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Moving magnets in a micromagnetic finite-difference framework
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We present a method and an implementation for smooth linear motion in a finite-difference-based micro-
magnetic simulation code, to be used in simulating magnetic friction and other phenomena involving moving
microscale magnets. Our aim is to accurately simulate the magnetization dynamics and relative motion of magnets
while retaining high computational speed. To this end, we combine techniques for fast scalar potential calculation
and cubic b-spline interpolation, parallelizing them on a graphics processing unit (GPU). The implementation
also includes the possibility of explicitly simulating eddy currents in the case of conducting magnets. We test our
implementation by providing numerical examples of stick-slip motion of thin films pulled by a spring and the
effect of eddy currents on the switching time of magnetic nanocubes.
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I. INTRODUCTION

Numerical micromagnetics is often the tool of choice when
investigating the behavior of magnetization at scales where
fine details of magnetic structures such as domain walls
need to be resolved but atomic description is computationally
unfeasible. Since their early application in predicting domain
wall structure in soft thin films [1], micromagnetic simulations
have been used to reproduce a variety of experimental results
[2–4]. With the advances in GPU-accelerated computing, the
speed of micromagnetic simulations has surged [5,6], making
it possible to perform larger length- and timescale simulations.

An area currently lacking in micromagnetics is the capa-
bility of simulating mechanical motion of magnets and the
interplay of motion and the domain dynamics of magnets mov-
ing relative to each other. The relative motion of small-scale
magnets is relevant in studying phenomena such as magnetic
friction [7–11], and for applications such as magnetic force
microscopy [12], and micro- and nanomanipulation [13,14].
Despite the scientific interest in these areas, simulation frame-
works capable of general micromagnetic simulations coupled
with the motion dynamics of the magnets, to the authors’
knowledge, do not exist. In magnetic friction context, studies
have been performed on specific simulation instances such as
single magnetic dipole being moved at a constant velocity atop
a monolayer [10,15] and perpendicularly polarized thin films
sliding relative to each other [9], but otherwise computational
studies of moving microscale magnets and their interactions
have been scarce.

In this paper, we extend an existing finite difference mi-
cromagnetic simulation code to handle the linear motion of
a magnet interacting with another. In the case of conducting
magnets, we also include an eddy current solver in our
movement implementation to study the effects of eddy currents
on the motion and magnetization dynamics. Our primary focus
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is on magnetic friction and thin films, but other phenomena
involving moving magnets can also be studied within the
framework.

The structure of the paper is as follows: in Sec. II, we
examine the simulation of moving magnets in a finite difference
framework and present our method for simulating smooth
motion. Section III elaborates on the technical details of the
movement and eddy current implementations. In Sec. IV, we
test our implementation with example simulations, comparing
the obtained results to those of previous works on magnetic
friction [9] and eddy currents [16,17]. Finally, in Sec. V we
summarize the main points of the article and conclude with
thoughts on possible future work.

II. MOVING MICROSCOPIC MAGNETS

At the core of micromagnetics is the the Landau-Lifshitz-
Gilbert (LLG) equation, which governs the time evolution of
the magnetization in a magnetic material. It can be written as

∂m
∂t

= −γ Heff × m + αm × ∂m
∂t

, (1)

where γ is the gyromagnetic ratio, m is the normalized mag-
netization m = M/Msat, α is the phenomenological Gilbert
damping constant, and Heff the effective field, in most cases
containing four field terms: exchange field Hexch, anisotropy
field Hanis, external (Zeeman) field Hext, and demagnetizing
field Hd. In micromagnetics, the magnetic properties of a
material are determined by material parameters such as the
exchange constant Aex, the saturation magnetization Msat, and
the Gilbert damping constant.

