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The Lepidoptera is one of the most widespread and recognisable insect orders. Due to

their remarkable diversity, economic and ecological importance, moths and butterflies

have been studied extensively over the last 200 years. More recently, the relationship

between Lepidoptera and their heritable microbial endosymbionts has received increasing

attention. Heritable endosymbionts reside within the host’s body and are often, but not

exclusively, inherited through the female line. Advancements in molecular genetics have

revealed that host-associated microbes are both extremely prevalent among arthropods

and highly diverse. Furthermore, heritable endosymbionts have been repeatedly

demonstrated to play an integral role in many aspects of host biology, particularly host

reproduction. Here, we review the major findings of research of heritable microbial

endosymbionts of butterflies and moths. We promote the Lepidoptera as important models

in the study of reproductive manipulations employed by heritable endosymbionts, with the

mechanisms underlying male-killing and feminisation currently being elucidated in both

moths and butterflies. We also reveal that the vast majority of research undertaken of

Lepidopteran endosymbionts concerns Wolbachia. While this highly prevalent bacteria is

undoubtedly important, studies should move towards investigating the presence of other,

and interacting endosymbionts, and we discuss the merits of examining the microbiome of

Lepidoptera to this end. We finally consider the importance of understanding the influence

of endosymbionts under global environmental change and when planning conservation

management of endangered Lepidoptera species.
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13 Abstract

14 The Lepidoptera is one of the most widespread and recognisable insect orders. Due to their 

15 remarkable diversity, economic and ecological importance, moths and butterflies have been 

16 studied extensively over the last 200 years. More recently, the relationship between Lepidoptera 

17 and their heritable microbial endosymbionts has received increasing attention. Heritable 

18 endosymbionts reside within the host’s body and are often, but not exclusively, inherited through 

19 the female line. Advancements in molecular genetics have revealed that host-associated microbes 

20 are both extremely prevalent among arthropods and highly diverse. Furthermore, heritable 

21 endosymbionts have been repeatedly demonstrated to play an integral role in many aspects of 

22 host biology, particularly host reproduction. Here, we review the major findings of research of 

23 heritable microbial endosymbionts of butterflies and moths. We promote the Lepidoptera as 

24 important models in the study of reproductive manipulations employed by heritable 

25 endosymbionts, with the mechanisms underlying male-killing and feminisation currently being 

26 elucidated in both moths and butterflies. We also reveal that the vast majority of research 

27 undertaken of Lepidopteran endosymbionts concerns Wolbachia. While this highly prevalent 

28 bacteria is undoubtedly important, studies should move towards investigating the presence of 

29 other, and interacting endosymbionts, and we discuss the merits of examining the microbiome of 

30 Lepidoptera to this end. We finally consider the importance of understanding the influence of 

31 endosymbionts under global environmental change and when planning conservation 

32 management of endangered Lepidoptera species.
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33 Introduction

34 Symbiosis was originally described as the living together of dissimilar organisms in an intimate 

35 association (de Bary, 1879). This broad term is commonly used to encompass relationships 

36 between two or more organisms that range from parasitic, through commensal (one party gains a 

37 benefit, whilst the other is not significantly affected) to mutualistic (both parties benefit). We 

38 now know that the nature of an association is often much more complex, and varies greatly 

39 depending on factors such as the local environment, the host genetic background or condition, 

40 and the longevity of the relationship. Thus it is perhaps now more pertinent to understand 

41 symbiosis as an interaction in which two or more organisms of different species are in a 

42 persistent relationship, with no pre-conceived idea of the nature of the interaction. 

43 One of the most 

44 intimate associations between species is that between a host organism and a microbial 

45 endosymbiont (a symbiont living within the body of its host). This lifestyle substantially affects 

46 the relationship between the two parties as survival and reproduction of host and microbe are 

47 intrinsically linked. Where the endosymbiont is intracellular - residing within the cytoplasm of 

48 host cells - it is predominantly inherited through the female line (although intrasperm paternal 

49 transmission has also been described (Watanabe, Yukuhiro & Matsuura, 2014)). Such maternal 

50 inheritance produces selection upon the symbiont to favour the cytoplasmic lineage of the host 

51 (in essence the females) - a phenomenon that has resulted in the evolution of remarkable 

52 manipulations of host reproductive biology, including sex ratio distortion (O’Neill, Hoffmann & 

53 Werren, 1998; Bandi et al., 2001; Engelstädter & Hurst, 2009). With increasing pace, evidence is 

54 gathering that diverse endosymbionts interact with many aspects of arthropod host biology 

55 including host reproduction (Werren, Zhang & Guo, 2004), development (Fraune & Bosch, 
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56 2010), immunity (Gross et al., 2009; Nyholm & Graf, 2012), behaviour (Dion et al., 2011), body 

57 colour (Tsuchida et al., 2010), nutritional stress resistance (Brownlie et al., 2009), pathogen load 

58 (Graham & Wilson, 2012), dispersal (Goodacre et al., 2009), host plant specialisation (Leonardo 

59 & Muiru, 2003), thermal tolerance (Dunbar et al., 2007), nutrition (Douglas, 1998) and 

60 metabolism (McCutcheon, McDonald & Moran, 2009). Furthermore, symbiosis has been 

61 purported to be a key factor underlying natural variation, as well as an instigator of novelty and a 

62 promoter of speciation  (Margulis & Fester, 1991; Brucker & Bordenstein, 2012). 

63 Since the advent of the diagnostic PCR assay in the mid-1980s, organisms can be 

64 routinely screened for known endosymbionts. As a consequence of this development and recent 

65 advancements in genomics and bioinformatics (including high-throughput amplicon sequencing 

66 of microbial genes and metagenomics), we now recognise that all organisms are infected by a 

67 diverse range of microbes, including viruses, fungi and bacteria, and that many arthropods carry 

68 heritable endosymbionts. A recent study estimated that 52% of terrestrial arthropod species are 

69 infected with the intracellular bacteria Wolbachia, with a further 24% and 13% species infected 

70 with Cardinium and Rickettsia bacteria, respectively (Weinert et al., 2015). How species initially 

71 acquire heritable endosymbionts is not yet fully understood.  While phylogenetic evidence 

72 suggests that horizontal transfer of endosymbionts on an evolutionary scale must be common, 

73 many barriers - ecological, geographical and physiological - exist that perturb the spread of 

74 endosymbionts between species and prevent the formation of novel symbioses. Successful 

75 transfer of an endosymbiont between species depends on the ability of the microbe to first enter 

76 and then survive in a novel host environment, followed by successful migration to the host 

77 germline to ensure propagation. The symbiont must then be able to invade the host population, or 

78 at least be maintained at low frequency. Thus the ‘fit’ between a host and symbiont can be quite 
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79 specific, with host biology playing an important role in the ability of the symbiont to thrive in the 

80 novel species. Failure in the formation of persistent associations may also be due to the 

81 endosymbiont causing harm to their new hosts (Hutchence et al., 2011). Where movement of 

82 heritable endosymbionts has been observed, it is often via ecological connectors such as shared 

83 host food sources (Huigens et al., 2000; Duron, Wilkes & Hurst, 2010; Caspi-Fluger et al., 2012; 

84 Chrostek et al., 2017) or common symbiont-vector parasites or parasitoids (Heath et al., 1999; 

85 Vavre et al., 1999; Huigens et al., 2004; Jaenike et al., 2007; Gehrer & Vorburger, 2012). 

86 Horizontal transfer is perhaps more successful between related hosts (Russell et al., 2009); it has 

87 been suggested that within Acraea butterflies, Wolbachia has moved between species either via a 

88 common parasitoid, or through hybridisation and subsequent introgression. It is also possible that 

89 the different species inherited the bacteria from a recent common ancestor (Jiggins et al., 2000b).

90 The Lepidoptera are remarkably diverse and widely recognisable, encompassing 

91 butterflies and moths that are economically and ecologically important. While many aspects of 

92 Lepidopteran biology have been well studied, it is only recently that the pervasiveness of host-

93 associated microbes in this group has been appreciated. Heritable endosymbionts have been the 

94 subject of several reviews (Bandi et al., 2001; Moran, McCutcheon & Nakabachi, 2008; Duron 

95 & Hurst, 2013), and here we focus upon studies of these influential elements in the Lepidoptera. 

96 Butterflies and moths are particularly important in the study of heritable endosymbionts due to 

97 the Lepidoptera sex determination system. In contrast to most other arthropod groups, the female 

98 is the heterogametic sex (females have one Z and one W sex chromosome, males have two Z 

99 chromosomes). The mechanisms and repercussions of reproductive manipulations caused by 

100 inherited microbial endosymbionts, which are commonly observed in butterflies and moths, are 

101 therefore likely to be very different from that observed in arthropods with alternative sex 
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102 determination systems. Furthermore, in the Lepidoptera heritable endosymbiont prevalence is 

103 commonly very high, and vertical transmission of the infection is often near perfect. Together 

104 with the maternal inheritance of intracellular endosymbionts such as Wolbachia, this creates 

105 linkage of the infection not only with similarly maternally inherited host mitochondria, but also 

106 with the female W chromosome. Formation of this wider co-inherited network may have 

107 implications for host genetic diversity and even the sex determination system itself.  

108 In this review we summarise the main body of research that has been conducted to date in 

109 order to form a springboard for future work and to emphasise to researchers from traditionally 

110 disparate fields as ecology, genomics and conservation, that in order to fully understand the 

111 biology of an organism, one must take into account its endosymbionts. For clarity this review is 

112 divided into areas of current research: 1) Manipulation of host reproduction; 2) Impact upon host 

113 fitness; 3) Symbiont-mediated protection; 4) Host genetics and 5) Behavioural modification. We 

114 then highlight outstanding questions and future directions, including consideration of the 

115 influence of endosymbionts under global environmental change, and in species of conservation 

116 concern. 

117

118 Survey methodology

119 The authors have drawn upon knowledge gained from over a decade in butterfly-endosymbiont 

120 research. Extensive literature searches were performed using repositories such as NCBI PubMed 

121 and Google Scholar, and using keywords including “endosymbiont”, “microbe” and “heritable 

122 symbiont”, along with “butterfly”, “moth” and “Lepidoptera”. Social media platforms such as 

123 Twitter provided a useful tool to obtain up to date information of relevant publications. Research 

124 on heritable endosymbionts of arthropods in general was also gathered with the aim to provide 
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125 information about areas in heritable endosymbiont-arthropod research that is lacking for 

126 Lepidoptera. Particular effort was made to compile a comprehensive list of butterfly and moth 

127 species that are published as infected with heritable endosymbionts. 

128

129 The influence of heritable microbial endosymbionts on Lepidopteran biology

130 Concordant with general insect surveys, the Lepidoptera are commonly infected with heritable 

131 microbial endosymbionts. In an early screen of Panamanian arthropods, Wolbachia was detected 

132 in 16.3% of the 43 Lepidoptera species tested (Werren, Windsor & Guo, 1995). Further surveys 

133 identified Wolbachia in 29% of 24 species of Acraea butterflies from Uganda (Jiggins et al., 

134 2001), 45% of 49 species of butterflies studied in Japan (Tagami & Miura, 2004), 50% of 56 

135 Indian butterfly species (Salunke et al., 2012), 58.3% of 120 Lepidoptera species in West Siberia 

136 (Ilinsky & Kosterin, 2017), and 79% of 24 species of African Bicyclus butterflies (Duplouy & 

137 Brattström, 2017). Additionally, in a broad survey of ants, moths and butterflies (specifically 

138 Lycaenidae and Nymphalidae) for five heritable symbionts, Wolbachia (39 of 158 species) and 

139 Spiroplasma (5 of 200 species) were found to infect Lepidopteran species (Russell et al., 2012). 

140 In general, these estimates are likely to be highly conservative, due to the presence of undetected 

141 low frequency infections, geographical and temporal variation in infection, tissue-specificity and 

142 PCR false negatives. Geographic structure in infection incidence and prevalence is a particularly 

143 important consideration and especially evident in endosymbiont-Lepidoptera systems e.g. 

