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All scientific knowledge that we have of this world, or will ever have, is as an
island in the sea of mystery. We live in our partial knowledge as the Dutch live on
polders claimed from the sea. We dike and fill. We dredge up soil from the bed of
mystery and build ourselves room to grow.

Chet Raymo, 1998



Abstract

All genetic information necessary for creating and maintaining life is stored in DNA and
RNA molecules. Gene expression is the process by which sets of DNA (i.e. genes) are
encoded into functional gene products. Thus, the state and function of a single cell can be
determined by the amount and type of genes expressed: tumour cells can be detected from

normal cells, and one functional brain region can be differentiated from another.

The discovery of non-coding RNAs like microRNAs (miRNAs) introduced a sophisticated
level of gene regulation to our understanding of the flow of genetic information. Strong
evidence suggest miRNAs have vital roles in mediating a wide range of biological pathways
essential to cell maintenance and tissue-specific function. In complex diseases such as cancer,
they show particular promise as candidate biomarkers in prognosis, diagnosis, and treatment.
However, we are still uncertain about the precise mechanisms and contributions of miRNAs

in regulating gene expression.

High-throughput technologies generate molecular data of unprecedented size and depth,
providing unique opportunities to study small RNA molecules and complex diseases. Despite
exact regulatory mechanisms being uncertain, miRNAs are functionally characterized with
high-throughput expression data and the biological pathways annotated to their putative
target genes. However, the sheer size of the data generated and to be processed raises

challenges in computational resources and in discovering clinically relevant information.

This work addresses these challenges with the development and application of two compu-
tational tools to better facilitate miRNA research. SePIA is a high-throughput workflow to
reliably process sequencing data and perform expression analysis to identify strongly-related
miRNAs and their predicted target genes. Director is a visualization package to further the
interpretation of molecular interactions and depict the co-regulatory behaviour of miRNAs.

The usefulness of these tools is shown in the application of two biomedical studies: in
differentiating brain tissue phenotypes, and in determining a role in the chemosensitivity of
diffuse large B-cell lymphoma. Sufficient biological context is drawn from the computational
results generated by the tools to hypothesize and experimentally validate the role of miRNAs,
and propose a set as candidate biomarkers and targets for drug therapy.

SePIA and Director are readily available tools developed to improve and make more conve-

nient the computational analysis of miRNAs in biomedical research.
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1 INTRODUCTION

Introduction

DNA is transcribed into RNA and RNA is translated into protein. This is the central
dogma originally proposed by Francis Crick [1] to explain the flow of genetic
information responsible for all known life on Earth. Proteins were the functional
end product, DNA the blueprint for creating and maintaining life, and RNA the
humble messenger between the two.

Some scientists, however, recognized that RNA was more than a transitional step
in the flow of genetic information and noted a unique combination of features
that allowed it to do things neither DNA nor protein can. The RNA World is
the concept that RNAs — or something chemically similar — was the primary
living substance on Earth around 4 billion years ago and ‘carried out most of the
information processing and metabolic transformation needed for biology to emerge
from chemistry.’” [2] In other words, RNA is linked to the origin of life [3]. Strong
evidence also indicate RNA preceded DNA and protein: deoxyribose synthesis is
from ribose and proteins lack the potential for complementary pairing that make
heredity and evolution possible. Viral RNA was used to demonstrate how RNA
could carry heritable information, catalyze basic reactions, self-replicate, and evolve
when subject to natural selection without the presence of cells [4].

Unfortunately, the protein-centered bias inherent in the traditional central dogma
meant that the discovery of large regions of DNA that transcribed to RNA but did not
translate into proteins were initially dismissed as ‘junk’ resulting from evolutionary
redundancy [5]. New understanding brought on with the advent of high-throughput
technology forced a revision of the central dogma to include numerous classes of
non-protein coding RNAs with functional roles in translation (e.g. ribosomalRNA.
transferRNA), gene splicing (e.g. small nuclear RNA), and epigenetics (e.g. long
non-coding RNAs) [6]. The introduction of these classes revealed a much more
sophisticated and evolved system of molecular regulation than initially anticipated.
The Encyclopedia of DNA Elements (ENCODE) project found that at least 76% of
the human genome is transcribed into RNAs, with protein-coding genes making up
less than 3% of the human genome [7]. Among these classes of non-protein coding
RNAs are a set of small RNAs called microRNAs (miRNAs) with unprecedented
functional importance in development and disease.

MiRNAs have the ability to inhibit the translation of RNA into proteins. The
modest strand length averaging 22 nucleotides belies a highly-complex ability
to orchestrate the regulation of hundreds of protein-coding RNA simultaneously.
The exact mechanisms by which such small RNA molecules achieve so much is a
mystery scientists are still unravelling, but what is known supports the concept of
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RNA as the molecular foundation on which cellular and complex, multi-cellular
life became possible [3].

This thesis work contributes to the active area of miRNA research elucidating
biological function from expression data, with emphasis on complex and difficult-
to-treat disease. In cancer, for example, strong evidence suggests some miRNAs
can directly affect tumor growth and development through associated target genes
[6]. A computational workflow was developed to enhance the process and analysis
of high-throughput miRNA data with complementing messenger RNA (mRNA)
data. MiRNA expression in two very different datasets (mouse brain tissue and
human tumours) were comprehensively profiled and analyzed using existing tools
implemented within a workflow to identify potential biomarkers for disease. A
visualization approach was developed to enable further data exploration and in-
terpretation of multiple levels of molecular data, providing visual context to the
therapeutic potential of miRNAs.



2 REGULATION OF GENE EXPRESSION

Regulation of gene expression

‘Every cell in an organism, with the exception of the sperm and egg cells,
possesses the same set of genes. And yet a retina cell expresses genes to detect light
and color, and a white blood cell expresses genes to fight infection. How can such

different cells be created out of the same genetic blueprint?’ - Siddhartha
Mukherjee, The Emperor of All Maladies (2011)

Gene expression is defined as the use of a specific set of DNA (i.e. genes) to carry
out cell maintenance and function [8]. Genes are transcribed into complementing
messenger RNAs, which are then either translated into proteins or used to control
gene expression (Figure 1). Thus, the set of genes expressed as RNA in a certain
biological context reflects the current molecular state of cells and reveals potential

pathological mechanisms underlying disease [6].

The world was baffled when, in 2001, the first publications of the human genome
sequence [9, 10] revealed the number of protein-coding genes in humans was not
much more than the number in worms (approximately 20,000). The expectation
had initially been around 100,000 genes based on the approximate size of the
genome divided by the average size of a protein-coding gene [9]. Surely the
human was a functionally and anatomically more complex organism than the
worm? The reasoning was then adjusted so that human complexity arose from
‘doing more with less’ — that is, the diversity seen in humans is the result of
highly-intricate regulation of gene expression [5]. In line with this reasoning,
the over 90% of the human genome designated non-protein coding, including
functional elements regulating gene expression, is found to be biochemically active
[7]. Continued improvements to genome sequence quality is seeing the number
of protein-coding genes drop even further [11] and emphasizes the importance of
expression regulation in higher organisms [12].

Dysregulated gene expression is associated to many complex diseases, from the
large umbrella term of ‘cancer’ to a spectrum of neurological disorders. Complex
refers to the multitude of integrated and interacting systems contributing to the
disease [13]. Though a disease phenotype may be classified with a general level of
accuracy, the diversity of the underlying gene expression may be vast. The varying
degree of success in some cancer treatments, for example, is partly attributed to

differences in how the expression of genes is regulated [14].
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Figure 1: The flow of genetic information and the stage in which miRNA regulation
occurs. Genes are expressed by first being transcribed into RNA and then translated
into protein. MiRNAs generally inhibit gene expression at the post-transcriptional
stage. Original image credit: Madeleine Price Ball, Creative Commons CCO 1.0
Universal Public Domain Dedication. https : //commons.wikimedia.org /wiki/File :
Genetic_code.svg
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The Cancer Genome Atlas project [15] was launched in 2006 shortly after the
Human Genome project completed (2003) with the goal of generating a com-
prehensive catalogue of the cancer genes and cancer-related mutations involved
in tumourigenesis across a broad range of cancer types . The idea was that
cancers, like other complex diseases, are so intimately associated with molecular
changes that a comprehensive and systematic profiling of the molecular landscape
across specific tumours would reveal important biological information with clinical
implications. The primary medium for achieving its goals was next-generation
sequencing technology (NGS), touted in its early years to be the key to discovering
the cure for cancer. What it revealed, however, is that cancer is not a single type of
disease but a whole class of diseases arising from different mechanisms in which
uncontrolled cell growth and proliferation is achieved [16].

