strong desire to try a new722

tool or development framework that supposedly fixes shortcomings that older723

alternatives have. However, unless the project goal is specifically to evaluate724

those new tools and frameworks, it may be better to stick with something that725

is not on the very bleeding edge. Typically, halfway through the project, the726

shortcomings of the new tool become apparent, and it may be difficult to find727

the support to resolve problems with it. Rather than striving for the dream728

development environment, we seek to be pragmatic and use tools and frameworks729

that students are comfortable with, and avoid the very latest ones until they730

have matured a bit.731

5.2. Course design and role in the curriculum732

It is a challenge to integrate experiential, project-based learning in a cur-733

riculum which is otherwise organised more traditionally. We consider here734

particularly the risks involved with such a combination735

Anti-pattern 5: The disconnected course736

28



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

• Failing to establish connections between experiential project courses and737

other courses.738

• Avoiding to adjust the curriculum to support the experiential project739

course.740

Having a course that is disconnected from the rest of the curriculum means that741

there is a lack of awareness in curriculum planning. No matter how exciting an742

experiential, project-based course is for those involved, it does not contribute to743

a long-term learning arc for students unless it is supported by the rest of the744

curriculum and unless it feeds into a more advanced level of studies. Although745

the connection can be dynamic and the course can support learning goals at746

different levels, establishing connections to other courses requires deliberate747

effort. It is easy to forget that such connections require not only consideration in748

course plans, but also that teachers of other courses are aware of what happens749

in the project course. Also, not all prerequisites can be provided or make sense750

to provide on a continuous basis. For example, specific technical knowledge of751

a development framework may be too narrow to warrant recurring courses. If752

they are scheduled as regular courses, they are never timely with respect to753

the fast-moving experiential course. However, such courses can be provided as754

pop-up courses that serve changing needs. We believe keeping the curriculum755

cohesive requires continuous effort, and this is an area where we are still learning.756

5.3. Learning materials757

It may be hard to shed old conventions regarding learning materials. Here,758

we consider what may happen when trying to combine a traditional view of759

learning materials with the dynamic requirements for start-up education.760

Anti-pattern 6: The sacred textbook761

• Requiring students to read a textbook because every course has to have762

one.763

Textbooks justify arranging courses on a subject. If there is a textbook, there764

is one argument less against the topic being suitable for higher education. But765

29



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

in experiential, project-based learning, the role of textbooks is the same as any766

other learning material. Still, it may be tempting to bring in a textbook as767

required reading just because “every course has to have one”.768

Textbook material should be covered before this kind of course starts. Some769

knowledge is better learned outside project courses, yet that knowledge can be770

reconstructed by learners in experiential projects, giving it more meaning and771

giving them new insights. Establishing the connection between what happens772

in the project and what prior courses have taught is something the teacher can773

help with. This is not to say that textbooks or other kinds of written materials774

cannot be learning materials and in fact, we have established a small library of775

books in our Software Factory premises. The initiative to use the books, however,776

should be derived from the students themselves: from learning needs that arise777

durig the course of the project.778

5.4. Teacher guidance779

Experiential learning projects require teachers to balance involvement with780

other concerns. These anti-patterns could help self-reflective teachers improve781

as coordinators of active learning. They could also help in discussing the role of782

the teacher among colleagues.783

Anti-pattern 7: The bureaucrat-teacher784

• Teachers being disconnected from the project.785

• Assuming a role of only managing the course paperwork.786

• Related: Role-play the start-up; The reflective teacher team787

Teachers must be able to adapt to the style of learning in an experiential course.788

However, teachers can become disconnected from the project and fail to gain an789

understanding of what is really going on. If they are not connected to the project790

and its stakeholders, and take the role of mere administrators or bureaucrats,791

the educational benefits will be lost. Teachers will not be able to drive the792

educational aspects of the project, as they will not have the required insight793