144 Wolbachia-Hypolimnas bolina butterflies (Charlat et al., 2005). In a recent survey of published 

145 records of Wolbachia infections in the Lepidoptera, generalised geographic structure in infection 

146 frequency was observed, with lower frequencies towards higher latitudes (Ahmed et al., 2015).
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147 In Table S1 and Table S2 we compile a comprehensive list of butterfly and moth species, 

148 respectively, reported as carrying heritable endosymbionts from published sources. We find that 

149 research of heritable endosymbionts in Lepidoptera is heavily dominated by studies of 

150 Wolbachia as opposed to that of other infections (Wolbachia in 248/253 butterfly species and in 

151 109/115 moth species). While arthropod-infecting endosymbiont diversity is notable, including 

152 such divergent taxa as Rickettsia, Spiroplasma, Arsenophonus, Flavobacteria, Cardinium and the 

153 microsporidia, much of the early arthropod endosymbiont literature focused upon the 

154 Alphaproteobacteria genus Wolbachia (Hertig & Wolbach, 1924). Due to its presence in many 

155 agricultural pests and disease vectors, and also owing to the range of reproductive manipulations 

156 it employs in the host, Wolbachia is still widely, but justly, studied. 

157 Tables S1 and S2 reveal that Wolbachia is common across Lepidopteran families, being 

158 found in all five families of ‘true’ butterflies (the Papilionoidea), and also in the skippers 

159 (Hesperiidae). Wolbachia strains have been divided into separate genetic lineages termed 

160 supergroups. It is clear from the compiled data that the Wolbachia strains carried by Lepidoptera 

161 are almost exclusively from supergroups A and B, with B groupWolbachia predominating over 

162 A group Wolbachia. Of species where the Wolbachia supergroup has been determined (80/109 

163 moths and 208/248 butterflies), 85% of moth species carry B group and 25% A group; while 

164 79% of butterfly species carry B group Wolbachia and 26% carry A group. Note that these data 

165 include multiple infections (i.e. some species harbour both A and B strains of Wolbachia). These 

166 findings concur with research analysing 90 Wolbachia strains associated with Lepidoptera: 84% 

167 of the strains belonged to supergroup B (76/90), with the remainder (14/90) belonging to 

168 supergroup A (Ahmed et al. 2016). A further study identified 22 Wolbachia-infected Lepidoptera 

169 species in Japan, 19 of which had infections from supergroup B (86%), with the remaining three 
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170 from supergroup A (Tagami & Miura, 2004). It is unclear why B groupWolbachia are 

171 particularly prevalent in the Lepidoptera; is there a greater ‘fit’ between Lepidoptera and B group 

172 Wolbachia i.e. are B group Wolbachia more likely to become established, or are B group 

173 Wolbachia those ancestrally associated with the Lepidoptera thus seeding this group 

174 stochastically? It is also interesting to note that there appears to be one particularly common 

175 strain ofWolbachia in Lepidoptera. In a study of 53 Lepidoptera species, 11 species across three 

176 families are infected with Wolbachia ST41, the next most common strain types (ST40 and 

177 ST125) were found in three species each (Ahmed et al. 2016). Whether Wolbachia ST41 is 

178 especially adept at moving between species, and/or whether it is particularly successful at 

179 establishing and maintaining itself with the host remains to be fully investigated.

180 The second most common heritable endosymbiont recorded in butterflies and moths is 

181 Spiroplasma - a bacterial genus belonging to the class Mollicutes (Table S1: 5/253 butterfly 

182 species and Table S2: 5/115 moth species). Until such endosymbionts receive the same level of 

183 attention as Wolbachia, or there is a move towards a generalised metagenomic approach to 

184 identify symbiotic microbes, little can be said of the extent of their presence or action in 

185 Lepidoptera. However, while there is a propensity for Lepidoptera to be specifically screened for 

186 Wolbachia infections (thereby creating a bias towards detection of Wolbachia), discovery of sex-

187 ratio distorter identity is commonly a phenotype forward investigation i.e. a sex ratio bias in 

188 progeny or in a population is observed, and then the causative factor is identified. Given this, 

189 there should be no bias in the responsible infection found in these studies. Despite this, it appears 

190 that Lepidoptera are different from many other groups e.g. ladybirds, in that Wolbachia is almost 

191 always responsible for the observed sex ratio bias. In comparison with other arthropod groups 

192 such as the Diptera, Hymenoptera and Hemiptera, heritable endosymbiont diversity does appear 
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193 to be particularly low in the Lepidoptera. A systematic review (Russell et al. 2012) compiling 

194 data of infection screens of arthropods for the heritable endosymbionts Arsenophonus, 

195 Cardinium, Hamiltonella, Spiroplasma, and Wolbachia, found that only the latter two genera of 

196 bacteria were present in Lepidoptera species (Spiroplasma: 5/205, Wolbachia: 140/481 species 

197 infected). Thus we can say that for Arsenophonus, Cardinium and Hamiltonella, where 263, 183 

198 and 251 Lepidopteran species were assayed respectively, such infections, should they exist at all 

199 in Lepidoptera, are remarkably rare. A later compilation of data of arthropods screened for 

200 heritable endosymbionts found that Rickettsia bacteria were also not commonly found in 

201 Lepidoptera, with only one species (an unidentified Noctuidae moth) infected out of 14-32 

202 species (variation in number reported here due to several individuals tested having no taxonomic 

203 assignment in the study). 

204

205 Manipulation of host reproduction

206 The Lepidoptera are becoming model systems for the study of endosymbiont manipulation of 

207 host reproduction. Many species are infected with maternally inherited bacteria that have 

208 evolved the ability to alter host reproduction to either increase the proportion of infected females 

209 in the population, or increase the reproductive fitness of infected females relative to their 

210 uninfected counterparts. In Lepidoptera endosymbionts are currently known to manipulate host 

211 reproduction in three ways: through male-killing, feminisation and cytoplasmic incompatibility 

212 (CI) (Fig. 1). While these methods facilitate the maintenance of the symbiont in the host 

213 population, there are often severe repercussions for host biology and evolution. We provide a list 

214 of butterflies and moths that have been recorded as being infected with endosymbionts that 

215 manipulate the reproductive biology of the host (Table 1). 
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216

217 Male-killing 

218 Male-killing (MK) is particularly well known in the Lepidoptera. Here, male offspring are killed 

219 early in development (most usually as an egg, but also as first instar larvae) producing a female 

220 biased sex ratio within an infected female’s offspring (Fig. 1). Should the male-killer infect many 

221 females, the host population as a whole may become female-biased. Several hypotheses have 

222 been proposed to explain why maternally inherited endosymbionts kill male hosts. If infected 

223 females gain a fitness benefit from the death of their male siblings over uninfected females 

224 (whose male siblings survive), the infection will invade and spread through the host population. 

225 Such benefits may include a reduction in the likelihood of detrimental inbreeding (as there are no 

226 brothers with which to mate) or a reduction in competition for resources (as there are half as 

227 many siblings with which to compete) (Hurst & Majerus, 1992; Hurst, Hurst & Majerus, 1997). 

228 In ladybirds, Wolbachia-infected female neonates gain an important first meal by consuming 

229 their dead brothers, while uninfected females lack this ready source of nutrients (Elnagdy, 

230 Majerus & Handley, 2011). However, in Lepidopteran systems, the relative fitness benefit for 

231 infected females remains elusive as many of the species studied lay their eggs singly, thus 

232 making the likelihood of inbreeding, sibling egg cannibalism or competition unlikely (e.g. 

233 Danaus chrysippus: (Jiggins et al., 2000a). 

234 Despite the lack of evidence of any fitness benefit being provided to infected females, 

235 MK has been recorded numerous times in the Lepidoptera, possibly due to the readily observable 

236 phenotype of all-female broods and the long history of Lepidoptera being collected and reared in 

237 captivity. Early work recorded the presence of female-biases in wild-caught collections and 

238 captive bred broods in both Acraea encedon (Poulton, 1914; Owen, 1965; 1970),  and 
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239 Hypolimnas bolina (Poulton, 1923; 1926) butterflies. Later, MK Wolbachia was identified as the 

240 causative agent in both A. encedon  (Jiggins, Hurst & Majerus, 1998; Hurst et al., 1999) and H. 

241 bolina (Dyson, Kamath & Hurst, 2002). We now know that populations of Acraea butterflies 

242 carry highly prevalent MK Wolbachia infections, with more than 80% and 95% of Ugandan A. 

243 encedon and A. encedana females being infected, respectively (Jiggins et al., 2000a; Jiggins, 

244 Hurst & Majerus, 2000). The H. bolina system has become remarkable due to the extensive 

245 spatial and temporal variation in the dynamics of the interaction across the South-east Asian to 

246 Eastern Pacific range of the butterfly (Charlat et al., 2005; Hornett et al., 2009). The island of 

247 Samoa is particularly notable due to its well-documented history of a highly biased sex ratio of 

248 100 females to every male, caused by 99% of female butterflies being infected with a MK 

249 Wolbachia (Dyson & Hurst, 2004).  It appears that male-killers are often found at a particularly 

250 high frequency within butterfly populations, contrasting patterns seen in other taxa studied such 

251 as the ladybirds, where generally less than 49% of females carry an infection (Hurst & Jiggins, 

252 2000). In the lycaenid Zizina emelina, at least one of the two Wolbachia strains described in 

253 Japanese populations is a male-killer that rapidly increased in prevalence from 65% to 86% 

254 within a 3 year period (Sakamoto et al., 2011). 

255 The consequences of a highly distorted sex ratio are likely to be large (for discussions of 

256 evolutionary consequences see (Charlat, Hurst & Mercot, 2003; Engelstädter & Hurst, 2007)). 

257 As perhaps can be expected, one direct effect is that a large number of females remain unmated. 

258 In Makerere, Uganda, 94% of Wolbachia-infected A. encedon females were virgins (Jiggins, 

259 Hurst & Majerus, 2000). Of Samoan H. bolina 50% of infected females were unmated, with the 

260 females that did mate showing significant fertility deficiencies, implying sperm limitation 

261 (Dyson & Hurst, 2004). However, despite the detrimental impacts of male-killers upon the 
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262 reproductive biology of their hosts, natural host populations infected with high prevalence 

263 infections can persist: the 100:1 female to male sex ratio of the Samoan H. bolina population 

264 persisted for over 100 years (Dyson & Hurst, 2004). Only recently did the dynamics of this 

265 interaction change, with the host evolving resistance of the MK activity (Hornett et al., 2006; 

266 Charlat et al., 2007b). 

267 Wolbachia are not the only endosymbionts that selectively kill male Lepidoptera. In the 

268 nymphalid butterfly, Danaus chrysippus, a Spiroplasma bacteria, related to a MK strain 

269 previously found in ladybirds, underlies the observed MK (Jiggins et al., 2000a). Similarly, while 

270 Ostrinia corn borer moths are especially well-known to harbour MK Wolbachia strains (i.e. the 

271 adzuki bean borer O. scapulalis (Kageyama & Traut, 2004), and the Asian corn borer O. 