Shortly after the publication of the human genome sequence, it was proposed that
RNAs with regulatory function form the primary control architecture enabling
eukaryotic complexity and phenotypic diversity [5]. Non-coding RNAs represent a
large portion of the genomic output and, unlike proteins, do scale-up in proportion
to perceived eukaryotic complexity [2]. The discovery of sequence-specific gene
silencing by RNA molecules, also known as the RNA interference pathway (RNAi),
lead to the rise in prominence of miRNAs with the ability to regulate gene expression
in an unanticipated range of biological processes [3].

MicroRNAs

Small molecules, big effect

MiRNAs are small, single-stranded RNA molecules approximately 22 nucle-
otides long with the ability to negatively regulate gene expression. On a post-
transcriptional level, they are able to target specific gene transcripts through base-
pairing to the mRNA 3’ untranslated region (UTR) and either inhibit translation
to proteins or activate mRNA degradation [17] (Figure 2). However, the initial
discovery of miRNAs was not that of a class of functional RNAs but that of a single,

regulatory RNA thought to be exclusive to nematodes.

Lin-4, the first known miRNA, was discovered in Caenorhabditis elegans in 1993
to have an important role in larval development [18]. The initial understanding
of miRNA-mRNA target recognition came from the observation that /in-4 could
base-pair to multiple, conserved sites within the /in-14 mRNA’s 3° UTR [18, 19].
The second miRNA was let-7, discovered seven years later to also affect larval
development in Caenorhabditis elegans [20]. Unlike lin-4, however, let-7 was also
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detected in several other species including humans [21]. This discovery marked
the beginning of a field of study on a whole new class of negative, regulatory
non-coding RNAs.

The known mechanisms by which miRNAs inhibit gene expression is similar in
plants as in animals. In 2002, it was demonstrated that the ‘seed’ region of a
miRNA sequence (that is, positions 2 to 7 or 8 of the 5° end) complemented short
DNA response elements in Drosophila known to repress a host gene’s expression
post-transcription [22]. This suggested sequence complementarity was essential
to post-transcriptional regulation by miRNAs. As more miRNAs were discovered,
corresponding gene targets were generally recognized through base-pairing of the
seed region of the mature miRNA sequence to such miRNA response elements
(mREs) within the 3° UTR of mRNAs. How well a miRNA binds to a target
gene’s mREs influences whether the transcript is blocked from protein translation
or degraded. Furthermore, the relative shortness of the required complementary
sequence gives miRNAs the unique ability to simultaneously target and bind to

multiple mRNAs, enabling an intricate level of gene expression regulation [23].

Given that miRNAs like let-7 are highly conserved sequences found in numerous
species, and that the first functional roles were essential to organism development
with lethal effect if inhibited, it was no surprise when more miRNAs were eventually
discovered with regulatory roles in other fundamental cellular processes such as
apoptosis, differentiation, proliferation and metastasis [3]. Studies on RNAi, the
naturally occurring gene silencing process by RNA molecules, further revealed

miRNAs as an essential part of the functional unit which targets mRNAs [17].

In vitro overexpression of a single, unique type of miRNA has been shown to
decrease levels of over a hundred mRNAs [12]. Similarly, deletion of a single,
unique type of miRNA has been shown to result in a discernible phenotype change
in both plants and animals [17]. However, low levels of expression change in target
mRNA suggest a sophisticated role in coordinating and ‘fine-tuning’ expression:
sharpening the borders of spatial or temporal gene expression domains, as in neural
development, or to achieve target mRNA expression in an optimal range to ensure
the silencing of unwanted signals [12].

Like gene expression, miRNA expression naturally differs according to a cell’s
developmental lineage and stage [24]. This attribute enabled profiling of particular
pathological and physiological processes by miRNA expression, and qualifies
them as candidate biomarkers [25]. Their ability to modulate gene expression
further qualifies them as potential therapeutic targets in various disease treatments
[26]. Elucidating the biological function of miRNAs with expression profiles
corresponding to a particular condition is, therefore, a clinically relevant and active
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area of miRNA research.

Genomic organization and biogenesis

MiRNAs are encoded throughout the genome as independent transcription units, as
miRNA clusters, or as part of an intron of a host gene. MiRNAs are characterized
into families of identical or closely related sequences, and as neighbors encoded in
the same genomic cluster [27]. Approximately one-third of miRNAs are found in
clusters with distances of less than 51 kilobases between them and are generally
co-expressed [23].

Sequence families are defined by strong similarities in the mature miRNA sequence,
specifically in the miRNA seed region (Figure 3a). These mature sequences can
be found in multiple locations in the genome, are not necessarily clustered, and
often differ from other sequence family members by one nucleotide. Consequently,
functional analysis of individual members of a sequence family is challenging
compared to single, unique miRNA sequences due to genetic redundancy [23]. For
example, the miR-34 family is made up of six mature miR-34/449 miRNAs with
copies in three genomic loci. The loss of miRNA expression from knocking out one
functional locus can be compensated by the other loci [28]. These sequence features

make miRNAs exceptionally robust to change but also challenging to study.

MiRNA biogenesis is a tightly-controlled cellular process summarized in Figure 2.
Briefly, a miRNA gene is first transcribed by RNA polymerase II in the nucleus to
produce a primary miRNA transcript folded into a hairpin-shape (Figure 3b). These
miRNA hairpins are further processed by a pre-mRNA splicing complex (either
the Drosha-complex or the Spliceosome) before export to the cytoplasm [27]. The
Dicer complex cleaves the miRNA hairpin to release the mature miRNA sequence.
The RNA-induced silencing complex (RISC) is activated when it is loaded with a
mature miRNA sequence to identify target mRNA with [29].

Inhibition of gene expression

MiRNA-mediated gene silencing has the potential for broad impact on gene
expression, with clinically relevant and practical application due to their role in
the RNAi. MiRNA abundance in higher organisms likely confers an evolutionary
advantage, such as introducing a robust layer of regulation to fundamental biological
processes [12].

To effectively target and inhibit the translation of mRNA, mature miRNA sequences
must first associate to an Argonaute protein in the RISC to activate the complex
[26]. The miRNA then guides the complex to a specific mRNA target. Once a
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Figure 2: MiRNA biogenesis and function. MiRNA is initially transcribed in the
nucleus. It forms a hairpin structure that is transported to the cytoplasm and further
processed to produce a mature miRNA sequence. The sequence is loaded to an RNA-
induced silencing complex and used to direct the complex to a target mRNA. The
strength of the base-pairing between the miRNA and target mRNA determines whether
the gene transcript is destroyed or inhibited from translation into a protein.
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Figure 3: MiRNAs and miRNA genes. a) Mature sequences of the let-7 miRNA family
members with seed region. b) Predicted hairpin structures containing the mature let-7
sequences (highlighted in blue). Reproduced with permission from Nature Publishing
Group: Micromanagement of the immune system by microRNAs Lodish, H. et al. 2008
Nature Reviews Immunology, 8:120-130

target is found, the choice of translation inhibition or mRNA degradation is thought
to be governed by the degree of sequence complementarity between the mature
miRNA and the target mRNA [24].

The exact features and mechanisms of miRNA regulation on gene expression are
still not sufficiently understood to accurately predict true molecular targeting and
phenotypic effect [17]. What is generally known from extensive experimental
validations is that degradation of a target mRNA occurs from the best (i.e. perfect
or near-perfect) sequence complementarity, while weaker base-pairing results
in translation inhibition [30]. Perfect sequence complementarity resulting in
mRNA degradation is the most common case for miRNAs in plants. However,
imperfect base-pairing is the most common case for miRNAs in animals. Still-
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unconfirmed mechanisms are triggered such that both mRNA degradation and
translation inhibition are possible [22]. It is thought that incorporation of sequence
complementarity beyond the seed region to other features of the mRNA or RISC
influences the method of suppression [23].

Though perfect and near-perfect sequence complementarity to the miRNA seed
region has been and continues to be the most consistent feature used in the
identification of target genes, growing evidence suggests it is not the only means
miRNAs have to functionally target and regulate gene expression [31]. As a result,
the search for true and actively targeted genes by miRNAs is not easy. Several
sequence features are generally combined with seed sequence complementarity
in computational algorithms to assist in the prediction of miRNA targets and are
discussed in chapter 4.2.

MicroRNAs and complex disease

The ability of a single miRNA to control the expression of multiple genes means
a single gene can also be regulated by multiple miRNAs. This makes it possible
to coordinate a sophisticated level of regulatory control on disease pathways at
multiple points [24]. In the decade following their initial discovery in humans,
research has shown miRNAs with regulatory roles in numerous physiological,
developmental and disease processes [3]. Over- or under-expression of certain
miRNAs often correlate to a phenotype under investigation and a functional role
is characterized by the pathways in which target genes are identified. In this way,
miRNAs are nominated as candidate biomarkers and potential therapeutic targets in
a number of complex diseases [26, 32].