30



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

to connect educational interventions to project events and goals. Also, the794

educational priorities sometimes include making choices for the sake of learning795

rather than for the sake of the customer, but such choices require insight into796

the project dynamics. When failing to connect with the project, teachers will797

not be able to do meaningful formative and summative assessment, and they798

will not understand the project aims.799

Anti-pattern 8: The takeover-teacher800

• Teachers taking over the project.801

• Becoming too engaged in the project goals.802

• Related: Role-play the start-up; The vanity project; The reflective teacher803

team804

If teachers become too engaged in the goals of the project, they may start to805

perform project tasks and “take over” the project from students. This can occur806

in particular when the teacher believes that the project is at risk to fail in some807

sense. For example, they may believe that students are bypassing the process808

when in fact they either would require greater insight into how it should be809

connected to the real project tasks, or when the process is simply not suited to810

the project. Teachers may then be tempted to “rescue” the project – but this is811

not a good idea from a pedagogical perspective, since learning opportunities are812

missed when focusing only on surface implementation of predefined goals. This813

pattern is common if the project is a vanity project.814

5.5. Educational interventions815

Not all structures and interventions which intend to advance educational816

priorities work well. Similarly, lack of critical interventions and checks can817

lead to suboptimal learning and failed projects. Some of these patterns con-818

cern customers, but we emphasise that they are also ultimately the teacher’s819

responsibility, as customers must also be trained and their expectations managed.820

Anti-pattern 9: The vanity project821

31



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

• Projects that are selected based on attractiveness alone.822

• Too much politics in the project selection.823

It is sometimes tempting to select projects that are high-profile and that could824

generate lots of visibility but that are badly conceived, too broad, too vague, or825

have too much political baggage that students should not have to deal with. One826

situation in which this may arise is when projects are proposed with research827

partners. Satisfying research partners through student projects is seldom a828

good idea. Such projects inevitably fail in one way or another, and impact829

especially students for whom the project can be a unique event during studies.830

It is better to select a project which perhaps looks slightly more boring at the831

outset, but is better suited for the educational environment. This depends832

also on the profile of the environment, which may vary from implementation to833

implementation. However, this is not to say that high-profile projects should be834

rejected on principle. Rather, if the project looks important, then it deserves the835

background work needed to prepare it for the project course. We try to avoid836

vanity projects by ensuring that there is wide-ranging interest towards projects837

among all stakeholders.838

Anti-pattern 10: Planned to fail839

• Projects that do not aim for the real desired outcome.840

• Demotivating students by telling them there is already another plan.841

For a project to be motivating, it must be believable that the outcome has some842

impact or value. In some situations, the project carried out in the educational843

setting is only one of many options that can be explored. This is a perfectly valid844

approach to learn in a start-up setting. However, when executed badly, this may845

mean that the educational project does not actually provide any valuable outcome846

– it is already known that the outcome will be discarded. Miscommunication847

of the chosen strategy can have a similar effect. It is important to ensure that848

the project aims for a real desired outcome, no matter how small. Otherwise,849

32



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

all stakeholders will merely go through the motions for the sake of finishing850

the project rather than actually engaging with the exploration of problem and851

solution spaces. We believe a key factor is how to arrange the customer’s learning852

in an experiential course setting, but we are still exploring that question.853

Anti-pattern 11: Initiation-expectation mismatch854

• Projects that are started in a manner that does not support the expected855

outcome.856

• Lack of clarity regarding how to work for a specific type of outcome.857

• Lack of initial communication regarding expectations.858

The desired outcome of a project must be taken into account when considering859

how to initiate it. A project may start in a very exploratory mode, but as the860

end approaches, it becomes clear that the customer actually wanted something861

specific all along. If a concrete outcome is desired, the project should start with862

a well-defined deliverable. In other words, it should operate more in the solution863

space. In some projects, the customer is genuinely unsure of what outcome they864

expect, and this pattern does not refer to those situations where the customer865

realises what they wanted as a result of the project. Rather, this pattern is866

about the situation where the customer does not communicate their true wishes867

from the beginning. This may occur out of politeness, as customers may believe868

that they must let students explore and have fun in the beginning of the project.869