272 furnacalis (Sakamoto et al., 2007)), a MK Spiroplasma related to that found in D. chrysippus 

273 infects the butterbur borer O. zaguliaevi (Tabata et al., 2011). Mirroring the pattern seen in H. 

274 bolina, spatial variation of the MK Spiroplasma infection was observed in D. chrysippus (Smith 

275 et al., 1998; Herren et al., 2007), with 40% of females infected in Uganda vs. 4% in East Kenya 

276 (Jiggins et al., 2000a). Intriguingly, in this system infection appears to be correlated with a 

277 colour pattern allele. Although the forces generating this correlation are unknown, it may be the 

278 case that particular host genotypes are more susceptible to, or more efficient at transmitting, the 

279 infection than others (Herren et al., 2007). 

280 In most study systems the precise mechanisms of MK are unclear, and variation across 

281 taxa is expected given that MK occurs in arthropods with widely disparate sex determination 

282 systems. Dependent on host context several mechanisms have been proposed including defective 

283 male chromatin remodelling (Wolbachia-infected Drosophila: (Riparbelli et al., 2012)); targeting 

284 the dosage compensation complex (Spiroplasma-infected Drosophila: (Veneti et al., 2005)); 
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285 damaging the host’s X chromosome to induce embryonic apoptosis (Spiroplasma-infected 

286 Drosophila: (Harumoto et al., 2016)), and affecting maternally inherited centrosomes 

287 (Arsenophonus-infected Nasonia wasps: (Ferree et al., 2008)). In a Wolbachia-infected moth, 

288 Ostrinia scapulalis, male-killing is unusual in that males (genotype ZZ) selectively die early in 

289 development, whereas females (ZW) die if cured of the Wolbachia infection following antibiotic 

290 treatment (Fig. 2). Studies of this system suggest that MK Wolbachia interferes with the sex-

291 specific splicing pattern of the Ostrinia homologue of the sex determination gene doublesex, 

292 Osdsx (Sugimoto et al., 2010), producing a mismatch between the genotypic sex and expression 

293 of the phenotypic sex and leading to sex-specific death (Sugimoto & Ishikawa, 2012). Later  

294 examination of the levels of dosage compensation (Z-linked gene expression) in male and female 

295 embryos destined to die, revealed that misdirection of dosage compensation underlies the 

296 observed mortality. Males destined to die (fromWolbachia-infected females) have higher levels 

297 of expression of Z-linked genes than normal; while females destined to die (from females cured 

298 of the Wolbachia infection) have lower expression levels of Z-linked genes than normal 

299 (Sugimoto et al., 2015). In a related moth, O. furnacalis, RNA-Seq data of Wolbachia-infected 

300 embryos demonstrated that MK Wolbachia down-regulated a masculinizing gene, Masc, 

301 essential in controlling both sex determination and dosage compensation in Lepidoptera, 

302 compared to uninfected embryos. The decrease in Masc mRNA levels is reported to cause the 

303 MK phenotype via a failure of dosage compensation, and injection of in vitro transcribed Masc 

304 cRNA into Wolbachia-infected embryos rescued male progeny (Fukui et al., 2015). 

305 The mechanism of MK in Ostrinia moths may be different to that underlying MK in 

306 other Lepidoptera. In H. bolina butterflies no female specific death is observed following 

307 antibiotic treatment to reduce or remove MK Wolbachia (Charlat et al. 2007a). It is interesting to 
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308 note however, that the doublesex homologue in H. bolina may be involved in male-killing in this 

309 butterfly as it resides within the chromosomal region defined as containing a suppressor of male-

310 killing action (Hornett et al., 2014). It would therefore be interesting to compare the Wolbachia 

311 strains and MK mechanisms of Ostrinia and H. bolina. Likewise, a comparison between the 

312 modes of action of the MK strain of Wolbachia in Ostrinia moths, which kills males as a 

313 consequence of feminising them through alteration of expression of Osdsx, and of ‘true’ 

314 feminising Wolbachia such as that infecting Eurema butterflies (see Feminisation) may shed 

315 light on how one genus of bacteria can induce multiple reproductive manipulations in their hosts 

316 and whether there is a functional link.

317 Finally, the Oriental tea tortrix moth Homona magnanima also carries a male-killer 

318 (Morimoto et al., 2001), however male death in this case occurs much later in development 

319 (termed ‘late MK’), and appears to be associated with two novel RNA sequences (Nakanishi et 

320 al., 2008).  Late MK was originally only recorded in mosquitoes, with the causative agent being 

321 a microsporidian (Andreadis & Hall, 1979), however subsequent studies have now observed 

322 similar phenomena in other taxa including Drosophila flies (Jaenike, 2007). The extent of this 

323 type of manipulation, and the mechanisms underlying it, is still to be determined in insects, 

324 including Lepidoptera.

325

326 Feminisation

327 The feminisation of genetic males into functional phenotypic females (Stouthamer, Breeuwer & 

328 Hurst, 1999) is another strategy employed by maternally inherited endosymbionts to distort the 

329 host sex ratio towards the transmitting sex (females) (Fig. 1). While best known from the work 

330 on the association between Wolbachia and the terrestrial isopod Armadillidium vulgare 
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331 (Juchault, Rigaud & Mocquard, 1992; Rigaud, Juchault & Mocquard, 1997; Bouchon & Rigaud, 

332 1998; Cordaux et al., 2004), feminisation also occurs in other female-heterogametic arthropods 

333 such as leafhoppers (XX/X0) (Negri et al., 2006), and Lepidoptera (ZZ/ZW). Other than 

334 Wolbachia, the Bacteroidetes bacterium Cardinium can also feminise males (Chigira & Miura, 

335 2005; Groot & Breeuwer, 2006), however Cardinium has not yet been reported in butterflies or 

336 moths.

337 Observation of female-biased lines of pierid Eurema butterflies in Japan (Kato, 2000) led 

338 to the identification of a feminising Wolbachia in E. mandarina (formerly E. hecabe Y type) 

339 (Hiroki et al., 2002). Eurema hecabe (formerly E. hecabe B type) was later also discovered to 

340 carry a feminising Wolbachia indistinguishable from that of E. mandarina, thus suggesting that 

341 the infection transferred between the allopatric butterfly hosts via a shared predator or parasite, 

342 or via hybrid introgression between the species (Narita et al., 2011). When E. mandarina 

343 infected larvae were fed antibiotics to cure them of the infection, many of the adults emerged 

344 displaying sexually intermediate traits in their wings, reproductive organs and genitalia. 

345 Moreover, age at which antibiotics were administered was found to be important, with the 

346 highest level of intermediate sexual traits being exhibited when first instar larvae were treated. 

347 This work demonstrated that endosymbionts might continually influence and interact with their 

348 host (Narita et al., 2007) rather than have phenotypes that are effective only at a discrete time 

349 point in the lifecycle of the host. 

350 The process of feminising in E. mandarina is more complex than originally thought. 

351 Against expectation, female butterflies infected with the feminising strain of Wolbachia, wFem, 

352 had only one, paternally derived, Z chromosome. This was proposed to be due to meiotic drive 

353 against the maternal Z, preventing the formation of the expected ZZ feminised males. It was also 
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354 suggested that wFem lines have lost the W chromosome, and rely on wFem for female 

355 development as curing the infection with antibiotics results in all-male offspring (Kern et al., 

356 2015). Later work demonstrated that Wolbachia itself was responsible for the disruption of 

357 maternal Z chromosome inheritance in wFem infected females, as well as the feminisation of 

358 female ZO individuals that have lost the female-determining W chromosome (Kageyama et al., 

359 2017).

360

361 Cytoplasmic Incompatibility (CI)

362 Perhaps the most commonly observed reproductive manipulation employed by endosymbionts in 

363 insects is cytoplasmic incompatibility (CI). Unlike for MK or feminisation, the sex ratio of host 

364 populations infected by CI-inducing endosymbionts is generally not altered. Instead the symbiont 

365 induces an incompatibility upon mating between infected males and females of a different 

366 infection status (i.e. uninfected or infected with a different symbiont strain), leading to the death 

367 of all or a proportion of the offspring (Yen & Barr, 1971; 1973) (Fig. 1). This incompatibility is 

368 proposed to occur due to a modification of the infected male’s sperm that can be rescued when 

369 the female is similarly infected (mod-res mechanism). This specific rescue function is lacking in 

370 uninfected females or females carrying a different infection (Hoffman & Turelli, 1997; Charlat, 

371 Calmet & Mercot, 2001; Poinsot, Charlat & Merçot, 2003). Infected females therefore have a 

372 reproductive benefit of successfully producing a full complement of progeny (relative to 

373 uninfected females), when mated to uninfected or similarly infected males in the population. 

374 While Wolbachia is often described as the causative agent, Cardinium also has this ability, e.g. 

375 (Hunter, Perlman & Kelly, 2003; Perlman, Kelly & Hunter, 2008).
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376 CI has been observed in a number of Lepidoptera including the Mediterranean flour moth 

377 Ephestia kuehniella and the almond moth Cadra cautella (Sasaki & Ishikawa, 1999). 

378 Interestingly, CI Wolbachia was discovered to lower the amount of fertile sperm transferred in 

379 Cadra cautella during second matings. However, no effect was shown on the amount of apyrene 

380 (non-fertile) sperm suggesting that Wolbachia may only target fertile sperm production (Lewis et 

381 al., 2011). Further work is required to expand our knowledge of CI mechanisms in Lepidoptera. 

382 Similarly to MK, CI Wolbachia are often observed at high frequency in Lepidoptera populations. 

383 In a study of seven Japanese populations of the pierid butterfly Colias erate poliographus, CI 

384 Wolbachia occurred at 85-100% prevalence. The high infection frequency was ascribed to strong 

385 CI (i.e. a high proportion of the progeny from an incompatible cross die) and perfect vertical 

386 transmission of the bacteria (Tagami & Miura, 2004; Narita, Shimajiri & Nomura, 2008). Where 

387 CI reaches very high frequency within a host population, the incompatibility between infected 

388 males and uninfected females is rarely observed as few females remain uninfected. However, 

389 selection for beneficial effects of infection and an eventual shift towards a mutualistic 

390 relationship between host and symbiont would remain. 

391 Symbioses can be extraordinarily complex; individuals can carry multiple endosymbionts 

392 with differing phenotypes. For instance, E. hecabe butterflies carry a feminising Wolbachia 

393 strain, but also a second strain that causes CI (Hiroki et al., 2004). This was the first indication 

394 that different strains of Wolbachia could infect a single individual and cause different 

395 phenotypes. Host context is important in the expression of endosymbiont-induced phenotypes - 

396 one symbiont strain can have the ability to cause more than one phenotype, including 

397 reproductive manipulations that were originally assumed to be distinct from each other. This has 

398 been exemplified in the butterfly H. bolina: in populations where H. bolina has evolved 
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399 suppression of the action of MK, surviving infected males are incompatible with uninfected 

400 females in the population i.e. expression of the CI phenotype (Hornett et al., 2008). This finding 

401 indicates a potential functional or mechanistic link between the two phenotypes. However 

402 phenotypic switching between CI and MK through mutations cannot yet be ruled out. An 

403 intriguing possibility is whether feminisation is also mechanistically linked to CI and MK. Some 

404 evidence that may suggest this latter link is provided in studies of the moth O. scapularis. As 

405 mentioned above, male moths that die as a result of infection with MK Wolbachia, were found to 

406 carry the female isoform of a homologue of the sex-determining gene, doublesex, and hence 

407 were feminised prior to death (Sugimoto & Ishikawa, 2012).