In cancer, numerous studies have shown changes in miRNA expression correlate to
tissue-specific and disease-specific conditions with direct effect in well-established
tumour suppressor and oncogene pathways (e.g. TGFf, TP53) [25]. Select miRNAs
are highlighted in Table 1. Members of the miR-17-92 cluster have been identified
in several cancers to target key genes in tumour suppressor pathways [14, 28].
Overexpression of the primary transcript encoding seven members of the cluster on
chromosome 13 supports an oncogenic role for the cluster [33]. TGFf3-signaling
is an important biological pathway for inhibiting cancer cell growth and down-
regulation of a key pathway gene, TGFBR2, by members of the miRNA cluster
has been shown to promote tumour cell growth [34]. Conversely, deletion of the
primary transcript results in dramatically decreased levels of miR-17-92 and has
been linked to developmental conditions such as microcephaly and digital defects
[35].

Mir-663 targeting of EEF1A2 has a tumour suppressive effect in pancreatic cancer

10
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cells and has been shown to inhibit cell growth and invasion [36]. EEFIA?2 is
normally not expressed or is in very small amounts in pancreatic tissue, but has
been found at elevated levels in pancreatic cancer. Indeed, overexpression has been
shown to promote cell growth and invasion in pancreatic cancer [37].

Cancer is often described as a complex disease because it cannot occur without
the dysfunction of multiple, interacting biological systems. These systems consist
of numerous molecular interactions where disruptions to the interactions with
phenotypic effect are not always detectable on an individual molecular level [13].

Such interactions include the regulation of gene transcription and gene translation.

To better understand the combinatorial effect of dysregulated pathways, techno-
logy was developed to enable measurement of multiple levels of expression in a
biological sample. This added depth improves identification of molecules with
regulatory effect such as miRNAs [23].

Table 1: Select miRNAs with identified regulatory functions in associated disease.

miRNA Target gene Associated disease Reference

miR-17-92 cluster | TGFBR2, PTEN Lung cancer, breast | [33, 34, 35]
cancer, autoimmunity
miR-663 EEFIA2 Pancreatic cancer [36]
miR-10a/b HOXA3, HOXDI10 | B-cell chronic lymph- | [38]
ocytic leukemia, pan-
creatic cancer, breast

cancer

miR-122a KLF6 Liver tumour and dis- | [39]
ease

miR-let-7 NRAS, KRAS Lung cancer [40]

3.2 Technology to discover and measure microRNAs

Transcript-level analysis is an essential approach to characterizing and understand-
ing the molecular functions underlying phenotype differences in biological samples.
For decades, microarray technology was the most important and widely used
approach for such studies [41]. It has only been since the publication of the human
genome at the turn of the millennium that high-throughput sequencing of RNA
(RNA-seq) emerged as a powerful and arguably better alternative [8].

Sequencing is the process of translating strands of DNA or RNA (i.e. reads) into
their equivalent sequence of nucleotides. The technology was first developed by
Frederick Sanger and colleagues in the 1970s and involved sequencing on a per-
DNA strand basis. Though very accurate, the limited yield of a few thousand long

11
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reads and the high costs (which, in the beginning, included manual base-calling)
prevented most research projects from pursuing it as an alternative to microarray

technology in facilitating transcript-level studies [42].

Microarray technology was developed in the 1990s as a hybridization-based ap-
proach to large-scale studies of gene expression that was both high-throughput
and low-cost compared to traditional sequencing technology in terms of collecting
sequence data [41]. Briefly, the array contains probes whose sequences represent
particular regions of the genes to be detected. RNAs with complementary sequences
hybridize to the probes and fluorescent is used to label the RNAs. The more RNA
hybridizing to the probes, the stronger the signal intensity. Image acquisition of the
array then enables measurement of the signal intensity or expression of the genes.

(8]

There are a few limitations to microarray technology. Probes are designed to
represent a given set of known genes under investigation, but microarrays may
be measuring only the portion of a known gene corresponding to the probes and
not the actual sequence of all transcribed RNAs [8]. The range of expression
measured is also limited due to the presence of background noise and signal
saturation. Background noise is introduced by imperfect probe hybridization to
semi-complementary RNA sequences. In contrast, signal saturation is introduced
when the number of complementary RNA sequences outnumber available probes.

The push to sequence the human genome brought with it the advent of the first
high-throughput or ‘next generation’ sequencing (NGS) platform. The first decade
of the twenty-first century saw rapid development of sequencing technology result
in a huge drop in cost and a substantial increase in sequence yield [43]. Massively
parallel sequencing — the ability to simultaneously sequence several hundred DNA
sequence fragments — enabled the substantial leap in data volume as well as data
generation speed, while protocol innovations enabled sequence production on a

genomic, transcriptomic, and proteomic level [42].

NGS as a medium for expression analysis can be roughly summarized as follows:
RNAs are initially fragmented into short strings and reverse-transcribed into com-
plementary DNA (cDNA). Adaptors are added to the cDNAs to enable library
amplification and sequencing [8]. Amplification achieves high signal intensity that
enables detection of otherwise low-expressed molecules. Rather than hybridize
to an array, the sequenced reads can then be mapped to a reference genome. The
number of reads aligned to a gene are counted to give a digital measure of the

expression levels in the sample under investigation.

Several comparisons of microarray and NGS technology have been published
[8] and include Pub IV. While comparisons have highlighted strong concordance
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between microarrays and sequencing in measures of both absolute and differential
expression, the general consensus is that NGS:

e can reconstruct transcripts at a single-base level. This enables expression
quantification and analysis of both known and novel RNA sequences.

e cnables de novo genome assembly of non-model organisms.

e has the advantages of massively parallel sequencing which include low
background noise and high technical reproducibility. [8]

e is preferable to microarray for differential expression analysis because of its
high coverage of the genome and detection of weakly expressed genes [44].

e is not limited by signal saturation. Counting sequenced reads achieves
a broader dynamic range and a more sensitive measurement of transcript
abundance than signal intensity.

e is not as straightforward to process and analyze as microarrays due to
the variety of protocol differences that need to be accounted for in data
preprocessing and normalization.

For these reasons, and the continued reduction in cost for large-scale studies,
NGS has since replaced traditional sequencing and microarray as the preferred
technology for expression profiling and transcriptome-level studies. This work
focuses on analyzing miRNA expression profiles using NGS technology.

The volume of biological data now being produced with NGS technology has
brought new opportunities to study biological complexity but has also raised
challenges in both analysis and data management. Before any computational
analysis on the large volume of data can be implemented to identify interesting
molecular features, computational resources for large-scale data processing and

storage must first be obtained.

While standard processes and tools have been established for microarrays, they
are not directly applicable to NGS data because of the fundamental differences in
data collection and measurement. Microarray signal intensities, for example, are
continuous measures that follow a log-normal distribution and so are not directly
comparable with NGS read counts, which are non-negative and discrete measures
[45]. As such, different normalization approaches must be applied.

Computational tools have been developed and/or updated to address the new tech-
nical and biological challenges of NGS technology to perform analysis comparable
to established microarray standards. Tools have also been developed and updated
to take advantage of the opportunities in NGS technology, such as quantifying gene
isoform expression [42, 46]. In the case of miRNAs, sequenced reads facilitate
the prediction of likely target genes through the discovery and identification of

complementary sequenced regions.
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Discoveries made with NGS technology have lead to the further development of
RNA-binding technology such as cross-linking ligation and sequencing of hybrids
(CLASH) [47], which makes it possible to identify direct RNA-RNA hybridization.
However, this work is focused on the use of NGS technology to facilitate expression-

based analysis, so more specialized technologies are beyond its scope.

Processing and analyzing sequenced microRNA data

Studies involving RNA-seq experiments are generally guided with specific questions
and research goals. The diversity of sequencing protocols and experimental designs
possible with RNA-seq facilitates a range of sequence-based studies, but prevents
development and implementation of a universal RNA-seq processing and analysis
protocol [42]. However, most RNA-seq studies do generally include the following
computational steps: sequence preprocessing, read mapping to a reference genome
or assembly, expression quantification, normalization and analysis.

Preprocessing largely consists of NGS adaptor removal from raw sequenced reads
and the trimming of low-quality portions of the sequence. To measure transcript
abundance, processed reads are then mapped to a desired reference genome based on
high sequence complementarity. Expression quantification is counting the number
of reads mapping to genomic regions of interest (annotated to genes, for example)
as either read counts or reads per kilobase per million mapped reads (RPKM).
The latter normalizes counts for total read length and the number of reads, but is
not sufficient normalization alone to put sequence expression across samples on
a comparable scale for analysis [44]. Furthermore, the choice of normalization
depends on the analysis in question, and for differential expression the normalization
has been incorporated into the analysis process [8, 48]. These are discussed further
in Methods.

Computational workflow

A workflow is an orchestrated sequence of events enabling systematic organization
of tools and resources to produce a desired outcome. Computational workflows can
be further automated and organized such that each step is a self-contained module
made of interchangeable and reusable component parts [49]. This allows for robust
customization of a workflow to better fit the characteristics and expectations of a
research project.