In numerical micromagnetics, finite difference methods
have been found attractive due to the possibility of using
fast Fourier transforms to speed up the evaluation of the
demagnetizing field, which usually is the computationally
most demanding part of micromagnetic simulations [18]. In
finite difference micromagnetics, the domain of interest is
discretized into cuboid (often cubic) cells in which the LLG
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FIG. 1. An example system of two stripe-patterned thin films for
simulating magnetic friction. In this example, the upper film is driven
toward +x direction with a constant velocity v and the system is
periodic in the film plane (periodic images not shown). The direction
of magnetization in the xy plane is indicated by the color wheel on
the left, while white and black correspond to magnetization in +z and
−z directions, respectively.

equation is solved. A discretization cell can be empty (non-
magnetic, vacuum/air) or contain magnetic material, in which
case the cell is typically treated as uniformly magnetized,
represented by a vector in the center of the discretization cell.
These magnetization vectors interact with the local field Heff

in each cell and evolve in time according to the LLG equation.
A possible simulation scenario with two magnetic thin films

in relative motion is depicted in Fig. 1. Movement in this kind
of simulation scheme consists of updating the cells with the
correct material parameters and magnetization vectors when
the magnet moves in and out of the simulation cells. However,
due to the discretization the magnet can only move in discrete
jumps inside the simulation domain, and thus m, Heff , and other
quantities inside the cells change discontinuously in response
to the motion. This leads into a cycle of excitations and
relaxations of the magnetization, which is especially prominent
at low velocities. The intermittent movement also introduces
artificial discontinuities in quantities such as energy of the
system (Fig. 2), complicating the analysis of results, e.g.,
when studying stick-slip motion. Additionally, when eddy
currents are included in the simulation (see Sec. III B), the
discontinuous change in the local magnetic field due to the
jumps could lead to an overestimation in the induced eddy
currents. To properly study the interaction of two magnets in
relative motion and the related phenomena, smooth continuous
motion is desirable.
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FIG. 2. A demonstration of the discontinuous jumps in total
energy caused by the discrete movement in the example system
depicted in Fig. 1 for three different driving velocities.

A. Smooth motion through interpolation

There are a couple of ways to realize smooth motion within
a finite difference framework. The simplest idea is to use
smaller simulation cells to limit the size of the cell-to-cell
jumps during the motion, but this increases the computational
cost dramatically and does not truly eliminate the problem.
Another way is to emulate movement between cells by scaling
the Msat of the partially filled cells by the percentage of the
cell volume containing magnetic material, but this can lead
to errors unless corrections are made to the calculation of ex-
change interaction and demagnetizing field terms [19]. When
simulating magnets in motion, applying the corrections could
become computationally quite intensive. A simpler approach
applicable to our simulation scenario, that is two magnets in
relative motion and not in direct contact, is to use interpolation
to find the effective field in between the discretization cells.
This approach can be made computationally quite inexpensive
when appropriate calculation methods are used.

Two magnets that are not in direct contact interact with
each other only via the long-range interaction term of the LLG
equation, the demagnetizing field (or stray field) Hd , governed
by the equations

∇ · Hd = −∇ · M, ∇ × Hd = 0. (2)

When simulating two magnets of which one is moving, the
demagnetizing field of the stationary magnet can be interpo-
lated at the location of the moving magnet (Fig. 3) and vice
versa. The interpolation of Hd between cells can be done
in two ways: direct interpolation of the field vectors, or by
calculating the magnetic scalar potential φM , interpolating it
and obtaining the demagnetizing field as the gradient of the
potential Hd = −∇φM . Both methods are included in our
implementation.

A problem that can arise when interpolating the demagnetiz-
ing field is introducing artificial divergence and/or curl into the
system. It has been shown that artificial divergences induced
by simply interpolating the field vectors componentwise can
lead to unphysical behavior in magnetohydrodynamics [20],

FIG. 3. An illustration of a part of a discretized magnet moving
in between the simulation cells with speed v in the x direction,
the partial movement denoted by xp, the black arrows depicting
the demagnetizing field vectors of the stationary magnet, and the
interpolated field vectors shown in red inside the moving magnet.
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and thus to avoid similar problems we try to maintain the
demagnetizing field as divergence-free (outside the magnet)
and curl-free (everywhere) as possible. In this regard, the scalar
potential method is advantageous, since it gives a curl-free field
by definition as long as the interpolants are C2 continuous, i.e.,
continuous up to the second derivative [21]. The behavior of
divergence and curl during interpolation in both scalar potential
method and direct interpolation of the field is examined in
Sec. IV.