It may also occur because the customer is afraid to reveal their true goals. In870

any case, the customer then initiates the project in a manner that leads down871

the wrong path. As in the previous pattern, we believe the customer’s learning872

is a key factor in ensuring that the initiation matches expectations.873

Anti-pattern 12: Feeding the strong874

• Educational interventions and teacher attention placed too much on the875

most knowledgeable students.876

• Failing to introduce interventions that balance student team skills.877

33



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Teachers may inadvertently nourish learning mostly or only among the most878

knowledgeable students. Also, they may contribute to a team hierarchy and879

conduct that lets only the strongest students steer and decide, and suppresses880

communication from the weaker students. This will lead to a situation where881

the strongest students perform nearly all project tasks, and the weaker students882

withdraw and try to hide the fact that they are not contributing much. This is883

unfair to all students. The stronger students will have an unreasonable workload884

as they must carry the entire project. Also, they will not accomplish as much885

as they could if they had the full force of the team behind them. The weaker886

students will feel left out of the project and their learning is likely to stop. The887

teacher must be alert and use educational interventions to balance the skills888

in the team. For example, we have helped students to form sub-groups where889

stronger students collaborate with weaker students, and introduced learning890

tasks where knowledge and skills can be transferred between students.891

Anti-pattern 13: The customer who doesn’t know students892

• Customers that are not familiar with the conditions of student life.893

• Overinterpreting the working life simulation.894

Customers may have little understanding of what it means to be a university895

student. Although we emphasise an intensive project during which few other896

studies and duties should be performed, students’ lives are different than that897

of paid workers. While we strive to simulate relevant conditions of working life,898

there are many aspects that are not possible or even desirable to simulate. These899

include monetary compensation for work, extra compensation and regulation of900

overtime, regulation of working conditions, and the existence of a legal entity901

and superiors which handle issues of legal responsibility. Customers may come902

to believe that they can deal with students and the student project in the903

same manner as they would deal with a contractor. They may, for example,904

exert pressure in inappropriate ways, start monitoring the project constantly,905

or demand detailed work reports that are sensible only as a way to confirm906

34



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

that billing corresponds to work delivered. It is important to communicate the907

nature of the project to customers beforehand, but in our experience, this is908

sometimes not enough. Fortunately, we have only encountered a few cases of909

this anti-pattern, and have been able to correct the situation by constructive910

dialogue.911

Anti-pattern 14: The dissociative customer912

• Customers being disconnected from the project.913

• Assuming a role of only attending meetings.914

• Too many or too incoherent customer representatives.915

Some customers do not realise their responsibility and role in driving projects. A916

customer may have multiple representatives who do not coordinate among each917

other. Each time a representative meets the student team, they have no idea918

what the team agreed with the previous representative, and rather than being919

able to evaluate the work so far and decide on a coherent next step, they come920

with new and incompatible ideas. Customers should have one single contact921

person who is responsible for the communication and decision-making. Other922

representatives can contribute as experts on specific topics, but they should923

coordinate with the main contact person and their role should be advisory.924

Anti-pattern 15: Believing it will never end925

• Customers that do not understand that the project ends.926

• Not being able to adjust to project phases.927

Since our projects are intensive but relatively short, it is important for the928

customer to be able to adjust to different project phases. Especially the last929

phase of the project, where customers must choose between new features and930

stabilising existing features, is particularly important. However, some customers931

may believe that since they have flexible project deadlines, the university course932

can also be flexible in that regard. Customers need to understand that project933

35



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

will end on the designated date, and students are not going to continue after that.934

Customers must be prepared to focus on the level of stability and packaging that935

they require at the end of the project.936

Anti-pattern 16: The helpdesk937

• Customers contacting the university for software support after the project.938

• Failing to properly hand over the project deliverables and assets.939

It is not sustainable to provide support for customers after projects, even as a940

courtesy. When the project ends, it is useful to explicitly hand over the project941

deliverables and any assets and resources that the project has produced or used.942