With the rapid evolution of RNA-seq technology and consequent absence of an
established standard for processing and analyzing RNA-seq data, modularity is an
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essential feature in an RNA-seq workflow. Modularity allows for straightforward
incorporation of tools and methods for each step in the RNA-seq analysis process.
Having multiple options is necessary because the tools and methods developed at
each step of the process have been shown to be good for some types of RNA-seq data
and experimental design but not all [45, 50]. The diversity in computational tools
reflects the diversity in RNA-seq technologies, which themselves are constantly
developing and improving. Ideal workflows must thus be able to provide a standard
software framework, but have the robustness to accommodate tool upgrades and

innovations in RNA-seq technology processing and analysis [51].

The use of multiple levels of biological data has the advantage of addressing research
questions about biological complexity, but the disadvantage of requiring additional
management of resources to ensure efficient processing. Computational workflows
that scale-up well (i.e. utilize parallelization and batch processing) are thus essential
for miRNA studies, which are rarely performed without complementing mRNA
and/or gene data to facilitate functional analysis.

Anduril [52] is an open-source workflow engine that provides the necessary infra-
structure and features (outlined in Pub I) for reliable and scalable data analysis.
Briefly, a workflow in Anduril automates the process and analysis of RNA-seq
data as a defined sequence of components. A single component can perform
simple, reusable tasks such as table filtering or more complex and specific tasks
such as differential expression analysis with several R packages. Tools utilized
within components are usually written in a command-line executable language (e.g.
Bash, Java, R, Python, Perl and MATLAB) and unified under a simple, Java-based
language (AndurilScript) to enable component-based workflow bulding. Features
of Anduril further enable users to define parameters to better fit an experimental
design, optimal use of computational resources (including parallelization of tasks),
and fast re-execution.

It is difficult to compare the performance of tools across the range of possible
RNA-seq applications largely due to differences in performance optimization and
development for specific research questions [53, 54]. Comparison of tools is also
beyond the scope of this work. General features of the NGS data, however, ensure
a level of similarity exists between approaches as to how the data is used. Two such
approaches that use sequenced data for miRNA studies are novel miRNA discovery
and miRNA target prediction, which are discussed below.

Novel miRNA discovery

NGS technology not only facilitates improved measurement of transcript abundance
but also detection of transcript variety. While some miRNAs are conserved across
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multiple species such as let-7, some are species-specific such as lin-4. The discovery
of a potentially novel, species-specific miRNA is done through analysis of the
possible secondary structure of an expressed sequence that maps to the genome but
not to any known miRNA sequence. The ability for the genomic area around the
sequenced transcript to have a secondary structure that forms a hairpin-like shape is
a key feature of miRNAs [19].

The discovery of potentially novel miRNAs is not a standardized process but
methods do tend to incorporate the presence of a biochemically stable hairpin
secondary structure in the vicinity of the proposed mature miRNA [55]. The hairpin
shape seen in Figure 3 is only possible with the presence of a complementary
sequence to the proposed mature miRNA in the mapped area of the genome. The
ViennaRNA package [56] is a RNA secondary structure tool that predicts likely
paired sequences by creating base-pairing probability matrices for a particular
base pair. While the presence of a putative mature miRNA sequence implies the

existence of a hairpin, the reverse is not always true [29].

Cross-species conservation is another determining factor for considering a putative
novel miRNA sequence. However, it risks missing non-conserved miRNAs. The
more distant two species are in phylogeny, the less likely conservation-based
definitions are to facilitate the identification of new miRNAs. It is estimated that
7% of human miRNAs are species-specific [23].

Machine learning techniques have been applied to the discovery and analysis of
putative miRNA sequences based on features inferred from existing miRNAs [57].
These approaches assume that currently known miRNA sequences are representative
of all existing and yet-to-be discovered miRNAs and thus contain all known and
unknown features to identify a miRNA.

Novel miRNA discovery is generally performed to identify previously unknown
miRNAs in a tissue- or species-specific context. This is particularly useful in the
study of disease, where mutations in key regulatory sequences can not only affect
normal function but also cell phenotype [23]. Methods to identify putative novel
miRNAs are generally based on sequence feature identification and analysis, with
features defined by already known miRNA sequences. However, due to the yet-
unknown factors determining their tissue-specific expression and inherent genetic
redundancy, computational methods alone are insufficient to claim discovery of a
novel miRNA. Further experimental analysis is needed to identify active function
and provide evidence of a relevant biological effect.
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4.3 Prediction of miRNA targets

To characterize the biological function of a miRNA, one must discover its target
genes. The primary approach is guilt-by-association: coding transcript expression
that rises or falls inversely to a specific miRNA’s expression change are identified as
potential targets [31]. This provides basic evidence that the miRNA likely inhibits
the gene’s expression and has a role in regulating the gene’s annotated pathway.

Such a functional hypothesis can then be experimentally tested.

While technology exists that enables the discovery of miRNA targets through the
direct binding of a mature miRNA to a mRNA transcript [29, 47], it is neither
resource-efficient nor financially feasible to experimentally test all possible miRNA-
target gene combinations for true expression inhibition. Therefore, computational
tools are often used to identify the most likely and context-specific target genes
for experimental validation. In other words, prioritizing likely target genes by the
presence of miRNA regulatory features and by annotated functions important to the
disease and/or biological context under investigation.

Available programs developed for target prediction tend to require some degree of
sequence complementarity to the miRNA seed region and favorable free-energy
in the miRNA-target duplex. Free-energy estimations are measurements of the
accessibility of a nucleotide binding to a complementing nucleotide according to the
RNA secondary structure. As it involves the analysis of RNA secondary structure,
the measurement is a defining criteria for both novel miRNA discovery and miRNA
target prediction [58].

Commonly used criteria for predicting and filtering miRNA targets are shown in
Figure 4 and include:

e MiRNA seed pairing to a complementary mRE in the 3’ UTR of a putative
target mRNA, with identification allowing for up to two mismatched bases
and additional complementarity outside of the seed region to compensate
miRNA-target gene binding stability [31].

e The identification of multiple, close-proximity mREs for the same miRNA in
the 3> UTR of a putative target mRNA. The presence of multiple potential
regulatory elements increases the likelihood of a miRNA-mRNA interaction
occurring [30].

e Conservation of a target gene’s mREs in related species. Conservation
suggests an evolutionarily conserved interaction. When conservation is not
possible, programs like Targetscan [59] account for species-specific miRNAs
by putting more emphasis on sequence context (i.e. base complementarity
outside of the seed region).
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e Availability of the mRE and the estimated thermodynamic stability of the
proposed RNA interaction. Minimum free energy (MFE) is a measure of
how stable the predicted miRNA-mRNA duplex is [31]. MiRanda was the
first freely available target prediction algorithm and it used MFE to improve
prediction accuracy [60]. PITA also calculated the stability of the predicted
miRNA-mRNA duplex but compared it to the stability of the local 3° UTR
region of the mRE [61]. The idea was that if the local region of the mRE was
more stable, then it would prevent the miRNA-mRNA duplex from forming.

e Filtering for inversely correlated miRNA and target mRNA expression data.
Filtering has often and successfully been applied to increase target prediction
accuracy because it is independent of sequence analysis [31]. However, it
cannot distinguish between a direct and indirect target like sequence analysis
can. Also, because the presence of a miRNA does not always result in
observable changes to mRNA expression, filtering reduces the set of predicted
targets to those notably affected [28].

e Filtering for enrichment of biological pathways by predicted target genes.
Filtering predicted targets to those in common pathways improves context
specificity of the experiment [31]. MiRNA regulatory function is thus defined
by the similarity of functions and pathways annotated to the set of predicted

target genes.

In general, a combination of target prediction algorithms has shown to produce
better results than target prediction algorithms used separately. The combination
expands the hypothesis space to incorporate the many possible features of miRNA
regulation [31]. The underlying idea is that there is more than one way for a miRNA
to target genes and silence their expression. The availability of multiple target-
binding features is how a miRNA is able to regulate the expression of hundreds
of genes simultaneously. Each target prediction algorithm has been optimized to
capture different combinations of miRNA target-binding features and thus achieves
different levels of sensitivity and specificity! [31]. Target genes predicted by more
than one algorithm, therefore, gain confidence as likely miRNA targets.

Predicted targets are only relevant to a specific phenotype if they are expressed in
the tissue under investigation. This is an issue not addressed by most prediction
algorithms and is why filtering of results is necessary. A current and actively-
maintained list of miRNA-target interactions with experimental support is a valuable
resource for identifying the most likely miRNA target genes in a biological context.
The miRTarBase database [62] is one such resource accumulating miRNA-target

interactions by manually curating literature and using text mining to filter research

I'Specificity here is the ability to discriminate between an intended target and non-targets. That is,
the miRNA will bind to the former but not the latter.
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articles related to functional studies of miRNAs.