Simulations can include other field terms that require inter-
polation as well. When applying an external field Hext that is not
uniform in the whole simulation domain, the field can change
smoothly between cells and therefore has to be interpolated
inside the moving magnet. For the external field, one has to
directly interpolate the field vectors between cells when the
magnet is moving, since the external field is not necessarily
expressable as a gradient of a scalar potential. The same
applies to the eddy current field. Fortunately, the anisotropy
field Hanis is localized in a cell and the exchange field Hexch

is very short-ranged, extending only to the nearest-neighbor
cells. Thus, interpolation is not needed for these interactions.

III. IMPLEMENTATION

The movement and interpolation codes were implemented
in the micromagnetic solver MuMax3 [22], due to its open-
source nature and authors’ previous experience with the soft-
ware. MuMax3 has functions for moving the entire simulation
domain a cell in a specified direction, useful when studying,
e.g., the movement of a domain wall in a long nanowire.
However, since the whole simulation domain is moved, relative
motion of two magnets cannot be simulated. Hence, we
implemented functions with which one can define the part of
the simulation domain as moving (“slider”) and part as staying
at rest (“base”). The slider part of the simulation domain can
then be moved in the desired direction while the base remains
in place. In our extension, the slider can be allowed to move
in selected directions in three dimensions, making it possible
to study perpendicular movement relative to the base (e.g., in
adhesion context) in addition to parallel movement. The slider
can be driven either with constant velocity or with a spring
moving at a constant velocity. The extension also supports
periodic boundary conditions.

The slider and base geometries are defined at the beginning
of the simulation and are assumed not to change. The slider
moves as a rigid body, and the location relative to the cell
centers (where the exact m is calculated) is updated constantly,
the relevant fields being interpolated according to the location.
We incorporated Newton’s equations of motion into the Euler
solver and the adaptive step RK45 Dormand-Prince solver,
solving the equations simultaneously with the LLG equation.
Whenever the slider has moved a full simulation cell, the
geometry and parameters in the involved cells are updated
accordingly and the parameter determining location relative
to the cell centers starts again from zero. We modified the cal-
culations of energy and other quantities to use the interpolated
fields so that they take into account the partial movement of
the slider. Additionally, we introduced new quantities relevant
to the motion such as the total forces affecting the base and the
slider, the speed and acceleration of the slider, etc.

For simulating magnetic friction, we implemented the
calculation of some additional measures, such as the force
the base exerts on the slider and the power dissipated by the
relaxation of m due to Gilbert damping. Since the slider and
base interact only via the demagnetizing field, the force the
slider feels from the base can be written as

Fs
m = μ0Vcell

∑
i∈s

(Ms(xi) · ∇)Hb
d(xi), (3)

where the sum is over the cells designated as the slider, μ0 is
the permeability of vacuum, Vcell is the volume of a simulation
cell, xi is the (possibly interpolated) location in cell i, and
superscripts s and b are used to denote the slider and base,
respectively [9].

Moving the slider forward pumps energy into the system
with power Pin = −Fs

m · vs, where vs denotes the velocity of
the slider. In the steady state, the power pumped into the system
and the power dissipated by the relaxation of the magnetic
moments (and possible mechanical damping of the spring in
the case of spring driving) have to be equal. Power dissipated
by the relaxation of m can be calculated as (Ref. [10])

Pdiss = γαμ0Vcell

(1 + α2)Msat

N∑
i=1

(
M(xi) × Heff (xi)

)2
. (4)

If other damping factors are small, the friction force determined
by energy dissipation F = 〈Pdiss/vs〉 should then coincide with
the force of Eq. (3) in the steady state.

