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Abstract

Background: Current high-throughput sequencing platforms provide capacity to sequence multiple samples in
parallel. Different samples are labeled by attaching a short sample specific nucleotide sequence, barcode, to each
DNA molecule prior pooling them into a mix containing a number of libraries to be sequenced simultaneously. After
sequencing, the samples are binned by identifying the barcode sequence within each sequence read.
In order to tolerate sequencing errors, barcodes should be sufficiently apart from each other in sequence space. An
additional constraint due to both nucleotide usage and basecalling accuracy is that the proportion of different
nucleotides should be in balance in each barcode position. The number of samples to be mixed in each sequencing
run may vary and this introduces a problem how to select the best subset of available barcodes at sequencing core
facility for each sequencing run. There are plenty of tools available for de novo barcode design, but they are not
suitable for subset selection.

Results: We have developed a tool which can be used for three different tasks: 1) selecting an optimal barcode set
from a larger set of candidates, 2) checking the compatibility of user-defined set of barcodes, e.g. whether two or
more libraries with existing barcodes can be combined in a single sequencing pool, and 3) augmenting an existing
set of barcodes.
In our approach the selection process is formulated as a minimization problem. We define the cost function and a set
of constraints and use integer programming to solve the resulting combinatorial problem. Based on the desired
number of barcodes to be selected and the set of candidate sequences given by user, the necessary constraints are
automatically generated and the optimal solution can be found. The method is implemented in C programming
language and web interface is available at http://ekhidna2.biocenter.helsinki.fi/barcosel.

Conclusions: Increasing capacity of sequencing platforms raises the challenge of mixing barcodes. Our method
allows the user to select a given number of barcodes among the larger existing barcode set so that both sequencing
errors are tolerated and the nucleotide balance is optimized. The tool is easy to access via web browser.
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Background
It is a common practice to pool several samples together
in order to maximize the usage of the capacity of high-
throughput sequencing platforms. For example, at the
moment, a single lane of Illumina HiSeqX produces hun-
dreds of millions reads per run and the new NovaSeq
can produce billions of sequences per run. If application
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requires only few tens of millions of reads per sample, it
would be waste of resources to allocate an entire lane for a
single sample. Therefore, several sequencing libraries are
pooled together and sequenced in parallel using the same
lane in the sequencing apparatus. This introduces the
problem how to separate different samples after sequenc-
ing. A standard solution is to use a short barcode sequence
for labeling different samples. These barcode sequences
are attached to the fragments during the library prepara-
tion. The two processes, mixing the samples and then sep-
arating them after sequencing are also called multiplexing
and demultiplexing, respectively.
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In order to work properly, barcode sequences should
be sufficiently different from each other. Redundancy in
the barcode sequence provides the possibility for error
correction. For example, in order to tolerate a single
nucleotide mismatch in barcode detection, different bar-
code sequences should be at least three nucleotide mis-
matches apart from each other. More generally, in order to
tolerate m mismatches, the distance between all barcode
pairs should be at least 2m + 1. Sequencing technology
may give further restrictions for barcodes being opti-
mal. For example, in Illumina sequencers, the nucleotides
are detected using two lasers, red laser for A/C and
green laser for G/T. For optimal detection, these two
nucleotide groups should be in balance between all bar-
codes in each barcode position. Experiments show that
reduced diversity in nucleotide composition results in
data loss [1]. Besides nucleotide diversity being impor-
tant in cluster identification, obtaining a good nucleotide
balance is important for successful basecalling to be
performed.
De novo barcode design, i.e. the process where the

set of barcodes is constructed from scratch, is a solved
problem and several tools are available for it, e.g. [2–
4]. One of the first barcode designs was [5], where
Hamming distance was used to measure the dissimilar-
ity between the barcodes. Hamming distance has also
been used in [6]. Taking into account insertions and
deletions results in Levenshtein distance (also called
edit distance), see e.g. [7]. Sequence similarity, com-
plexity, GC content, and self-hybridization are taken
into account in [8] and [9] includes nucleotide balance
between barcodes which is important especially when
multiplexing small number of samples using Illumina
platform.
However, none of the aforementioned tools are appli-

cable in the situation where the user wants to select an
optimal set of barcodes among the existing barcodes. The
only tool [4] which reports to do subset selection does it so