To summarize, the prediction of a miRNA’s targets is the guilt-by-association
approach to characterizing its biological function in a tissue-specific context.
Because the exact mechanisms in which miRNAs identify their target genes and
inhibit their translation are still unknown, computational methods are needed
to predict their most likely target genes. Existing tools and algorithms focus
on sequence analysis to model different combinations of RNA-binding features.
Additional filtering for tissue-specific expression profiles lends evidence of notable
regulatory effect, while pathway annotation identifies gene subsets with interesting
roles associated to the tissue under investigation. Thus, miRNA target prediction
is a computational process that identifies a priority set of molecules for further
investigation. Like novel miRNA discovery, biological expertise and experimental

analyses are still needed to ascertain molecular function.

Even with biological expertise, it can be a challenge to translate statistically
significant results into meaningful and actionable clinical insights [63]. MiRNA
function is primarily defined by its interaction with target mRNA and effect on
associated biological pathways. Data visualization offers a straightforward and
intuitive approach to interpreting such interactions that does not require additional
understanding of the algorithms underlying the data [64]. It offers a convenient
and effective means to assess the potential relevance of a priority set of molecules
through their expression data [65]. Modern visualization technology enables data
exploration, automatic generation of, and efficient manipulation of diagrams from
quantitative values [66]. Furthermore, data exploration incorporates a human
computing approach to an analysis workflow, harnessing our capacity to visually
detect patterns to improve hypothesis generation [64].
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Figure 4: Commonly used features in miRNA target prediction. a) Regions of the
target mRNA 3” UTR and mature miRNA containing miRNA-target mRNA binding
features. Conservation of the mRE in other species is used in target prediction, while
conservation of the mature miRNA sequence in other species is used in novel miRNA
discovery. b) The likelihood of a target increases if genes with similar function or
within the same biological pathway are also targeted, and if multiple mREs are found
in the target’s 3’ UTR. c) Base-pairing of the seed-region is the primary feature of
target prediction algorithms but is applied in various ways to allow for up to two
mismatched bases. Reproduced with permission from Elsevier: Refining microRNA
target predictions: sorting the wheat from the chaff Ritchie, W. and Rasko, J.E. 2014

2OBiochem. Biophys. Res. Commun. 445, 780-784.



5 AIMS OF THE STUDY

Aims of the study

The aim of this work was to develop and use computational tools to better facil-
itate miRNA research in biomedicine. Emphasis was placed on the end goal of
identifying miRNAs with potential as biomarkers and therapeutic targets.

The specific research objectives covered in this study were:

1. Development of a workflow to accurately process and analyse miRNAs and
complementing mRNA data derived from RNA-sequencing technologies.
The workflow provides a convenient implementation of a suite of computa-

tional tools to produce standardized and reproducible results. (Pub I)

2. Application of the workflow to miRNA and complementing mRNA in
biological studies, with functional analysis identifying candidate miRNA
biomarkers and therapeutic targets. (Pub III and a portion of Pub IV)

3. Adaptation of a visualization method to meaningfully depict interactions
between multiple levels of molecular data, such as miRNA co-regulation of
genes in a biological pathway, and to facilitate interpretation of findings to

clinically relevant implications. (Pub II)
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Materials and methods

Biological material, third-party target prediction databases, and computational
methods used are summarized in this section with further detail found in the

6.1

publications.

Table 2: Biological data by publication. Asterisk (*) denotes publications using

original data.

Publication

Sample

Data type & platform

PubI

Breast tissue. Case 1: mRNA
from 17 patient tumour and
3 normal breast organoid
samples. Case 2: mRNA
from 129 tumour and 15
germline samples, miRNA
from 133 tumour and 16
germline samples.

Case 1: Open total-RNA se-
quence data, Illumina HiSeq
2000 (GSES2194). Case
2: TCGA generated Level
I poly(A)-extracted mRNA
and small RNA sequence
data, Illumina Genome Ana-
lyzer II.

Pub II

OVCA tissue. miRNA and
mRNA from 324 patient
primary tumour samples,
subset of 32 good prognosis
and 32 poor prognosis.

Open miRNA and mRNA
expression data generated by
TCGA. mRNA microarray,
Affymetrix UI33A. miRNA
microarray, Agilent. [67]

Pub IIT*

DLBCL tissue. miRNA and
mRNA from 7 patient fresh
frozen samples, matched
primary and relapsed tu-
mours.

small RNA and total RNA se-
quence data, Illumina HiSeq
2000 (GSE69810)

Pub IV*

C57BL/6J mouse brain tis-
sue. miRNA from 6 snap
frozen samples, matched
frontal cortex and hippocam-
pus.

miRNA expression, [llumina
Cluster Station and Genome
Analyzer II (GSE27979).
miRNA expression, Affy-
metrix GeneChip® miRNA
array (GSE27891).

Biological data

Table 2 briefly summarizes the sample data analyzed in each publication. For mouse
samples and high-grade serous ovarian cancer (OVCA) tumour samples, analysis
began with fully processed and quantified expression data. For diffuse large B-cell
lymphoma (DLBCL) and breast cancer samples, sequence data was obtained for us

to process ourselves.

Affymetrix GeneChips® miRNA microarray was used in Pub IV and is based
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on 609 known mouse miRNAs in version 11 of the miRNA database, miRBase
[68]. Sequenced miRNA and mRNA transcripts were aligned to the human genome
(NCBI38v76) in Pub I and in Pub III. MiRNA sequences were then annotated to
known human miRNAs in version 21 of miRBase, which corresponds to the same
genome reference. TCGA-generated breast cancer and OVCA data used in Pub I
and IT were obtained from the data portal®. Further sample descriptions are found
in the publications.

In Pub II, prior work by Yang et al. [69] identified 219 genes and 19 targeting
miRNAs as a master miRNA-gene regulatory network associated to poor prognosis
in OVCA mesenchymal subtype. Microarray expression for these identified miRNA-
gene pairs were obtained for further expression correlation and pathway impact
analysis. From the original TCGA project of 324 patient samples with clinical
information, we also identified the top 10% of patients with the most days to tumour
progression recurrence as having good prognosis and the lowest 10% of patients
with the least days to tumour progression recurrence as having poor prognosis
for a total of 64 samples. Differential analysis was performed on microarray
gene expression [70] and was followed by pathway impact analysis. Predicted
targeting miRNAs were then identified for the set of DE genes enriched in significant
pathways (with false discovery rate < 10%) and expression correlated across the
64 samples.

Predicted miRNA targets database

Putative miRNA-mRNA pairs were downloaded from databases listed in Table 3
and annotated to miRNAs and mRNAs with significant, inversely related expression
profiles. This filtered and prioritized a subset of potentially interesting miRNAs
and their putative target genes in a particular experiment [71, 72, 73]. Each
algorithm represents the implementation of similar target-binding criteria with
varying emphasis on each criterion. A combination of algorithms thus captures the
general principles of miRNA-target gene interactions [31].

In Table 3, seed pairing includes imperfect sequence matches of the seed region,
perfect 8 nucleotide seed match, allowance of guanine base-pairing with a uracil
instead of a cytosine (G:U wobble), and in the case of RNA22, motifs from known
miRNA sequences and the complements used to identify mREs. Thermodynamics
includes MFE of the seed pair and mRE site accessibility to targeting. mRE region
covers all detected sequence features in the environment of the mRE, including

Zhttp://cancergenome.nih.gov
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Table 3: MiRNA-target mRNA prediction databases.

Database Publication Algorithm approach

TargetScan L III, IV Seed pairing, conservation, mRE
region [59].

Microcosm (MiRanda) | I, III, IV Seed pairing, conservation, thermo-
dynamics [60].

RNA22 v Seed pairing & thermodynamics
[74].

RNAhybrid v Seed pairing, thermodynamics,
mRE region [75].

mirDB v Machine-learning, seed pairing, con-
servation, thermodynamics [76] .

PITA I, III Seed pairing, conservation, thermo-
dynamics, mRE region [61].

DIANA-microT I II, III Seed pairing, conservation, thermo-
dynamics, mRE region [77].

mirTarBase I 10 Manually curated, experimentally
validated targets [62].

additional sequence complementarity, thermodynamic stability, and presence of
multiple mREs [78].

RNA-sequence processing and analysis

All biological data used in the publications of this work went through similar
processing and analysis steps, either performed by us or a third-party. These steps
are generalized as: preprocessing, read mapping to a reference genome or assembly,
expression quantification, normalization, analysis, and miRNA-mRNA integration
(Figure 5).

To preprocess raw sequenced reads in Pub I and III, quality checks were first
performed to determine required trimming parameters. Read statistics, adaptor
trimming, and post-trimming quality control then followed. Samples with poor
quality scores or with insufficient number of reads surviving adaptor and quality

trimming were excluded from further processing.