A. Interpolation of the demagnetizing field

A typical way of solving the demagnetizing field in finite
difference micromagnetics, including MuMax3, is as a discrete
convolution with kernel usually referred to as the demagneti-
zation tensor N. Mathematically, the direct calculation of Hd

at point r can be written as a convolution integral,

Hd (r) = − 1

4π
∇

∫
M(r′) · ∇′ 1

|r − r′|d
3r′

= −
∫

N(r − r′)M(r′)d3r′, (5)

of which the discretized version used in the finite difference
method is

Hd (ri) = −
∑

j

N(ri − rj)M(rj), (6)

where i and j denote indices of the discretization cells. The
demagnetization tensor is a 3 × 3 matrix containing geomet-
rical coefficients for each pair ri,rj. The calculation can be
sped up by FFTs, changing the convolution in real space to a
pointwise multiplication of FFT’d magnetization and the de-
magnetization tensor [18], reducing the calculation complexity
from O(n2) to O(n log n) of FFTs. In addition to performing
FFTs, MuMax3 further speeds up the calculations by using the
GPU to massively parallelize the effective field calculations.
The demagnetization tensor is only computed once, Fourier
transformed, and moved to the GPU at the beginning of the
simulation, while the magnetization has to be transformed and
inverse-transformed during each time step, the number of trans-
forms being dependent on the time integration scheme used.
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As for the interpolation of the field values between cells,
GPUs can utilize texture memory for fast interpolation. How-
ever, these interpolations are linear and the discontinuity of
the derivatives make for a poor interpolation for the field.
Fortunately, there exists a fast GPU-based interpolation library
capable of constructing a 3D cubic b-spline interpolants and
finding the gradient at interpolated points, written by Ruijters
and Thevenaz [23]. They have also shown that since b-splines
are not truly interpolating functions (meaning the interpolated
values differ from the actual point values) by default, the
data has to be prefiltered for accurate interpolation [24]. A
function performing the prefiltering is included in the library.
We incorporated the library into the extension and utilize it for
both direct componentwise interpolation of the field vectors
and interpolation of the scalar potential.

For calculating the demagnetizing field via the scalar
potential, Abert et al. have presented a method that utilizes
a similar kernel multiplication in Fourier space as is done with
the demagnetization tensor, yielding a fast way to calculate
the scalar potential [25]. In the scalar potential method, the
equation for the demagnetizing field reads

Hd (ri) = −∇φM = −∇
∑

j

S(ri − rj)M(rj), (7)

where S denotes the scalar potential kernel, its elements defined
by

S(ri − rj) = 1

4π

∫
Vj

∇′ 1

|r − r′|d
3r′

∣∣∣∣
r=ri

. (8)

We follow their method with a slight modification: instead
of calculating the potential in the corners of the cells, we
calculate it at the cell centers, since the same kernel can also
be used to calculate the solenoidal component of the electric
field when simulating eddy currents. The gradient of the
scalar potential in our case is obtained by a four-point central
finite difference approximation. The demagnetization tensor
method gives more accurate results for Hd at the boundaries
of the magnet, where the field component perpendicular to the
boundary can be discontinuous. Thus, when using the scalar
potential method, we opt to use the scalar potential for the
far field only, and use the demagnetization tensor to calculate
the near field (the defined magnetization geometry and one
additional cell in each direction) since the near field does not
require interpolation for either magnet.

To retain the speed of the simulation at levels comparable to
the demagnetization tensor method, we parallelized the scalar
potential calculation and gradient on the GPU. Similar to the
demagnetization tensor, the scalar potential kernel is computed
and Fourier transformed only once in the beginning of the
simulation, and the convolution with the kernel is parallelized
easily as a pointwise multiplication. The calculation of the
gradient of the potential was also trivially parallelizable.

We use scalar potential that extends four cells over of the
simulation domain boundary in each direction to properly
prefilter and interpolate the values at the boundaries of the
domain. These additional values do not require a larger kernel,
however, since when not using periodic boundary conditions
we get the potential twice the system size in each direction
anyway due to the zero padding required for the FFT and

kernel multiplication. When using periodic boundaries, the
four additional values are simply copied from the other side of
the simulation domain.

B. Eddy currents

If the moving magnets are conducting, the change in
magnetic field inside the magnets creates eddy currents, which
can impede the motion due to the currents inducing a magnetic
field resisting the motion according to Lenz’s Law, turning
kinetic energy into heat in the process. On the macroscale, this
kind of “eddy current friction” is utilized in applications such as
eddy current brakes [26]. In micromagnetics, eddy currents are
usually assumed to be incorporated into the Gilbert damping
parameter. When simulated explicitly, they have been found
to have a visible effect in the switching times of magnetic
nanocubes [16,27] and the field strength in magnetic recording
heads [17]. To see if and how eddy currents influence the
magnetic friction forces, we include an implementation of eddy
current simulation in our extension.