that the user cannot even define the number of resulting
barcodes and furthermore, the nucleotide balance is not
taken into account, see Additional file 1. Selecting the sub-
set randomly among the larger set of candidate barcodes
has the assumption that all barcode subsets are equal.
This is not the case since although the criterion for the
minimum pairwise distance would be satisfied, different
subsets have different nucleotide balances. In a sequenc-
ing center, the barcode selection is a practical daily prob-
lem. It would be waste of resources to order a unique set
for each individual experiment. In the other extreme, if
the same set of barcodes should be re-used in all future
sequencing runs, in order to retain the nucleotide bal-
ance, the number of samples to be multiplexed should
remain the same in all sequencing runs which would be
highly restrictive.
At the moment, Illumina provides tables giving instruc-

tions how to select its own barcodes for multiplex-
ing with various number of samples [10]. In these
recommendations, nucleotide balance is taken into
account. However, the tables are for Illumina’s fixed
set of barcodes. Our tool lets the user provide her
own set of candidate barcodes to be selected from.
After the user has defined how many barcodes are
needed, the tool finds an optimal set which satis-
fies the threshold for minimum pairwise sequence dis-
tances and importantly, the nucleotide balance has been
optimized.
Three tasks for which our tool can be applied are shown

in Fig. 1. The main application is to select an optimal bar-
code set from given candidates (Fig. 1a). Another appli-
cation is to check the barcode distances and nucleotide
balance of user selected barcodes (Fig. 1b). For example,
if there are two libraries, it can be used to check whether
the barcodes in them are compatible to be sequenced
together. Third application is to augment a set of barcodes
(Fig. 1c). This is the case where the user wants to add
new samples to an existing sequencing library. Optimal

a b c

Fig. 1 Applications of BARCOSEL. BARCOSEL can be used in three different modes depicted in panels a) selecting an optimal barcode set from
candidates, b) checking user-defined set of barcodes, and c) augmenting an existing set of barcodes
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barcodes for new samples are found taking into account
the already existing ones.

Methods
Selecting a subset of barcodes among a set of candi-
date barcodes is a combinatorial problem. Let xi denote
the indicator for presence or absence of barcode i. The
number of variables xi is the number of all candi-
date barcode sequences given by user and they can get
only binary values. The number of all possible subsets
is restricted by the requirement of minimum distance
between the barcodes. Further restrictions are intro-
duced due to required nucleotide balance in the opti-
mal set. The task is to select n barcodes among the
set of user-defined candidate barcodes. After we have
defined a cost function, we can use linear integer pro-
gramming [11] for minimizing it. For optimal barcode
selection, we define the following cost function to be
minimized:

L∑

l=1
|nAl + nCl − n/2| + |nGl + nTl − n/2|

+ |nAl − n/4| + |nCl − n/4| + |nGl − n/4|
+ |nTl − n/4, |

(1)

where L is the barcode length and nAl , n
C
l , n

G
l , n

T
l are

the number of nucleotides A,C,G,T, respectively, in bar-
code position l in a selected set of n barcodes. This
measures the nucleotide balance between the barcodes.
The first two terms in (1) are for the balance of the two
nucleotide groups for two Illumina lasers. The follow-
ing four terms are for measuring the balance between
single nucleotides. If all four nucleotides are in bal-
ance, also the nucleotide-pair groups are in balance and
the first two terms are not needed in the cost func-
tion. However, if no perfect nucleotide balance can be
found, the two first terms are important since they
guide the solution towards the balance between the
A/C and G/T groups. In addition to terms in (1), the
final cost function includes also four terms for global
nucleotide balance between A,C,G, and T irrespective
of their positions. The number of different nucleotides
n{A,C,G,T}
l in a selected barcode set is calculated using

the barcode sequences with the help of indicator
variables xi.
We have three types of constraints when minimizing

the cost function. Since there are absolute differences in
the equation, they must be formulated suitably for linear
programming. Here we utilize the fact that min|x| cor-
responds to min t so that t ≥ x and t ≥ −x, where t
is an auxiliary variable. For each nucleotide position in

a barcode, there are six terms with absolute differences.
We apply the method above to each of them and intro-
duce six auxiliary variables for each barcode position. The
values of the auxiliary variables are continuous, i.e., they
are not restricted to be integers. For each auxiliary vari-
able, there are two constraints. This way, if barcode length
is eight nucleotides, there will be 48 auxiliary variables
and 96 constraints. In addition, there are four auxiliary
variables and eight constraints for the global nucleotide
balance. It is noteworthy that the number of nucleotide
balance constraints does not depend on the number of
barcode candidates, it only depends on the length of the
barcodes. The second type of constraints are for prevent-
ing too similar barcodes to be present in the optimal set.
The similarity is measured using user-defined distance
(Hamming or Levenshtein). If the distance between two
barcodes j and k is below the given threshold, they both
should not be present at the same time in the optimal
barcode set. This constraint is formulated as xj + xk ≤
1. Forbidden barcode pairs are detected by calculating
the distances between all barcodes sequences. Note that
although here we use Hamming or Levenshtein distance,
it is straightforward to use any other sequence distance.
How the constraint is formulated to deny illegal barcode
pairs remains the same regardless of the sequence dissim-
ilarity function. The third type of constraints is a single
equation. It defines the number of selected barcodes. In
case the number of all candidate barcodes is M and the
number of barcodes to be selected is n, the last constraint

is
M∑
i=1

xi = n.