For read mapping, the choice of sequence aligner depended on the type of sequence
and optional feature discovery. The STAR aligner [79] was used in Pub I to map
RNA to the human transcriptome and identify potentially novel transcripts. Bowtie
[80] was used in Pub I and III to map small RNA to known miRNA transcripts. It
was also configured to identify reads that mapped to the human genome but not to
any known miRNA transcripts for the purpose of novel miRNA and other small
RNA discovery.
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Small RNA annotations were extracted from Ensembl general transfer format (.gtf)
files and referenced for read quantification. MiRNA annotation files in general
feature format (.gff3) were also downloaded from miRBase [68]. Though they
share a lot of the same genomic information, differences in miRBase’s annotation
format compared to Ensembl makes it incompatible for use with the expression
quantification tool HTSeq [81]. SePIA includes a transitional step to reformat
the .gff3 file to resemble that of an Ensembl .gtf file. This enabled expression
quantification on a mature miRNA level not possible with Ensembl transcript

annotation.

The estimated expression of a gene, gene transcript, mature miRNA, or miRNA
transcript is quantified from mapped reads. However, count-based expression
generally require further normalization to be informative. The three methods
implemented in SePIA are counts-per-million with edgeR [82], library-size factor
scaling with DESeq [83], and upper-quartile normalization [84].

Analysis of processed reads, mapped reads, and/or expression data differs depending
on research goals. Differential expression analysis is the most common analysis
and was performed for this work in Pub I, III and IV to identify candidate miRNA
biomarkers. Novel miRNA discovery and miRNA-mRNA integration in Pub I
demonstrated SePIA workflow capabilities. Novel miRNA discovery and miRNA-
mRNA integration in Pub III identified miRNAs and their putative targets with
statistically significant potential in determining post-treatment prognosis. Expres-
sion analysis and miRNA-mRNA integration was also performed in Pub II and IV

to identify candidate miRNAs for further functional analysis.

The predicted targets of differentially expressed (DE) miRNAs were queried from
the target prediction databases described in Table 3. Expression profiles were then
extracted for each of these putative targets and correlated with the corresponding
miRNA expression. Target genes were then filtered for moderate to high expression
anti-correlated to a targeting miRNA. This produced a list of miRNA-target gene
pairs whose expression profiles showed a significant, inverse relationship supported
by at least one target prediction database. Pathway impact analysis identified
the biological pathways enriched by the putative miRNA targets, inferring likely
regulatory roles for miRNAs in distinguishing tissue phenotype. MiRNA-mRNA
integration results were visualized with Director in Pub I, II, and III to aid hypothesis

generation and guide further functional analysis.

To ensure reproducibility of results, each publication work is implemented as a
custom workflow. Figure 5 outlines the general steps used in each workflow and
Table 4 lists the software. SePIA is the workflow template that contained all the
essential steps for the processing, individual analysis, and integrated analysis of
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‘m expression analysis miRNA-mRNA integration | «&
quality control whole genome novel small RNA discovery* expression correlation
9 mapped read miRNA-mRNA annotation

adaptor removal reference quantification ) )
read statistics transcriptome pathway impact analysis
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normalization & differential
expression

Pub I, 1l Pub I, 1l Pub I, I Pub I*, 1II*, IV Pub I, 11, I, IV

Figure 5: Overview of the computational workflow implemented for the studies in this
work. Steps are labeled with the publications they were implemented in. An asterisk
(*) denotes publications where novel small RNA discovery was performed. Target
prediction databases are described in Table 3. Software tools utilized at each step are
described in Table 4.

RNA and small RNA data. The workflow was used in Pub I and III for both RNA-
seq and small RNA-seq data, but also in yet unpublished work for just RNA-seq or
just small RNA-seq data. It is the successor of a rudimentary workflow used in Pub
IV, which consisted of expression analysis and miRNA-mRNA integration. Pub II
was limited to miRNA-mRNA integration with emphasis on data visualization.

Differential expression analysis

In Pub [, IIT and IV, DE miRNAs were identified for further analysis. At its simplest,
detection of differential expression is the application of a test statistic to identify
molecules with expression differences between experimental groups exceeding the
predicted range of variability [8].

Microarray technology has a well-established method for normalizing and identify-
ing DE molecules that was implemented in Pub I'V. The R package affy [85] took
the raw, probe level data from the Affymetrix microarray and quantified expression
between samples as log-intensities using the robust multi-array average (RMA)
measure. The package limma [86] then performed differential expression analysis
using a t-test to compare the log2-fold change of a miRNA’s expression to that of
all other miRNAs.

Differential expression analysis of RNA-seq data generally consists of two steps:
estimation of model parameters from data and tests for differential expression
[45]. Parameters take into account that transcriptome abundance is affected by
both biological and technical variation across samples (e.g. read failure in low-
count samples) [48]. The Negative Binomial distribution is a discrete probability
distribution suitable for count-based expression data [8]. The two parameters of
the distribution encode mean and dispersion of counts. Dispersion describes how
much the variance deviates from the mean count of a gene across samples. Thus,
overdispersion is when the variance of gene expression across multiple biological
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replicates is larger than its mean expression values [87]. The relationship between
the variance v and mean U is defined as,

v=pu+au’

where « is the dispersion factor.

Pub I and IIT utilized two of the most established methods, the R packages DESeq
[83] and edgeR [82] for identifying DE miRNAs. Pub IV utilized edgeR for
sequence-derived miRNA count expression. The two methods use the Negative
Binomial model and implement similar strategies to reduce the inherent bias of
transcriptome abundance [88, 89]. As a result, they have been shown to produce
similar sets of DE genes from large enough datasets [45, 48, 50].
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Table 4: Software implemented in the workflows. Software are marked with the
publications they were used in. Italicized software are not part of the SePIA workflow
and were run separately.

Module Component Software Reference
Preprocessing | Adaptor and quality FastX- [90]
trimming Toolkit! !
Trimmomatic”*?!11 [91]
Quality statistics FastQCFublL.11 [92]
Read mapping | Align sequences to a | Tophat” 21 [93]
reference Bowtie! 011 [80]
STARP“! [79]
Alignment  sorting SAMtools?IIT - [94]
and conversion Picard [95]
toolsPubLIII
Alignment statistics RNA- [96]
SchPubI,III
RSchPuhI,HI [97]
Expression Mapped reads quanti- | HTSeq"*//!T [81]
fication Cufflinks”*H111[98]
Normalization | Variant calling Bambino? %! [99]
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Results

This dissertation presents the following main results: a workflow to process and
analyze small RNA- and RNA-seq data (Pub I), application of the workflow —in a
partial, rudimentary form (Pub IV) followed by a comprehensive form (Pub III) — to
characterize the role of miRNAs in different tissues, and a visualization approach to
further link and interpret results from multidimensional data (Pub II). Contributions
from each publication are further summarized in Table 5.

Table 5: List of contributions in the dissertation.

Publication | Type Summary

Pub I Method Workflow design and tem-
plates to process and analyze
RNA and small RNA-seq

data.

Pub IT Method R package for visualizing
multidimensional data.

Pub III Biomedical Profiled miRNA expression

in matched, primary and re-
lapsed DLBCL and function-
ally analyzed select miRNAs
with complementary mRNA
data.

Pub IV Biomedical Analyzed and compared mi-
croarray to small RNA-seq
expression data for miRNAs.
Identified DE miRNAs in
both platforms and their
putative target genes. Per-
formed pathway analysis on
predicted gene targets of
select miRNAs to identify
co-expression relationships
and support hypotheses of
miRNA function in brain
tissue differentiation.

Workflow for small RNA- and RNA-seq

Pub IV showed that RNA-seq had the benefit of better detection overall of miRNAs
than microarray, but also revealed novel computational challenges: the lack of gold-

standard alignment, processing, normalization, and analysis methods; resource
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availability; frequent software updates; diversity in experimental designs and meth-
odology. A computational workflow was thus needed to address these challenges
and to facilitate the individual and joint analysis of multiple forms of RNA-seq data.
In this work, we focused primarily on small RNA (< 200nt), total RNA (> 200nt),
and poly(A) derived RNA-seq data.

SePIA was developed to incorporate a collection of tools representative of widely
used and established methods for RNA-seq. It succeeds the workflow of Pub IV,
where expression analysis was performed on already processed data. The quality of
analysis results, however, depends on knowledge of how the data was processed
and if the process can be replicated. So where it was possible to start the workflow
from unprocessed sequenced reads (e.g. Pub I and III), parameters were better

optimized to produce thorough and robust analysis results.

SePIA contains the following features of an ideal RNA-seq workflow: the organiza-
tion and convenient implementation of several tools in sequence, documentation
and reporting at each step of the workflow to ensure reproducibility, and the ability
to specify computational resources and component parameters to fit an experimental
design.

