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We consider a minimal model where the Higgs boson arises as an elementary pseudo-Nambu-Goldstone
boson. The model is based on an extended scalar sector with global SOð5Þ=SOð4Þ symmetry. To achieve the
correct electroweak symmetry-breaking pattern, the model is augmented either with an explicit symmetry-
breaking term or an extra singlet scalar field. We consider separately both of these possibilities. We fit the
model with the known particle spectrum at the electroweak scale and extrapolate to high energies using
renormalization group. We find that the model can remain stable and perturbative up to the Planck scale
provided that the heavy beyond standard model scalar states have masses in a narrow interval around 3 TeV.
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I. INTRODUCTION

The discovery of the Higgs boson at the LHC has verified
the standard model (SM)-like pattern of electroweak sym-
metry breaking. A possible interpretation of this discovery is
to take the SM particle content (possibly extended by three
right handed neutrinos [1,2]) to describe all elementary
particle interactions below the Planck energy: with the
observed Higgs mass the scalar self coupling does not
develop a Landau pole and while the scalar self coupling
runs negative around scale 1010 GeV, this results only in a
metastability of the low-energy vacuum [3,4].
Even so, if the inflationary scale is high enough, one

must explain why the Higgs field settled into the false low-
energy vacuum in spite of large field excursions induced by
the inflationary fluctuations [5–7]. In extensions of the SM
with larger scalar sectors, this problem can be alleviated
[8,9], as the presence of additional bosonic degrees of
freedom (d.o.f.) coupling only with the Higgs can over-
come the SM contribution of the top quark. However, with
a larger scalar sector involving more couplings, another

problem emerges as one or more of these couplings can
develop Landau poles below the Planck scale.
These basic features, following from the renormalization

group evolution of the scalar self-couplings, are very
sensitive to the d.o.f. and the relative strengths of their
couplings within the scalar sector. Therefore, in the absence
of a direct signal of any new resonance, the vacuum
stability and perturbativity of the couplings provide essen-
tial theoretical constraints for various BSM scenarios.
An interesting class of SM extensions is the one in which

the Higgs arises as a pseudo-Nambu-Goldstone boson
(pNGB) [10–12]. In this class of models, the SM electro-
weak interactions are embedded in a wider global sym-
metry that spontaneously breaks in such a way that a
misalignment of the vacuum with respect to the electro-
weak one leads to the emergence of a pNGB Higgs sector.
Most of the effort, in the literature, focussed on effective
descriptions of this mechanism. One can envision several
microscopic realizations that lead to similar effective field
theories at scales below the underlying breaking scale of the
larger symmetry group. A popular choice has been the one
in which the breaking of the overall global symmetry is
driven by an underlying composite dynamic [13]. For
example, in four dimensions, a new gauge dynamic is
invoked to trigger condensation of new vector-like (from
the point of view of the electroweak theory) fermions.
Another logical possibility is that a similar condensation is
driven by a Coleman-Weinberg (CW) [14,15] mechanism
taking place in an elementary scalar setup. Both underlying
descriptions are worth studying. The time-honored chal-
lenge for the composite avenue is SM fermion mass
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generation which often requires very involved new sectors
that, except in few cases [16–18], typically hampers the
possibility of constructing a fully consistent microscopic
realization until the Plank scale. La raison d’être of the
elementary route, based on the CWmechanism, established
in [19] and further analyzed in [20–22], is that it allows us
to investigate a microscopic description of the pNGBHiggs
mechanism until the Planck scale without having to invoke
yet another layer of dynamics to generate the SM fermion
masses. The early literature on the subject focussed on the
CWmechanism and the viability of the symmetry-breaking
scenario near the EW scale [19,21], and the associated
phenomenology [20,23–25]. The main goal of this work is
to establish an elementary pNGB theory which can be
extrapolated until the Planck scale without incurring either
Landau poles or vacuum instabilities. This technically
means that we will solve for the renormalization group
equations of the new extensions of the SM.
To be concrete, we will consider the following minimal

