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Introduction
For many years, the main use of functional neuroimaging has 
been to localise cognitive processes in space (e.g. with functional 
magnetic resonance imaging (fMRI)) or time (e.g. with electro-
encephalography analysis (EEG)), by comparing brain activity in 
two or more experimental conditions that differ in the cognitive 
process of interest (Box 1). More recently, there has been a grow-
ing interest in how activity in one brain region relates to activity 
in other regions, that is, functional connectivity. While these 
types of analysis have produced impressive advances in knowl-
edge, they tell us little about, for example, the content of brain 
activity, that is, what that activity might represent in the world or 
what it might represent to other brain regions.

Multivariate pattern analysis

The emphasis on localisation led to the adoption of ‘mass uni-
variate’ analyses, where a separate statistical test (e.g. between 
two conditions) is done at every point in space or time. By con-
trast, multivariate analyses use information in the pattern of brain 
activity over multiple measurements, such as voxels in fMRI, or 
sensors or time points in electro-/magneto-encephalography (E/
MEG). Modern machine learning methods are very powerful at 
classifying these patterns according to two or more classes, ena-
bling the extraction of small signals from noisy data that would 
be difficult to detect in univariate analyses (see Haynes, 2015, for 
primer on pattern analysis approaches). Such ‘decoding’ has been 
used to track the temporal evolution of cognitive representations 

using E/MEG. For example, King et al. (2014) trained a classifier 
on patterns of activity over MEG sensors at one time point and 
tested its ability to generalise to other time points forward and 
backward in time. When applied to responses evoked in an audi-
tory mismatch task (where a sequence of expected sounds is fol-
lowed by unexpected one), these authors were able to characterise 
an extended sequence of successive processing stages that would 
be difficult to detect with conventional univariate analyses of 
evoked responses. These multivariate classifiers can also be used 
for more conventional localisation, or brain mapping, using 
‘searchlight’ methods, where patterns are defined over a subset of 
spatially or temporally contiguous samples (e.g. a sphere of brain 
voxels), and these subsets systematically sampled across the data 
space (e.g. Su et al., 2014 in source-reconstructed E/MEG).

Multivariate patterns can be used for more than simple clas-
sification. For example, by measuring the similarity between the 
patterns evoked by different stimuli, one can construct an N × N 
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matrix of all pairwise similarities between a set of N stimuli and 
examine structure in those matrices (e.g. groupings of animate 
vs inanimate objects) – so-called representational similarity 
analysis (RSA; Kriegeskorte et al., 2008). Because this repre-
sentational space is abstracted from the original measurement 
space, these matrices can be compared across different types of 
data, for example, human versus nonhuman primate fMRI data, 
fMRI versus E/MEG data, or even fMRI data versus data simu-
lated by artificial neural networks. In the latter case, RSA has 
been used to compare patterns in layers of deep-convolutional 
neural networks of visual categorisation with those in various 
stages of the human visual object pathway (Khaligh-Razavi and 
Kriegeskorte, 2014).

More generally, multivariate pattern analysis (MVPA) has 
enabled questions about mental representations that could not be 
addressed directly before (e.g. with purely behavioural methods), 
such as evidence for the suppression of some memories when 
others are retrieved (Wimber et al., 2015). An interesting future 
direction of analysis will be multivariate connectivity, where the 
connectivity between two brain regions is not confined to tempo-
ral correlations of univariate signals but rather systematic covari-
ation over time in the patterns of activity in those regions 
(Geerligs et al., 2016). This has the potential to elucidate how 
changes in the content of what is represented by one brain region 
relate to changes in what is represented by another brain region, 
allowing closer mapping to artificial neural network models of 
cognitive processing.

Like most analysis techniques, there are pitfalls associated 
with MVPA. For example, it is vital that the data used for training 
classifiers are independent of the data used to assess classifica-
tion performance; otherwise, classification will be biased to be 
above chance. Furthermore, resulting weight maps of features 

(e.g. voxels) only reflect how the set of features together achieve 
classification and cannot be used to make inferences about indi-
vidual features. Most importantly, like with all neuroimaging 
data, above-chance classification does not imply that the predic-
tive information is actually used for computation by the brain.