One of the challenges of high-throughput workflows is the amount of time, re-
sources, and computational proficiency required to simply implement all the
necessary tools [51]. SePIA has a convenient solution that uses Docker [104]
to provide a portable and easy to load container from which workflows can be run
with all dependencies pre-installed. The container ensures all essential software
perform safely and reliably within a workflow, while keeping the host system clean
of excess libraries. Users of SePIA can thus skip the daunting task of software
installation and jump right into configuring the template pipelines for their data.
HTML reports for each module and documentation in the form of log files enable

reproducibility of results.

SePIA and its pipelines have been used in the cited publications and several ongoing

biomedical studies involving mice, rat, and human samples.

Expression analysis identifies miRNAs with putative roles in
tissue differentiation

MiRNA expression profiles in each publication were used to answer standard
questions such as ‘what miRNAs are expressed?’ and ‘are there miRNA profiles
characterizing clinical differences in samples?’ Differential expression analysis
provides an answer to the second question by identifying a subset of molecules
with potentially interesting roles in tissue-specific biological pathways associated
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Figure 6: Target genes of the mir-17/92 cluster and paralog clusters in the TGFf
signaling pathway of Pub 1. Target transcripts were selected based on a minimum log?2-
fold change of 0.5 between tumour and normal breast tissue. Node colors represent
expression fold change between normal and tumour breast tissue samples, with higher
expression in tumour tissues highlighted in red and in normal tissues highlighted in
green. Relationships between connected miRNA-target transcript pairs are shaded
based on correlation coefficient values. Connections between transcript and gene
represent average correlation values of contributing transcripts and their regulating
miRNAs.

to complex disease. In this work, miRNAs were identified that had significantly
altered expression in healthy versus cancerous tissue (Pub I), in good versus poor
prognosis patients (Pub II), in tumours before and after cancer treatment (Pub III),
and in frontal cortex versus hippocampus areas of the mouse brain (Pub IV).

In Pub I, 408 miRNAs were identified to have higher expression in cancerous versus
normal breast tissue. Putative target mRNA with anti-correlated expression and
with a minimum absolute log2 fold-change of 0.5 were identified from the target
prediction database for a total of 4,208 pairings between 174 DE miRNAs and 915
transcripts. Most prominent were members of the miR-17-92 cluster of oncogenes
(miR-17, miR-18a, miR-19a, miR-20a, miR-19b and miR-92a) and the cluster’s
human paralogs (specifically, miR-106a, miR106b, miR-93, miR-20b, miR-92a-2
and miR-363). Three commonly predicted targets of the miR-17-92 cluster showing
anti-correlated expression were tumour suppressors TGFBR2 [33], DCN [105], and
CAV] [106] which were all under-expressed in the tumour tissues. This is consistent
with previous studies presenting the miR-17-92 cluster as inhibitors of TGFS
signaling via regulation of key pathway genes [34] (Figure 6). Interestingly, while
the role of CAV1 in breast cancer is well-documented, it had not been previously
linked to the miR-17-92 cluster.

In Pub III, three sets of interesting miRNAs were defined in the study: those DE
between primary and relapsed tumours, those with relatively high expression in
tumours compared to non-malignant B-cells (n = 24), and those with relatively
low expression in tumours (n = 177). Differential analysis with both edgeR and
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Figure 7: Combined DLBCL pathway of significant pathways in Pub III, annotated
to targets of miRNAs differentially expressed in primary and relapsed tumours. Node
colors are representative of gene, transcript, and pathway fold-change values with
higher expression in primary tumours highlighted in blue and in relapsed tumours
highlighted in red. MiRNAs have more extreme fold-change values but have been
assigned the maximum and minimum colors such that red indicates a value >> 2.5

and blue a value << -0.5.
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Figure 8: Genes differentially expressed between good and poor prognosis tumour
samples in Pub II, their predicted targeting miRNAs with anti-correlated expression,
and the pathways in which the genes are enriched in (false discovery rate < 10%). Node
colours represent expression fold-change with higher expression in the good prognosis
group highlighted in red and in the poor prognosis group in blue. Pathway nodes were
given a fixed value of -2 if upregulated in poor prognosis samples. Paths between genes
and pathways represent average expression correlation of targeting miRNAs. Paths
connected to the focal adhesion pathway were selected to better identify associated
miRNAs and predicted target genes.

DESeq identified 13 miRNAs with statistically significant expression change (p
< 0.05). Among the high expression miRNAs were members of the oncogenic
miR-10 family [38]. Among the low expression miRNAs were miR-129-5p [107],
miR-663 [36], and miR-203a [108] with known tumour-suppressive roles.

Pathway impact analysis of the putative targets for both high and low expression
miRNAs further supported oncogenic and tumour-suppressive roles, respectively.
High expression miRNAs had putative targets enriched in cell adhesion while
low expression miRNAs had putative targets enriched in cancer-associated MAPK
signaling, cell cycle, and apoptosis pathways. MiRNAs DE between primary and
relapsed tumours had putative targets enriched in lymphoma-associated pathways
[109]: Phosphatidylinositol signaling, B-cell receptor signaling, and MAPK signal-
ing (Figure 7). Validation by qRT-PCR confirmed lower expression for miR-409-3p,
miR-381-3p, and miR-370-3p in relapsed DLBCL. Further functional analysis
showed overexpression of the three validated miRNAs in DLBCL cells enhanced
cell chemosensitivity.

The underlying aim of Pub IV was to see if NGS was a suitable platform for
functional miRNA studies of different mouse brain tissue. The answer was yes,
and covered the same benefits over microarray technology as described in Chapter
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3.2. Several miRNA families and clusters were found to be DE in the mouse
brain tissues and included the miR-8 family, miR-182-96-183 cluster, miR-212-312
cluster, and miR-34 family. Interestingly, more members from these families and
clusters were found to be DE in small RNA-seq compared to microarray. Pathway
analysis of the predicted targets of DE miRNAs for each brain region suggested
regulation of brain region-specific signaling pathways [110, 111].

Director enables data visualization of regulatory cascades and guides
further functional investigation

Co-regulation by miRNAs is a biological feature that is simpler to understand
visually than statistically. Network graphs are generally used to represent gene
regulation by miRNAs, but Sankey diagrams offer a more intuitive depiction of
regulatory cascades with clear biological levels represented.

In Pub I, anti-correlated and predicted miRNA-target gene pairs of the TGFf3
signaling pathway and mir-17/92 cluster were visualized with Director and revealed
interesting differences in the co-regulation of tumour suppressors TGFBR2 and
DCN (Figure 6): 9 of the 10 expressed members appeared to target both of the
known transcripts of TGFBR2, while all 10 miRNAs appeared to regulate just one
of the four different transcripts of DCN.

In Pub II, 385 genes were identified to be DE between good and poor prognosis
patients (false discovery rate < 10%). Four KEGG pathways were found to be
significantly enriched by 32 DE genes (false discovery rate < 10%): Extracellular
matrix-receptor interaction, Focal adhesion, Cytokine-cytokine receptor interaction,
and Amoebiasis. Ten miRNAs with significant anti-correlated microarray expres-
sion (p < 0.01) were then identified for the 32 genes (Figure 8). While elevated
levels of COL11A1, INHBA, and THBS?2 are a signature feature of metastasis [112],
with collagen genes known to contribute to poor overall survival in OVCA [113],
the putative connection to miRNAs had not yet been established. Data visualization
with Director not only supported the idea of poor prognosis OVCA modulated
through cell-matrix interaction pathways, but visually prioritized the identification
of the above-mentioned oncogenes through the value-based color assignment of
nodes and paths to depict the estimated contribution of a gene’s altered expression
on biological pathways.

In Pub III, visualization of the DE miRNAs and their target genes with Director
(Figure 7) guided and supported further functional study in additional DLBCL cells.
It identified miR-409-3p, miR-381-3p, and miR-370-3p as strong candidates for
functional study and their co-regulatory behavior in the suppression of lymphoma-
associated pathways.
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7.2.2 Novel miRNA discovery identifies other small RNA with miRNA-like func-
tion

Novel miRNA discovery is configured in SePIA (Pub I) to first identify putat-
ive miRNA sequences for each sample and then join them across samples into
overlapping genomic regions. The idea was to broaden novel miRNA discovery
to include genomic regions that may contain other small RNAs either encoding
miRNAs or containing miRNA-like features. Pub I identified 33 such novel miRNA
regions DE between normal and tumour breast tissue (false-discovery rate < 0.05).
Manual inspection of these regions revealed five overlapping small nucloeolar RNAs
(SNORA56, SNORA69, SNORD95, SNORD49, SNORDS82), two overlapping regions
formerly annotated to putative miRNAs in Ensembl (AL161626.1, FP236383.10),
and one overlapping small zinc-finger protein 813 (ZNF813).