Such proper handoff and delivery of the end result signals that the customer is943

now responsible for any further actions. Handoff must include all technical assets944

but also access and administration responsibility to all systems where assets are945

stored. If any university systems have been used, they must either be scoped out946

of the delivery or assets must be moved out of university-owned systems. For947

this reason, we strive as much as possible to use third-party code repositories948

and other systems where transferring assets to the customer is easy and there is949

then no connection to the university. Becoming a perpetual point of support for950

the customer is both time-consuming and can lead to disappointment when it951

becomes obvious that true support cannot be given.952

6. Discussion953

Throughout our Software Factory projects, we have observed recurring pat-954

terns of success and encumbrances. Our educational patterns and anti-patterns955

encapsulate insights that can contribute positively to the whole journey from956

project planning to completion; and to learning objectives of the course, thus957

providing an answer to our research question. A pertinent question is how the958

patterns and anti-patterns contribute to entrepreneurship and start-up education.959

In this section, we discuss our findings with respect to both the contextual and960

36



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

pedagogical backgrounds of our study and consider the implications for arranging961

similar learning experiences.962

6.1. Entrepreneurship education963

Previous work suggests that entrepreneurship education benefits from concrete964

experience through active participation [13]. This motivates our overall approach965

to software start-up education: an immersive learning environment in which966

students carry out projects. Previous research also shows that learning in an967

actual start-up could be detrimental to more junior students [14]. Placing the968

learning environment within university control – both administratively and969

physically – has the benefit of providing a safe environment where educational970

quality can be ensured, but with enough realism for participants.971

By mapping our patterns and anti-patterns to the 15 competences defined in972

the EntreComp Entrepreneurship Competence Framework [9], and considering973

them in relation to the pedagogical frame, we can give a theoretically motivated974

reasoning for how they contribute to start-up education.975

The (anti-)patterns for the physical and virtual environment and teacher976

guidance strive to create a learning environment that feels authentic for students.977

They do not directly contribute to any of the competences, but can be motivated978

from the perspective of situated cognition theory. Since knowledge construction is979

linked to the activity, context, and culture surrounding the learning environment,980

it is important to promote a context and culture that conveys the feeling of a981

real start-up environment. The patterns contribute to taking such steps.982

The (anti-)patterns concerning course design and role in the curriculum, and983

those concerning educational interventions, attempt to address several compe-984

tences: self-awareness and self-efficacy, motivation and perseverance, mobilising985

resources, mobilising others, taking the initiative, and learning through experi-986

ence. Previous work in entrepreneurship education suggests focusing on personal987

attributes as well as tasks (c.f. [13]). Our patterns and anti-patterns in this988

category strive to direct learning precisely to personal attributes rather than989

focusing on technical tasks. That is not to say that the latter cannot also be990

37



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

part of the learning in start-up education; however, due to the diverse nature991

of our projects, it is difficult to extract general principles related to the techni-992

cal learning. Many of the more technical tasks are perhaps better learned in993

other courses, and our department curriculum reform shows that they can be994

successfully taught at an earlier stage. Future work could consider how technical995

aspects should be considered in software start-up education.996

Several of the anti-patterns we have presented do address issues that are997

threats also in real-life software projects. This illustrates the level of realism998

we strive towards: our educational environment operates on projects that are999

not toy projects but that include several aspects of real-life software projects.1000

The anti-patterns concern issues of project governance – the kinds of issues1001

that students cannot generally be expected to take responsibility for, and that1002

teachers and the university must address.1003

6.2. Self-efficacy as the primary learning goal1004

In our view, strengthening students’ identity as software developers, and1005

improving their self-efficacy in relation to that identity, is the most important1006

learning goal in our course. Behavioural modelling has been shown to improve self-1007

efficacy (see Section 2.2). Several of our patterns include behavioural modelling.1008