408 Artificial transinfection of Wolbachia strains have provided further evidence of the 

409 relative importance of endosymbiont or host in determining the nature of the phenotype 

410 expressed. While in some cases transfer of Wolbachia from the natural host into a novel host did 

411 not alter the phenotype expressed (e.g. Wolbachia causes MK in the natural host O. scapulalis 

412 and in the transinfected host E. kuehniella (Fujii et al., 2001)), host context is important in 

413 others. Transfer of CI Wolbachia wCau-A from C. cautella to E. kuehniella resulted in the 

414 expression of MK in the novel host (Sasaki, Kubo & Ishikawa, 2002). The strength of the 

415 phenotype may also alter in the novel host: the level of CI induced by Wolbachia in the 

416 transinfected host O. scapulalis, was higher than that in its natural host E. kuehniella, indicating 

417 that host factors as well as endosymbiont strain are important in determining the phenotype 

418 expressed (Sakamoto et al., 2005). 

419

420 Impact upon host fitness
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421 It is becoming increasingly evident that many heritable endosymbionts do not manipulate host 

422 reproduction, and yet are still maintained within the host population. Host-associated microbes 

423 are now thought to be commonly beneficial to their host. For an inherited endosymbiont, the 

424 trade-off between virulence and transmission can lead to a reduction in its pathogenicity towards 

425 the host, and evolution towards mutualism (e.g. (Weeks et al., 2007). At the extreme end of the 

426 spectrum are the obligatory endosymbionts, which are necessary for host survival or 

427 reproduction. The growing number of cases include: Wolbachia required for oogenesis in the 

428 wasp Asobara tabida (Dedeine et al., 2001; Dedeine, Bouletreau & Vavre, 2005); 

429 Wigglesworthia bacteria acting as an obligate nutritional mutualist in tsetse flies (Aksoy, 1995); 

430 and Buchnera bacteria providing essential nutrients to aphids (Buchner, 1965). 

431 Many more endosymbionts are facultatively (non-essentially) beneficial, with fitness 

432 benefits including increasing host survival (e.g. (Fry & Rand, 2002)) or fecundity (e.g. (Vavre, 

433 Girin & Boulétreau, 1999; Weeks & Stouthamer, 2004). Studies of the beneficial effects of 

434 endosymbiont infection in the Lepidoptera provide an unusual example in Parnassius apollo. In 

435 one isolated population this near threatened butterfly regularly exhibits deformed or reduced 

436 wings, however while 86% of normal winged butterflies are found infected with Wolbachia, this 

437 percentage drops to 30% in individuals displaying deformed wings, and 0% in individuals with 

438 reduced wings. Although this is suggestive of a protective role of Wolbachia in the ontogenetic 

439 development of the butterfly, further study needs to be carried out to prove causality 

440 (Łukasiewicz, Sanak & Węgrzyn, 2016). 

441 Microbial endosymbionts can contribute to insect adaptation by providing 

442 complementary or novel metabolic capacities, allowing the insect host to exploit host plant 

443 nutritional resources. One such instance has been observed in the phytophagous leaf-mining 
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444 moth Phyllonorycter blancardella. In this system, a bacterial endosymbiont, most 

445 likelyWolbachia, indirectly affects larval nutrition by manipulating the physiology of the host 

446 plant to create photosynthetically active green patches in otherwise senescent yellow leaves. The 

447 phenotype, termed ‘green-island’, produces areas of leaf viable for host feeding in a nutritionally 

448 constrained stage of the lifecycle. Curing the larvae of endosymbionts resulted in the non-

449 production of ‘green-islands’, and consequent increased compensatory larval feeding and higher 

450 mortality (Kaiser et al., 2010). The mechanism behind green island formation involves increased 

451 levels of cytokinins (CKs), plant hormones important in plant senescence and nutrient 

452 translocation. Wolbachia have been shown to be involved in the release of CKs by the larvae, 

453 creating these nutritionally enhanced areas of leaf. Whether the CKs are bacterial-derived or 

454 produced by the insect in response to Wolbachia infection (or a combination of both) remains to 

455 be fully understood (Body et al., 2013; Giron & Glevarec 2014). Several strains of Wolbachia 

456 from both A- and B-supergroups have been identified in 13 Gracillariidae leaf-mining moth 

457 species, while none were found in ancestral Gracillariidae. Acquisition of the green-island 

458 phenotype appears to have occurred several times independently across the Gracillariidae in 

459 association with different Wolbachia infections (Gutzwiller et al., 2015).

460 Generally, vertically inherited endosymbionts are unlikely to be maintained in host 

461 populations if they are highly costly. However, direct fitness or physiological costs of infection 

462 have been observed where the symbiont also manipulates host reproduction. CI Wolbachia are 

463 maintained in the host population despite reducing male fertility (Snook et al., 2000) or female 

464 fecundity (Hoffman, Turelli & Harshman, 1990) in Drosophila flies, or detrimentally affecting 

465 fecundity, adult survival and locomotor performance in the parasitoid wasp Leptopilina 

466 heterotoma (Fleury et al., 2000). Among Lepidoptera examples, presence of MK Spiroplasma in 
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467 D. chrysippus in Kenya was negatively correlated with forewing length, suggesting that the 

468 bacteria may adversely affect development time or the growth rate of larvae (Herren et al., 

469 2007). Presumably these physiological costs are counter-balanced by the reproductive 

470 manipulations employed by heritable endosymbionts, thus enabling the symbiont to persist. 

471 Although not covered in detail here, we note that in contrast, a symbiont that is also (or only) 

472 horizontally transmitted, can be highly detrimental to the host yet still be maintained in the host 

473 population. Indeed, host death may be its source of transmission to a novel host. 

474 The gregarine protozoan infection, Ophryocystis elektroscirrha, of the Monarch butterfly 

475 (Danaus plexippus) is one of the most studied cases of direct fitness costs of symbionts in 

476 Lepidoptera. While it is not heritable in the sense of being intracellular, we include it here as it is 

477 passed vertically from mother to offspring via the surface of the egg. An infected female 

478 inadvertently coats her eggs with protozoan spores that cover the outside of her abdomen during 

479 oviposition. Newly hatched larvae ingest these spores while consuming the eggshell 

480 (McLaughlin & Myers, 1970). The parasite, which requires the adult host stage for transmission, 

481 rarely kills larvae or pupae under natural conditions, however the degree of virulence and 

482 transmission trade-off varies depending on the level of infection at the adult stage. Where 

483 individual D. plexippus butterflies carry high densities of the protozoa, they have both reduced 

484 survival and flight capacity compared to individuals with lower density infections (Altizer & 

485 Oberhauser, 1999; de Roode, Yates & Altizer, 2008; de Roode & Altizer, 2010). 

486

487 Symbiont-mediated protection

488 Although understudied in Lepidopteran systems, an exciting avenue of research in arthropods 

489 revolves around a symbiont’s ability to afford the host some level of resistance to its natural 
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490 enemies, often through interference with pathogen or parasite replication or transmission 

491 (reviewed in insects in (Brownlie & Johnson, 2009)). This may be particularly the case for 

492 heritable endosymbionts, where symbiont and host fitness is inextricably linked - competing 

493 infections may elicit a response by the endosymbiont to protect the host, and thus simultaneously 

494 itself (Haine, 2008). Such symbiont-mediated protection has been documented in numerous taxa, 

495 particularly the Diptera, including recent studies demonstrating the ability of Wolbachia to 

496 supply their Drosophila host with anti-viral protection (Hedges et al., 2008; Teixeira, Ferreira & 

497 Ashburner, 2008; Martinez et al., 2014). Similarly, maternally transmitted Spiroplasma were 

498 found to protect D. neotestacea against the sterilising effects of a parasitic nematode (Jaenike et 

499 al., 2010), and enhance the survival of D. hydei parasitized by wasps (Xie, Vilchez & Mateos, 

500 2010). 

501 Symbiont-mediated protection appears to be extremely diverse. Aphids are host to a 

502 range of inherited symbionts, several of which provide protection against parasitoid wasp attacks 

503 (Oliver et al., 2003; Ferrari et al., 2004) or fungal infections (Ferrari et al., 2004; Scarborough, 

504 Ferrari & Godfray, 2005). In the European beewolf wasp, Philanthus triangulum, Streptomyces 

505 bacteria are stored in special antennae glands and deposited together with the egg in the 

506 oviposition chamber. The bacteria secrete antibiotics protecting the developing wasp larvae 

507 against fungal pathogens (Kaltenpoth et al., 2005). There is even some evidence that symbionts 

508 can protect their host from predators by producing toxic compounds. For example, a bacterial 

509 endosymbiont (that is both vertically and horizontally transmitted) closely related to 

510 Pseudomonas aeruginosa produces the polyketide toxin pederin, which protects Paederua beetle 

511 larvae from predatory wolf spiders (Kellner & Dettner, 1996; Kellner, 1999; Piel, Höfer & Hui, 

512 2004). Furthermore, endosymbionts may have the ability to inhibit a range of pathogens by 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26768v1 | CC BY 4.0 Open Access | rec: 24 Mar 2018, publ: 24 Mar 2018



513 priming the host immune system (Braquart-Varnier et al., 2008; Moreira et al., 2009; Hughes et 

514 al., 2011), suggesting that symbionts can interact with, and alter integral components of, host 

515 biology.  

516 Conversely, it is important to acknowledge that endosymbiont infection can also increase 

517 pathogen load. While Wolbachia confers protection against a variety of pathogens and parasites 

518 in a wide range of hosts, pathogen or parasite levels can also be enhanced by the presence of an 

519 endosymbiont (Hughes, Rivero & Rasgon, 2014): in the moth Spodoptera exempta, Wolbachia 

520 triggers a higher rate of virus infection and therefore lowers host fitness (Graham & Wilson, 

521 2012).

522

523 Host genetics

524 Host population genetics 

525 Sex ratio distorting symbionts are likely to have a severe impact upon host population biology 

526 (Engelstädter & Hurst, 2007). If the prevalence of a sex ratio distorter is high, the sex ratio of the 

527 population can become severely biased. In consequence, the hosts’ effective population size (Ne) 

528 will be reduced. Where there is little gene flow into the population (i.e. low immigration), a 

529 reduction of the effective population size may affect the amount of standing genetic variation and 

530 the potential for the host population to respond and adapt to environmental change. In contrast, if 

531 gene flow does occur, spatial variation in sex ratio (as seen in the butterfly H. bolina (Charlat et 

532 al., 2005; Hornett et al., 2009)) may result in asymmetric gene flow between populations. 

