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We formulate the quantum field theory description of neutron-antineutron oscillations in the framework
of canonical quantization, in analogy with the Bardeen–Cooper–Schrieffer theory and the Nambu–Jona-
Lasinio model. The physical vacuum of the theory is a condensate of pairs of would-be neutrons and
antineutrons in the absence of the baryon-number violating interaction. The quantization procedure defines
uniquely the mixing of massive Bogoliubov quasiparticle states that represent the neutron. In spite of not
being mass eigenstates, neutron and antineutron states are defined on the physical vacuum and the
oscillation formulated in asymptotic states. The exchange of the baryonic number with the vacuum
condensate engenders what may be observed as neutron-antineutron oscillation. The convergence between
the present canonical approach and the Lagrangian/path integral approach to neutron oscillations is shown
by the calculation of the anomalous (baryon-number violating) propagators. The quantization procedure
proposed here can be extended to neutrino oscillations and, in general, to any particle oscillations.
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I. INTRODUCTION

The Bardeen–Cooper–Schrieffer (BCS) theory of super-
conductivity [1], especially in Bogoliubov’s treatment [2],
became well known to particle physicists by the work of
Nambu and Jona-Lasinio [3], who explored the analogy
between the equations of motion governing the electrons in
a superconductor near the Fermi level and the free Dirac
equation of a massive fermion in Weyl representation. The
spontaneous breaking of the Uð1Þ symmetry associated
with the electric charge in the BCS theory is analogous to
the spontaneous chiral symmetry breaking in the Nambu–
Jona-Lasinio (NJL) model. Ever since, the BCS theory has
influenced particle physics in a way that is hard to
overestimate (see, e.g., Ref. [4]).
Another analogy that can be established, this time in the

language of Majorana fermions, is between the BCS
Lagrangian and the effective Lagrangian of neutron-
antineutron oscillations, which breaks baryon-number sym-
metry [5–12] (for a recent review, see, e.g., Ref. [13]).
Neutron oscillations are a topical issue in present-day particle
physics, mainly as a potentially observable window into the
baryon-number violating phenomena that led to baryogen-
esis. Experimental searches for neutron-antineutron conver-
sion have been performed both with free neutron beams and

within nuclei [14]. At the European Spallation Source (ESS),
new experiments are being planned, aiming at improving by
3 orders of magnitude [15] the best bound on the oscillation
time (0.86 × 108 s), obtained at ILL-Grenoble. Searches for
neutron-mirror neutron oscillations [16] are also under
consideration [17]. Recently, theoretical models have been
proposed in which neutron-antineutron oscillations could
occur moderately rapidly, at levels near to current limits and
within reach of an improved search, around 109 − 1010 s.
Such models may be supersymmetric [18], or involve large
extra dimensions [19], or rely on constraints from post-
sphaleron baryogenesis [20].
Without speculating about the possible source of

the baryon-number violation (which in principle can be
achieved by spontaneous breaking of symmetry connected
to a baryonic majoron [21]), the violation is usually consid-
ered to be explicit and not spontaneous. Nevertheless,
Bogoliubov’s formalism for the BCS theory can be adapted
to the description of the neutron-antineutron oscillations,
taking place viaBogoliubov quasiparticles ofMajorana type,
which represent the primary fermionic excitations of the
system. The analogy between fermion oscillations with
Majorana pseudoscalar mass term and BCS theory has been
noted in the Lagrangian picture in [22,23], where a relativ-
istic equivalent of the Bogoliubov transformation [to which
we shall return in Sec. II, Eq. (2.5)] was used for the
diagonalization of the Lagrangian. This intuitive connection
is developed in this work into a general canonical quantiza-
tion formulation. The neutron and antineutron “states” are no
more definite states in the physical Fock space of the system;
however, they can be defined as a superposition of (physical)
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mass eigenstates, by extension of the would-be neutron/
antineutron states in the absence of the baryon-violating
interaction. The collective excitations of quasiparticles,
specific to BCS theory and the NJL model, appear also in
the baryon-number violating ground state of neutron oscil-
lations. The condensate structure of vacuum for neutron and
neutrino oscillations was first analyzed and explored in [11].
For compactness of terminology, we shall call bare