Also, the patterns 5, 6, 13, 14, and 16 explicitly address nurturing self-efficacy:1009

they direct teachers to observe and react to student success when it occurs.1010

Conversely, anti-patterns 1, 3, 7-10 and 12-14 strive to protect the development1011

of self-efficacy beliefs by avoiding demotivation among students.1012

One important factor that may support the development of positive self-1013

efficacy beliefs is psychological safety. An environment that is safe for interper-1014

sonal risk-taking should support individuals to communicate and pursue ideas1015

that they would otherwise keep to themselves. A supportive environment rewards1016

expression of such ideas, and when they are pursued, there are opportunities1017

for learning. These positive experiences can be part of fostering self-efficacy.1018

Naturally, some ideas will fail, but in an environment with high psychological1019

safety, those failures can also be utilised as learning experiences.1020

38



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Many of our patterns and anti-patterns strive to strengthen psychologi-1021

cal safety. For instance, pattern 2 strives to create a foundation of routines1022

and norms that contribute to psychological safety. Pattern 4 removes project1023

decision-making authority from teachers, instead emphasising communication1024

and evidence as the basis of decisions, meaning that contributing to decision-1025

making is possible regardless of seniority or rank. Pattern 10 extends the1026

psychological safety goal to cover teachers as well as students. Anti-patterns 91027

and 12 are examples that strive to increase psychological safety by avoiding to1028

build unsafe conditions in the first place. Anti-pattern 9 strives to avoid projects1029

which, from the outset, are conflict-prone. Anti-pattern 12 strives to avoid1030

damaging team cohesion by favouring some students at the expense of others.1031

In one way or another, most of the patterns and anti-patterns presented can be1032

seen as contributing to self-efficacy through strengthening of psychological safety.1033

Simultaneously, the patterns do not strive to shield students from difficulties or1034

failure, as realism is also among the main aims.1035

Ultimately, self-efficacy is complex and very hard to influence. To what1036

extent a single course can have a lasting impact on self-efficacy remains an open1037

question. However, feedback from students both immediately after projects as1038

well as after 1–2 years provides anecdotal evidence that the Software Factory1039

experience is memorable and has a positive effect on students’ willingness to1040

work with developing innovative software-intensive products. Negative feedback1041

given by students focuses more on difficulties of completing other studies during1042

the intensive project, the short time available and the resulting constraints, and1043

technical obstacles that students were frustrated by during the course. Further1044

study is needed to understand how and to what extent the course improves1045

students’ self-efficacy beliefs. Inflated self-efficacy beliefs can hinder learning1046

and should also be considered.1047

6.3. Limitations of the study1048

The results of this study are based on a retrospective, reflective analysis of1049

several Software Factory projects. The internal validity and trustworthiness of1050

39



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the results should be high due to the use of 26 projects as cases, triangulation1051

through multiple types of data, researcher triangulation, and traceability to1052

evidence in the analysis. The external validity and transferability of the results1053

is limited by several factors. Most importantly, it is uncertain whether the1054

patterns and course set-up described here can be successfully enacted without a1055

B.Sc. program similar to the one described in the background section. Students’1056

prerequisite knowledge needs to be at a high level, and they must be used to1057

the mode of teaching that we employ. Furthermore, implementing the patterns1058

places demands on staff. It requires a special stamina in coaching the several,1059

iteratively improving areas that contribute to students’ self-directedness and1060

motivation, as can be seen in patterns 7 and 8. Finally, we note that the patterns1061

and anti-patterns presented here are inductively derived from the source material,1062

and not empirically tested in different conditions. Taking these limitations into1063

account, we suggest that teachers can apply them in their own project-based1064

start-up courses.1065

7. Conclusion1066

Software engineering students often have a strong technical background in1067

CS subjects, but lack the knowledge and skills to enact group work projects in1068

an entrepreneurial environment. In this paper, we retrospectively analysed seven1069

years of educational projects with start-up-like traits and developed 16 educa-1070

tional patterns and 16 anti-patterns for enhancing software start-up instruction1071

in higher education. The patterns and anti-patterns cover the physical and1072

virtual environment, course design and placement in the curriculum, learning1073

materials, and teacher guidance.1074

Besides the patterns, we discuss the prerequisites for software start-up educa-1075