symmetry-breaking patterns, SOð5Þ → SOð4Þ, where the
Higgs emerges as a pNGB. It has been showed [21] that the
minimal particle content of SOð5Þ → SOð4Þ needs to be
extended in order to have a nontrivial vacuum. There are
two basic extensions: One is by adding an explicit breaking
term which couples to the singlet and the other is by adding
a new scalar which couples to the SOð5Þ → SOð4Þ scalar
multiplet. We consider separately these two possibilities
and find that the scalar masses are constrained in quanti-
tatively similar way independently of the way the symmetry
breaking is treated.
The paper is organized as follows: In Sec. II, we review

briefly the SOð5Þ → SOð4Þ model where the Higgs is an
elementary pNGB and determine the β-functions. In
Sec. III, we examine the running of the couplings in the
case with an explicit breaking term. In Sec. IV, we examine
the running of the couplings in the case with an extra scalar
and, in Sec. V, we present our conclusions.

II. THE MINIMAL MODEL

The minimal extension of SM leading to pNGB Higgs
can be written as a linear σ-model over the coset
SOð5Þ=SOð4Þ. The general SO(5) invariant potential in
terms of SO(5) vector Σ is

V0 ¼
m2

2
Σ†Σþ λ

4!
ðΣ†ΣÞ2: ð1Þ

The electroweak gauge group is identified within the
SUð2ÞL × SUð2ÞR subgroup of SO(4). Then the vacuum
of the theory can be parametrized as a superposition
between a vacuum which preserves the electroweak sym-
metry, E0 ¼ ð0; 0; 0; 1; 0ÞT , and a vacuum which breaks the
electroweak symmetry, EB ¼ ð0; 1; 0; 0; 0ÞT , as

Eθ ¼ cos θE0 þ sin θEB; ð2Þ

The SO(5) scalar multiplet can then be written as

Σ ¼ ðσ þ iπaXa
θÞEθ; ð3Þ

where Xa
θ are the broken generators of the SOð5Þ → SOð4Þ

and can be found in the Appendix, πa are the Goldtone
bosons and σ is a masive scalar field and the only field
which obtains a nonzero vacuum expectation value (vev).
The scalar multiplet can be parametrized in many ways.

For our purposes, it is most convenient to rewrite it in the
basis of eigenstates under the electroweak interactions, i.e.,
a complex doublet with a neutral and a charged component
and a real scalar singlet. In terms of the σ field and the
Goldstone bosons, the doublet and the singlet are:

H ¼ 1ffiffiffi
2

p
�

π1 þ iπ2
σ sin θ þ π4 cos θ þ iπ3

�
and

S ¼ σ cos θ − π4 sin θ: ð4Þ
In this basis, the higher-order potential is1

V ¼ m2
hH

†H þm2
sS2 þ λ1ðH†HÞ2 þ λ2S4 þ λ3H†HS2:

ð5Þ

The three couplings introduced in Eq. (5) and represented
in Fig. 1 are derived, at tree level, from the single coupling λ
appearing in Eq. (1). However, they will run differently due
to different higher-order contributions to each coupling λ1,
λ2 and λ3.
The stability constraints on the scalar couplings are

found using the stability criteria given in [26]

λ1 ≥ 0; λ2 ≥ 0; λ3 þ 2
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
≥ 0: ð6Þ

where λ1 and λ2 are strictly positive, but λ3 is allowed to
take negative values within the bound implied by the above
equation.
The gauge interactions are determined, as in [19,20],

from the kinetic term:

Lkin ¼ ðDμΣÞ†DμΣ; ð7Þ

FIG. 1. Shows the three different three-level Feynman diagrams
for the SOð5Þ → SOð4Þ theory.

1Note that at tree level the parameters are matched with λ and
m∶ λ1 ¼ λ

3!
, λ2 ¼ λ

4!
, λ1 ¼ λ

3!
, mh ¼ m and ms ¼ mffiffi

2
p , and the tree

level potential matches with the one given in (1).
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where the covariant derivative is

Dμ ¼ ∂μΣ − igwWaTa
LΣþ igyBT3

RΣ: ð8Þ

The TL and TR are the generators of the SULð2Þ and
SURð2Þ respectively and they are explicitly defined in the
Appendix.
The Lagrangian for the Yukawa couplings is