Novel miRNA discovery was also performed but not included in the results of Pub
III. One of the 10 putative novel miRNA regions DE between primary and relapse
tumours annotated to SNORD71, a snoRNA with known miRNA-like features and
a predicted role in methylation [114]. These results concur with previous work by
Ender et al. [115] that identified a class of human snoRNAs with the ability to also
function like miRNAs, and by Scott & Ono [116] that further defined a subset of
snoRNAs as dual-function regulatory RNAs.
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Discussion

The main aim of this work was to develop and use computational tools to better
facilitate miRNA research, with emphasis on identifying potential miRNA biomark-
ers and therapeutic targets in two biologically complex datasets (mouse brain and
human tumours). In doing so, the intent was not to recommend specific tools for a
miRNA study, but rather to be inclusive of the best representatives — that is, reliable
and established — of methods in use. In a field where technology and methods
are still developing, and where biological features are still being discovered, it is
more important in the long run to have a well-developed workflow that can robustly

incorporate innovations in the field.

This thesis presents two tools to better facilitate miRNA research with multidimen-
sional data, currently and in the future: SePIA, a workflow to implement standard
processing, analysis, and integration of RNA and small RNA-seq data; and Director,
an R package to visually explore the flow of biological information and provide
context to the therapeutic potential of miRNAs.

SePIA has been applied in a variety of experimental settings. As our understanding
of miRNA target recognition grows, a robust workflow such as SePIA becomes
essential to accommodating the new technology and the consequent changes to
computational algorithms resulting from them.

Implementation of standard RNA-seq procedures

Reproducibility is essential to any study based on RNA-seq data and, in the absence
of a standard data processing pipeline, a standard procedure for implementing
strategies and analysis scenarios is ideal. This work shows how modules with
customizable component parts is a feasible and practical solution. By providing a
stable infrastructure for the processing and analysis of RNA-seq data, a comparable

level of output is achievable for similar RNA-seq projects.

Computational workflows are essentially a series of executable software, and SePTA
was developed such that all intermediary results matched software expectations.
That is, the files produced within the workflow could be replicated by executing the
corresponding software independently with the same parameters. This is straight-
forward to do as parameter settings and software versions used are documented for
each SePIA workflow instance.

While computational workflows have been previously done with RNA-seq [117,
118], small RNA-seq [119], and even integration of the two [120], the heavy com-
putational requirements of combining all three is a major challenge to prospective
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users. Some get around this by limiting dataset-specific customization to optimize
usability and accessibility [57, 121]. However, with such variable experimental
designs and sample sizes in a given project, this was not an acceptable limitation in
the design of SePIA.

The incorporation of Docker [104] provided a simple solution to the dilemma of
installing all the required tools with minimal computational proficiency. The An-
duril workflow engine also provided a means to develop fully-automated reporting
and documentation of the parameters executed in SePIA pipelines. These workflow
conveniences help users to focus more on data analysis and hypothesis testing rather

than computer specifications.

Workflow considerations and limitations

The choice of readily available software in the SePIA workflow is based on previ-
ously published comparisons of tools [45, 54, 122]. For example, Trimmomatic
[91] works well with preprocessing both paired and single-end RNA-seq reads
but was less efficient at trimming small RNA-seq reads to the expected miRNA
length of 19-22nt compared to FASTX-Toolkit [90]. This is likely due to different
stringencies in the detection of partial 3’ adaptor sequences [122]. Modularity in
the workflow allows for the implementation of novel methods not readily available
in SePIA, or the implementation of similar tools in parallel, to process and analyze

sequencing data.

Many variations of RNA-seq protocols and analyses have been published, making it
challenging for new users to appreciate all of the steps necessary to conduct an RNA-
seq study properly [50]. To serve as a base workflow template, SePIA pipelines
are initially configured to use tools in general, case versus control, RNA-based

expression studies.

Expression profiling miRNAs for clinically meaningful insights

This work set out to contribute to the area of miRNA research involved in the
processing and analysis of expression data on a gene and transcript level. Context
was placed on the biological function of miRNAs in complex and difficult-to-treat
disease.

Aberrant miRNA expression is a recurring observation made in poor prognosis
cancer types and those that enter metastasis [14, 69]. Analysis of expression
profiles from different tissues and conditions make it possible to identify those
molecules with aberrant expression potentially corresponding to important roles in
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distinguishing tissue phenotype [8]. For example, differential analysis of miRNAs
from Pub III and IV identified miRNAs with roles in cell growth and brain
development, respectively. Biological function is well-annotated for protein-coding
genes, so the inhibition of a predicted target’s expression into a protein can be
inferred as a miRNA’s negative regulation of the gene’s biological function. In this
way, miRNAs have been identified in this work and others as viable biomarkers in
disease diagnosis, treatment, and/or prognosis [14, 23, 25, 26].

While two approaches to differential expression are primarily used in this thesis
work, the common assumption for all differential analyses is that samples being
compared contain similar amounts of RNA. No single method dominates another
across experimental designs, but edgeR and DESeq are consistently among the best
performers [45, 48]. Additionally, both methods produced highly overlapping sets
of differentially expressed miRNAs in this work.

The effect of a single miRNA on a single gene is sometimes negligible, especially
in comparison to transcription factors, and has lead to speculation over the true
biological contribution [123]. However, co-regulation of several miRNAs on several
genes has been found to be significant [12, 32, 67] and is supported by the results
of Pub II and IIT in cancer. Computational methods have been developed to predict
such networks of miRNA-gene interactions from sequence and expression data [71,
124] but without the benefit of clear, one-to-one interactions that target identification
methods provide, it can be a challenge to formulate hypotheses about the role of

individual molecules and effectively prioritize functional investigation.

High-throughput computational approaches achieve the identification of many
statistically significant driver molecules, but functional studies are still essential
to prioritizing the list to relevant candidates [63]. The ability to conceptualize
biological relevance from computational results is still an exclusively human
skill [13, 43] . Director was developed on the idea that visualization provides
a straightforward approach to integrating and interpreting result data. Work in
Pub II and III demonstrate how a visualization tool combines expression analysis
results into meaningful interpretations of the regulatory contributions of miRNAs

on cancer pathways.

Complex diseases tend to operate on multiple molecular levels and so genes and
transcripts may reveal only part of the story. As high-throughput technology
becomes more affordable, large-scale multidimensional studies become more
common. While these will add depth to our understanding of diseases, integration
of such multidimensional data will also add new computational challenges. Both

SePIA and Director were developed to help take on these challenges.

Recent evidence indicate that the abundance of proteins that make up the RISC
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complex, including the miRNA-binding Argonaute proteins, has influence on the
effectiveness of miRNA target-binding. This implies that some computationally
predicted targets may indeed be true targets, but will not be detectable in cells where
there is insufficient levels of RISC molecules [31]. To be detectable, functional
regulation also seems to require target genes to have sufficient dose-sensitivity [123].
To my knowledge, protein data and tissue specificity have not yet been incorporated
to target prediction algorithms, and no high-throughput method currently exists to
identify dose-sensitive genes [123]. However, SePIA’s robust and modular design
guarantees it will be relatively easy to incorporate such data and tools (such as
Director) to better characterize the regulatory role of miRNAs in the future. For
example, results produced from a novel prediction algorithm could be incorporated
as an additional resource for the miRNA-target gene database referenced in the
miRNA-mRNA integration step. Predicted values for target binding strength could
also be used as input for the paths connecting miRNAs to mRNAs in the regulatory
cascades visualized with Director.
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Conclusions

Scientific research is about furthering our knowledge through systematic collection
and investigation. Data analysis and exploration leads to new (testable) hypotheses;
new biological discoveries influence which and how measurement technologies and
computational approaches are developed. Sometimes what we learn is that there
are gaps in our knowledge, and to fill the gaps we must ask different questions
[125]. The history of miRNA studies is a good example of this — though we
are more confident with detecting small non-coding RNAs and functional roles in
disease and development, we are less certain about why and how these functions are
activated in different tissue context. MiRNA research has thus far only scratched the
surface of an unexpectedly deep and complex regulatory system of gene expression
[126]. The existence of other small, non-coding RNAs with miRNA-like features
[115, 116, 127] adds to the mystique of miRNAs and further hints to a highly

intricate and biologically relevant role for miRNAs.

Tremendous progress has been made in the last decade to improve the reputation of
non-protein coding RNA. However, a lot of work is still needed to ascertain their
exact biological functions and, consequently, clinical potential. The bottleneck
facing biomedical research today is not the processing of large-scale data nor
the availability of computational resources, but the mostly-manual and tedious
interrogation of computational results for meaningful and actionable insights.

As the future of cancer research is directed more and more to personalized medicine,
consequent development in both RNA-seq technologies and computational methods
will bring us closer to achieving direct implications in clinical decision-making.
With mounting evidence of the clinical potential of miRNAs and the first clinical
trials already underway [26], their use in therapies may be realized sooner than
our ability to precisely understand their regulatory behavior. The latter will still
be necessary to optimize the use of miRNAs as biomarkers and treatment targets.
Thus, contributions from this work will continue to facilitate a better understanding
of the functional potential of miRNAs in novel, robust therapeutic strategies in all
fields of biomedicine.
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