neutrons the would-be neutrons in the absence of the
baryon-number violating interaction. This is in analogy
with the term bare electron, naming an electron without
interaction with the lattice, in the BCS theory. In this
language, the ground state of the baryon-number violating
Hamiltonian is a condensate of pairs of bare neutrons and
antineutrons, with opposite momenta and spins—the ana-
logues of Cooper pairs in the theory of superconductivity.
The approach described in this work can be applied as

the quantum field theory of the free oscillations of any type
of particles. Any oscillation phenomenon is a result of the
fact that the fields that interact and appear in the relativistic
construction of the Lagrangian are not fields with definite
mass, but mixings thereof. On the other hand, the massive
states are not observed individually, but only in time-
dependent superpositions, representing the oscillating
“particles.” The mixing is caused by some additional
interactions (baryon-number violating interaction in the
case of neutrons, lepton number violating in the case of
neutrinos, strangeness violating weak interaction in the
case of K0 mesons, etc.), which are not taken into account
when the oscillating particles are produced. The vacuum
condensate is then the reservoir of fermionic number,
strangeness, etc., as well as of the extra chirality, which
gives their definite masses but indefinite quantum numbers
to the quasiparticles associated with the mass eigenfields.
The difference in the masses of the quasiparticles produces
the oscillation, which is essentially the oscillation of a
quantum number, realized through the exchange with the
vacuum condensate. We may say that the quasiparticles as
mass eigenstates create the observable kinematical effects,
while the oscillating particles are subject to the dynamical
effects included in the Lagrangian. The interaction prevents
the mass discrimination, and the lack of a “mass analyzer”
leads to what is perceived as particle oscillations.
The neutrino oscillations are the prototypical oscillation

phenomena that have been studied extensively over a long
time (for a review and an historical account, see Ref. [24]). A
quantum field theoretical framework has been developed,
and the prevailing picture consists in viewing the neutrino
oscillations as a single process encompassing production,
propagation, and detection, with the neutrino in the inter-
mediate (virtual) state. This approach was pioneered in
Ref. [25] (see also the reviews [26] and references therein for
an updated status). In spite of the concentrated effort and
several ingenious theoretical solutions, there are paradoxical
features [27] and questions for whose answer there is still
no consensus, such as the following: How are the flavor

neutrino states supposed to be defined? Are the flavor states
momentum eigenstates? Is it necessary that the massive
neutrinos which mix have equal energies? Are the flavor
states physical and in which sense? These are fundamental
issues arising about any oscillation process.
The quantization method described in this work provides

a natural and unequivocal answer to a crucial question: If
we know that a certain field is expressed as a definite
mixing of other fields, how do we define the states
corresponding to the former field in terms of the states
of the latter fields? The answer will be given in Sec. IV, and
it will turn out to have been impossible to guess without
invoking the power of the present quantization procedure.

II. LAGRANGIAN DESCRIPTION OF
NEUTRON-ANTINEUTRON OSCILLATIONS

The free neutron-antineutron oscillations are analyzed by
the quadratic effective Hermitian Lagrangian with general
ΔB ¼ 2 terms added:

L¼ Ψ̄ðxÞiγμ∂μΨðxÞ−mΨ̄ðxÞΨðxÞ

−
1

2
ϵ1½ΨTðxÞCΨðxÞþΨ̄ðxÞCΨ̄TðxÞ�

−
i
2
ϵ5½e−iαΨTðxÞCγ5ΨðxÞþeiαΨ̄ðxÞCγ5Ψ̄TðxÞ�; ð2:1Þ

where m, ϵ1, ϵ5, and α are real parameters, ΨðxÞ is the
neutron field, and C is the charge-conjugation matrix. The
Standard Model Lagrangian is invariant under the global
Uð1Þ baryonic number transformations, under which the
neutron field transforms asΨðxÞ → eiβΨðxÞ. Clearly, under
such a transformation the terms proportional to ϵ1 and ϵ5
in the Lagrangian (2.1) are noninvariant. They are the
only Lorentz-invariant baryon-number violating terms
that can be written, and they are Majorana mass terms of
scalar and pseudoscalar types. A pseudoscalar mass term
im0Ψ̄ðxÞγ5ΨðxÞ can in principle be added as well, but we
shall omit it, as its role in this ΔB ¼ 2 Lagrangian is
supplanted by the ϵ5 term. The baryon-number violating
terms are quadratic, but it is assumed that they are the
effective expression of an interaction whose details are
unknown. For this reason, when referring to those terms we
may use the term baryon-number violating interaction.
We shall adopt a charge conjugation invariant version of

the Lagrangian (2.1). With the traditional convention for
defining the charge conjugated spinor as