Ltop
Yuk ¼ ytðQtcÞ†αPαΣ; ð9Þ

where α is a SULð2Þ index and Pα are pseudoprojectors
defined as

P1 ¼
1ffiffiffi
2

p ð0;0;1; i;0Þ and P2 ¼
1ffiffiffi
2

p ð1; i;0;0;0Þ: ð10Þ

These pseudoprojectors pick the correct parts of the
doublets in Σ. We will consider here only the Yukawa
interactions of the top quark as these are the ones giving the
dominant contribution from fermions to the beta functions.
The beta functions describing the running of the cou-

plings above the renormalization scale μ0 are computed
using the standard methods [27–29]. The beta functions at
one-loop order for the three scalar couplings in this
theory are

βλ1 ¼
1

ð4πÞ2
�
9

8
g4w þ 3

4
g2wg2y þ

3

8
g4y − 9g2wλ1 − 3g2yλ1 − 6y4t þ 12λ1y2t þ 24λ21 þ 2λ23

�

βλ2 ¼
1

ð4πÞ2 ð72λ
2
2 þ 2λ23Þ

βλ3 ¼
1

ð4πÞ2
�
−
9

2
g2wλ3 −

3

2
g2yλ3 þ 6y2t λ3 þ 12λ1λ3 þ 24λ2λ3 þ 8λ23

�
: ð11Þ

However, there is an important caveat that we need to take
into account now. In [21], some of the authors of the present
paper found that the gauge and Yukawa interactions are not
enough to align the vacuum away from zero in any SOðNÞ →
SOðN − 1Þ theory where the Higgs is an elementary pNGB.
Two ways of solving this issue were put forward in [21]:
First, by adding a small explicit breaking term competing
with the one loop potential contribution, and second, by
adding an extra scalar field which couples to Σ via a portal
coupling. Within the second approach three new couplings
need to be introduced.
In the following two sections, we will answer the

relevant question of what is the behavior of the running
of all the couplings in both scenarios at high energy. To our
knowledge, these is the first comprehensive analysis of
these theories at short distances.

III. SOð5Þ → SOð4Þ + EXPLICIT BREAKING TERM

In this section, we consider the tree level potential given in
Eq. (1). At some renormalization scale, μ0, the three scalar
couplings are assumed to combine so that the potential is SO
(5) invariant. Furthermore, assuming perturbative values of
the couplings, the one-loop corrections are computable using
the Coleman-Weinberg potential which is defined as

δVðΦÞ ¼ 1

64π2
Str

�
M4

0ðΦÞ
�
log

M2
0ðΦÞ
μ20

− C

��
þ VGB;

ð12Þ

whereM0 is the mass matrix, Str is the supertrace where the
sums over scalar, fermion and vector d.o.f. areweighted with

factors 1,−2 and 3, respectivley. The constantC depends on
the particle type and isC ¼ 3=2 for scalars and fermions and
C ¼ 5=6 for gauge bosons. The factor VGB represents the
one-loop corrections from the Goldstone bosons which we
will neglect since their contributions to the potential aremuch
smaller than the correction from massive particles.
As argued above we can ensure existence of a nontrivial

vacuum by adding an explicit symmetry-breaking term,
given by

VB ¼ CBv3S: ð13Þ

On the basis of the results in [21] we takeCB > 0 and small,
in order to have a small breaking. Concretely, we consider
0 < CB < 0.1. Imposing the correct mass of the Higgs and
minimizing of the potential wrt. θ give us an upper and lower
bound on the mass Mσ which is 1.35 TeV < Mσ <
3.20 TeV. This corresponds to a coupling λ in the interval
0.29 < λ < 1.68. These are the values below the renormal-
ization scaleμ0, wherewe can describe the theory through the
Coleman-Weinberg potential. The renormalization scale μ0
is a function of Mσ and in the allowed interval of Mσ it is
nearly constant with the value μ0 ≈ 2 TeV.
Above the renormalization scale the coupling λ splits

into three couplings which run according to their respective
beta functions. At the renormalization scale the value of all
three couplings is determined by λ. The couplings λ1 and λ2
must be positive and we require that all couplings remain
free of Landau poles all the way to the Planck scale. From
these constraints we find 0.50 < λ < 0.90 which corre-
sponds to a sigma mass in the interval 2.93 TeV < Mσ <
3.10 TeV and sin θ in the interval 0.034 < sin θ < 0.043.
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Finally the vacuum is found to be between 5.66 TeV <
v < 7.18 TeV. These constraints are illustrated in Fig. 2.
The figure shows the scale evolution of the couplings λ1
(red), λ2 (orange) and λ3 (blue), and the constraints restrict
the running of the couplings to lie between the correspond-
ing solid and dashed curves.
The relationship between λ and Mσ below μ0 ¼ 2 TeV

