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Abstract 

The societal transformation from fossil fuel-based energy sources to ecologically friendly energy 

sources has sparked the development and utilization of electric (and hybrid) vehicles and electric 

generators for wind turbines, among others. Permanent magnets are essential components of these 

technologies.  

 

Over the years, the production of NdFeB permanent magnets has surpassed all other kinds because 

of their low cost and improved magnetic properties. The rare-earth elements (REEs) Nd and Dy are 

critical for the production of these magnets, and they come with a significant supply risk. Also since 

REEs exist simultaneously in minerals, the balance problem has become increasingly evident; Nd 

and Dy are produced at the cost of overproduction and stockpiling of other REEs. Due to their limited 

life span, more and more end-of-life (EOL) NdFeB magnets have accumulated as scrap. Recycling 

Nd and Dy from EOL NdFeB magnets could be a more ecological means to reduce supply chain 

pressure and to partially solve the balance problem. 

 

The purpose of this thesis is to develop new ion exchangers based on zirconium phosphate (ZrP) for 

selective recovery of Co, Nd, and Dy from EOL magnets. In general, inorganic ion exchangers, such 

as ZrPs, are more selective than organic resins because of the ion-sieve functionality originated from 

rigid structures. Two inorganic ion exchangers, crystalline alpha zirconium phosphate (α-ZrP) and 

amorphous ZrP (am-ZrP) and one inorganic (am-ZrP)-organic (PAN) ion exchange composite 

material were synthesized  and characterized  for their ion exchange properties in this study.  

 

The α-ZrP was synthesized  with a lower energy and acid consumption. The ion-exchange capacity 

from the titration result was 6.65 meq/g. Co was taken up minimally from the Co-Nd-Dy ternary 

solution in acidic solution (pH 1-3) when compared with the total uptake amount. The am-ZrP was 

synthesized by using an easy scalability synthesis method at the room temperature. The molecular 

formula Zr(H2PO4)0.17 (HPO4)1.78 (PO4)0.09 • 0.96H2O was calculated from the results of digestion 

experiment, 31P NMR, and TG analysis. The molecular formula suggested that the theoretical ion-

exchange capacity of am-ZrP was 6.97 meq/g. The column elution study of am-ZrP utilized a stepwise 

gradient elution; Almost complete metal separation was achieved from a mixed 1.0 mM equimolar 

solution. These promising results encouraged us to apply am-ZrP to a larger lab-scale study. 
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To solve the possible operation problems in scale-up column separation, an am-ZrP/polyacrylonitrile 

composite was synthesized as bead form. X-ray tomography demonstrated a good spatial distribution 

of ion-exchange active component am-ZrP in the polymer matrix. Column-optimized experiments for 

the synthesized  composite were performed by altering running temperature, speed, and concentration 

of the elution agent (HNO3) as well as feed concentration and loading degree. When the column was 

run at lower speed and at higher temperature, the purity of metal fractions in the effluent was highly 

enhanced relative to the feed. Gradient elution at 50°C was adopted for metals recovery from the 

simulated leachate with the concentration 7.6 g/L which in total consisted of 1.4% Co, 9.3% Dy, and 

89.3% Nd. Obtaining complete separation was not possible by a single column due to the high Nd 

concentration in the feed. It is possible to obtain pure Co at the beginning of elution but the separation 

of Nd and Dy was not possible due to the materials uptake preference for Dy/Nd and their 

concentration in the feed. 
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1 Introduction 

Rare-earth elements (REEs) play an essential role in high technology and green industry due to their 

extensive use in applications such as permanent magnets, catalysts, rechargeable batteries, and lamp 

phosphors. Recovery and separation of REEs has become an important topic to reduce the pressure 

of increasing demand for these elements. 

 

In general, NdFeB magnets consist of 30% to 40% REEs, with Nd accounting for the main component 

(15-30%). In addition, minor elements such as Dy and Co are added whenever special applications 

are needed. As such, recycling Nd, Dy, and Co from the end-of-life NdFeB permanent magnet is an 

important supplement for the primary production of REEs. It should be noted that REEs possess 

similar physical and chemical properties, which leads to difficulty in separating one from another.  

 

Currently, environmentally friendly approaches with low cost and high efficiency are preferable in 

the metallurgy industry. Ion exchange technology has been extensively utilized in purification, 

separation and recovery of metals in chemical, food and pharmaceutical industries. Presently, it is 

still used industrially to produce high purity REEs. Inorganic ion-exchangers are more selective than 

organic resins because of the ion sieve functionality from rigid structures. So far, inorganic ion-

exchangers have been used in large scales in water purification and removal of radionuclides from 

nuclear waste effluents.  

 

The goal of this thesis was to develop a green separation and recovery process for REEs from NdFeB 

magnet leachates using zirconium phosphate (ZrP) ion exchangers. ZrPs have been extensively 

studied due to its high Brønsted acidity, high thermal and chemical stability and good stability under 

ionizing radiation. The alpha-ZrP (α-ZrP) with a layered structure and amorphous-ZrP (am-ZrP) 

owning a larger specific surface are worthy to be tested for the metals separation study. For the 

column separation, the gradient elution process has been proved as an efficient mean for materials 

separations. For the materials under study, the gradient elution process might be the preferred 

approach to obtain pure individual Co, Nd, and Dy.  
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2 Background  

2.1 Rare-earth elements  

2.1.1 Basic properties of rare-earth elements 

The rare-earth elements (REEs) consist of 17 chemically similar elements, namely the lanthanide 

elements (Z=57-71, La-Lu) plus Sc and Y [1]. As members of the group 3 elements, they share the 

same typical oxidation state (+3). Certain REEs also present +2 and +4 oxidation states (e.g. Eu2+, 

Ce4+) due to half or full filling of an electron subshell. 

Due to their different atomic numbers, REEs are typically separated into two subgroups, the ‘light’ 

REEs (lanthanides from La to Sm) and the ‘heavy’ REEs (Gd to Lu as well as Y; Eu can be considered 

either a light or heavy REE) [2]. The term ‘rare earth’ is derived from the historical difficulties of 

separation and obtaining high purity rare-earth metals and compounds. In reality, REEs are 

comparatively abundant in the earth’s upper crust; for example, Ce is as abundant as Cu. Nevertheless, 

REEs are almost always found together in minerals [3].    

Electron configurations are of critical importance and determine the chemical and physical properties 

of REEs. Lanthanum, cerium, and gadolinium possess [Xe]4fn6s2 electrons, while the remaining 

lanthanide elements possess electron configurations of [Xe]4fn-15d16s2. Scandium and yttrium show 

chemically similar properties due to their (n-1)d1ns2 configuration for the outermost electron shells, 

even though they do not have any 4f electrons [4].  

In contrast to most other elements, the ionic radii of lanthanide elements continuously decrease with 

increase in atomic number (Figure 1a). This abnormal phenomenon is called the ‘lanthanide 

contraction’. This is explained by the imperfect shielding of one electron by another in the same 

subshell [5]. Compared to the shielding effect of 4f electrons of the lanthanide ions (Ln3+), the atomic 

radius of the lanthanide atoms is not much affected by the lanthanide contraction.  
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Figure 1. The lanthanide contraction. a) Ionic radius (Ln3+), b) Atomic radius (Ln) [4] 

The lanthanide contraction results in regular changes in properties. One of the important properties is 

basicity (alkalinity), which decreases with increase in atomic number.  

La3+>Ce3+>Pr3+>Nd3+>Pm3+>Sm3+>Eu3+>Gd3+>Tb3+>Dy3+>Ho3+>Er3+>Tm3+>Yb3+>Lu3+ 

The basicity variation of the lanthanide elements provide the possibilities for separating the REEs 

from each other in hydrometallurgy [6].  

2.1.2 Challenges of REE supply and recycling 

Because of their distinctive electron features, REEs possess unique magnetic, electrical, catalytic, and 

optical properties [3, 7]. These properties make REEs essential components in various applications, 

such as high-temperature superconductors, secondary batteries, and hybrid cars [8]. REEs currently 

play a significant role in the transition from traditional to green economy. Consequently, the demand 

for REEs has significantly increased. The main driving forces behind the demand surge are the 

applications of REEs in permanent magnets, lamp phosphors, catalysts, and rechargeable batteries 

[9]. In accordance with the increasing demand for REEs, the yearly global demand for rare-earth 

metals was estimated to be 210,000 metric tons in 2015. However, the global primary mining 

production of rare-earth metals was 110,000 metric tons in 2015 [8].  