Time-varying functional connectivity

Traditional measures of functional connectivity assume that net-
works remain stable across time, for several minutes in the case 
of resting-state fMRI. This stationarity assumption is normally 
necessary to obtain sufficient time points to estimate connectivity 
accurately. While there are attempts to measure time-varying 
connectivity with fMRI using sliding windows (e.g. Allen et al., 
2014), insight is limited by the slow sampling rate (fMRI images 
are typically only acquired every 1–2 s) and slow dynamics of the 
haemodynamic response, which obscure changes in brain states 
at the sub-second scale. The much richer temporal information in 
E/MEG however allows more advanced methods, such as hidden 
Markov models (HMMs) (see O’Neill et al., 2017, for a primer 
on such approaches). Baker et al. (2014), for example, used 
HMMs to identify a set of states in source-reconstructed resting-
state MEG data, whose spatial maps corresponded to the well-
known resting-state networks (RSNs) seen in fMRI. However, 
these RSNs were found to occur transiently, for much shorter 
durations (100–200 ms) than could be seen with fMRI. 
Furthermore, the transition probabilities could be examined, with 
some states being more likely to follow others. An extension of 
this method was applied to MEG data from a motor task (Vidaurre 
et al., 2016), revealing a distinct temporal order of states, each 
associated with frequency-specific motor networks. Notably, 
some states were time-locked to the task execution, even though 

Box 1. Basics of fMRI, EEG, and MEG.

The non-invasive nature of fMRI, EEG, and MEG, as well as their broad coverage of activity in the brain, make them useful to study 
biological substrates of cognition. While all these methodologies record activity from large populations of neurons, each of them 
has unique strengths and limitations.
fMRI measures the BOLD (blood-oxygen-level-dependent) signal, which reflects the ratio of oxygenated to deoxygenated blood. 
Since this ratio depends on neuronal population activity, fMRI indirectly measures brain activity. It has a spatial precision of a few 
millimetres and records activity from all regions in the brain, that is, both cortical and sub-cortical regions. Its ability to provide a 
window into brain processing during cognition is however limited by its coarse temporal precision – it can only differentiate changes 
in brain activity occurring around 1 s or more apart. Recent developments like high-field MRI (De Martino et al., 2015) and multi-
band fMRI (Todd et al., 2016) promise to further increase the temporal and/or spatial precision offered by fMRI.
Extracranial EEG measures electrical activity from neuronal populations via electrodes on the scalp, specifically post-synaptic 
potentials of tens of thousands of neurons firing simultaneously. Due to physics of the measurement, EEG activity predominantly 
reflects post-synaptic potentials of pyramidal neurons near the cortical surface, although sub-cortical contributions are also present, 
and secondary currents and volume conduction complicate the pattern. EEG can measure neuronal activity with fine temporal detail; 
this also means that activity in different frequency bands can be resolved with EEG. However, EEG suffers a coarse spatial resolu-
tion. This is because of blurring that occurs when electrical fields are propagated through regions of different conductivities (e.g. 
CSF and scalp) to EEG electrodes, making it difficult to infer location of active brain regions.
MEG measures magnetic induction produced by the post-synaptic electrical activity in neuronal populations measured by EEG. 
However, due to the different properties of magnetic and electrical fields, the activity recorded by MEG is less affected by second-
ary currents and more sensitive to superficial sources. At the same time, however, MEG sensors cannot detect the radial component 
of those currents. Like EEG, MEG can record brain activity with fine temporal and spectral resolution. Crucially though, MEG is 
less affected by blurring owing to different tissue types. Thus, MEG combines a high temporal resolution with a superior spatial 
resolution to EEG, in the order of a few centimetres (although even so, localisation is rarely certain, owing to the inverse nature of 
the mapping from sensors to sources). Recent developments in MEG, that is, optically pumped magnetometers (OPMs) offer the 
potential for MEG sensors closer to the head, which should further increase signal-to-noise ratios (Boto et al., 2017).

fMRI: functional magnetic resonance imaging; EEG: electro-encephalography; MEG: magneto-encephalography; CSF: cerebrospinal fluid.
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no details about task timings were included in the analysis. This 
type of information about the rapid formation and dissolution of 
networks during tasks is likely to enrich cognitive neuroscience 
theories. A current difficulty of these methods is selecting certain 
parameter values, such as the number of hidden states, which can 
require considerable computation to optimise.