533 Although both sexes typically contribute equally to the gene pool of the next generation, 

534 immigration of an individual into a population in which the sex ratio is skewed against it (e.g. a 

535 male into a highly female-biased region) can have a much larger genetic impact (i.e. contribute 
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536 more) than if that individual immigrated into an unbiased sex ratio population (Telschow et al., 

537 2006). MK symbionts are also thought to hinder the spread of beneficial alleles and facilitate the 

538 spread of deleterious alleles, due to constrained gene flow from infected to uninfected 

539 individuals within the population (Engelstädter & Hurst, 2007). In a further complication, strains 

540 expressing different reproductive manipulations may be incompatible. Although most famous for 

541 its MK Wolbachia infections, some populations of H. bolina also carry a CI-inducing strain of 

542 Wolbachia. This CI strain is phylogenetically distant from the MK strain, and crosses between 

543 MK-infected females and CI-infected males are fully incompatible with no progeny surviving. 

544 The incompatibility produced has led to strong competition between the two strains, with the CI-

545 strain being able to not only spread successfully through uninfected populations, but to also resist 

546 invasion by the MK-strain carried by butterflies from neighbouring island populations (Charlat et 

547 al., 2006). Extending from this model, a study (Zug & Hammerstein, 2017) recently showed that 

548 when direct fitness benefits are taken into account in parallel to reproductive costs, the CI-strain 

549 is likely to also be able to spread across MK-infected H. bolina populations. Taken together, this 

550 suggests that successful establishment of particular butterfly genotypes is affected by the 

551 endosymbionts they harbour.

552

553 Linkage with host mitochondrial DNA

554 Maternally inherited symbionts residing within the cytoplasm of cells can alter the diversity and 

555 population genetics of the host’s mitochondrial genome (mtDNA). Co-inherited symbionts and 

556 mitochondria are in linkage disequilibrium, therefore when a cytoplasmic symbiont invades a 

557 population, the initially associated mitochondrial haplotype (mitotype) may ‘hitch-hike’ and 

558 correspondingly increase in frequency. Should such a selective sweep have occurred recently, the 
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559 effective population size and genetic diversity of mtDNA would be reduced to that of the 

560 infected individuals (Johnstone & Hurst, 1996), and the geographic structure of mitochondrial 

561 variation lost. The latter has been observed in Acraea butterflies (Jiggins, 2003) and the comma 

562 butterfly Polygonia c-album (Kodandaramaiah et al., 2011). The tight association between 

563 endosymbiont and mtDNA can therefore seriously confound the results of any study using 

564 mtDNA genes as neutral genetic markers (Hurst & Jiggins, 2005). Reconstruction of 

565 phylogenetic trees using mitochondrial markers are hence likely to be misleading, particularly 

566 within shallower branches, when the study species is infected. In the Diamondback moth, 

567 Plutella xylostella, the main correlate of mtDNA variation is presence or absence of the plutWB1 

568 Wolbachia infection (Delgado & Cook, 2009), and the lycaenid butterfly Lampides boeticus may 

569 have experienced accelerated population differentiation due to Wolbachia infection (Lohman et 

570 al., 2008). Recognition of these processes should lead to an increasing number of Lepidopteran 

571 studies interested in using mtDNA markers to systematically screen for maternally inherited 

572 symbionts.

573 Where there is perfect transmission of the maternally inherited symbiont from the host to 

574 its offspring, infected individuals all carry the same mitotype, while uninfected individuals 

575 remain polymorphic. This pattern has been repeatedly observed in natural populations of insects, 

576 including in the Lepidoptera. In the butterfly H. bolina, a strong association between one specific 

577 Wolbachia strain and one particular mitotype supported the hypothesis that the MK infection 

578 occurred with very high vertical transmission efficiency and rare horizontal transmission. In 

579 H.bolina, this strain of Wolbachia is thought to have undergone a recent selective sweep and was 

580 introduced into this butterfly through introgression, potentially from another Hypolimnas species, 

581 H. alimena. Conversely the infection and associated mitotype may have been introgressed from 
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582 H. bolina to H. alimena (Charlat et al., 2009; Duplouy et al., 2010; Sahoo et al., 2018). Similarly, 

583 in the Acraea butterflies, a study of mitochondrial variants demonstrated that a MK Wolbachia, 

584 together with the associated mitotype, had introgressed from A. encedana into A. encedon within 

585 the last 16,000 years. As female butterflies are heterogametic (ZW), this event could potentially 

586 also lead to the introgression of genes on the female W chromosome (Jiggins, 2003). This 

587 scenario appears to have occurred in D. chrysippus infected with a MK Spiroplasma, as all 

588 infected females carry the same W chromosome variant (Smith, Gordon & Allen, 2010). This 

589 aside, the nuclear DNA is generally less likely to be in linkage with inherited symbionts. 

590 Gompert and colleagues studying North American Lycaeides butterflies reported that the spread 

591 of an endosymbiont (and associated mitotype) through the host population produced substantial 

592 mito-nuclear discordance. Therefore, the evolutionary history of an individual’s nuclear and 

593 mitochondrial genomes may be very different from each other (Gompert et al., 2008). Such 

594 discordance may have far-reaching effects on host metabolism and physiology, as coevolution 

595 between nuclear and mitochondrial components of essential pathways is broken down.

596

597 Speciation by symbiosis

598 The concept that symbionts can be important promoters of speciation and diversity has been 

599 around for a long time (Wallin, 1927; Laven, 1959; Thompson, 1987; Breeuwer & Werren, 

600 1990; Hurst & Schilthuizen, 1998; Bordenstein, 2003), but has recently been rejuvenated with 

601 the development of microbiome analyses (Brucker & Bordenstein, 2012). Contemporary 

602 evidence of microbe-assisted speciation involves pre-mating reproductive isolation through 

603 behavioural barriers such as mate preference, associated with the microbiome of the potential 

604 partners (Koukou et al., 2006; Miller, Ehrman & Schneider, 2010; Sharon et al., 2010; Chafee et 
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605 al., 2011). The underlying mechanisms may involve alteration of the sex pheromones, 

606 interference with sensory organs, or effects upon immune-competence and hence mate 

607 attractiveness. Ecological isolation may also be heavily influenced by microbial symbionts. 

608 Although the genetic basis of niche or habitat specificity is widely accepted, there is also 

609 increasing evidence that symbionts may play a role in determining host resource availability (e.g. 

610 (Akman et al., 2002; Hosokawa et al., 2010)), and thus may facilitate niche separation. 

611 Additionally, endosymbionts might enable host speciation through post-mating isolation. 

612 In particular, strong bi-directional CI may result in reproductive isolation between hosts carrying 

613 different CI symbiont strains  (Hurst & Schilthuizen, 1998; Werren, 1998; Bordenstein, 2003). In 

614 order for speciation to follow CI, a stable infection polymorphism must be maintained across 

615 host populations. This has been demonstrated in many systems including the butterfly H. bolina 

616 (Charlat et al., 2006). Theory predicts that two bi-directional CI-inducing symbionts can be 

617 stable for even high migration rates (Telschow, Hammerstein & Werren, 2005). What is more 

618 contentious is that for speciation to occur, the CI produced must be very strong (i.e no offspring 

619 surviving from such crosses), and the symbiont must be maintained at a high transmission rate 

620 over time, to allow significant nuclear divergence (Engelstädter & Hurst, 2009).

621 Male-killing has also been linked to speciation in the butterfly D. chrysippus. In Kenya 

622 two forms exist: D. c. chrysippus and D. c. dorippus, separated by a hybrid zone. Each 

623 subspecies has an individual colour pattern controlled by locus C, which is intermediate in the 

624 hybrid (Cc). The C locus lies on an autosome that has fused with the W chromosome within the 

625 hybrid zone, physically linking colour pattern with female determination. A locus on this same 

626 autosome has also been associated with susceptibility to male-killing by Spiroplasma. The 

627 hybrid zone is characterised by female-biased sex ratios, caused by MK Spiroplasma that infects 
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628 D. c. chrysippus or hybrid females, but rarely D. c. dorippus females. As immigrant males into 

629 the hybrid zone are predominantly D. c. dorippus, gene flow between the two subspecies is 

630 restricted: D. c. chrysippus/hybrid female x D. c. dorippus male crosses produce female-biased 

631 broods (Smith et al., 2016). 

632

633 Sex determination 

634 The maternal inheritance of intracellular endosymbionts has led to a great degree of interaction 

635 of the symbiont with the sex determination pathways of the host (reviewed in (Cordaux, 

636 Bouchon & Grève, 2011; Kageyama, Narita & Watanabe, 2012; Ma, Vavre & Beukeboom, 

637 2014) and so not discussed in detail here). Maternally inherited endosymbionts distort the host 

638 sex ratio in order to enhance the fitness of the transmitting female sex. The mechanisms 

639 underlying these phenotypes often require considerable manipulation of host sex determination. 

640 We have seen above that in several cases MK and feminising Wolbachia can interfere with 

641 central components of the sex determination pathways in Lepidoptera. When a feminising 

642 element is highly prevalent in a host population, sex determination may be inextricably linked to 

643 the presence or absence of feminising activity (Hiroki et al., 2002), but may also enter into 

644 conflict with other genetic elements not under similar maternal inheritance. Furthermore, 

645 evolution of host suppressors of feminisation may move the system away from the original 

646 ZZ/ZW sex determination system. In E. mandarina, Wolbachia disrupts the inheritance of 

647 maternal Z chromosomes in Wolbachia-infected females, and feminises the resulting Z0 

648 individuals that have lost the female-determining W chromosome (Kageyama et al., 2017). The 

649 host may then be prompted to evolve a strategy to counteract the feminising effects of the 

650 symbiont. It has been speculated that in the pillbug A. vulgare, a masculinising factor in the form 
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651 of a dominant autosomal M gene has evolved in the host to counter the effect of the feminising 

652 endosymbiont (Rigaud & Juchault, 1993; Caubet et al., 2000). 

653

654 Evolution of host resistance

655 Co-evolution between a host and a detrimental symbiont can result in the evolution of host 

656 genetic modifiers of symbiont presence or action. Despite this, and considering the wide array of 

657 costly effects that endosymbionts can impose on their hosts, it is perhaps surprising that there are 

658 relatively few well documented examples of the host having evolved genetic resistance to an 

659 endosymbiont. Indeed no suppression of the detrimental phenotype is observed in several studies 

660 where it may have been expected (Hurst, Jiggins & Robinson, 2001; Veneti, Toda & Hurst, 

661 2004; Dyer & Jaenike, 2005). However, artificial transinfection experiments have provided an 

662 indirect method of discovering whether a host has evolved resistance to an endosymbiont, and 

663 have suggested that suppression of reproductive manipulation phenotypes may actually be 

664 common. In the moth C. cautella, which is naturally infected with two Wolbachia strains 

665 (wCauA and wCauB), artificial transinfection of CI-inducing wCauA to a sister host species, E. 

666 kuehniella, resulted in the transferred bacteria inducing MK instead of CI in the novel host 

667 (Sasaki, Kubo & Ishikawa, 2002; Sasaki, Massaki & Kubo, 2005). By interpreting these data in 

668 the light of the hidden MK theory (where MK is masked by the presence of a fixed suppressor), 

669 this switch in phenotype between species could be interpreted as the ‘unmasking’ of MK when 

670 released into a background devoid of host suppression genes. More generally, resistance may 

671 also underlie the loss of infections from populations or host species, however this is obviously 

672 hard to document in nature.
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673 The selective pressure for host resistance is particularly strong when the sex ratio is 

674 severely biased (Düsing, 1884; Fisher, 1930; Hamilton, 1967), and therefore one would expect 

675 the evolution of resistance particularly in cases of highly prevalent sex ratio distorters. As 

676 mentioned above, the Samoan population of the butterfly H. bolina had an extraordinarily 

677 female-biased sex ratio of 100 females per male, caused by 99% of the females being infected 

678 with MK Wolbachia (Dyson & Hurst, 2004). However between 2001 and 2006 the dynamics of 

679 the interaction changed dramatically when H. bolina evolved suppression of the MK trait, 

680 allowing infected males to survive and rapidly re-establishing a 1:1 sex ratio within 

681 approximately 10 generations of the host butterfly (Charlat et al., 2007b). The presence of a 

682 zygotically acting dominant suppressor locus had previously been documented in SE Asian H. 