REEs have been classified as the highest supply risk and as the most critical raw materials by the 

European Commission in both 2010 and 2017 [10]. Due to their applications in green technologies, 

demand for Nd and Dy has been estimated to increase by 700% and 2600%, respectively, over the 

next 25 years [11].  
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To address the supply pressure of REEs, the following three approaches have been proposed: 

developing less critical metals to substitute for critical REEs and investing in primary mining and 

recycling of REEs from urban and industrial wastes [9, 12, 13]. There are two kinds of substitution 

methods, such as substituting REEs with common base metals and substituting critical REEs with 

less critical ones (for example, using more La and Ce to replace Nd and Dy). This can partially solve 

the ‘balance problem’ [14]. This refers to the balance between the economic market demand and the 

natural abundance of REEs in ores  [15, 16]. Primary mining is an efficient way to mitigate the supply 

risk of REEs, but can result in a higher environmental footprint and cause the balance problem [16-

18]. Recycling REEs from urban and industrial wastes is one of the strategies encouraged by the green 

economy towards solving both the supply risk and the balance problem.     

Although recycling of REEs has been extensively studied at the laboratory scale, the application of 

commercial recycling of REEs is insufficient. Regarding urban mining, it is estimated that at most 1% 

of REEs were recycled in 2011. This was due to inefficient collection, technology obstacles, and lack 

of motivation [19, 20].  

2.1.3 Recycling REEs from permanent magnets  

Neodymium-iron-boron alloys (NdFeB magnet) are the most common REE magnets. To suit 

various applications, the chemical composition has to be tuned by adding minor elements (Table 1). 

NdFeB magnets are widely used in wind turbines, hybrid and electric vehicles, computer hard disk 

drives (HDDs), household electrical appliances, and many small consumer electronic devices. 

Table 1. Function of the added elements in NdFeB magnets 

Elements Functions Reference 

Dy, Tb Enhances anisotropy, coercivity, and demagnetization temperature [9, 21] 

Gd Improves temperature efficiency [22] 

Nb Gran refining [22] 

Co Improves corrosion resistance [21] 

Cu, Al Enhances sintering of the magnet alloy [22] 

Ga Improves intrinsic coercivity and high temperature tolerance [22] 
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It is estimated that approximately 26,000 metric tons of rare-earth metals have been consumed 

annually in the production of NdFeB magnets [13]. Due to lifecycle limitations, more and more end-

of-life (EOL) magnets have accumulated, pending further treatment and recycling (Table 2). NdFeB 

magnets contain approximately 31 to 32 wt-% REEs. The main component is Nd, and small mixtures 

of Pr, Dy, Gd and Tb as well as other REEs are present for different applications. With increasing 

accumulation, more long-term efforts should be focused on REE recycling from EOL magnets. At 

the same time, improvements are needed in the development of technology and infrastructure [23]. 

By the year 2100, supply from recycling is estimated to fulfil half of REE demand [24]. Recycling 

REEs recycling is increasingly important not only as a supplement for REE demand but also as a 

more sustainable means of using natural resources [22].  

Table 2. Present and future recycling of NdFeB magnets [9] 

Permanent NdFeB magnets (Nd, Dy, Tb, Pr) Contribution to recycling 

(present/future) 

Hard disk drives Decreasing 

Consumer electric and electronic devices Stable 

Automobiles Stable 

Electric vehicle and hybrid electric vehicle motors Increasing 

Wind turbine generators Increasing 

 

Many methods have been developed for recycling REE magnets, such as direct reuse, reprocessing, 

hydrometallurgical methods, and pyrometallurgical methods. The advantages and disadvantages of 

each method are compared and explained below.  

Direct reuse in its current form is the most economical means of REE magnet recycling. This is due 

to low energy input and the fact that chemical consumption is not necessary and no waste is generated. 

However, direct reuse is only applicable to large and easily accessible magnets, such as wind turbines, 

large electric motors, and generators in hybrid and electric vehicles [9, 13, 25, 26].  

Reprocessing of alloys to magnets after hydrogen decrepitation is particularly suitable for HDDs, as  

less energy input is required than metallurgical methods and no waste is generated. However, mixed 

scrap feed and oxidized magnets are not applicable for this method. Sufficient hydrogen access is the 

key factor for this technology [27, 28].  
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Hydrometallurgical methods, including leaching, separation and precipitation processes, consist of 

the same processing steps as the procedures for REE production from minerals. These methods are 

applicable to all types of magnets. However, these methods require multi-step processing, the 

consumption of large amounts of chemicals, and generate excessive amounts of waste effluents [8, 9, 

22].  

Pyrometallurgical methods include liquid-phase processing and gas-phase extraction. These methods 

consist of directly melting REE magnets to obtain master alloys, which can be generally applied to 

all types of magnets. Compared with hydrometallurgy methods, no wastewater is generated and fewer 

processing steps are necessary for pyrometallurgical methods [29, 30].  

For liquid-phase processing, the methods require greater energy input and large amounts of solid 

waste are generated by electrical refining and by the glass slag method. In addition, oxidized magnets 

are not suitable for direct melting and liquid-metal extraction [9].  

Gas-phase extraction can be applicable to non-oxidized and oxidized alloys. Nevertheless, the 

consumption of chlorine gas and generation of corrosive aluminium chloride are the disadvantages 

of this method [22].  

2.2 Hydrometallurgical method for the recovery of REEs 

Hydrometallurgy is a traditional technique in the field of extractive metallurgy and uses aqueous 

chemistry. It has been extensively adopted industrially for the recovery of metals from ores, 

concentrates, and residual materials [31, 32]. Hydrometallurgy is also the traditional method for 

recycling REEs from permanent magnets [33]. The key procedures are leaching and separation 

(solvent extraction, ion exchange, or precipitation). The final product is obtained by conversion to 

REE fluorides or oxides (Figure 2) [34, 35]. 



15 

 

 

Figure 2. Key procedures of the hydrometallurgical method 

In commercial separation, mineral acids are applied to dissolve EOL REE magnets to obtain the 

pregnant leaching solution (containing for example chloride, nitrate, and thiocyanates). Leaching 

NdFeB magnets is challenging as these magnets contain approximately 72 wt-% iron. Recently, a 

combined pyrometallurgical and hydrometallurgical method using sulfate or nitration and calcination 

processes followed by water leaching was developed. More than 95% REEs can be extracted and Fe 

(less than 1%) and other impurities remains in the solid residue [34, 35].  Electrochemical processes 

are also useful for selective leaching. More than 95% REEs are extracted followed by membrane 

electrolysis. All iron was removed by oxidization in the anolyte and subsequently precipitated as 

Fe(OH)3 [17].  

2.2.1 Solvent extraction  

Solvent extraction is the classic method to separate materials (metal complexes and organic 

compounds) from the mixture according to the two different immiscible liquids, normally aqueous 

solution and organic solvent [36]. The leachate is subjected to a solvent extraction process for REE 

separation. The REEs from an aqueous solution are transferred to the organic phase after the 

formation of complexes using a selective extractant. Cationic, anionic, and solvating extractants are 

frequently used, such as di-(2-ethyl-hexyl) phosphoric acid (HDEHP), 2-ethylhexyl phosphoric acid-

2-ethylhexyl ester (EHEHPA), 2-Ethylhexyl 2-ethylhexyphosphonic acid (PC88A), bis/2,4,4-

trimethylpentyl/phosphinic acid (Cyanex 272), Tri-n-butyl phosphate (TBP), and 
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tricaprylylmethylammonium chloride (Aliquat 336) [37-39]. Representative extractants and 

extraction mechanisms are shown in Table 3. 

Table 3 Representative extractants and extraction mechanism for REEs. 

Type Representative extractants Extraction mechanism Reference 

Cationic 

extractants 

HDEHP, EHEHPA, 

PC88A 

 [40-42] 

Anionic 

extractants 

R3CH3N+ X- 

(R: C8-C12, X: nitrate or 

thiocyanate) 

[ N∙NO3

 

[43] 

Solvating 

extractants 

TBP 3[

 

[44] 

 

Due to the very similar physical and chemical properties, the selectivity of adjacent lanthanides is not 

very satisfactory. At industrial scale, decent separation is achieved often by using hundreds of mixer-

settler units and adopted complicated flowsheets with reflux [8]. In addition, solvent extraction often 

involves the use of toxic volatile organic solvents. Thus, new extractants or new extraction systems 

are needed for REE recycling [45-47].  

After the solvent extraction process by several stages of mixer-settlers, the low concentration leachate 

is suitable for recycling by ion-exchange technologies from a recycling efficiency and economic 

perspective [48, 49].  

The problems described above drives the development of environmentally friendly separation 

methods that eliminate redundant processing units and the use of organic solvents. 