(i.e., where the coupling does not run) is plotted in the left
panel of Fig. 3. The blue line shows the relation between
Mσ and λ when the potential is minimized with respect to
sin θ and the correct mass of the Higgs is imposed. The
shaded regions are excluded due to perturbativity and
stability constraints on λ and the grey vertical lines
correspond to Mσ ¼ 2.93 TeV and Mσ ¼ 3.10 TeV
respectively. The right panel of Fig. 3 shows the mass of
the σ particle, Mσ, as function of the renormalization scale
μ. The blue shaded region is excluded due to vacuum
stability as the couplings run. The orange shaded region is
excluded due to the perturbativity of the couplings (i.e., the
absence of Landau poles below the Planck scale). This
means that the running of Mσ lies on a curve in the white
region.2

As in the Elementary Goldstone Higgs model, first
proposed in [19,20], the observed Higgs boson is a
superposition between the σ and the π4 particles. This
superposition can be described by a mixing angle α. For
small values of θ this can be approximated as

α ≈
π

2
−

6θ3v4

54M8
σ þ 192π2M6

σv2 − 11CBM4
σv4�

6BM4
σ − A

�
CBv4 − 13M4

σ þ 6M4
σ log

M2
σ

θ2v2

��

þOðθ5Þ; ð14Þ

where A and B are coefficients depending only on gauge
and Yukawa couplings. They are given by

A¼ 3

�
g4w
8
þ 1

16
ðg2wþg2yÞ2

�
−3y4t ;

B¼ 3

16

�
ðg2wþg2yÞ2

�
log

g2wþg2y
4

−
5

6

�
þ2g4w

�
log

g2w
4
−
5

6

��

−3y4t

�
2 log

y2t
2
−3

�
: ð15Þ

If α is close to π
2
the observed Higgs is mostly the Goldstone

boson, π4, while the observed Higgs is mostly the scalar σ
if α is close to zero. In the interval for Mσ found above, α
is very close to π

2
and the observed Higgs is almost the

Goldstone boson. Defining the two mass eigenstates h1 ¼
cos ασ þ sin απ4 and h2 ¼ − sin ασ þ cos απ4, where h1 is
the observed Higgs, we can calculate the self couplings of
the physical mass eigenstates:

λh1h1h1 ¼
3M2

σ cos α
v

; λh1h1h2 ¼
M2

σ sin α
v

;

λh1h2h2 ¼
M2

σ cos α
v

; λh2h2h2 ¼
3M2

σ sin α
v

;

λh1h1h1h1 ¼
3M2

σ

v2
; λh1h1h1h2 ¼ 0; λh1h1h2h2 ¼

M2
σ

v2
;

λh1h2h2h2 ¼ 0; λh2h2h2h2 ¼
3M2

σ

v2
: ð16Þ

Note that the quartic couplings do not depend on the
mixing angle α and the quartic couplings for h1 and h2 are
identical. However, the trilinear couplings do depend on α.
When α is close to π

2
the trilinear self coupling of h1 is very

small while the trilinear self coupling of h2 is large. In the
interval on the mass Mσ found above, we can calculate the
ratio of the two trilinear couplings with the trilinear
coupling of the SM:

1.02 × 10−3 <
λh1h1h1
λSMhhh

< 2.33 × 10−3 and

23.5 >
λh2h2h2
λSMhhh

> 20.9: ð17Þ

The trilinear coupling for λh1h1h1 is very small compared
to the corresponding coupling in SM and it is smallest when
the Mσ is smallest. However the behavior of λh2h2h2 is the

FIG. 2. The figure shows the running of the couplings above
2 TeV, where the dashed lines correspond to the lower bound on
the combined λ and the solid lines correspond to the upper bound.
The red lines are λ1, the blue lines are λ2 and the orange lines are
λ3. The initial values of the three running couplings all depend on
the same coupling λ. On the plot λ2 does however start in a value
different from the two other couplings, this is because of the
different normalizations.