Our eddy current implementation follows the method of
Torres et al., in which the irrotational and solenoidal electric
field components, Eirrot and Esol, are solved separately and
summed to obtain the total electric field E. From the electric
field, the current density J = σE and the resulting magnetic
field Heddy are then calculated. A short summary of the method
is detailed below, for more complete description see Ref. [16].

The solenoidal electric field is found via the formula

Esol(ri) =
∑

j

− 1

4π

∂B(rj)

∂t
×

∫
Vj

ri − rj

|ri − rj|3 d3rj, (9)

where B = μ0(Hd + Hext + M). Noting that∫
V

r − r′

|r − r′|3 d3r′ =
∫

V

∇′ 1

|r − r′|d
3r′, (10)

we see that the scalar potential kernel S can also be utilized in
the calculation the solenoidal electric field,

Esol(ri) =
∑

j

∂B(rj)

∂t
× S(ri − rj). (11)

Taking the cross product of the scalar potential kernel and
Fourier transformed ∂B(rj)/∂t on the GPU, we find the
solenoidal electric field.

Assuming charge neutral material, the irrotational field Eirrot

can be calculated from the electric scalar potential φE , which
is found by solving the Laplace equation

�φE = 0 (12)

inside the magnet, with the boundary condition ∂φE/∂n =
Esol,n, where n denotes the surface normal of the magnet.
This boundary condition ensures that the eddy currents are
tangential to the surface. In our implementation, the Laplace
equation for the electric potential is solved iteratively via
successive-over-relaxation performed on the GPU. Taking the
gradient of the potential then yields the irrotational electric
field.

The current density J is obtained by summing the electric
fields Eirrot and Esol and multiplying with conductivityσ , which
is treated as a uniform constant across the material. From the
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FIG. 4. The relative error of divergence during the interpolation
between two cell centers 4 nm apart, x denoting the location of
the slider. The spline interpolation is slightly asymmetric, the error
reversing sign close to the end of the interpolation.

current density, another tensor multiplication with the scalar
potential kernel, computed in the same fashion as the solenoidal
electric field, is required to obtain the magnetic field Heddy

generated by eddy currents.

IV. NUMERICAL EXAMPLES

A. Divergence and curl

The effect of interpolation on the divergence and curl of the
demagnetizing field in both scalar potential method and direct
componentwise interpolation of Hd was studied by creating
a completely random magnetization in the base film and
keeping the magnetic vectors frozen during movement. The
demagnetizing field of the base was calculated and interpolated
inside the slider while observing how the interpolation affects
the average magnitudes of divergence and curl, defined by

D(x) = 1

N

N∑
i

|∇ · Hd |i(x),

C(x) = 1

N

N∑
i

||∇ × Hd ||i(x), (13)

where the divergences and curls were calculated in each cell
i using a two-point central finite difference approximation,
and x refers to the partial movement between cells. Since the
method and numerical noise always give some nonvanishing
divergence and curl, we use the divergence and curl of the
stationary noninterpolated field as a baseline and calculate the
relative difference of the interpolated values compared to the
stationary value.

The results for divergence are gathered in Fig. 4. As can be
seen from the figure, the interpolation induces relatively small
errors to the divergence of the field during the interpolation
in both the scalar potential method and direct interpolation,
even in the case of a randomized magnetization resulting in
a mostly random field. In the case of a smoother field, the
errors are likely to be smaller. For reference, the effect of
linearly interpolating the field vectors was also studied, and
though one or two orders of magnitude greater difference to

the stationary case than with the spline interpolation, even
in the case of linear interpolation the difference is in the
order of percents. The results are similar for the curl of the
field.