After generating the constraints described above, any
integer programming solver can be used. We have inte-
grated C-library lpsolve version 5.5 [12] in our software.
User provides a set of candidate barcodes in a FASTA file
and the desired number of barcodes to be selected. Output
is a FASTA file which contains the selected barcodes and
a graphical diagnostic plot which shows the position-wise
and global nucleotide balance.Minimumbarcode distance
is a strict criterion, so if a solution is found, it is guaran-
teed that no barcode pair in a selected set is below the
chosen threshold.

Results
Our tool is available through web interface, see Fig. 2.
User can give a set of candidate barcodes in FASTA for-
mat and the number of barcodes to be selected. In order
to help getting started, our web page contains an example
set of 288 barcodes which can be used to select bar-
codes from. The user can define a minimum distance
between barcodes using either Hamming distance (num-
ber of nucleotide differences between two barcodes in
the gapless alignment) or Levenshtein distance (number
of substitutions, insertions, and deletions to convert one
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Fig. 2Web interface to BARCOSEL. User needs to give only two inputs: (1) Candidate barcodes in FASTA format and (2) the number of barcodes to
be selected. Sequences can imported either by copy-pasting them in a text box or uploading a FASTA file. After user has pressed submit button, the
web page is returned containing an optimal set of barcodes and an image showing nucleotide balance in each barcode position. In case no
solution can be found, user gets a report. Optional input parameters become available when pressing Advanced button. These include (3) an initial
set of barcodes if BARCOSEL is used to augment an existing set, (4) distance type (Hamming or Levenshtein) and minimum barcode distance
required (default is 3 tolerating one sequencing error), and (5) parameters related to lpsolve: maximum computation time (default is 10 seconds),
branch-and-bound search depth (0 means no restrictions), and basis crash parameter related to initialization. There is no need to change lpsolve
related parameters unless no acceptable solution is found with default values

barcode sequence into another). The default minimum
barcode distance is 3 using Hamming distance. When
user wants to only check the nucleotide balance in an
existing barcode set and whether the barcode distances
exceed the given threshold value, the number of bar-
codes to be selected can be defined to be equal to
the total number of barcodes in the input set. When
user wants to expand an existing subset of barcodes,
the initial subset is provided using Advanced menu.
The desired number of new barcodes which optimally
expand the existing subset is selected from candidate
barcodes.
We have applied our method to a barcode set con-

sisting of 288 candidate sequences having a length of 8
nucleotides. These barcodes were initially designed using
TagGD software [8] and further screened to be suit-
able for PCR [13]. We have used this set for selecting
various number of barcode sets for different purposes.
Some examples are shown in Table 1. The best possible
position-wise nucleotide balance depends on the num-
ber of barcodes to be selected. Only when it is a multiple
of four, there can be an equal number of A, C, G, and
T in every barcode position resulting in perfect balance

and cost function equal to zero. In this case also the
solution is found fast, usually within only few seconds.
In other cases, when the best solution differs from zero,
even when the global optimum has been found, the search
process will continue. For this reason, there is a user-
defined time limit to stop the search. When it exceeds,
the best solution found so far is returned. With our data,
less than 20 s was always enough to get a satisfactory
solution. Additional user-defined parameters include the
maximum depth of branch and bound search. If accept-
able solution is not found, it might be beneficial to widen
the search at the cost of its depth. Another parame-
ter is the initialization method of the search which can
be changed.
Figure 3 shows examples of four optimal barcode sets.