2.2.2 Ion exchange 

Ion exchange has played a significant role in the progress and development of purification and 

separation industry. Ion-exchange techniques are not only applied for purification processes, but are 

also extensively used in separation and extraction processes in the chemical, petrochemical, food, 

power, and pharmaceutical industries. Ion-exchange techniques in particular are used industrially to 

produce high-purity REEs [50, 51].   
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REE separation by ion exchange was initiated to separate fission products from nuclear reactors. With 

the support of the Manhattan project, ion exchange on organic resins was adopted to separate REEs 

and actinides [52, 53]. Theoretical analysis of column-separation processes and its pilot-scale 

separations has been systematically studied at the same time [52-55]. Since then, separation and 

purification of REEs by ion exchange replaced tedious fractional crystallization [56]. Before the 

1960s, ion exchange was the dominant technology for obtaining individual REEs. Even though 

solvent extraction gradually became the key method for industrial production, ion-exchange 

technology is still widely implemented industrially to produce high-purity REEs [3, 51]. 

Inorganic ion exchangers are generally much more selective than organic resins due to the ion sieve 

functionality from the nanoporous, ordered, and rigid structures [57]. Inorganic ion exchangers are 

typically hydrous oxides (ZrO2, SnO2, HSbO3, and MnxOy), layered compounds (zirconium 

phosphates and layered double hydroxides), and framework structures that contain cavities or tunnels 

(zeolites, clays, pharmacosiderites, and ammonium molybdophosphate and sodium titanium silicates) 

[51, 58-62]. Thus far, inorganic ion exchangers have been used at large scale only for water 

purification and removal of radionuclides from nuclear waste effluents [63, 64].  

2.3 Zirconium phosphate as inorganic ion exchanger 

 Zirconium phosphates (ZrPs) have received extensive attention because of its unique properties, 

including high Brønsted acidity, high thermal and chemical stability, and good stability under ionizing 

radiation. Therefore, ZrPs have found wide applications as catalysts [65, 66], ion exchangers [67-71], 

acid solids [72], intercalation hosts [73-75].  

Alpha-zirconium phosphate, Zr(HPO4)2∙H2O (α-ZrP), is one primary crystalline acid salt of 

zirconium [76]. α-ZrP was first synthesized by Clearfield using a refluxing method and its structure 

was solved in the 1960s [77]. The compound Zr(HPO4)2∙H2O exhibits a layered structure (Figure 3). 

The layers are constructed by zirconium atoms connected by the oxygen atoms of the phosphate 

groups. Three oxygen atoms of each phosphate group bond Zr atoms, leaving one –OH group 

extending into the interlayer space. Adjacent layers are located as the staggered way to form a network 

resembling a hexagonally shaped cavity. The water molecule is situated in the cavity formed by three 

P–OH groups.  The distances of interlayer space and between P–OH groups are 7.6 Å and 5.3 Å, 

respectively. The layers are held together by van der Waals forces [69, 78, 79].  
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Figure 3. Polyhedral representation of the structure of crystalline α-ZrP. [ZrO6] (green octahedron), 

[PO4] (grey tetrahedron), O (grey sphere) and OH (red dot) are shown. 

Representative of inorganic ion exchangers, the primarily importance of ZrP is acid stability, 

reasonably high ion-exchange capacity, and selectivity for specific ions [78]. The ion-exchange 

capacity α-ZrP is reported as 6.64 meq/g [69]. The ion-exchange behaviour of ZrP is significantly 

affected by its degree of crystallinity [80]. Amorphous ZrP (am-ZrP, also called semicrystalline) 

includes extremely small particles with a layered structure, and is observed often with a weak broad 

X-ray diffraction [80, 81]. The am-ZrP appears to have large amounts of microspores and possesses 

a comparatively greater specific surface area than that of crystalline α-ZrP [82, 83]. These unique 

advantages of am-ZrP enhance its function in ion exchangers, catalysts, and adsorbents [82, 84]. 

However, to the best of our knowledge, extremely limited studies were conducted before this work 

for the separation of REEs by ZrP materials. 

2.4 Organic-inorganic ion exchange composite 

ZrPs display excellent ion-exchange properties. However, the powdery form of ZrPs easily causes 

pressure build-up and clogging in fixed bed columns.  

To overcome these limitations, a porous composite bead has been developed by embedding the 

inorganic ion exchanger into porous granulated carriers [85, 86]. Commonly used porous granulated 

carriers include mesoporous silica, zeolite, activated carbon, alginate, diatomite, cellulose, and porous 

polymers [87-95]. 
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Polyacrylonitrile (PAN) with a linear formula (C3H3N)n is known as a common polymer carrier.  PAN 

possesses excellent physicochemical properties, such as good performance on bead formation, strong 

adhesive force with inorganic materials, good solubility in organic solvents, high thermal stability, 

good radiation stability, and good chemical stability in strong acids (dissolves when the concentration 

exceeds 8 M HNO3, 5 M H3PO4, or 5 M H2SO4) [96].   

The composite’s hydrophilicity, porosity, and mechanical strength can be modified by using a PAN-

based organic binding polymer. For the PAN-inorganic composite, inorganic materials existed as the 

ion exchange active component. The inorganic materials can be dispersed in the polymer with a very 

wide range, from 5 to 90 wt-% for the different demands [97]. Due to the advantages of the PAN-

inorganic composite, this kind of composite based on PAN has been extensively applied in 

radiochemistry, heavy metal removal, separation, and other applications [87, 98-101]. 

2.5 Ion-exchange theory  

α-ZrP and Nd3+ are shown as an example to explain the ion-exchange process between metal ions and 

ion-exchanger ZrPs. The reaction can be expressed as  

3 ZrP-OH + Nd3+  ↔   (ZrP-O)3Nd + 3H+                         (1) 

The distribution coefficient (Kd) represents the distribution of solute ions (Nd3+) after the equilibrium 

between the solution and the ion exchanger (α-ZrP): 

                      (2)  

where is the concentration of Nd3+ taken up by α-ZrP at equilibrium (mmol/g) and 

is concentration of Nd3+ remaining in solution after equilibrium (mmol/L).  

In a typical batch ion-exchange experiment, α-ZrP (mass m) is placed in REE solution (volume V) 

and rotated until equilibrium. The Kd for Nd3+ can be expressed as 

                                       (3) 

where is the concentration of Nd3+ remaining in the solution after equilibrium (mmol/L) and 

 is the initial concentration of Nd3+ (mmol/L).  
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In equilibrium state, the selectivity coefficient is defined as the ratio of ions in solution to ions on the 

ion exchanger. For the exchange between the metal ions (Nd3+) and hydronium ions (H+), the 

selectivity coefficient can be calculated by  

                                                                      (4) 

When sorption mechanism and system are unclear, simpler terminology has usually been used in 

practical ion-exchange studies. Thus 

                                                             (5) 

                                                             (6) 

Here  (and qeq) and  (and Ceq) are the metal concentrations in the ion exchanger and in the 

solution at equilibrium state, respectively. The indirect measurement was adopted for the uptake by 

ion exchanger. The metal concentrations are acquired by means of the changes of solution. Therefore 

                               (7) 

                                        (8) 

where Q represents the total ion-exchange capacity, or how many cations can be taken up in total 

(milliequivalent per gram, meq/g). is the ion charge of M. 

Equivalent fractions or mole fractions are usually used to replace molarities or molalities. For 

example, the equivalent fraction of MZ+ ( ) in the sorbent can be calculated from  

   =                                                                  (9) 

Mq is the ion concentration of M in solid phase (mmol/g) at equilibrium.  

For elution studies of sorbent, the elution-% and the distribution coefficient at elution (Kd,elut.) can be 

obtained from  

         (10)    

       (11)  
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Here qi is the initial amount of M loaded in the solid phase, qeq is the amount of M in solid phase after 

stripping, and Ceq is the equilibrium concentration of M in the stripping solution.  
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3 Experimental 

3.1 Chemicals and regents  

Three ion exchangers were synthesized for this work, namely α-ZrP, am-ZrP, and PAN-encapsulated 

am-ZrP. The chemicals ZrOCl2∙8H2O and ZrCl4 were the Zr sources of α-ZrP and am-ZrP materials, 

respectively. The chemicals NaH2PO4∙H2O and H3PO4 were used as the P source for α-ZrP and am-

ZrP materials, respectively. The polymer carrier PAN was used to encapsulate am-ZrP to form the 

porous beads. The metal salts Co(NO3)2∙6H2O, N3NdO9∙6H2O and DyN3O9∙xH2O were used to 

prepare the Co-Nd-Dy ternary equimolar solution and simulated leachate. The reagents HNO3, H2SO4, 

H3PO4, or HCl were employed to study the batch elution and column elution studies. 