B. Magnetic friction

For simulating magnetic friction, we used a system of
two 1024 × 1024 × 20 nm thin films with a distance of
20 nm and periodic boundary conditions in the film plane.
The domain discretized in cubic cells with 4-nm side length.
We used CoCrPt as the material, with parameters similar to
those in Ref. [28], i.e., uniaxial anisotropy in the +z direction,
and Ku = 1.225 × 105 J/m3, Msat = 3.5 × 105 A/m, Aex =
5 × 10−12 J/m and α = 0.05. Disorder was introduced by
dividing the upper and lower films into grains of 20-nm average
size using Voronoi tessellation [29], and setting the direction
of the anisotropy vector randomly from 0◦ to 8◦ from the +z

axis for each grain. The films were initialized to a stripe pattern
similar to Ref. [9], with approximately 80-nm-wide stripes and
let relax (resulting in a system similar to what was shown
in Fig. 1), after which the upper film was driven in the +x

direction by a spring moving at a constant velocity vd = 2 m/s
for 300 ns. The friction force was measured from the spring
elongation Fspring = k(vdt − xs), where xs is the position of
the slider. The spring constant was chosen as k = 0.005 N/m.
The simulations were carried out in zero temperature. We also
included a viscous damping term in the equation of motion,

Fd = −γmẋs, (14)

where m is the mass of the slider, ẋs its velocity, and γ is a
viscous damping coefficient. The complete equation of motion
for the slider is then

mẍs = k(vdt − xs) − γmẋs + F s
m, (15)

where F s
m is the x-directional component of the force exerted

by the base on the slider defined in Eq. (3). The mass and the
damping coefficient in these numerical examples are chosen
such that the spring-slider system is critically damped and
the resulting viscous damping force is roughly an order of
magnitude smaller than F s

m when vs = vd . To see whether
the film distance would affect the friction behavior in our
tests as it did in Ref. [9], we ran simulations for various film
distances, ranging from 20 to 80 nm. We started the simulation
with the spring already ahead of the slider by 80 nm so that
the beginning part of the simulation, where the spring slowly
elongates increasing the force, is shorter.

A snapshot of the system total energy for the different
interpolation methods in an example simulation can be seen
in Fig. 5. For both the direct componentwise interpolation
and the scalar potential interpolation, the system becomes
continuously driven instead of the periodic jumps of the
noninterpolated case and thus the discontinuities in the total
energy are eliminated, as expected.

For a relatively long simulation time, both the direct
interpolation and the scalar potential method predict the same
magnetization dynamics and hence the same energy. When
driven for long enough, small discrepancies in the predicted
field values can lead to slightly different time evolution of
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FIG. 5. Energies for different interpolation methods. Though the
dissimilar time evolution of the magnetization is reflected by the
energy of the system in the various cases, the trend in the total energy
is similar in all three cases. The drop in energy is the result of a
magnetization reconfiguration in response to motion of the slider.

domains. However, the effect this has on quantities such as
the average friction force is minimal.

Considering the fact that we used different material and
ways of realizing disorder along with smaller films, the qualita-
tive behavior and the numerical results are comparable to those
of Ref. [9]. With little distance between the magnetic films, the
interaction between the stripe domains of the base and slider
are stronger than the pinning effect of the disorder in the slider,
and thus the stripes are locked in place. Due to the movement
of the slider, the stripe domains deform, but they do not move
with the slider and thus the slider is actually pulled through
its own stripe domains. In this case, the magnetic domain
configuration changes constantly during the dragging, and thus
the energy dissipation due to relaxation of magnetic moments
is large compared to the damping of the spring. In this case,
the average friction force calculated from power dissipation
and directly from the force exerted by the base on the slider
are roughly equal, giving approximately 0.7 nN as the friction
force.

An increase in the distance leads to the stripe domains
getting pinned in place inside the slider by the disorder. This
results in a situation where the slider and its pinned stripe
domains stick and slip in the periodic potential created by the
domain structure of the base, alternating between increase of
the force during stick phase and rapid decrease during slips
(Fig. 6). Even though the stripe domains provide resistance to
the motion in the form of potential wells, the stripes themselves
deform comparatively little, and thus the energy dissipation is
actually dominated by the damping of the spring, which grows
comparatively large during the slips. The contribution of the
magnetic moment relaxation to the average friction force was
only 0.04 nN in this case.