683 bolina populations (Hornett et al., 2006).  

684 Sex ratio distorting endosymbionts can also have much wider implications upon host 

685 genetics. Recent work on the same Samoan population of H. bolina investigating the genomic 

686 impact of the rapid spread of suppression revealed that a substantial selective sweep had taken 

687 place, covering at least 25cM of the chromosome carrying the suppressor locus. In addition to 

688 large changes in the frequency of genetic variants across this broad region, the sweep was 

689 associated with the appearance of several novel alleles. This suggests that the suppressor spread 

690 following migration of butterflies carrying the locus, potentially from SE Asia, rather than from a 

691 de novo mutation occurring within the population. It is also interesting to note that the suppressor 

692 of MK has been located to the chromosome containing doublesex (Hornett et al., 2014)– a sex 

693 determination gene demonstrated to be involved in Wolbachia-induced MK in Ostrinia moths. 

694

695 Horizontal transfer of genetic material 
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696 While the extent of horizontal (lateral) gene transfer (HGT) between eukaryotes and prokaryotes 

697 remains uncertain, technological advances in genomics followed by an accumulation of 

698 microbial and host genomic data, have revealed that endosymbionts, particularly those that are 

699 vertically inherited, may readily exchange genetic material with their host. HGT from a 

700 prokaryote symbiont to its eukaryote host has been reported in many insects including beetles, 

701 flies, parasitoid wasps, mosquitoes and butterflies (e.g. (Hotopp et al., 2007; Nikoh et al., 2008; 

702 Klasson et al., 2009; Werren et al., 2010) and has recently been reviewed in detail (Husnik & 

703 McCutcheon, 2017). Such movement of genes can afford the receiving organism important 

704 benefits. For instance, horizontally transferred bacterial DNA that is involved in the 

705 detoxification of cyanide has been identified in several moths and butterflies, allowing these 

706 insects to utilise otherwise noxious plants (Wybouw et al., 2014). However, the discovery of 

707 bacterial DNA within the host’s genome does not necessarily imply functionality, and definitive 

708 proof of function is difficult to obtain, indeed many transferred Wolbachia genes are not 

709 expressed at a significant level in the host (Hotopp et al., 2007; Nikoh et al., 2008).  To date, the 

710 identification of a 350bp long Wolbachia gene insert in the genome of the butterfly Melitaea 

711 cinxia, is the only reported example of an HGT from an endosymbiont to a Lepidoptera species 

712 (Ahmed et al. 2016), its origin and functionality have yet to be demonstrated.  

713 Horizontal gene transfer is also known to occur in the opposite direction, from eukaryote 

714 host to symbiont. Wolbachia genome projects have indicated that genome fragments have been 

715 transferred from host to the bacteria, including in the H. bolina system. The MK Wolbachia 

716 strain sequenced appears to be extremely receptive to exogenous genetic material (Duplouy et 

717 al., 2013). In addition to cross-level transfer of genes, bacteria within a host may also exchange 

718 genetic material. Bacteria are known to be promiscuous with regard to DNA, with movement of 
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719 bacteriophages between co-infecting symbiont species providing a convenient method of transfer 

720 of genes. Some endosymbiont traits are associated with phage presence (Oliver et al., 2009) and 

721 thus this movement offers the potential for transfer of traits between co-infecting symbiont 

722 strains (Duron & Hurst, 2013). Indeed extensive HGT involving the bacteriophage WO has been 

723 reported between several Wolbachia strains infecting diverse hosts including within the 

724 Lepidoptera, Diptera and Hymenoptera (Masui et al., 2000; Bordenstein & Wernegreen, 2004).

725

726 Behavioural modification

727 The transmission of many parasites is facilitated by their ability to manipulate the behaviour of 

728 their hosts (Lefevre et al., 2009). Reported cases are often restricted to viral and fungal 

729 pathogens, for instance, some baculoviruses and fungi cause summit disease – a syndrome that 

730 induce caterpillars to climb to high vegetation prior to being killed so that any spores released are 

731 carried further by the wind (Maitland, 1994; Yamazaki & Sugiura, 2004). Behavioural 

732 modification of arthropod hosts by heritable endosymbionts is less evident, and where observed 

733 are perhaps more attributable to indirect effects of infection. Rickettsia bacteria have been 

734 associated with limiting long distance dispersal in a spider (Goodacre et al., 2009), and 

735 Wolbachia has been demonstrated to reduce wasp locomotor performance (Fleury et al., 2000). 

736 Models of MK endosymbionts in metapopulations have suggested that male-killers can increase 

737 host dispersal rates (Bonte, Hovestadt & Poethke, 2008). These patterns may be attributed to the 

738 evolution of adaptive modifications by the symbiont to promote its own transmission. However 

739 another explanation is that these behavioural changes are merely side effects of physiological 

740 alterations without any adaptive causality. 
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741 In the butterfly, D. plexippus, the protozoan O. elektroscirrha has attracted much 

742 attention because of its potential involvement in the famous migratory behaviour of its host. This 

743 parasite is known to reduce the flight capacity of the host (Altizer & Oberhauser, 1999; Bradley 

744 & Altizer, 2005) – a trait that creates an important trade-off as the butterflies’ dispersive 

745 behaviour allows the spread of the protozoa across the species range, and thus increases the 

746 chance of it infecting naive populations. For the butterfly, migration offers an opportunity of 

747 escaping highly infected habitats where they may risk reduced fitness (Altizer, Bartel & Han, 

748 2011). Altizer and colleagues demonstrated that variation in protozoa prevalence correlates with 

749 host movement - non-migratory populations have high infection prevalence whereas populations 

750 that migrate long distances show less than 10% prevalence of infection (Altizer, Oberhauser & 

751 Brower, 2000). More recently it was found that where migratory behaviour has been lost, the risk 

752 of infection is increased (Satterfield, Maerz & Altizer, 2015). Thus in part the presence of the 

753 protozoa may have led to Monarch butterflies forming both resident and migratory populations.

754 Further indirect behavioural consequences of microbial infection are also possible. In 

755 order to escape the fecundity and physiological costs of mating with an incompatible mate, 

756 individuals may evolve new adaptive mating strategies, including increased polyandry or mate 

757 discrimination (reviewed in (Miller & Schneider, 2012). Wolbachia influences mate-choice in 

758 the two-spotted spider mite, where uninfected females preferentially mate with uninfected males 

759 (Vala et al., 2004), while in Drosophila paulistorum, Wolbachia titer and mate discrimination 

760 are positively correlated (Miller, Ehrman & Schneider, 2010). In Acraea butterfly populations 

761 harbouring high frequency MK bacteria (thereby having highly female-biased sex ratios), 

762 infected females more often remained unmated than uninfected females (Jiggins, Hurst & 

763 Majerus, 2000). While this is suggestive of preferential mating by the male, further work needs 
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764 to be carried out to test this. However, Acraea butterflies afford another example: in butterflies, 

765 males are often the competing sex and court the females. When the butterfly population is 

766 strongly female biased due to the presence of a highly prevalent sex ratio distorting 

767 endosymbiont, the roles of the sexes may reverse. Such sex-role reversal was observed in Acraea 

768 butterflies infected with MK Wolbachia. Although male ‘hill-topping’ (swarming at the tops of 

769 hills) is common throughout the genus (Jiggins, 2002), in A. encedon the lack of males induced 

770 females to swarm instead, and to exhibit behaviours soliciting the males’ attention (Jiggins, 

771 Hurst & Majerus, 2000). 

772 MK endosymbionts may also result in female reproduction becoming sperm limited. In a 

773 comparison of H. bolina populations varying in MK Wolbachia prevalence, the prediction that 

774 female mating rates would decline with increasing MK infection prevalence as males became 

775 increasingly rare was not borne out. Unexpectedly the opposite occurs – as the population sex-

776 ratio becomes more biased, the female mating rate increased until a point at which the lack of 

777 males makes it impossible for females to find a mate. It was suggested that female promiscuity 

778 increased in response to increasing male ‘fatigue’. Males from more highly female-biased 

779 populations produced smaller spermatophores thus necessitating females to become more 

780 solicitous (Charlat et al., 2007c). 

781

782 Outstanding questions and future directions

783 We here are promoting the Lepidoptera as important models in the study of endosymbiont 

784 induced reproductive manipulations, with MK, feminisation and CI all being evident in 

785 butterflies and moths. Current research is uncovering the genetic and functional basis underlying 

786 these phenotypes but many outstanding questions remain: Are all three reproductive 
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787 manipulations found in Lepidoptera functionally linked? How commonly can a single 

788 endosymbiont strain confer more than one phenotype? How do different endosymbiont genera 

789 confer similar phenotypes in their host (e.g. both Wolbachia and Spiroplasma cause MK in 

790 Lepidoptera), and are the mechanisms related? How does MK, feminisation and CI in 

791 Lepidoptera differ from that expressed in taxa with divergent sex determination systems? Also, 

792 how do sex-ratio distorting endosymbionts affect the long-term evolution of the host. Given 

793 recent advances in genomics this now can include investigations of the genomic impact of a 

794 sustained population sex ratio bias. Sex-linked traits in particular may be expected to be affected.

795 More questions are provoked when research into heritable endosymbionts associated with 

796 other arthropod taxa is considered. Of particular interest is the evidence accruing that symbionts 

797 often afford the host some level of protection against pathogens and parasitoids. But how 

798 frequent is this phenomenon in butterflies and moths? Also, can we see these effects in 

799 combination with reproductive manipulations, producing a trade-off between detrimental and 

800 mutualistic effects of infection? Conversely, where we see highly prevalent and persistent 

801 endosymbiont infections in host populations that do not induce reproductive manipulations, do 

802 these symbionts offer the host protection? While there are clearly many outstanding questions to 

803 examine in the Lepidoptera, in this next section we focus upon four further areas of research that 

804 will move Lepidoptera-heritable endosymbiont research forward.

805

806 Comparative endosymbiont genomics

807 The genomes of many arthropod heritable endosymbionts have now been assembled, however 

808 very few of those sequenced are associated with Lepidoptera hosts. A comparative genomics 

809 approach can be used to elucidate endosymbiont evolution and function in its host including 
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810 identifying candidate genes involved in reproductive manipulations such as CI (as in Drosophila 

811 (Sutton et al., 2014; LePage et al., 2017)), and parthenogenesis induction (in parasitoid wasps 

812 (Newton et al., 2016; Lindsey et al., 2016)). A recent comparison of 16 Wolbachia genomes 

813 identified a core Wolbachia genome of 496 sets of orthologous genes, 14 of which were unique 

814 to Wolbachia among the Rickettsiales bacteria, of which it is a member (Lindsey et al., 2016). 

815 This study included the MK Wolbachia strain wBol1b from H. bolina butterflies, which was 

816 revealed to be closely related to a CI Wolbachia infecting Culex pipiens mosquitoes, wPip. A 

817 comparison of the two strains identified a number of genes specific to wBol1b that could be 

818 potential candidates involved in the induction of MK (Duplouy et al., 2013). An interesting 

819 future research direction that may inform on the diversity and genetic basis of MK, would be to 

820 expand this line of enquiry by comparing the genome of wBol1b with other MK and non-MK 

821 Wolbachia genomes. Candidate loci could also be investigated in other MK-inducing symbiont 

822 genomes such as Spiroplasma. While the genomes of many Spiroplasma bacteria have been 

823 chracterized from various arthropods (see (Bolaños, Servín-Garcidueñas & Martínez-Romero, 

824 2015) for a minireview), including the MK Spiroplasma endosymbiont MSRO found in D. 