3.2 Synthesis  

3.2.1 Preparation of α-ZrP 

α-ZrP was synthesized using a modified recipe from Rajeh and Sziertes [102]. Solutions of 

NaH2PO4∙H2O (828.18 g) in 3 M HCl 600 (mL) and 322.25 g of ZrOCl2∙8H2O in 300 mL deionized 

water were mixed in a 3-L glass Huber reactor (100 rpm). The obtained white homogeneous mixture 

was then allowed to stand for 24 h at 80°C and for another 24 h in room temperature. Subsequently, 

3 L of 2 M HCl and 2 L of 2 M H3PO4 were sequentially used to wash the precipitate to remove 

unbound Na+ and Cl- ions. After washed with deionized water to pH 3, the product was dried in an 

oven at 65°C for 48 h. The dried white product was pretreated using 0.1M HNO3 (solid:liquid ratio 

1:10) by a rotating mixer at 23°C for 24 h. The α-ZrP was then rinsed with deionized water to 

approximately pH 3 and dried in an oven at 65°C for 48 h. The preconditioned product was ground 

and sieved to desired grain size (200-100 mesh) for further study.   
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Figure 4. Huber reactor (3 L) equipped with water bath used for preparation of α-ZrP 

3.2.2 Preparation of am-ZrP 

A precipitation method was used for am-ZrP material synthesis according to a previous report [103]. 

ZrCl4 (30.7 g) was dissolved in HCl (430 mL, 2 M) and mixed with 400 mL of H3PO4 solution (1.25 

M). The precipitate obtained was allowed to stand overnight. Subsequently, the white product was 

washed utilizing deionized water to pH 3. Then the am-ZrP was placed to oven and dried at 60oC for 

48 h. Finally the product was ground and sieved to desired grain size (200-100 mesh) for further study.   

3.2.3 Preparation of am-ZrP/PAN 

The am-ZrP/PAN composite was prepared using methods described previously [99, 100].  Solution 

A was prepared by mixing am-ZrP (7.2 g), DMF (84 mL), and Tween 80 (2 mL) for 2 h with magnetic 

stirring at 60°C. PAN (4.8 g) was added to solution A and continued stirring for another 2 h. The 

composite beads were made by a gelation process where the synthesis mixture was dropwise added 

to deionized water (2L) using a syringe pump and needle (0.6 mm). The formed beads were aged in 

deionized water for 24 h. The product was then rinsed with deionized water (2 L). The obtained 

product was dried by freeze-drying (Christ alpha 1-4 LSC) under 0.570 mbar at -26oC.   
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3.3 Analytical methods  

The structural study for materials used the characterization methods of X-ray powder diffraction 

(XRD), the characteristic Fourier transform infrared (FT-IR) spectra, thermogravimetry (TG) and 

solid-state 31P magic angle spinning nuclear magnetic resonance (31P MAS NMR) spectra.  

For the morphology and spatial distribution study, scanning electron microscopy (SEM) and X-ray 

tomography were used.  

An Agilent 4200 microwave plasma-atomic emission spectrometer (MP-AES) was used to determine 

the metal concentrations. 

3.4 Experimental plan  

α-ZrP, am-ZrP, and am-ZrP/PAN were developed for separation of the main components of an 

NdFeB magnet (Co, Nd and Dy) after a selective leaching procedure.  

Due to the layered structure and reported high capacity (6.64 meq/g), α-ZrP was chosen as the first 

ion exchanger to make full use of the ion exchange site’s inner and outside layers. We hoped that the 

layered structure of α-ZrP would bring additional selectivity due to the ion-sieve function of the 

interlayer spaces. A detailed research experimental design of paper I is presented in Figure 5. 

 

Figure 5. Flowchart of the research design content of Paper I 
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When compared with α-ZrP, am-ZrP has a larger specific surface area and contains numerous 

microspores and mesopores [104-106]. The experimental design flowchart of paper II is shown in 

Figure 6. 

 

Figure 6. Flowchart of the research design content of paper II 

When comparing the ion exchange results between α-ZrP and am-ZrP, am-ZrP showed better ion-

exchange behaviour. In addition, column separation for Co, Nd, and Dy were achieved using single-

column separation. These promising results led us to apply am-ZrP for the scale-up study for industry. 

Am-ZrP in powdery form can easily cause operational problems, such as clogging in the pilot column 

operations. Thus, am-ZrP was difficult to apply in the pilot-scale test. To overcome this limitation, 

we employed PAN as the polymer carrier to encapsulate the am-ZrP into composite beads. Moreover, 

a gradient elution process was utilized for the purpose to achieve well separation. The column 

experiments were optimized by changing the feed concentration, running speed, operational 

temperature, and concentration of eluting agent (Figure 7). 
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Figure 7. Experimental plan for paper III. 
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4 Results and discussion 

4.1 Characterization of synthesis samples 

4.1.1 Analysis and structure comparison between α-ZrP and am-ZrP 

The synthesized α-ZrP is a platelet-like highly crystalline material with an interlayer space of 7.6 Å 

calculated from the (002) diffraction peak (Figure 8a). The SEM image shows regular crystals (Figure. 

8b). In contrast, the synthesized am-ZrP had weak and broad X-ray diffraction (Figures 8d and 8e). 

The SEM image showed the amorphous nature of am-ZrP. 

For the FT-IR spectrum, the feature band(s) of deformation and vibration of P-OH were observed at 

1249, 1069, 1038, and 963 cm-1 for α-ZrP (Figure 8c) and 987 cm-1 for am-ZrP (Figure 8f). 

 

Figure 8. Characterization of synthesized α-ZrP. a) XRD pattern, b) SEM image, c) FT-IR 

spectrum. Characterization of synthesized am-ZrP. d) XRD pattern, e) SEM image, f) FT-IR 

spectrum. 
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α-ZrP was synthesized without hydrofluoric acid (HF). This was beneficial for production of the large 

crystal size of α-ZrP (diameter 1-4 μm) in this work synthesis (Table 4). The reaction was completed 

at lower temperature compared with the previous methods shown in Table 4. Am-ZrP was synthesized 

using an easily available method by precipitation at room temperature. Both syntheses were in 

agreement with the aims of green chemistry and were promising for pilot-scale application. 

Table 4.  Different methods for crystalline α-ZrP preparation 

Synthesis 

method 

Zr source P Precursor Temperature Reaction 

time 

Average 

diameter 

Reference 

Hydrothermal ZrOCl2∙8H2O 3 M H3PO4 200oC 24 h ~400 nm [79] 

method ZrOCl2∙8H2O 12 M H3PO4 200oC 24 h 1 μm [79] 

 ZrOCl2∙8H2O 3 M H3PO4, 

5 M HF 

100oC 24 h 1-4 μm [79] 

Refluxing 

method 

ZrOCl2∙8H2O 3 M H3PO4 100oC 24 h ~60 nm [79] 

ZrOCl2∙8H2O 12 M H3PO4 100oC 24 h ~200 nm [79] 

ZrOCl2∙8H2O 6 M H3PO4 94oC 48 h ~120 nm [107] 

ZrOCl2∙8H2O 10 M H3PO4 - - 250 nm [81] 

ZrOCl2∙8H2O NaH2PO4∙H2O, 

3 M HCl 

80oC 24 h 1-4 μm Paper I 

4.1.2 Determination of molecular formula of am-ZrP 

The composition of am-ZrP could be easily changed by adjusting the synthesis conditions. The 

elemental content was obtained from am-ZrP digestion experiments. The P/Zr ratio was determined 

to be 2.03. The three peaks of 31P MAS NMR spectrum represented the three different phosphate 

groups, namely -H2PO4 (-13.6 ppm), -HPO4 (-21.7 ppm), and -PO4 (-27.5 ppm) (Figure 9a) [108, 

109]. From the peak deconvolution, the ratio of these phosphate groups was estimated to be 

9.3:100:4.8.   

Two weight-loss steps were observed in the TG curve (Figure 9b). The release of physically bound 

water was suggested for the first weight loss step (7.07%; 25°C─184 °C) and the condensation of    -

H2PO4 was suggested for the second weight loss step (4.98%, 184°C─800°C) [110]. From the XRD 

pattern of the am-ZrP calcined at 800°C (Figure 9c), the substance was identified as ZrP2O7 [111], 

which was consistent with the P/Zr ratio of 2.03 from the digestion analysis.   
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Finally, after combining the results of the digestion experiment, 31P MAS NMR spectrum, and TG 

analysis, the chemical formula of am-ZrP was determined to be Zr(H2PO4)0.17 (HPO4)1.78 (PO4)0.09 • 

0.96H2O. Based on the calculated formulae, theoretical ion-exchange capacity of am-ZrP should be 

6.97 meq/g. 