tion. A thorough reform of the curriculum may be needed to achieve the desired1076

learning outcomes, and prepare students for a world where entrepreneurship may1077

be a dominant form of employment. Future studies could address how software1078

start-up education can help build students’ developer identities and enhance1079

40



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

their self-efficacy beliefs, as well as examine how technical knowledge and skills1080

should be considered in start-up education. Further extension and validation1081

of the patterns and anti-patterns, as well as in-depth study on the customer’s1082

learning and integration into university-led experiential, project-based education,1083

are among the potential future directions in this area.1084

References1085

[1] European Commission, Entrepreneurship 2020 Action Plan, online:1086

http://bit.ly/2oBRevI [Retrieved: 2017-04-12] (2012).1087

[2] D. Rombach, et al., Teaching disciplined software development, Journal of1088

Systems and Software 81 (5) (2008) 747–763.1089

[3] P. Abrahamsson, P. Kettunen, F. Fagerholm, The set-up of a software1090

engineering research infrastructure of the 2010s, in: Proc. of the 11th1091

International Conf. on Product Focused Software, ACM, 2010, pp. 112–114.1092

[4] F. Fagerholm, N. Oza, J. Münch, A platform for teaching applied distributed1093

software development: The ongoing journey of the Helsinki software factory,1094

in: 2013 3rd International Workshop on Collaborative Teaching of Globally1095

Distributed Software Development, 2013, pp. 1–5.1096

[5] J. Dewey, How we think: A restatement of the relation of reflective thinking1097

to the educative process, DC Heath, Boston, MA, 1935.1098

[6] D. A. Schön, The reflective practitioner: How professionals think in action,1099

Basic Books, New York, NY, USA, 1983.1100

[7] F. Fagerholm, A. Hellas, M. Luukkainen, K. Kyllönen, S. Yaman,1101

H. Mäenpää, Patterns for Designing and Implementing an Environment1102

for Software Start-Up Education, in: 2017 43rd Euromicro Conference1103

on Software Engineering and Advanced Applications (SEAA), 2017, pp.1104

133–140.1105

41



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[8] Commission of the European Communities, Green Paper – Entrepreneurship1106

in Europe, online: http://bit.ly/2pDkvUj [Retrieved: 2017-04-12] (2003).1107

[9] M. Bacigalupo, P. Kampylis, Y. Punie, L. Van den Brande, EntreComp:1108

The Entrepreneurship Competence Framework, Publications Office of the1109

European Union, Luxembourg, 2016, EUR 27939 EN.1110

[10] W. B. Gartner, Who is an entrepreneur? Is the wrong question, American1111

Journal of Small Business 12 (4) (1988) 11–32.1112

[11] W. Fletcher, The Management of Creativity, International Journal of Ad-1113

vertising 9 (1) (1990) 1–37.1114

[12] H. Berglund, K. Wennberg, Creativity among entrepreneurship students:1115

comparing engineering and business education, International Journal of1116

Continuing Engineering Education and Life-Long Learning 16 (5) (2006)1117

366.1118

[13] G. Gorman, D. Hanlon, W. King, Some Research Perspectives on En-1119

trepreneurship Education, Enterprise Education and Education for Small1120

Business Management: A Ten-Year Literature Review, International Small1121

Business Journal 15 (3) (1997) 56–77.1122

[14] S. Chenoweth, Undergraduate Software Engineering Students in Startup1123

Businesses, in: 21st Conf. on Software Engineering Education and Training,1124

IEEE, 2008, pp. 118–125.1125

[15] A. Järvi, V. Taajamaa, S. Hyrynsalmi, Lean Software Startup – An Experi-1126

ence Report from an Entrepreneurial Software Business Course, in: J. M.1127

Fernandes, R. J. Machado, K. Wnuk (Eds.), Software Business: 6th Interna-1128

tional Conf., ICSOB 2015, Braga, Portugal, June 10-12, 2015, Proceedings,1129

Springer International Publishing, 2015, pp. 230–244.1130

[16] R. Harms, Self-regulated learning, team learning and project performance in1131

entrepreneurship education: Learning in a lean startup environment, Tech.1132

Forecasting and Social Change 100 (2015) 21–28.1133

42



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[17] A. Bandura, Self-efficacy: toward a unifying theory of behavioral change.,1134