825 melanogaster (Paredes et al., 2015), to our knowledge none have as yet been published that 

826 specifically associate with Lepidoptera. 

827 As high-throughput sequencing costs reduce, the genomes of increasing numbers of 

828 Lepidoptera are being sequenced (for a review of the current status see (Triant, Cinel & 

829 Kawahara, 2018)). A happy indirect consequence of this is that endosymbiont genome sequences 

830 can be retrieved as a by-product of host genome sequencing. This is a particularly useful tool 

831 when studying intracellular endosymbionts that are not readily culturable, and hence difficult to 

832 directly isolate and sequence (such as Wolbachia). This approach has been used to reconstruct 
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833 the genome of Wolbachia infecting the moth Operophtera brumata (Derks et al., 2015), and that 

834 of Wolbachia, wAus, associated with the moth Plutella australiana (Ward & Baxter, 2017). 

835 Interestingly, and similarly to wBol1b from H. bolina, both strains were most closely related to 

836 the CI Wolbachia wPip from the mosquito C. pipiens (Derks et al., 2015; Ward & Baxter, 2017), 

837 however in the case of wAus, two genes previously determined to be involved in CI caused by 

838 Wolbachia from Drosophila melanogaster were not found in the genome of wAus (Ward & 

839 Baxter, 2017). Further work needs to be conducted to characterize the nature of the interaction 

840 between Wolbachia and host before more insight can be gained through genomic comparisons. 

841

842 What else is in there? Moving towards a metagenomics approach

843 This review has revealed a marked bias in Lepidopteran heritable endosymbiont research – 

844 Wolbachia is by far the most studied endosymbiont in butterflies and moths. While the incidence 

845 of Wolbachia is undoubtedly high in Lepidoptera and its effects upon its hosts important, the 

846 development of routine PCR assays and resources specific to this one genus of bacteria may have 

847 inflated its significance relative to other endosymbionts. Thus a practical limitation of the current 

848 methodology in the study of heritable endosymbionts in Lepidoptera is the lack of an unbiased 

849 approach to determine what microbes butterflies and moths carry. This is changing with the 

850 development of culture-independent methods of ascertaining what microbes, particularly 

851 bacteria, are present within an organism. High-throughput sequencing of the hypervariable 

852 bacterial 16S rRNA gene, and metagenomics allow the characterisation of whole bacterial 

853 communities of hosts. Particular to heritable endosymbiont research, attention should be given to 

854 the tissue from which DNA is sourced, as heritable bacteria are not necessarily found in the 

855 commonly sequenced gut tissue or lumen. Amplifying bacterial DNA from whole insects or the 
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856 reproductive tracts may yield a clearer idea of the vertically inherited symbionts present. We also 

857 have to consider what constitutes a heritable endosymbiont; many Lepidopteran gut bacteria are 

858 transitory and/or environmentally acquired for example via the food plant as larvae (Mason & 

859 Raffa, 2014; Hammer et al., 2017), or nectar as adults and as such may not evolve symbiotically 

860 with the host. However, gut bacteria may be transmitted by the female to the progeny via for 

861 example the egg coating, which neonates often consume upon hatching. One challenge will be to 

862 distinguish which of the microbes present in a community are symbiotic, and further, which are 

863 vertically transferred. Therefore close behind microbiome characterisations of Lepidoptera will 

864 be experimental manipulations of the microbiome and the sequencing of progeny to ascertain 

865 heritability. 

866 Revealing the microbiome of Lepidoptera will open up a new set of questions such as do 

867 gut microbes and heritable endosymbionts interact? Can endosymbionts affect the composition 

868 of the microbiome? Do their effects interact? One promising avenue of research is the 

869 antimicrobial activity of gut symbionts. The moth Spodoptera littoralis habours a gut bacterium 

870 Enterococcus mundtii that secretes an antimicrobial peptide (mundticin KS) against invading 

871 bacteria, but not against other resident gut bacteria. This antimicrobial activity directly inhibits 

872 competitors, but also potential pathogens, from the gut of its host. In S. littoralis, this 

873 extracellular symbiont persists across host developmental stages and is a major constituent of the 

874 microbiome across generations, suggesting that it can be vertically inherited, and that it may 

875 form a long-term symbiotic association with its host (Shao et al., 2017). 

876 A further avenue for future research is the presence and impact of non-bacterial heritable 

877 endosymbionts. In particular there is increasing recognition that viruses may be vertically 

878 inherited and can have dynamic interactions with their host (reviewed in insects in (Longdon & 
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879 Jiggins, 2012)). The moth Helicoverpa armigera, a crop pest, is infected with a vertically (and 

880 horizontally) inherited densovirus (HaDNV-1) that appears to be mutualistic. In wild larvae a 

881 negative interaction exists between the symbiotic densovirus and the presence of a 

882 nucleopolyhedrovirus (HaNPV) that is widely used as a pesticide against H. armigera. 

883 Laboratory work confirmed that larvae carrying HaDNV-1 had significantly higher resistance to 

884 the HaNPV pesticide, and also to low doses of Bacillus thuringiensis (Bt) toxin. Additionally, 

885 HaDNV-1 infected individuals have a higher developmental rate and higher fecundity than that 

886 of their uninfected counterparts (Xu et al., 2014). In contrast, in the moth Homona magnanima  a 

887 novel RNA virus appears to be responsible for ‘late’ male-killing while being benign to female 

888 moths, thus acting as a reproductive manipulator (Nakanishi et al., 2008). Metagenomic 

889 sequencing has identified viruses across diverse arthropods (e.g. (Li et al., 2015)), and while 

890 often pathogenic a recent study identified a vertically inherited sigma virus in the nymphalid 

891 butterfly Pararge aegeria, that may have a more symbiotic role. In this species transmission of 

892 the virus was predominantly maternal (through eggs), with paternal (through sperm) transmission 

893 rates being much lower. Wild populations of P. aegeria experience high levels of infection, with 

894 a mean viral prevalence of 74%, and marked population structure in the genetic diversity of the 

895 virus (PAegRV). The nature of the relationship between P. aegeria and PAegRV remains to be 

896 determined (Longdon et al., 2017).

897

898 Global environmental change: can endosymbionts facilitate or constrain adaptation?

899 Predicting if or how organisms adapt to environmental change is a critical and timely question. 

900 Every organism interacts with a multitude of abiotic and biotic factors, including heritable 

901 endosymbionts, and knowledge of how these influence each other is imperative in understanding 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26768v1 | CC BY 4.0 Open Access | rec: 24 Mar 2018, publ: 24 Mar 2018



902 an organism’s adaptive potential. Global environmental change is likely to alter the level and 

903 direction of natural selection in host/symbiont co-evolution (Wolinska & King, 2009). In one 

904 direction, endosymbionts may increase the host's potential repertoire for responding to 

905 environmental changes such as temperature, while we also recognise that the destabilisation of 

906 often finely tuned host-symbiont interactions may be severely detrimental for natural 

907 populations. 

908 As poikilotherms - organisms that do not maintain internal thermal homeostasis - 

909 butterflies and moths are very susceptible to extreme temperatures (Denlinger & Yocum, 1998). 

910 While they utilise a range of mechanisms, including behavioural and physiological responses, to 

911 regulate temperature, every species is defined by thermal limits. Recent work has indicated that 

912 microbial symbionts of insects can often facilitate or constrain adaptation to environmental 

913 changes, including temperature. For instance, aphids carry symbionts that proffer heat stress 

914 protection (Montllor, Maxmen & Purcell, 2002; Russell & Moran, 2006), including a point 

915 mutation (a change in a single nucleotide), which governs host thermal tolerance (Dunbar et al., 

916 2007). The temperature insects are exposed to during development is also important in the 

917 maintenance of symbionts (Anbutsu, Goto & Fukatsu, 2008), or to the phenotype expressed by 

918 the symbiont in the host (Hurst et al., 2000). With global environmental change, de-stabilisation 

919 of the host-symbiont interaction may become more frequent and have severe consequences for 

920 many species. The sudden loss of an obligatory mutualistic symbiont, for example, would almost 

921 certainly lead to a host population decline (for further discussion of host-symbiont interactions 

922 and temperature see (Wernegreen, 2012; Corbin et al., 2016; Moran, 2016). 

923 Furthermore, the nature of the relationship between host and symbiont may be indirectly 

924 affected by the changing climate. A few degrees rise in temperature can alter the geographic 
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925 range of Lepidoptera (Parmesan et al., 1999). For many species, such range shifts and 

926 colonisation events should only be possible if the plants they utilise were following a similar 

927 expansion, such as in the host-limited butterfly Gonepteryx rhamni (Gutiérrez & Thomas, 2000). 

928 Additionally, range shifts may lead to a switch in host plant species or increased generalisation 

929 (Braschler & Hill, 2007), bringing subsequent repercussions for Lepidopteran-endosymbiont 

930 interactions. For example, in the moth P. blancardella, where endosymbionts nutritionally 

931 benefit the host by creating photosynthetically active green patches in otherwise senescent leaves 

932 of the host plant (Kaiser et al., 2010), a shift in host plant use could make this “green-island” 

933 strategy ineffective in a novel plant with a different chemical makeup. In contrast, novel host 

934 plant utilisation may also be facilitated by endosymbionts, including through enhanced 

935 provisioning of nutrients, or detoxification (reviewed in (Hansen & Moran, 2014)). 

936 Finally, habitat degradation and fragmentation is likely to have several implications for 

937 natural host-symbiont dynamics. Habitat destruction has the effect of crowding insect 

938 populations into smaller patches, and through fragmentation and subsequent isolation, the 

939 amount of gene flow between populations becomes reduced. These factors may increase disease 

940 transmission within a population, and alter geographical variance in endosymbiont presence and 

941 prevalence. 

942

943 Screening butterflies and moths of conservation concern for endosymbionts

944 The Lepidoptera are model organisms in the fields of conservation and climate change research. 

945 However, despite the high occurrence of endosymbionts in Lepidoptera, current conservation 

946 planning rarely includes data on endosymbiont infections of the species under consideration, a 

947 deficit that may profoundly influence the outcome of any management undertaken. For effective 
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948 conservation, or to understand how species will respond and adapt to environmental and 

949 anthropogenic changes, it is important that we try to understand the intricate relationships that 

950 microbes have with the hosts in which they reside. Fortunately there is increasing recognition of 

951 this importance with several recent studies reporting endosymbiont infections in populations of 

952 endangered or near threatened Lepidoptera (Nice et al., 2009; Sakamoto et al., 2011; Patricelli et 

953 al., 2013; McHugh et al., 2013; Łukasiewicz, Sanak & Węgrzyn, 2016; Fenner et al., 2017). One 

954 study surveying 22 species of conservation concern (comprising members of the Lycaenidae, 

955 Nymphalidae, Hesperidae and Noctuidae) for Wolbachia found 19 to be infected (Hamm et al., 

956 2014). Nice and colleagues examined the nature of a Wolbachia infection in the North American 

957 endangered Karner blue butterfly, Lycaeides melissa samuelis. Screening for endosymbionts 

958 revealed that across the western edge of this butterfly’s range there was a widespread Wolbachia 

959 infection. They went on to simulate demographic effects of the spread of Wolbachia into 

960 uninfected populations and suggested that the spread of such an infection might further reduce 

961 already small population sizes. The authors show concern that the Wolbachia infection was 

962 prevalent in many of the largest and least impacted populations of this butterfly. This is 

963 significant as these populations are likely candidates from whom captive propagation efforts 

964 would draw individuals, and so the chance of inadvertently infecting a naturally uninfected 

965 population is high (Nice et al., 2009). 