 

Figure 9. Characterization of synthesized  am-ZrP. a) The deconvolution peaks based on 31P MAS 

NMR spectrum, b) TGA curve, c) XRD pattern of am-ZrP calcined at 800°C. 

4.1.3 Characterizations of synthesized am-ZrP/PAN composite 

The regular am-ZrP/PAN spheres are shown in Figure 10a. Their size distribution was evaluated by 

analyzing a total of 199 particles in the perspective of volume and number distribution. The average 

bead size was 2 mm in diameter according to the data of equivalent (CE) measurements (Table 5). 

The circularity value was determined to range from 0.74 to 0.98 (Table 5), indicating a more or less 

spherical shape. A cross-section of the beads is shown in Figure 10b, which presents the imaged 

internal porous structure. This is the desired feature for the sorption material (Figure 10c) [94]. 

X-ray tomography demonstrated the porous feature of the beads and the more or less homogeneous 

distribution of the inorganic am-ZrP in the polymer matrix (Figure 10d). The porosity ratio of am-

ZrP/PAN was determined to be approximately 40%. In addition, the spatial distribution of am-ZrP 

was characterized along the Z-axis of the bead with XY planes (blue arrow, Figure 10e). The spatial 

distribution study revealed that am-ZrP was quite evenly distributed in the inner surface and that there 

was slightly more am-ZrP near the bead surface than elsewhere.  
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Table 5. Analyzed  particle parameters of am-ZrP/PAN beads 

Name               Volume distribution Number distribution 

 Minimum Maximum D [4, 3]a Minimum Maximum Mean 

CE Diameter (μm) 1640 2341 2035 1640 2341 2010 

Circularity  0.74 0.98 - - - - 
aD [4, 3] is the equivalent volume mean diameter 

 

Figure 10. Synthesized am-ZrP/PAN beads. a) SEM image, b) SEM image of a bead’s cross-

section, c) SEM image for the porous structure, d) X-ray tomography image, e) spatial distribution 

as determined along the blue arrow (Z-axis of the bead) with XY-planes, f) curve of am-ZrP 

fraction (Z-axis direction). 

The XRD pattern of am-ZrP shows a typical feature for amorphous ZrP. As am-ZrP (or 

semicrystalline ZrP) includes considerably small particles with a layered structure, the layered feature 

was revealed by weak and broad peaks [78, 80, 81]. The peak shifts were observed from 10.0° to 8.1° 

(2theta), indicating that the interlayer space was expanded from 9 to 10.8 Å (Figure 11). This 

phenomenon suggested that DMF was intercalated into the interlayer space. In previous studies, α-

ZrP and α-SnP have been studied as the host for DMF intercalation [75, 112]. Double DMF molecules 

were suggested to be intercalated non-vertically to the interlayer with the hydrogen bond (P)-O-H∙∙∙O-

CH-(N), owing to the limited interlayer space (Table 6).  
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Table 6. DMF intercalation on α-ZrP/DMF, α-SnP/DMF, and am-ZrP/DMF 

Inorganic 

material 

Basal 

spacing (Å) 

Intercalated basal 

spacing (Å) 

Diameter of 

DMF (Å) 

Reference 

α-SnP 7.8 13.3 3.5 [75] 

α-ZrP 7.6 11.2 3.5 [112] 

am-ZrP 9.0a 10.8 3.5 this work 
aSemicrystalline am-ZrP material. 

 

 

Figure 11. Illustration of the intercalation of DMF in semicrystalline ZrP based on XRD patterns. 

The bands of the FTIR spectrum of the am-ZrP/PAN composite were consistent with the bands of the 

PAN beads and am-ZrP (Figure 12a). The strongest bands at 954 cm-1 and 1047 cm-1 are the P-OH 

deformation and the vibration of the orthophosphate group [113].  

For the TG curves of am-ZrP/PAN beads, the elimination of free water molecules contributes to 8% 

mass loss (<300oC) (Figure 12b). It was suggested that condensation of H2PO4 functional groups of 

am-ZrP and decomposition of PAN occurs from 300oC to 700oC [87]. The 56.7% am-ZrP content in 

the am-ZrP/PAN composite could be calculated based on the thermal analysis data from powdery 

am-ZrP, PAN beads, and am-ZrP/PAN beads. 

 

Figure 12. PAN beads, powdery am-ZrP, and am-ZrP/PAN beads. a) FTIR spectra, b) TGA curves. 
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4.2 Ion-exchange behaviour study  

4.2.1 Potentiometric titration  

The P-OH group in α-ZrP can be considered as a weak acid, which undergoes a dissociation reaction:  

P-OH  ↔   P-O + H+             (12)         

The acid dissociation constant Ka is defined as: 

            (13)  

Here, [POH] is the undissociated phosphate content (mM/g) of the material. [PO-] and [H+] are the 

concentrations of the dissociated phosphate and hydronium ion inside the pores of α-ZrP.   

The degree of dissociation (β) of P-OH can be expressed as 

                         (14)     

After combining equations 13 and 14, the following equation is obtained: 

               (15) 

β can then be calculated from the equation below: 

                             (16) 

Typically, a 1.0 M NaNO3 solution was used to keep a constant ionic strength. The initial exchange 

with NaNO3 is inevitable.  

POH + Na+   ↔   PONa + H+                     (17) 

As a result, the amount of the conversion to the Na form (qNa1, mmol/g) from NaNO3 can be obtained 

from the following: 

qNa1 = ([H+]eq – [H+]i) (V/m)            (18) 
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Here, [H+]eq is the concentration of H+ in the solution at equilibrium (mmol/L) and [H+]i is the initial 

concentration of H+ in the solution (mmol/L). V is the solution volume (mL) and m is the material 

mass (mg).                                              

NaOH is subsequently used for titration. The reaction is described below as: 

POH + NaOH      ↔       PONa + H2O          (19) 

The amount of the conversion to the Na form (qNa2, mmol/g) from NaOH can be acquired from the 

equation: 

qNa2 = ([OH-]i – [OH-]eq )(V/m)                                                                  (20) 

where [OH-]i and [OH-]eq is the initial and the equilibrated solution concentrations, respectively. 

The total ion exchange capacity (Q) of α-ZrP can be calculated from the summation of qNa1 and qNa2: 

Q = qNa1 + qNa2 =  ([H+]eq – [H+]i + [OH-]i – [OH-]eq)(V/m)                (21)                                                                     

The degree of crystallinity highly affects the titration behaviour. Amorphous materials often show a 

steady increase in titration curves. Normally, clear inflection points can be observed when titrating a 

material with high crystallinity [67, 76]. A total ion-exchange capacity of 6.6 meq/g has been obtained 

by NaOH titration of α-ZrP. The crystalline α-ZrP has been identified as a diprotic weakly acidic 

cation exchanger [68, 69].  

In this work, ZrP displayed a diprotic character in titration curves (Figure 13). The ion-exchange 

capacity of a total of 6.6 meq/g was obtained with the first and second equivalence point at 5 meq/g 

and at 6.6 meq/g, respectively (Figure 14). To evaluate the pKa1 and pKa2 for the diprotic character 

of titration curves, the more acidic sites with the ion-exchange capacity of 5.0 meq/g (Q1) and the 

weaker acidic sites of 1.65 meq/g (Q2) were distinguished according to the apparent equivalence 

points in Figure 13. The pKa-value was chosen from the middle point value of the plateaus of the 

titration curve, in this case the pKa1 = 3.5 and pKa2 = 6.5 were obtained.  

The degree of dissociation for the more acidic sites and the weaker acidic sites can be calculated using 

the titration data from Eq. 16 and the equation below.  

qNa = β1Q1 + β2Q2                                                                         (21) 

 



34 

 

The best fit between Eq. 21 and 22 was then acquired when using pKa1’ (3.3) and pKa2’ (6.3). The 

pKa1’ and pKa2’ values are very close to the value we obtained from the titration curve. 

 

Figure 13. Titration curve of α-ZrP with 1.0 M NaOH in a 1.0 M NaNO3 background. 

The titration of am-ZrP was performed using a 1.0 M NaOH solution with 1.0 M NaNO3 solution as 

background. The pH of the solution changed from an initial pH 6.5 (1.0 M NaNO3) to pH 2.6 during 

equilibrium time, indicating a 2.13 meq/g conversion to the Na form (qNa1). Adding this conversion 

value to the titration data, we observed that the ion-exchange capacity was 9.23 meq/g (qNa1 + qNa2) as 

estimated from the inflection point of the plateau (Figure 14). This ion-exchange capacity value is 

higher than 6.97 meq/g as calculated from the chemical formula. This deviation might be due to the 

hydrolysis of material in alkaline solutions [110].  