Psychological review 84 (2) (1977) 191.1135

[18] A. Bandura, The explanatory and predictive scope of self-efficacy theory,1136

Journal of social and clinical psychology 4 (3) (1986) 359–373.1137

[19] T. Judge, et al., Are measures of self-esteem, neuroticism, locus of control,1138

and generalized self-efficacy indicators of a common core construct?, J. of1139

Personality and Social Psych. 83 (3) (2002) 693–710.1140

[20] J. R. Engelsma, Best Practices for Industry-sponsored CS Capstone Courses,1141

J. of Computing Sciences in Colleges 30 (1) (2014) 18–28.1142

[21] K. D. Multon, S. D. Brown, R. W. Lent, Relation of self-efficacy beliefs to1143

academic outcomes: A meta-analytic investigation. (1991).1144

[22] B. Hasan, The influence of specific computer experiences on computer1145

self-efficacy beliefs, Computers in human behavior 19 (4) (2003) 443–450.1146

[23] V. Ramalingam, D. LaBelle, S. Wiedenbeck, Self-efficacy and Mental Models1147

in Learning to Program, in: Proc. of the 9th Conf. on Innovation and1148

Technology in CS Education, ACM, 2004, pp. 171–175.1149

[24] A. Bandura, Perceived self-efficacy in cognitive development and functioning,1150

Educational psychologist 28 (2) (1993) 117–148.1151

[25] M. E. Gist, C. Schwoerer, B. Rosen, Effects of alternative training methods1152

on self-efficacy and performance in computer software training., Journal of1153

applied psychology 74 (6) (1989) 884.1154

[26] A. Collins, J. S. Brown, S. E. Newman, Cognitive apprenticeship: Teaching1155

the craft of reading, writing and mathematics, Thinking: The Journal of1156

Philosophy for Children 8 (1) (1988) 2–10.1157

[27] A. Collins, J. S. Brown, A. Holum, Cognitive apprenticeship: Making1158

thinking visible, American educator 15 (3) (1991) 6–11.1159

43



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[28] G. Norman, H. Schmidt, The psychological basis of problem-based learning:1160

a review of the evidence, Acad. medicine 67 (9) (1992) 557–65.1161

[29] J. S. Brown, A. Collins, P. Duguid, Situated cognition and the culture of1162

learning, Educational researcher 18 (1) (1989) 32–42.1163

[30] B. Barron, et al., Doing with understanding: Lessons from research on1164

problem-and project-based learning, J. of the Learning Sciences 7 (3-4)1165

(1998) 271–311.1166

[31] M. Luukkainen, et al., Three years of design-based research to reform a1167

software engineering curriculum, in: Proc. of the 13th annual conf. on1168

Information technology education, ACM, 2012, pp. 209–214.1169

[32] A. Vihavainen, et al., Extreme apprenticeship method: key practices and1170

upward scalability, in: Proceedings of the 16th annual joint conf. on In-1171

novation and technology in computer science education, ACM, 2011, pp.1172

273–277.1173

[33] The Design-Based Research Collective, Design-based research: An emerging1174

paradigm for educational inquiry, Educational Researcher 32 (1) (2003) 5.1175

[34] P. Bell, On the Theoretical Breadth of Design-Based Research in Education,1176

Educational Psychologist 39 (4) (2004) 243–253.1177

[35] D. C. Edelson, Design Research: What We Learn When We Engage in1178

Design, Journal of the Learning Sciences 11 (1) (2002) 105–121.1179

[36] H. Burkhardt, A. H. Schoenfeld, Improving Educational Research: Toward1180

a More Useful, More Influential, and Better-Funded Enterprise, Educational1181

Researcher 32 (9) (2003) 3–14.1182

[37] P. Cobb, et al., Design experiments in educational research, Educational1183