Neurobiological modelling

While most existing analysis methods provide statistical descrip-
tions of neuroimaging data, there is a growing interest in under-
standing the neurobiological mechanisms generating those data. 
For example, there has been a lot of work on ‘neural mass mod-
els’ that approximate the behaviour of populations of neurons and 
can be used to generate E/MEG and/or fMRI data (Friston et al., 
2017). By inverting these generative models, neural-level param-
eters (e.g. local γ-aminobutyric acid (GABA) concentration) can 
be inferred from neuroimaging data (Shaw et al., 2017). This 
allows neuroimaging data to bridge the gap between other levels 
of neuroscientific investigation, such as single-cell recording 
data and pharmacological interventions.

There has also been a lot of work on simple neurobiological 
models that generate RSNs, in particular their graph-theoretic 
properties, such as small-worldness and presence of hubs (see 
Cabral et al., 2014, for a primer on different modelling 
approaches). Deco and Jirsa (2012) for example proposed a 
whole-brain model of 66 brain regions, whose dynamics were 
described by integrate-and-fire neurons, convolved with a 
haemodynamic response to fit fMRI data. By connecting these 
regions in accordance with known anatomical connectivity (from 
diffusion MRI tractography), RSNs and their graph properties 
were observed to emerge from the model as noise-induced fluc-
tuations around a stable low activity state. This work has been 
extended to RSNs in resting-state MEG. Nakagawa et al. (2014) 
used the same model as Deco and Jirsa (2012) to show that real-
istic conduction delays are important to reproducing MEG RSNs. 
More specifically, they demonstrated that correlations between 
alpha-band power envelopes were most similar to those in exper-
imental data when propagation delays along white-matter tracts 
were within the known physiological range (5–10 m/s). These 
network models can be particularly helpful in simulating brain 
development and brain changes associated with disease. 
Nevertheless, it should be noted that these modelling efforts are 
at an early stage. While current models can emulate some of the 
phenomena observed (e.g. graph properties), there are many 
other phenomena (e.g. transient responses and travelling waves) 
that they do not yet capture.

Big data, standardisation, and 
reproducibility

Like other fields of science, neuroimaging has suffered from fail-
ures to reproduce results (see Poldrack et al., 2017 for a primer on 
issues relating to reproducibility). Part of the reason is the many 
degrees of freedom in analysis choices, which can inadvertently 
lead to false positives owing to failure to correct for the multiple 
analyses performed. This is being actively addressed with 
attempts to standardise analysis pipelines (e.g. https://www.nitrc.
org/), ideally in advance of data collection. This convergence 

towards standard practice (e.g. Gross et al., 2013; Poldrack et al., 
2008) is typical in relatively young fields like neuroimaging 
(which only really took-off in the 1990s).

Another problem has been the small sample sizes in many 
imaging studies (Ioannidis, 2005), producing low power, which 
interacts with the well-known publication bias for reporting posi-
tive results. This problem is being addressed by meta-analyses and 
initiatives to pool data (mega-analyses), again helped by standardi-
sation, in this case of data formats (e.g. http://bids.neuroimaging.
io/). More and more large datasets are being made available to 
other researchers (e.g. Human Connectome Project, http://www.
humanconnectomeproject.org/; Alzheimer Disease Neuroimaging 
Initiative, http://adni.loni.usc.edu/), as part of the growing open 
science movement. Many of these datasets include multiple neuro-
imaging modalities, requiring development of methods for multi-
modal integration (e.g. Henson et al., 2011), with the goal of 
combining the spatial resolution of fMRI with temporal resolution 
of M/EEG. A challenge for the future will be to encourage stand-
ardisation without stifling future development of new methods.

Conclusion
The rapid advances in analysis methods for fMRI and E/MEG 
data make it an exciting time for cognitive neuroscience, as we 
hope some of the examples above illustrate. While MVPA and 
time-varying functional connectivity allow fundamentally new 
questions to be asked, neurobiological modelling offers a means 
to a deeper understanding of mechanisms generating the data. 
These approaches are complemented by the improved reproduc-
ibility of results that accompanies standardisation and use of big 
data. We look forward to the continued expansion, optimisation, 
and standardisation of the neuroscientist’s neuroimaging toolkit.
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