In our simulations, even with the smallest distance between
films there was some behavior reminiscent to stick-slip in ad-
dition to domain dragging. This resulted from a stripe sticking
to individual grains with strong anisotropy before “snapping”
to another configuration. The stripe domains realigning with
the driving direction was also observed in some configurations
similar to Ref. [9].
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FIG. 6. The friction forces with interfilm distance of 20 nm, in
which the stripe domains in the slider deform but are held in place
by the stripes of the base, and 80 nm, where the slider experiences
stick-slip motion, and the stripes experience only minor changes. The
diminishing force in the 80-nm case is due to the stripes having slightly
different widths and the initial configuration having better matching
stripes in the slider and base.

C. Eddy current simulations

The eddy current implementation was tested by running
a simulation in which a Permalloy nanocube switches its
magnetization due to an external field, similar to the example
simulation of Ref. [16]. The Permalloy cube with side length
of 40 nm was discretized into cubic cells of 2.5-nm side
length. The magnetization was first relaxed into a +z-directed
flower state [30], and the switching was caused by an ex-
ternal magnetic field in the −z direction. The field strength
was ramped linearly from zero to 100 mT in the span of
0.1 ns, after which the field is held constant. The simulations
were run in zero temperature, with Aex = 13 × 10−12 J/m,
Msat = 860 × 103 A/m and varying α = 0.01–0.1. The value
used for conductivity of Permalloy was σ = 6.25 × 106 S/m
[31].

An example case for α = 0.01 is shown in Fig. 7, and in
this simulation the switch is anticipated by the eddy currents
similarly as in previous literature [16,27]. However, we found
the simulation to be sensitive to the small changes in the
initial conditions. For example, relaxing the magnetization for
a few more picoseconds could in some cases influence the
switching time by almost a hundred picoseconds even without
eddy currents. The sensitivity might be due to the switching
being an avalanchelike event, starting from small rotations in
the magnetization vectors which generate the eddy field that
in turn affects the time-evolution of the magnetization. Thus,
small changes in the eddy field and/or magnetization can have
relatively large effects on the final switching time.

To mitigate the sensitivity to initial conditions, we averaged
the simulations over 150 realizations, each relaxed and then
slightly perturbed with a weak random field. Though most
of the results for averaged behavior with and without eddy
currents (inset of Fig. 7) are within the standard error of the
mean from each other, the results suggest that the effect of
eddy currents depends on the value of the Gilbert damping.
This seems reasonable, since after the initial contribution of
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FIG. 7. The anticipation of the magnetic switching of a Permalloy
nanocube with α = 0.01 when eddy currents are included in the
simulation compared to the simulation without eddy currents. The
inset shows that on average, the eddy currents anticipate the switching
with low values for α, while the trend actually seems to reverse for
intermediate values. For the highest three values the difference in
average switching time is negligible.

the change in external magnetic field, the only contribution
to eddy currents comes from the change in magnetization
∂M/∂t , which depends on the damping parameter. As noted
in Ref. [17], eddy currents provide additional resistance to
the precessional motion of the magnetic moments. In the
low α regime, the magnetization tilts initially toward the xy

plane, after which there is a brief out-of-plane rotation, and
then the switching occurs. The lessened precession with eddy
currents can lead to magnetization not tilting as much out of
the xy plane after the initial tilt, thus leaving the magnetization
more susceptible to initiating the switch. For α = 0.05–0.07,
the additional resistance to precession due to eddy currents
appears to act similarly to a higher damping constant, delaying
the switching. For the largest values of α = 0.08–0.10, the
switching is likely dominated overall by the Gilbert damping
and thus the effect of eddy currents is negligible.

The effect of eddy currents on the magnetic friction force
was also studied, with the same simulation scenario of two
CoCrPt films as in the movement simulations before, but with
eddy currents included. In this test, we used smaller films
(512 × 512 nm in the xy plane) for shorter computation times.
Not finding a documented value of the conductivity of thin
CoCrPt films, we chose a conductivity similar to Permalloy,
σ = 106 S/m.