As for the individual pKa values in crystalline α-ZrP, we have demonstrated how to determine its 

values from the titration curve and the relevant equations. These studies were only based on the 

apparent equivalence points in the titration curves. It was not possible to acquire these pKa values 

from the steadily increasing titration curve of am-ZrP.  
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Figure 14. Titration curves of am-ZrP using 1.0 M NaOH in a background of 1.0 M NaNO3 

solution. 

The titration of the PAN beads and am-ZrP/PAN beads was studied using 1.0 M NaNO3 solution as 

background. The R-OH conversion to Na-form (qNa1) can be calculated from the difference of the 

initial and equilibrium pH of the 0.1 M NaNO3 solution (Eq. 20). 

The qNa1 of the pure PAN beads was calculated to be 0.004 meq/g. This value was disregarded from 

further calculations because it was negligible. The total ion-exchange capacity of pure PAN beads 

was estimated 0.46 meq/g from the plateau of the titration curve (Figure 15a) [114]. The qNa1 for the 

am-ZrP/PAN beads was calculated to be 0.53 meq/g. The total ion-exchange capacity (qNa1+qNa2) of 

am-ZrP/PAN beads was estimated 4.5 meq/g. (Figure 15b).  

The am-ZrP content in the beads was calculated to be 56.7% based from the TG analysis. In addition, 

the am-ZrP content of am-ZrP/PAN beads can be estimated based on the theoretical capacity (6.97 

meq/g) of am-ZrP and the capacity (4.5 meq/g) of am-ZrP/PAN beads. Using the ion-exchange 

capacities of the am-ZrP/PAN composite, the am-ZrP content in the beads was calculated to be 57.9%, 

which is consistent with the value from the TG analysis.  
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Figure 15. Titration curves of the PAN beads a) and the am-ZrP/PAN beads b) in 1.0 M NaNO3. 

4.2.2 Effect of pH on sorption 

The effect of pH on metal sorption of α-ZrP, am-ZrP, and am-ZrP/PAN was investigated using 1.0 

mM equimolar Co, Nd, and Dy nitrate solution. The uptake amounts for these ion exchangers are 

shown in Table 7. α-ZrP and am-ZrP showed a similar total metal uptake of 1.6 meq/g at equilibration 

pH ~3.5. However, am-ZrP had a higher separation factor (SF) based on the Kd value in Figure 16 a, 

b and c. The SFs of am-ZrP were calculated to be 6.5, 2.1, and 3.2, corresponding to pH 1.0, 1.8, and 

2.6, respectively (Figure 16b). Dy was found to be the most favoured element obtained for am-ZrP 

materials based on the values of Kd(Co)=6 mL/g, Kd(Nd)=180 mL/g, and Kd(Dy)=458 mL/g at pH 

1.8. In addition, compared with the total uptake amount, the equivalent-% of Co was not more than 

3% at pH below 3, indicating excellent potential separation of Co from Nd and Dy. For am-ZrP/PAN, 

the strong sorption of Co after pH 4 caused the obviously decrease of the Nd and Dy Kd values (Figure 

16c).  

 

For the uptake amount of am-ZrP/PAN, we observed that the metal uptake by am-ZrP increased 

approximately 50% at pH 3.5 (Table 7) when focused only on the inorganic counterpart. The value 

was calculated to be 2.43 meq/g for am-ZrP in am-ZrP/PAN beads compared to 1.65 meq/g of pristine 

am-ZrP. This phenomenon was suggested to result from the DMF intercalation to the layers of ZrP. 

It is reported that the rather large hydrated metal ions such as REEs are inaccessible in the cavity of 

the layer due to diffusional resistance [115]. However, with the interlayer space expansion from 9 Å 

to 10.8 Å after DMF intercalation, the ion-exchange sites became accessible for the hydrated metal 

ions. Therefore, sorption efficiency was improved and the metal uptake amount increased.  
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Table 7. Metal uptake data on α-ZrP, am-ZrP, and am-ZrP/PAN in the initial concentration as 1.0 

mM equimolar Co, Nd, and Dy. 

Material pHeq Co (meq/g) Dy (meq/g) Nd (meq/g) 

α-ZrP 3.5 0.44 0.61 0.63 

am-ZrP 3.4 0.43 0.62 0.61 

am-ZrP/PAN 3.5 0.26 0.58 0.59 

 

 

Figure 16. Distribution coefficients of the metal sorption of 1.0 mM equimolar Co, Nd, and Dy 

nitrate solution. a) α-ZrP, b) am-ZrP, c) am-ZrP/PAN. 

When increasing the metal concentration to 2.0 mM, there is no obvious plateau shown in the uptake 

curves of α-ZrP (Figure 17a). However, the two separate Kd linear figures were based on the two acid-

exchange sites of α-ZrP at pH 1 to 5.3 and pH 5.3 to 6.4 (Figure 17b and 17c). The log Kd versus pH 

showed a low slope (0.33-0.59) in the first domain and a considerably larger slope (2.25-2.42) in the 

second domain. This phenomenon indicates that the less acidic exchange site (pKa2=6.3) was used for 

exchanging with the REE and Co ions.  

Visual Minteq Software was used to calculate the solubility of Co, Nd, and Dy at the ranges of pH 

and the metal concentrations [116]. There was no indication of precipitation throughout the study.  
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Figure 17. a) Effects of equilibrium pH on the metal sorption of 2.0 mM equimolar Co, Nd, and Dy 

nitrate solution. Distribution coefficients on the metal sorption by α-ZrP from a 2.0 mM equimolar 

Co, Nd, and Dy nitrate solution at equilibrium pH. b) Linear fitting of log Kd over pH 1.0 to 5.3. c) 

Linear fitting of log Kd over pH 5.3 to 6.3. 

4.2.3 Sorption isotherm study 

The sorption isotherms of α-ZrP were investigated at approximately pH 2.5 and pH 4.5 at equilibrium 

state. The metal uptakes of Nd and Dy showed an increasing trend following the equilibrium 

concentration of the metal, increasing until a plateau emerged approximately at 3.2 mM to 3.6 mM 

at pH 2.5 (Figure 18a). In contrast, the uptake of Co decreased after the equilibrium concentration of 

3 mM. As Nd and Dy have higher affinity than Co, Co was replaced by Dy and Nd as the 

concentration of Nd and Dy increased. At pH 4.5, we observed that Co and Nd uptake started to 

decrease after the equilibrium concentration at approximately 2.0 mM (Figure 18b). Therefore, the 

order of preference for metal adsorption by α-ZrP is Dy>Nd>Co.  

 

Compared to α-ZrP, higher metals uptake was found by am-ZrP at Cin. 5.0 mM and pH 2.5 (Figure 

18c). The total metals uptake of am-ZrP (3.4 meq/g) was approximately five times larger than that of 

α-ZrP (0.6 meq/g) (Table 8). In addition, α-ZrP and am-ZrP showed the same order of preference 

Dy>Nd>Co, also Co uptake was rather low on α-ZrP and am-ZrP at pH 2.5 or pH 4.5 (Table 8). 
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Table 8. Analyzed  data for the sorption isothermal study of α-ZrP and am-ZrP 

Ion 

exchanger 

pHeq. 

(equilibrium) 

Cin. (initial 

concentration) 

Uptake (meq/g) Co 

(Equivalent-%) Co Nd Dy 

α-ZrP 

α-ZrP 

2.5 5.0 mM 0.02 0.18 0.40 3.3% 

4.5 5.0 mM 0.20 1.1 1.5 7.1% 

am-ZrP 2.5 5.0 mM 0.18 1.5 1.7 5.3% 

Equivalent-% is the percentage calculated from single metal uptake (meq/g) compared with the total 

metal uptake (meq/g). 

 

 
Figure 18. Isothermal sorption curves of Co, Nd, and Dy nitrate solution. a) α-ZrP at approximately 

pHeq 2.5, b) α-ZrP at approximately pHeq 4.5, c) am-ZrP at approximately pHeq 2.5. 

4.2.4 Batch elution study  

To choose the right mineral acid for the column elution study, batch elution was necessary as pre-test 

experiments. For this work, four different acids at two concentrations were tested (Table 9). The most 

efficient total elution (96.7% Dy and 99.1% Nd) was obtained using 0.1 M H2SO4 as eluent for α-ZrP. 

Compared to other acids the difference in elution percentage was significant (>25%) and also a 

difference in eluent concentration was observed. An increase in H2SO4 concentration decreased the 

elution. That is unusual and was not seen with the other acids. SF (the ratio of Kd) was calculated 

based on the Kd values. HCl would be a good candidate due to a SF (Dy/Nd) of 3.08 at a concentration 

of 1.0 M (Table 9). However, HCl was not adopted in our work due to its high corrosiveness. 