2Note: when generating this plot, we have assumed that sin θ is
constant for all μ. We can make this assumption since sin θ is
generated from a one-loop diagram and therefore the corrections
to sin θ will be of second order.
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opposite: λh2h2h2 is larger than the SM one and it is largest
when Mσ is smallest.
We have therefore shown that this scenario leads to a

viable elementary Goldstone Higgs framework valid up to
the Planck scale.

IV. SOð5Þ → SOð4Þ + AN EXTRA SCALAR Ω

Now we turn to the other possibility, namely adding an
extra scalar Ω which couples to Σ via a portal coupling. We
assume that Ω is both real and has a Z2 symmetry. The new
tree level potential is then

V0 ¼
m2

2
Σ†Σþm2

Ω
2

Ω2 þ λ

4!
ðΣ†ΣÞ2 þ λ̃

4
Σ†ΣΩ2 þ λ̃Ω

4!
Ω4:

ð18Þ

As in the previous section, we write the potential in terms of
the doublet and singlet fields:

V ¼ m2
hH

†H þm2
sS2 þm2

ΩΩ2 þ λ1ðH†HÞ2 þ λ2S4

þ λ3H†HS2 þ λ4H†HΩ2 þ λ5S2Ω2 þ λΩΩ4: ð19Þ

Here the couplings λ1, λ2 and λ3 are, at tree level,
determined by the self-interaction λ in the SO(5) invariant
potential, Eq. (18), and similarly λ4 and λ5 are determined
by λ̃. However, similarly to the situation treated in the
previous section, all these couplings will receive different
contributions at one-loop order and, consequently, their
running will be different. The beta functions for the six
different couplings are:

βλ1 ¼
1

ð4πÞ2
�
9

8
g4w þ 3

4
g2wg2y þ

3

8
g4y − 9g2wλ1 − 3g2yλ1 − 6y4t þ 12λ1y2t þ 24λ21 þ 2λ23 þ 2λ24

�
;

βλ2 ¼
1

ð4πÞ2 ð72λ
2
2 þ 2λ23 þ 2λ25Þ;

βλ3 ¼
1

ð4πÞ2
�
−
9

2
g2wλ3 −

3

2
g2yλ3 þ 6y2t λ3 þ 12λ1λ3 þ 24λ2λ3 þ 8λ23 þ 4λ4λ5

�
;

βλ4 ¼
1

ð4πÞ2
�
−
9

2
g2wλ4 −

3

2
g2yλ4 þ 6y2t λ4 þ 12λ1λ4 þ 8λ24 þ 4λ3λ5 þ 24λ4λΩ

�
;

βλ5 ¼
1

ð4πÞ2 ð4λ3λ4 þ 24λ2λ5 þ 16λ25 þ 24λ5λΩÞ;

βλΩ ¼ 1

ð4πÞ2 ð2λ
2
4 þ 2λ25 þ 72λ2ΩÞ: ð20Þ

Note the similarity between the beta functions of λ3
and λ4, which are the couplings between the scalar
doublet and the two scalar singlets. Also note the
similarity between the beta functions of λ2 and λΩ,

which are the self-couplings of the two singlets:
The new scalar singlet Ω has interactions which are
analogous to the original singlet component S of the
SO(5) mutiplet Σ.

FIG. 3. Left panel: The blue line shows the relationship between λ and Mσ below μ0 ¼ 2 TeV when the correct Higgs mass is
imposed. The green area is excluded due to Landau poles and the orange area is excluded due to stability. This gives a narrow window
for Mσ ∈ ½2.93; 3.10� TeV indicated by the grey vertical lines. Right panel: Running of Mσ . The shaded blue area is excluded due to
stability and the orange area due to Landau poles. The true running ofMσ lies on a curve in the white region and depends on the value of
λ at μ0 ¼ 2 TeV.
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For simplicity we consider the case, where the mass of
the new particle Ω is the same as the mass of σ. Just as in
the previous case, below the renormalization scale μ0 the
couplings combine and the SOð5Þ → SOð4Þ symmetry is
intact. Since the couplings are perturbative, we can use the
Coleman-Weinberg potential introduced in (12). However,
in this case the mixing α is simpler and given by