When compared to the movement simulation without eddy
currents, there is no difference in the force resisting the motion
at the first 100 ns. Later, the force changes compared to the eddy
currentless case, though in our test simulation, the difference
is relatively small (few tens of pN). The change seems to
be caused less by the eddy current field of the base directly
affecting the slider (as Heddy at that distance is very weak)
and more by the change in the magnetization in both the base
and the slider due to the eddy current fields inside the films.
This change in magnetization further affects the Hexch and the
Hd , modifying the time evolution of the magnetization and
thus the perceived force. To gain a clearer picture about how

eddy currents affect the movement, a more in-depth study is
required. Additionally, since Joule heating plays a significant
role in the energy dissipation due to eddy currents, it would
likely have to be taken into account to obtain conclusive results.

D. Performance and limitations

The scalar potential method requires fewer FFTs and cal-
culations in the reciprocal space, and this somewhat mitigates
the simulation time increase brought by the interpolation and
the calculation of near field via the demagnetization tensor.
Since the scalars also require fewer interpolations overall than
do vectors, both the scalar potential method and the direct
interpolation via splines are quite equal in computational cost.
The discrete movement is naturally the fastest, as no additional
calculations are required compared to simulations without
movement. However, since one has to calculate the force
exerted by the demagnetizing field of the base on the slider
film, one still has to calculate the fields separately. This along
with some calculations related to the movement results in the
modified RK45 solver being a bit slower than the RK45 solver
of Mumax3 in general.

Eddy currents are computationally quite heavy, requiring
two extra FFTs, IFFTs and interpolations for both the base
and the slider, and the solving of a single Laplace equa-
tion. Depending on the desired accuracy, they increase the
computation time from roughly double up to an order of
magnitude. The calculation of eddy currents also requires the
information on the surface normals, and as such the simulated
magnets have to be more than 1 cell thick or the normal is not
uniquely defined. Additionally, since small enough changes in
magnetization induce an eddy field so weak that it can be lost
due to floating point precision, the eddy currents might start to
affect the magnetization evolution at different points of time
with different parameters.

Since some quantities are calculated using a two-point
central finite difference approximation, the values of the
demagnetizing field in cells just outside the boundary of the
base and slider in each direction are also interpolated to give
correct values inside the magnet. Hence, the slider and base
have to be more than two simulation cells apart, which typically
means distances larger than approximately 5–10 nm depending
on cell size.

We found that when doing the spline interpolation on the
GPU, performing 64 lookups on the nearest neighbors instead
of 8 trilinear interpolations for the construction of the spline
gives more accurate results and less noise. This might be
caused by the fact that the linear interpolations on the GPU
can take only 254 possible coordinate positions between two
texture points [23], and thus using trilinear interpolations we
implicitly round the position between cells to one of these 254
values, whereas with the 64 nearest-neighbor lookups we get
the position to floating point accuracy.

V. SUMMARY

We have augmented an existing micromagnetic code Mumax3
with the possibility of moving geometries independently in-
side the simulation domain, making it possible to study two
magnets in relative motion in a micromagnetic framework. We
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implemented smooth motion through interpolating the fields
affecting the magnets during movement. For the interpolation
of field terms in the LLG equation, an external library for 3D
cubic spline interpolation on the GPU was integrated to the
code, as well as a method for calculating the demagnetizing
field with the scalar potential. The extension source code has
been published as a separate branch for Mumax3 on GitHub
[32].

We tested our movement and eddy current implementations
with various numerical example simulations and demonstrated
that smooth relative motion can be well approximated using
splines to interpolate the demagnetizing fields, while the
errors in divergence and curl of the fields remain minimal.
Comparison with the results from previous literature indicates
that finite difference micromagnetic simulations are a suitable
framework for studying the motion of microscale magnets and
phenomena related to the motion such as magnetic friction.

Eddy currents were found to have an effect in the switching
time of Permalloy nanocubes and the friction force between
two thin films in relative motion. However, the exact mecha-
nism of how eddy currents and the related parameters affect
the switching time merit further study. Additionally, more
simulations are required to better assess the effect of eddy
currents in magnetic friction context.
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