For am-ZrP, H2SO4 was also the most efficient when compared to the elution results of other acids. 

We observed that 85% Nd and 83% Dy were removed by 1.0 M H2SO4 (Table 9). The elution 

efficiencies of acids at 0.1 M was observed as H2SO4>HNO3 >HCl >H3PO4. HCl and H3PO4 showed 
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less than 30% elution at this concentration. The separation factors calculated from Kd values of Dy 

and Nd show a decreased order as HCl (1.8)>HNO3 (1.2)>H2SO4 (0.9)>H3PO4 (0.7).    

 

Table 9. Batch elution data of α-ZrP and am-ZrP in different mineral acids 

 

Stripping agent 

(Mol/L) 

α-ZrP am-ZrP 

Elution (%) Kd (ml/g) SF Elution (%) Kd (ml/g) SF 

Dy Nd Dy Nd Dy/Nd Dy Nd Dy Nd Dy/Nd 

HCl 0.1 62 67 121 96 1.3 19 29 860 490 1.8 

1.0 92 97 17 5.6 3.1 78 73 56 75 0.8 

HNO3 0.1 70 65 85 105 0.8 57 60 153 132 1.2 

1.0 86 93 30 16 1.9 75 71 67 82 0.8 

H3PO4 0.1 22 5.7 699 3239 0.2 12 8.6 1458 2102 0.7 

1.0 82 92 43 16 2.6 73 75 73 66 1.2 

H2SO4 0.1 96 99 26 21 1.3 78 75 57 67 0.9 

1.0 85 89 35 24 1.5 85 83 35 42 0.8 

4.2.5 Sorption kinetics 

For the sorption kinetics study, a pseudo-first-order equation, pseudo-second-order equation, and 

simplified model of resistance to intraparticle diffusion were employed to determine the characteristic 

sorption constants of α-ZrP and am-ZrP [30-32].  

The pseudo-first-order equation, the pseudo-second-order equation, and the intraparticle diffusion 

model were as follows: 

tkqqq ete 303.2
log)log( 1    (25)    
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Here qe is the maximum uptake value at equilibrium and qt is the uptake value at any time t. The rate 

constants k1 and k2 belong to the pseudo-first-order and the pseudo-second-order models, respectively. 

The slope kint is the intraparticle diffusion constant. If a straight line can be obtained from a plot of qt 

versus t1/2, the adsorption mechanism should follow the process of intraparticle diffusion.  

We observed that the metal uptake by α-ZrP increased with time, increasing until equilibrium was 

almost reached at 24 h (Figure 19a). A shorter time period of 12 h was observed in reaching 

equilibrium for the sorption by am-ZrP and am-ZrP (Figure 19b and 19c). At this point (12 h), the 

total uptake value for Dy and Nd were 1.27 meq/g (am-ZrP) and 1.37 meq/g (am-ZrP/PAN), 

respectively. All three ion-exchangers followed the pseudo-second-order model. The results suggest 

that the rate-limiting step for the adsorption of metal ions is the ion-exchange process [118-120].  

For the am-ZrP/PAN composite, an intraparticle diffusion model based on Fick’s law was used to 

determine the diffusion coefficients [117]. 

The intraparticle diffusion model based on Fick’s law is as follows: 

p
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t r r r
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            (28) 

here Dj, ˆ jq , and r are the intraparticle diffusion coefficient, local concentration, and radial coordinate 

of species j, respectively.  

Metal uptake by the am-ZrP/PAN composite was reasonably fast, even though the material’s particle 

size was approximately 2 mm in diameter (Fig. 19d). The value of DDy 1.05·10–13 m2/s (R2=0.937) 

and DNd 1.02·10–13 m2/s (R2=0.967) were an order of magnitude lower than that of DCo 4.31·10–12 

m2/s (R2=0.990), most likely due to their larger hydrated radii [121, 122].  
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Figure 19. Kinetics curves of Co, Nd, and Dy adsorbed by a) α-ZrP, b) am-ZrP, and c) am-

ZrP/PAN composite (23°C, pH 3). d) Simulation curves based on intraparticle diffusion model 

according to the kinetics curves of the am-ZrP/PAN composite. 

4.3 Column experiments 

4.3.1 Loading and breakthrough  

The metal loading on columns of α-ZrP, am-ZrP, and am-ZrP/PAN materials were tested using 1.0 

mM equimolar Co, Nd, and Dy.  

The breakthrough of Co was observed first and followed by Nd and Dy (Figure 20a, b and c). This 

suggests that the metals were preferred by these ion-exchange materials in the order Dy>Nd>Co. The 

loaded amount of Co relative to the total metal loading amount ranged from 0.8 to 3.7 equivalent-% 

(Table 10). When compared with α-ZrP, am-ZrP displayed a higher total metal loading capacity (2.4 

meq/g), less Co, and a larger equivalent Dy/Nd ratio (1.9).  

The column (am-ZrP) breakthrough points of Co, Nd, and Dy were observed at 20, 125, and 135 BV, 

respectively (Table 10, Fig. 20b). The Co desorption from loaded column was indirectly observed by 
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the Co concentration, which exceeded approximately 20% to that of the initial feed. Thereafter, a 

desorption of Nd also took place at 190 BV. This was caused by the exchange of Nd to Dy, since Dy 

has the strongest affinity on am-ZrP. 

 

Figure 20. Breakthrough curves of Co, Nd, and Dy with initial concentrations of 1.0 mmol/L 

equimolar nitrate solution. a) α-ZrP at pH 2.5, b) am-ZrP at pH 1.8, c) am-ZrP/PAN at pH 1.8. 

Even though the am-ZrP/PAN composite beads are of relatively large size (approximately 2 mm in 

diameter), the Co, Nd, and Dy loading equivalent percentages closely resembled these values of 

equivalent percentages when using the powdery am-ZrP as ion exchanger (Table 10). The higher 

concentration of Co between 8 to 20 BV and subsequently Dy after 20 BV was observed, indicating 

the same preferred order (Dy>Nd>Co) as pristine am-ZrP. Moreover, it is worth noting that the value 

of equivalent ratio (2.0) between the loaded amount of Dy and Nd was better than that of the powdery 

am-ZrP (1.9).
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Table 10. Data of the column loading experiments under the loading solution of 1.0 mmol/L 

equimolar Co, Dy, and Nd 

 

Materials 

 

pH of 

feed 

Breakthrough 

point (BV) 

Loaded amount 

(meq/g) 

Equivalent-% Equivalent 

ratio 

(Dy/Nd) 
Co Nd Dy Co Nd Dy Co Nd Dy 

α-ZrP 2.5 2 8 8 0.01 0.07 0.11 3.7 37.2 59.1 1.6 

Am-ZrP 1.8 20 125 135 0.02 0.83 1.57 0.8 34.4 64.8 1.9 

Am-ZrP/PAN 1.8 2 20 22 0.03 0.38 0.78 2.5 31.9 65.6 2.0 

Equivalent ratio is the ratio of metals uptake (meq/g). 

4.3.2 Metal elution 

We wanted to have single metal elution from the single-column study. For the α-ZrP packed column, 

HNO3 at different concentrations and mixed with H3PO4 was tested for elution of loaded metals. With 

a fully loaded column it was not possible to have separate metal elution bands. To see clear elution 

bands of a single metal, the degree of metal loading must be considered. 

 
To achieve better separation, a multistep gradient elution process was employed for the separation 

study by stepwise variation of the elution solution (HNO3) concentration [123]. The am-ZrP material, 

with its more favourable ion-exchange properties, was employed to conduct the column separation 

for the Co, Nd, and Dy mixture. Decreasing the metal loading% to 8%, three separate elution bands 

were obtained with only a slight overlap from 25 to 32 BV (Figure 21a). The outlet order of metals 

(Co>Nd>Dy) was reversed with the adsorption order. Under these conditions, pure Co, Nd, and Dy 

can be produced (Figure 21a). 

To set more realistic separation data, higher metal concentrations were tested using am-ZrP/PAN. A 

higher concentration solution totalling 1.2 g/L (approximately 10.7 wt% Co, 41.1 wt% Nd, and 48.2 

wt% Dy) was used as the feed. Also the effect of higher temperature was tested. Thus, the gradient 

elution using 0.1, 0.2, 0.5 and 1 M HNO3 at 50oC was performed with the column loaded at 

approximately 10%. Compared with the initial concentration, the concentrations of Co, Nd, and Dy 
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in the outlet were significantly enhanced with the gradient elution and the possibility to enrich Co by 

this process is seen possible (Figure 21b).  