α≈
π

2
−

v4θ3

9M4
σþ32πM2

σv2þ λ̃v4

�
6B−A

�
6 log

M2
σ

v2θ2
−13

��

þOðθ5Þ ð21Þ

where A and B are given in (15).
As in the case treated in the previous section, we will

now constrain the model by requiring that correct spectrum
of physical states is reproduced at low energies, and that the
vacuum remains stable at high energies. We also require
that the one loop running of the dimensionless couplings is
free of Landau poles below the Planck scale. We treat
separately the constraints relevant below and above the
renormalization scale.
First, below the renormalization scale, we impose the

correct mass of the Higgs and demand that the potential is
minimized with respect to θ. We find that the common mass
of σ and Ω has a minimum value: Mσ ¼ MΩ ¼ 2.80 TeV.
Requiring that λ remains perturbative, λ ≤ 4π, we find that
the maximal value of the mass is 3.03 TeV. The minimal
value of the mass corresponds to minimal values for the
couplings λ ¼ 0 and λ̃ ¼ 0.01 at the renormalization scale
μ0. At this value of λ the renormalization scale is μ0 ¼
1.70 TeV.
Second, above the renormalization scale the couplings

run and, consequently, the allowed mass ranges will be
refined by constraints due to stability of the potential and
absence of Landau poles below the Planck scale.
For the potential to be stable, the coupling λ1 has to be

positive all theway to the Planck scale. This requires that the
combined coupling evaluated at the renormalization scale is
λ ≥ 0.51. The corresponding value for the renormalization
scale is μ0 ¼ 1.70 TeV. The lower limit of λ corresponds to a
mass of 2.81 TeV. Similarly the value of λ̃ at the renorm-
alization scale is λ̃ ¼ 0.11, while λ̃Ω is a free variablewith the
only requirement that it cannot be negative.
Requiring that all the couplings remain perturbative

all the way to the Planck scale, i.e., that there are no
Landau poles, constrains the values of the couplings
evaluated at the renormalization scale from above. We
find a maximal value λ ¼ 0.96, which corresponds to a
mass of 2.82 TeV. At this value of the mass, λ̃ ¼ 0.20
and does not acquire a Landau pole at energies below the
Planck scale. The renormalization scale in this case is
1.71 TeV. Again λ̃Ω is a free variable and has a maximum
value of 0.90 at the renormalization scale, when we

require that it does not develop a Landau pole below the
Planck scale.
The above constraints are summarized as follows: when

we analyze the running of the couplings we find an interval
for the couplings λ ∈ ½0.51; 0.96�, λ̃ ∈ ½0.11; 0.20� and
λ̃Ω ∈ ½0; 0.90�. These intervals are quite narrow and hence
restrict the scalar mass to a very narrow range:Mσ ¼ MΩ ∈
½2.81; 2.82� TeV. This scalar mass corresponds to sin θ ∈
½0.036; 0.049� and v ∈ ½4.98; 6.76� TeV. Finally, the
renormalization scale in this case must be in the interval
μ0 ∈ ½1.70; 1.71� TeV. Hence, we find that μ0 ≈ 1.7 TeV,
which is of similar magnitude as in the case of an explicit
breaking term treated in the previous section.
The running of the couplings are shown in Fig. 4. The

solid lines on the figure are from the upper bounds on the
couplings and the dashed lines correspond to the lower
bounds.
In this case, we can calculate the self-couplings of the

Higgs as we did in equation (16) in the previous section.
However we find that they are independent of the extra
scalar Ω. In the allowed region in the parameter space, we

FIG. 4. Upper panel: Shows the running of λ1 (red), λ2 (blue)
and λ3 (orange) above 1.7 TeV where the solid lines correspond to
the upper bound on the combined λ and the dashed lines are the
lover bound. Lower panel: Shows the running of λ4 (purple), λ5
(green) and λΩ (grey) above 1.7 TeV where the solid lines are the
upper bound on the combined λ and the dashed lines are the lower
bound.
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find the ratio of the trilinear couplings of the Higgs over the
SM value:

1.32 × 10−3 <
λh1h1h1
λSMhhh

< 2.43 × 10−3 and

18.2 <
λh2h2h2
λSMhhh

< 24.9: ð22Þ

V. CONCLUSION

We have examined the running of the couplings for the
model with a global symmetry-breaking pattern SOð5Þ →
SOð4Þ, which is a minimal extension of the standard model,
where the Higgs is an elementary pNGB. We have
considered the realization of the model in terms of
elementary scalar fields, which is an appealing possibility:
the model can be analyzed with controllable perturbative
calculations, and the model can in principle remain valid all
the way up to the Planck scale analogously to what has been
proposed to be the case for SM itself. However, when
coupled to the electroweak currents, the model does not
provide for a correct symmetry-breaking pattern and
vacuum properties [21]. This issue can be solved in two
different ways. We have separately analyzed both of these
possiblities to orient the vacuum in the desired and
controllable way: First, by adding an explicit symmetry-
breaking term and second, adding instead an extra singlet
scalar field.
To quantify the effects of the running of the couplings,

we evaluated the beta functions of the three couplings in the
pure SOð5Þ → SOð4Þ model. The pure doublet coupling
depends strongly on the gauge and Yukawa couplings
whereas the pure scalar coupling only depends indirectly
on these. Adding an explicit breaking term does not change
the beta functions and thereby the physical properties of
the model.
On the other hand when adding a new scalar, three new

couplings emerge and the three beta functions of the pure
SOð5Þ → SOð4Þmodel are slightly modified because of the
interactions with the new singlet scalar. The new scalar self-
coupling is similar to the original one as is also the case for
the mixing of the new scalar with the doublet. The coupling
between the new and the old scalar is slightly different from
the scalar self-couplings but still it does not depend directly
on the gauge and Yukawa couplings.
Our main result is that the mass intervals of the new

heavy scalars are quite restricted by the overall constraints
on the model. Below the renormalization scale we required
the theory to reproduce the correct mass of the Higgs and
above the renormalization scale we required the couplings
to run in such a way, that the potential remains stable and
the couplings remain perturbative all the way to the Planck
scale. In both cases we analyzed in this work, we observed
that the running of the couplings restricts the mass of the

σ-particle to lie in a narrow interval, Mσ ≈ 3 TeV with
the reference renormalization scale to be around
μ0 ≈ 2 TeV.
More detailed numbers are as follows: When we add

an explicit breaking term, the mass lies in the interval
2.93 TeV ≤ Mσ ≤ 3.10 TeV and the related renormaliza-
tion scale is μ0 ≈ 1.7 TeV. When we add an extra scalar,
the interval of the mass is 2.81 TeV ≤ Mσ ≤ 2.82 TeV and
the renormlization scale is μ0 ≈ 2 TeV. The mass intervals
do not overlap but are close to each other.
We have also compared the trilinear couplings for the

Higgs particles and the heavier scalar state in both cases
with the trilinear coupling of the SM. We found that the
trilinear coupling of the light Higgs is 3 orders of
magnitude smaller than the SM one and that the trilinear
coupling of the heavy Higgs is one order of magnitude
larger in both cases.
Based on these results, we can expect the models where

the Higgs arises as an elementary pNGB to provide an
interesting model building framework which can be viable
up to the Planck scale. The difference with respect to the
SM is the enlarged scalar sector and the dynamical
emergence of the electroweak scale from symmetry break-
ing at significantly higher energies.
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APPENDIX: BROKEN GENERATORS

First, we identify SULð2Þ × SURð2Þ subgroup of SO(5)
and fix the left and right generators as

ðTL;RÞaij ¼ −
i
2

�
1

2
ϵabcðδbi δcj − δbjδ

c
i Þ � ðδai δ4j − δajδ

4
i Þ
�
;

ðA1Þ

where the generator T3
R is identified with the generator of

the hypercharge.
The broken generators for SOð5Þ → SOð4Þ are then

X1
ij ¼ −i½sin θðδ1i δ3j − δ3i δ

1
jÞ þ cos θðδ1i δ5j − δ5i δ

1
jÞ�;

X2
ij ¼ −i½sin θðδ2i δ3j − δ3i δ

2
jÞ þ cos θðδ2i δ5j − δ5i δ

2
jÞ�;

X3
ij ¼ −i½− sin θðδ3i δ4j − δ4i δ

3
jÞ þ cos θðδ4i δ5j − δ5i δ

4
jÞ�;

X4
ij ¼ −iðδ3i δ5j − δ5i δ

3
jÞ: ðA2Þ

The generators are normalized such that Tr½Xa
θX

b
θ � ¼ 2δab.
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