966 Release of wild individuals or of those reared in captivity, either as part of conservation 

967 management schemes or for commercial purposes (birthdays or weddings), might have 

968 unexpected and undesirable impacts if not monitored correctly. Rearing Lepidoptera, which 

969 often occurs at high densities, can allow the accumulation of pathogens. Releasing these 

970 individuals back into the field may therefore alter the parasite load and consequent fitness of the 
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971 receiving population. Movement of individuals between populations may also affect the natural 

972 spatial pattern of endosymbiont diversity and prevalence: novel microbes may be introduced, or 

973 symbionts that have locally adapted in the donor population may affect the host in dramatically 

974 different ways in the novel population or environment. Further consequences with regard to 

975 endosymbiont infection are likely to be numerous, for example competition between native and 

976 novel infections may result in a shift in the natural equilibrium between the host and its native 

977 microbes or the introduction of cytoplasmic endosymbionts may also introduce linked variants 

978 such as host mtDNA haplotypes or female-linked nuclear DNA. Furthermore, as we have seen in 

979 the butterfly H. bolina, movement of individuals could also introduce host resistance loci that 

980 irrevocably alter the dynamics of host-symbiont interaction, and may have a wider impact upon 

981 the host genome. In general, if a novel association does form and/or spread, there follows rapid 

982 evolution of both host and symbiont, with phenotypic alterations that alter or optimise the new 

983 symbiosis (for an example see (Weeks et al., 2007). 

984

985 Conclusion

986 The Lepidoptera have emerged as important models in the study of the genetic and functional 

987 basis of the reproductive manipulations heritable endosymbionts employ, particularly with 

988 regard to Wolbachia bacteria. The results of this cumulative work is suggestive of the role of 

989 endosymbionts in the evolution of host sex determination itself. We have no doubt Lepidopteran 

990 endosymbiont research will continue to highlight the omnipresence and importance of 

991 Wolbachia but we suggest that more attention should now be given to the presence and 

992 interaction of other heritable endosymbionts Lepidoptera carry. Metagenomic approaches enable 

993 an unbiased view of the microbial community residing within moths and butterflies, while 
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994 comparative endosymbiont genomics may illuminate the genetic mechanisms underlying the 

995 phenotypes endosymbionts induce in their host. Finally, given the importance of Lepidoptera as 

996 key indicators of climate change and the growing numbers of species listed as endangered, the 

997 study of heritable microbial endosymbiont in the Lepidoptera should transition from being a pure 

998 science filled with interesting curiosities, to a necessity that will contribute to the preservation of 

999 natural biodiversity and inform conservation management.
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1004

1005 Figure and Table legends

1006 Figure 1. Endosymbiont-induced manipulation of Lepidoptera reproduction. In the 

1007 Lepidoptera, endosymbionts are currently known to manipulate host reproduction in three ways 

1008 in order to increase their transmission to the next generation. Male-killing: female hosts infected 

1009 with male-killing endosymbionts only give rise to infected female offspring, with male offspring 

1010 dying early in development. Feminisation: female hosts infected with feminising endosymbionts 

1011 only give rise to infected female offspring, with male offspring having been feminised so that 

1012 they are genetically male (ZZ) but phenotypically female. Uninfected males may arise through 

1013 inefficient transmission of the infection. Cytoplasmic incompatibility (CI): crosses between 

1014 uninfected females and infected males result in few or no viable offspring, as the result of an 

1015 incompatibility induced by the endosymbiont in the male. Infected females are able to rescue this 

1016 incompatibility and hence are able to produce viable (infected) offspring when mated with 
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1017 infected males. For male-killing and feminisation the endosymbiont acts as a sex-ratio distorter, 

1018 creating a female-bias in the offspring, and potentially in the population if the infection is highly 

1019 prevalent.

1020

1021 Figure 2. Wolbachia-induced male-killing and interference of sex determination in Ostrinia 

1022 scapulalis moths. A) Uninfected females gives rise to a normal 1:1 sex ratio in progeny: female 

1023 offspring have ZW sex chromosomes and express the female isoform of the Ostrinia homologue 

1024 of a gene in the sex determination cascade, doublesex (dsx), called OsdsxF; male offspring have 

1025 two Z sex chromosomes and express the male dsx isoform OsdsxM. B) Wolbachia infected 

1026 females only give rise to infected female progeny. Male offspring die early in development due 

1027 to a mismatch between the genotypic sex (ZZ) and phenotypic sex (OsdsxF). C) Wolbachia-

1028 infected females cured of the infection as larvae by antibiotic treatment only give rise to 

1029 uninfected males. Female offspring die early in development due to a mismatch between their 

1030 genotypic sex (ZW) and phenotypic sex (OsdsxM). D) Wolbachia-infected females cured of the 

1031 infection as adults prior to oviposition by antibiotic treatment give rise to sexual mosaics which 

1032 have the male ZZ genotype but both OsdsxF and OsdsxM. Note: there are two female isoforms of 

1033 dsx in Ostrinia scapulalis: OsdsxFL and OsdsxFS; these are simplified to OsdsxF in this schematic. 

1034 White circles: uninfected individual; Red circles: Wolbachia-infected individual; Dark grey 

1035 circle: Wolbachia-infected female cured as larva; Light grey circle: Wolbachia-infected female 

1036 cured as adult.

1037

1038 Table 1. Butterfly and moth species recorded as carrying heritable endosymbionts that 

1039 manipulate the reproduction of the host. Endosymbiont induced phenotypes are given as MK: 
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1040 Male-killing, Late MK: Male-killing occurring late in development; CI: Cytoplasmic 

1041 Incompatibility; Feminisation; or Sex-ratio distortion (where further investigation is needed to 

1042 determine the nature of the sex-ratio bias).

1043
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Table 1(on next page)

Lepidoptera species carrying heritable endosymbionts that manipulate host

reproduction

A list of butterfly and moth species that have been recorded as carrying heritable

endosymbionts that manipulate the reproduction of the host. Endosymbiont induced

phenotypes are given as MK: Male-killing, Late MK: Male-killing occurring late in

development; CI: Cytoplasmic Incompatibility; Feminisation; or Sex-ratio distortion (where

further investigation is needed to determine the nature of the sex-ratio bias).

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26768v1 | CC BY 4.0 Open Access | rec: 24 Mar 2018, publ: 24 Mar 2018



       Host Endosymbiont Phenotype Source

Butterflies Lycaenidae    
Talicada nyseus Wolbachia Sex-ratio distortion Ankola et al. 2011
Zizina emelina Wolbachia MK Sakamoto et al. 2011

Nymphalidae    
Acraea acerata Wolbachia CI Jiggins et al. 2001
Acraea encedana Wolbachia MK Jiggins et al. 2000a
Acraea encedon Wolbachia MK Jiggins et al. 1998; Jiggins et al. 2000a
Acraea eponina Wolbachia MK Jiggins et al. 2001
Acraea stoikensis Wolbachia MK Hassan & Idris 2013
Danaus chrysippus Spiroplasma ixodetis MK Jiggins et al. 2000b
Hypolimnas bolina Wolbachia MK &/or CI Dyson et al. 2002; Charlat et al. 2006; Hornett et al. 2008

Pieridae    
Colias erate poliographus Wolbachia CI Narita et al. 2009 
Eurema hecabe Wolbachia Feminisation, CI Narita et al. 2011
Eurema mandarina Wolbachia Feminisation, CI Hiroki et al. 2002; Hiroki et al. 2004

Moths Crambidae    
Ostrinia furnacalis Wolbachia MK Kageyama et al. 2002
Ostrinia orientalis Wolbachia Sex-ratio distortion Kageyama et al. 2004
Ostrinia scapulalis Wolbachia MK Kageyama & Traut 2004
Ostrinia zaguliaevi Wolbachia, Spiroplasma ixodetis MK Kageyama et al. 2004; Tabata et al. 2011
Ostrinia zealis Undefined agent Sex-ratio distortion Kageyama et al. 2004

Erebidae    
Lymantria dispar Undefined agent MK Higashiru et al. 1999

Noctuidae    
Cerapteryx graminis Spiroplasma sp. Sex-ratio distortion Graham et al. 2011
Spodoptera exempta Wolbachia MK Graham & Wilson 2012
Spodoptera littoralis Undefined agent MK Brimacombe 1980

Plutellidae    
Plutella xylostella Wolbachia Sex-ratio distortion Delgado & Cook 2009

Pyrallidae    
Cadra cautella Wolbachia CI Sasaki & Ishikawa 1999
Ephestia kuehniella Wolbachia CI Sasaki & Ishikawa 1999

Tortricidae    
Epiphyas postvittana Undefined agent MK Geier et al. 1978
Homona magnanima RNA virus Late MK Morimoto et al. 2001; Nakanishi et al. 2008

1
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Figure 1

Endosymbiont-induced manipulation of Lepidoptera reproduction

In the Lepidoptera, endosymbionts are currently known to manipulate host reproduction in

three ways in order to increase their transmission to the next generation. Male-killing: female

hosts infected with male-killing endosymbionts only give rise to infected female offspring,

with male offspring dying early in development. Feminisation: female hosts infected with

feminising endosymbionts only give rise to infected female offspring, with male offspring

having been feminised so that they are genetically male (ZZ) but phenotypically female.

Uninfected males may arise through inefficient transmission of the infection. Cytoplasmic

incompatibility (CI): crosses between uninfected females and infected males result in few or

no viable offspring, as the result of an incompatibility induced by the endosymbiont in the

male. Infected females are able to rescue this incompatibility and hence are able to produce

viable (infected) offspring when mated with infected males. For male-killing and feminisation

the endosymbiont acts as a sex-ratio distorter, creating a female-bias in the offspring, and

potentially in the population if the infection is highly prevalent.
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Figure 2

Wolbachia-induced male-killing and interference of sex determination in Ostrinia

scapulalis moths

A) Uninfected females gives rise to a normal 1:1 sex ratio in progeny: female offspring have

ZW sex chromosomes and express the female isoform of the Ostrinia homologue of a gene in

the sex determination cascade, doublesex (dsx), called OsdsxF; male offspring have two Z

sex chromosomes and express the male dsx isoform OsdsxM. B) Wolbachia infected females

only give rise to infected female progeny. Male offspring die early in development due to a

mismatch between the genotypic sex (ZZ) and phenotypic sex (OsdsxF). C) Wolbachia-

infected females cured of the infection as larvae by antibiotic treatment only give rise to

uninfected males. Female offspring die early in development due to a mismatch between

their genotypic sex (ZW) and phenotypic sex (OsdsxM). D) Wolbachia-infected females cured

of the infection as adults prior to oviposition by antibiotic treatment give rise to sexual

mosaics which have the male ZZ genotype but both OsdsxF and OsdsxM. Note: there are two

female isoforms of dsx in Ostrinia scapulalis: OsdsxFL and OsdsxFS; these are simplified to

OsdsxF in this schematic. White circles: uninfected individual; Red circles: Wolbachia-infected

individual; Dark grey circle: Wolbachia-infected female cured as larva; Light grey circle:

Wolbachia-infected female cured as adult.
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