Finally, a simulated magnet leachate was employed as feed to test the suitability of metal separation 

in a practical setting using the am-ZrP/PAN beads. A total metal concentration of 7.6 g/L (1.4 wt% 

Co, 9.3 wt% Dy, and 89.3 wt% Nd) was prepared based on previous reports [47, 124]. Although the 

gradient elution method was utilized to elute metals at 50oC from an approximately 10%-loaded 

column (Figure 21c), the separation and recovery of Nd and Dy is extremely difficulty due to the high 

Nd concentration in the feed and the higher selectivity of Dy over Nd.  

Figure 21. Gradient elution curves of Co, Nd, and Dy in the initial feed at pH 1.8 in 1 BV/h. a) The 

am-ZrP (approximately 8% degree loading) in feed at 1.0 mM at 23oC. b) am-ZrP/PAN 

(approximately 10% degree loading) in 1.2 g/L feed at 50oC. c) The am-ZrP/PAN (approximately 

10% degree loading) in simulated magnet leachate (7.6 g/L) at 50oC. 

4.3.3 Stability of the material in regeneration  

 

Figure 22. XRD pattern of fresh and used am-ZrP/PAN beads for Run 3 and Run 10 in the column.
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In general, the α-ZrP and am-ZrP materials are stable in acidic solution as they are synthesized from 

strongly acidic precursors. The decrease of interlayer space 1.0 Å and 1.4 Å was observed from am-

ZrP/PAN after Run 3 and Run 10 compared with the unused one (Figure 22). These results suggest 

that the intercalated DMF in the layers was gradually released during the column process. The XRD 

pattern displayed the layers was possible to gradually shrink in the using process.  
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5 Conclusions  

In this work, α-ZrP (Zr(HPO4)2 • H2O) and am-ZrP (Zr(H2PO4)0.17 (HPO4)1.78 (PO4)0.09 • 0.96H2O) 

were synthesized  and tested for the ability to recover and separate Co, Nd, and Dy metal ions. 

Crystalline α-ZrP showed a low sorption amount, which suggests that the exchanging metals cannot 

diffuse through the interlayer cavity in large extent. The sorption preference order Dy>Nd>>Co of α-

ZrP and am-ZrP was obtained from batch ion-exchange experiments. We found that both materials 

had reasonable total metal capacity for Co, Nd, and Dy from equimolar solution but Co was not 

preferred. Am-ZrP had a higher selectivity and a higher sorption capacity when compared with that 

of α-ZrP or even the commercial classic Chelex 100 resin.  

A gradient elution method proved to be an efficient process to achieve almost complete separation of 

metals using am-ZrP as ion-exchanger. Column loading at low degree has been shown to provide 

sufficient space for separate metal bands to develop in the elution process. Pure metal effluents were 

obtained by the gradient elution method using HNO3 at different concentrations at room temperature. 

After obtaining promising results, larger lab-scale column separation was tested by using PAN-

encapsulated am-ZrP composite in order to avoid possible operational problems associated with 

powdery am-ZrP.  

X-ray tomography demonstrated a good spatial distribution of ion-exchange active component am-

ZrP in the polymer matrix. Based on the batch experiments, the am-ZrP/PAN composite showed 

almost 50% higher sorption when compared to pristine am-ZrP. It appeared that the expansion of 

interlayer due to DMF intercalation enabled metals entering the cavity of the interlayer, resulting in 

increased uptake. This work demonstrated that it is possible to obtain fractions of Co with 

significantly improved purity relative to the simulated NdFeB magnet leachate through the single 

column form. However, it was not possible to achieve complete Nd and Dy separation due to the high 

Nd concentration in the simulated leachate solution and the higher Dy selectivity of the material. 

Future work should consider the following two perspectives. From a material development 

perspective, enhanced uptake is suggested due to the intercalation of DMF. This provides a means 

for future study on intercalation chemistry and inorganic-organic hybrid materials.  

From a process design perspective, even though it was difficult to achieve complete separation for 

the simulated leachate by single column, using multiple columns or a continuous simulated moving 

bed could be promising for future purification study.   
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Appendix 

1 Methods for structural study 

X-Ray Powder diffraction 

X-Ray Powder diffraction (XRD) is primarily used for identification of crystalline material [125]. 

From these measurements, α-ZrPs can be identified by its unique diffraction peaks, such as (002), 

(110), and (112) plane. The interplanar spacing (dh k l) can be calculated by Bragg’s law (Equation 

13). 

     (1) 

The XRD patterns were obtained by utilizing a Philips PW 3710 X-ray diffractometer operated with 

Cu-Kα (λ=1.542 Å) radiation (40 kV and 40 mA). The data were recorded from 5° to 70° in 2θ (step 

length 0.02°, counting time 0.5 s per step).  

Fourier transform infrared spectra 

Fourier transform infrared (FT-IR) spectra was used to identify the chemical group in the material by 

means of detecting the infrared absorption caused by certain bond vibrations [126].  

Here, FT-IR spectra was employed to identify the POH group from the synthesized and relevant 

materials. FT-IR spectra were acquired using a Perkin Elmer spectrum one FT-IR spectrometer in 

ATR (attenuated total reflection) modle. The measurement range is from 600 to 4000 cm-1 at a 

resolution of 4.0 cm-1. 

Thermogravimetric analysis  

Thermogravimetry (TG) is a technique to measure the changes in mass of a material against 

temperature changes in a specific atmosphere. The measurements are often simultaneously processing 

combined thermogravimetry and differential thermal analysis [127].  

TG analysis was performed using a Mettler Toledo TG850. Samples were normally heated to 800°С 

or up to 1000°С when needed. The heating rate was programed as 5°С/min, as the measurement 

atmosphere depends on the measurement of program setting in nitrogen or air flow.  

Solid-state 31P magic angle spinning nuclear magnetic resonance 

Solid-state 31P magic angle spinning nuclear magnetic resonance (31P MAS NMR) spectra were used 

for detecting phosphorous in different chemical environments. The different phosphate groups in am-

ZrP can therefore be distinguished. The ratio of these phosphate groups can be obtained based on the 
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peak deconvolution results. The molecular formula can then be calculated from the combination of 

the ratio of these phosphate groups and the TG results. 

31P MAS NMR spectra were recorded from a Bruker Avance III NMR spectrometer (500 MHz, 4 

mm H/X/Y MAS probe). The sample was placed into a zirconia rotor (4 mm). The sample of 31P 

MAS NMR spectra recorded with a MAS rate (12 KHZ), 90° pulse (77 KHZ RF), and a 100-s recycle 

delay (64 scans).  

2 Methods for morphology and spatial distribution study 

Scanning electron microscopy  

Scanning electron microscopy (SEM) was utilized to record the surface and the cross-section 

morphology of the synthesized samples.  

The sample images were collected using a Hitachi Hi-Tech S-4800 field-emission scanning electron 

microscope (FESEM) by sputtering for deposition of a 3 nm-thick layer of Pd-Au.  

For the size distribution investigation of the am-ZrP/PAN composite beads, samples without coating 

were imaged using a Hitachi SU3500 scanning electron microscope. In addition, Malvern Morphologi 

G3 software was employed to analyse the morphology of 199 beads from an SEM image. 

X-ray tomography 

X-ray tomography was used to reveal a structure’s internal attributes by generated 3-dimensional 

imaged volumes from 2-dimensional X-ray image slices [128].  

For spatial distribution of am-ZrP in an am-ZrP/PAN bead, the bead was recorded using a GE phoenix 

v|tome|x s 240. An optional nanofocus tube (180 kV/15 W, 90-kV, 300-μA) was used in a 27-W tube 

power. The sample was obtained with an isotropic 1.33-μm resolution/voxel size. 2700 projections 

(exposure time: 2 × 4000 ms) were performed using a 4000-ms skip at each angle for 9 h total. 

3 Method for metals determination   

 Microwave plasma-atomic emission spectrometer   

An Agilent 4200 microwave plasma-atomic emission spectrometer (MP-AES) was utilized to 

determine the metal concentrations. The OneNeb nebulizer and a double-pass cyclonic spray chamber 

was equipped for sample introduction.  

The analytical cycle was a 30-s rinse with nitric acid (v/v 5%) and a subsequent 30-s sample uptake 

with pump speed 15 rpm. The internal standard and the buffer ion was used by adding 0.1 mL of La 
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(1000 mg/L) and 0.1 mL Cs (100 000 mg/L) into the 9.8 mL diluted samples. The detection 

wavelength of Co, La, Nd, and Dy was set at 340.512, 394.910, 430.358 and 353.171 nm, respectively. 
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