When the number of barcodes in the set is even, it is pos-
sible to get perfect balance between A/C and G/T groups
in every barcode position (Fig. 3a). When the number is
odd, this is not possible, however, it is still possible to
get perfect nucleotide balance over the barcode length,
see the rightmost column in Fig. 3b. This means that the
nucleotide usage between A,C,G, and T will be the same
in sequencing, at least for the barcode. When the number
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Table 1 Examples of optimal 8bp barcode sets with 8,12,16, and
24 barcodes

Set A (8) Set B (12) Set C (16) Set D (24)

AACACATC AGTTGCTG ACACAGGC ACACAGGC
AGAGTGCG ATAGAGTC ACTGTTAG AGCCTACT
CCGTATAT ATCATTGC ATAGAGTC AGTTCCGC
CTTGGTTG CAGTTCCA ATTAGCTG ATACGGAT
GAGATAAC CATGGAAT CAGTTCCA ATGACGAA
GTACAGGA CGCAAGCT CCGTATAT ATGGTCTC
TCTCGCCT GAGATAAC CGCAAGCT CAGTTCCA
TGCTCCGA GCAGATAA CTGGCACA CATGTTGA

GGCTCTTG GACACTAA CCTGAACC
TCGCCAGA GGAGTAGA CGAACTTC
TCTCGCCT GGCTCTTG CTCCGGTT
TTACCGGG GGGAGATC CTGAATCA

TACTGCAG GAAAGAAG
TATCCAGT GAGATTGT
TCTCGCCT GCATCACG
TTACTGGC GCCGAATG

GCTGAAGA
GGCTCTTG
TACTGCAG
TATCTGTG
TCTCGCCT
TGAGAGAT
TGCTCCGA
TTGAGTAC

Each barcode is at least three mismatches apart from each other (using Hamming
distance) within the set allowing one nucleotide error in sequencing to be corrected.
Proportions of all four nucleotides A,C,G,T are in balance in each barcode position

of barcodes is a multiple of four, it is possible to get perfect
nucleotide balance in every barcode position (Fig. 3c). If
the number of barcodes is large, it is possible to get near
perfect balance even when the number of barcodes is odd
(Fig. 3d).

Discussion
Although in principle there are no restrictions for the
size of the data the method can handle, in practice the
computation time grows when the size of the input bar-
code set increases. For a practical advice, our tool is
mostly applicable for selecting a subset of barcodes from
an existing larger set which does not exceed several thou-
sands of candidates. In particular, our tool is not meant
to be used in the situation where the user first enumer-
ates all possible 8-mers (65,536 barcodes) and then starts
selecting a subset of it. For this kind of application it
is better (faster) to use de novo barcode design tools.
We have mainly used our tool for RNA-seq and genome
re-sequencing, where the number of libraries to be multi-
plexed varies between 10 and 20, and the size of the input
data consists of a few hundreds of barcode candidates,
see e.g. [14]. The optimization of nucleotide balance is
most important with small number of samples. When the
number of libraries to be multiplexed becomes larger and
therefore larger number of barcodes are used together,
the nucleotide balance will become eventually evenly dis-
tributed even by chance. In such cases it suffices to
check that the sequence distances (measured byHamming
or Levenshtein distance) between all barcode pairs are
adequate.
Finally, for large number of multiplexed samples,

the method of dual indexing can be used. In this
method two different barcodes are attached to each
sample. For example, if there is a need to multi-
plex 384 samples, it can be done as a combination of
24-barcode P7 index set and 16-barcode P5 index set
(24 ∗ 16 = 384).

Fig. 3 Nucleotide balances of optimal sets with varying number of barcodes. Horizontal axis is the barcode position, total indicates the nucleotide
balance over the entire barcode length. In Illumina sequencing, nucleotide groups A/C and G/T should be in balance for optimal detection in each
position. Total balance is important for equal consumption of nucleotides during sequencing. a 10 barcodes. b 11 barcodes. c 12 barcodes. d 75
barcodes
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Conclusions
Increasing capacity of sequencing platforms raises the
challenge of mixing barcodes during the protocols in
RNA-seq, whole genome sequencing, and amplicon
sequencing approaches. The number of samples to be
mixed may vary which introduces a problem how to select
the best barcode combination for each sequencing run.
Instead of designing a new barcode set from scratch for
each sequencing run, the practical problem is how to
select the best combination of barcodes from available
existing set of barcodes. This is the task we have developed
our method for. Our tool selects the desired number of
barcodes in such a way that the nucleotide balance of bar-
codes is optimized. In addition, user can set a minimum
distance between barcodes to tolerate sequencing errors.
We have successfully used our method in several sequenc-
ing projects of various kinds of assays. Web interface to
our tool is available at http://ekhidna2.biocenter.helsinki.
fi/barcosel. It contains instructions and an example candi-
date barcode set to be used for subset selection.

Additional file

Additional file 1: Barcode selection using BARCOSEL and R-package
DNABarcodes. (PDF 78 kb)
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