Researcher 32 (1) (2003) 9.1184

[38] T. Anderson, J. Shattuck, Design-Based Research, Educational Researcher1185

41 (1) (2012) 16–25.1186

44



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[39] A. Hevner, et al., Design Science in Information Systems Research, MIS1187

Quarterly 28 (1) (2004) 75–105.1188

[40] K. M. Eisenhardt, Building Theories from Case Study Research, The1189

Academy of Management Review 14 (4) (1989) 532–550.1190

[41] J. Münch, F. Fagerholm, P. Johnson, J. Pirttilahti, J. Torkkel, J. Järvinen,1191

Creating Minimum Viable Products in Industry-Academia Collaborations,1192

in: B. Fitzgerald, K. Conboy, K. Power, R. Valerdi, L. Morgan, K.-J. Stol1193

(Eds.), Lean Enterprise Software and Systems, Springer Berlin Heidelberg,1194

Berlin, Heidelberg, 2013, pp. 137–151.1195

[42] F. Fagerholm, A. S. Guinea, H. Mäenpää, J. Münch, Building Blocks1196

for Continuous Experimentation, in: Proceedings of the 1st International1197

Workshop on Rapid Continuous Software Engineering, RCoSE 2014, ACM,1198

New York, NY, USA, 2014, pp. 26–35.1199

[43] O. Liskin, K. Schneider, F. Fagerholm, J. Münch, Understanding the Role of1200

Requirements Artifacts in Kanban, in: Proceedings of the 7th International1201

Workshop on Cooperative and Human Aspects of Software Engineering,1202

CHASE 2014, ACM, New York, NY, USA, 2014, pp. 56–63.1203

[44] F. Fagerholm, A. Vihavainen, Peer assessment in experiential learning1204

Assessing tacit and explicit skills in agile software engineering capstone1205

projects, in: Frontiers in Education Conference (FIE), IEEE, 2013, pp.1206

1723–1729.1207

45



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Fabian Fagerholm is a postdoctoral researcher at the University of Helsinki,1208

Finland. His research interests include developer experience, human, behavioural,1209

and psychological aspects of software engineering, continuous experimentation1210

and evidence-driven software product development, open source software de-1211

velopment, and experiential and project-based software engineering education.1212

He has coordinated the design, planning, implementation, and operation of the1213

Software Factory laboratory for experimental software engineering research and1214

education since its inception. He received his PhD in computer science from the1215

University of Helsinki, Finland.1216

Arto Hellas is a university instructor at the University of Helsinki, Finland.1217

His research interests include computer science education, learning analytics, and1218

MOOC learning. He received his PhD in computer science from the University1219

of Helsinki, Finland.1220

Matti Luukkainen is a university lecturer at the University of Helsinki,1221

Finland. His research interests include computer science education, the extreme1222

apprenticeship method, and curriculum development. He received his PhD in1223

computer science from the University of Helsinki, Finland.1224

Kati Kyllönen is a project manager at Digia Plc, and was previously a1225

research and teaching assistant at the University of Helsinki, Finland. She has1226

more than 15 years of experience working in the software industry, and has1227

coached multiple projects in the Software Factory laboratory. She was awarded1228

with the junior teacher award at the University of Helsinki in 2016. She holds a1229

vocational qualification in Business IT from the ADP Institute, Finland, and is1230

currently finalizing her M.Sc. studies in Computer Science at the University of1231

Helsinki, Finland.1232

Sezin Yaman is a doctoral student at the University of Helsinki, Finland.1233

Her research interests include data- and experiment-driven software engineering1234

and customer involvement in software development. She received her M.Sc. in1235

computer science from the University of Helsinki, Finland.1236

Hanna Mäenpää is a doctoral student at the University of Helsinki, Finland.1237

Her research interests include open innovation, open source software development,1238

46



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

and problem- and project-based education. She received her M.Sc. in computer1239

science from the University of Helsinki, Finland.1240

47