CΨðxÞC−1 ¼ ΨcðxÞ ¼ CΨ̄TðxÞ; ð2:2Þ
the Lagrangian (2.1) is invariant under charge conjugation
only when α ¼ 0; therefore, we fix the phase in this way.
Irrespective of the phase α, the Lagrangian (2.1) is parity
violating. This can easily be seen if we adopt the convention

PΨðx; tÞP−1 ¼ γ0Ψð−x; tÞ: ð2:3Þ
There is no phase convention for the definition of parity that
can render the Lagrangian invariant. Thus, the Lagrangian
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L ¼ Ψ̄ðxÞiγμ∂μΨðxÞ −mΨ̄ðxÞΨðxÞ

−
1

2
ϵ1½ΨTðxÞCΨðxÞ þ Ψ̄ðxÞCΨ̄TðxÞ�

−
i
2
ϵ5½ΨTðxÞCγ5ΨðxÞ þ Ψ̄ðxÞCγ5Ψ̄TðxÞ� ð2:4Þ

is C invariant and P and CP violating. The P and CP
violation are in line with the expected electric dipole
moment for the neutron and cannot be eliminated from
the Lagrangian by any field redefinition.1 The effect is due
to the interplay of the “vector coupling” in the ϵ1 term and
the “axial vector coupling” in the ϵ5 term. Incidentally, if in
the Lagrangian (2.1) one takes either ϵ1 ¼ 0 or ϵ5 ¼ 0, the
remaining Lagrangian can always be shown to be both P
and C invariant, by a redefinition of the phase of the
corresponding operations.
The diagonalization of the Lagrangian (2.1) and the

analysis of neutron-antineutron oscillations were per-
formed in detail in Ref. [22]. The P and CP violation of
the Lagrangian was shown not to have observable effects in
the free n − n̄ transition probability (for recent discussions
of the discrete symmetries, especially CP, in neutron-
antineutron oscillations, see [22–31]). The Lagrangian
analysis in [22] involved the introduction of a relativistic
analogue of the Bogoliubov transformation, which mixes
the fields ΨðxÞ and ΨcðxÞ, and diagonalizes the ϵ5 term:

� ΨðxÞ
ΨcðxÞ

�
¼
�
cosΘNðxÞ − iγ5 sinΘNcðxÞ
cosΘNcðxÞ − iγ5 sinΘNðxÞ

�
; ð2:5Þ

where the fields N and Nc are of Dirac type and

sin 2Θ ¼ ϵ4=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ϵ25

q
. The role of this transformation

is crucial in the exact Lagrangian analysis of neutron
oscillation. Also, in the context of the seesaw mechanism,
which is described by the Lagrangian (2.1) with α ¼ π=2,
a similar (but C-noninvariant) relativistic Bogoliubov trans-
formation proves essential in absorbing the C violation and
rendering the Majorana neutrino a proper eigenfield of the
charge conjugation operator on a new vacuum [23,32]. We
shall return to the details of the relativistic Bogoliubov
transformation in Sec. V, when comparing the results of
the Lagrangian and Hamiltonian formulations in the
calculation of the anomalous (baryon-number violating)
propagators.
Here, we collect only a few necessary formulas pertain-

ing to the Lagrangian formalism, which will be needed later
on. The equations of motion derived from the Lagrangian
(2.4) are

ðiγμ∂μ −mÞΨðxÞ − ðϵ1 þ iϵ5γ5ÞΨcðxÞ ¼ 0;

ðiγμ∂μ −mÞΨcðxÞ − ðϵ1 þ iϵ5γ5ÞΨðxÞ ¼ 0; ð2:6Þ

with Ψc ¼ CΨ̄T . We rewrite them as

ðiγμ∂μ − ðmþ ϵ1Þ − iϵ5γ5ÞΨþðxÞ ¼ 0;

ðiγμ∂μ − ðm − ϵ1Þ þ iϵ5γ5ÞΨ−ðxÞ ¼ 0; ð2:7Þ

in terms of the Majorana fields

Ψ�ðxÞ ¼
1ffiffiffi
2

p ðΨðxÞ �ΨcðxÞÞ; ð2:8Þ

which satisfy Dirac equations with different masses and
thus diagonalize the Lagrangian (2.4). The mass eigenval-
ues are easily obtained by setting Ψ�ðxÞ ¼ eipxΨ�ðpÞ:

ð=p − ðmþ ϵ1Þ − iϵ5γ5ÞΨþðpÞ ¼ 0;

ð=p − ðm − ϵ1Þ þ iϵ5γ5ÞΨ−ðpÞ ¼ 0: ð2:9Þ

For ΨþðpÞ we note that

=p − ðmþ ϵ1Þ − iϵ5γ5 ¼ 0;

which is rewritten as

=p − iϵ5γ5 ¼ mþ ϵ1:

From here we find, for ΨþðpÞ,

p2 ¼ M2þ ¼ ðmþ ϵ1Þ2 þ ϵ25; ð2:10Þ

while for Ψ−ðpÞ we obtain

p2 ¼ M2
− ¼ ðm − ϵ1Þ2 þ ϵ25: ð2:11Þ

Upon diagonalization, the Lagrangian (2.4) becomes

L ¼ 1

2
½Ψ̄þðxÞiγμ∂μΨþðxÞ −MþΨ̄þðxÞΨþðxÞ�

þ 1

2
½Ψ̄−ðxÞiγμ∂μΨ−ðxÞ −M−Ψ̄−ðxÞΨ−ðxÞ�: ð2:12Þ

Thus, the Lagrangian description leads to the expression
of the neutron field ΨðxÞ as mixing of the free massive
Majorana fields Ψ�ðxÞ:

ΨðxÞ ¼ 1ffiffiffi
2

p ðΨþðxÞ þ Ψ−ðxÞÞ: ð2:13Þ

The rest of this paper will be concerned with finding the
superposition of states of Ψ� which represent the states
corresponding to the field Ψ. For this purpose, we shall
have to pass to the Hamiltonian description of the model.

1It was shown in [22] that the partial diagonalization of the
Lagrangian (2.4), which removes the baryon-number violating ϵ5
term, leads to a term of the type im0Ψ̄ðxÞγ5ΨðxÞ, which may
reflect the effect of the QCD θ vacuum.
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In anticipation, let us still recall that a proper Dirac field
ψðxÞ of mass m can always be written as the sum of two
Majorana fields with the same mass m, which are con-
structed as ψ�ðxÞ ¼ 1ffiffi

2
p ðψðxÞ � ψcðxÞÞ. The neutron field

ΨðxÞ, however, is the mixture of two mass-nondegenerate
Majorana fields, therefore not a Dirac field. The meaning of
the neutron and antineutron as “particle states” associated
with the field ΨðxÞ becomes more subtle.

III. HAMILTONIAN DESCRIPTION
AND VACUUM STRUCTURE

The direct way to canonically quantize the model
described by the Lagrangian (2.4) is by solving the
equations of motion (2.9), for the Majorana fields with
definite masses, and applying equal-time canonical anti-
commutators, which would lead to the algebra of the
creation and annihilation operators. The system is exactly
solvable. However, such a straightforward method would
obscure the baryon-number violation, as well as the
associated dynamical mass generation. For this reason,
we shall adopt a different method of canonical quantization,
which has the benefit of uncovering a more telling intuitive
picture of the oscillation phenomenon.

A. Canonical quantization and Bogoliubov
quasiparticles

The method that we are going to use is analogous to
the one developed by Bogoliubov for the treatment of the
BCS model [2] (for a pedagogical presentation, see, e.g.,
Ref. [33]) and by Nambu and Jona-Lasinio in their BCS-
inspired theory of dynamical generation of nucleon masses
[3] (see also [34]). In current parlance, it is based on the
unitarily inequivalent representations of canonical (anti)
commutators. An ample exposition thereof can be found in
the monograph [35]. Unitarily inequivalent representations
can exist only in systems with an infinite number of degrees
of freedom, in other words, in quantum field theory. In
contrast, in quantum mechanics, the Stone–von Neumann
theorem ensures that all representations of the canonical
commutators are unitarily equivalent. The existence of
unitarily inequivalent representations in quantum field
theory is an essential ingredient of Haag’s theorem [36].
Here, we shall summarize the main aspects needed for the
application to the neutron-antineutron oscillation model.
In the Heisenberg picture, the evolution of a fermionic

system is expressed by the time-dependent Heisenberg
fields, satisfying the equation of motion

i∂tΨðxÞ ¼ ½ΨðxÞ; H�; ð3:1Þ

where H is the Hamiltonian of the system and the fields
ΨðxÞ satisfy equal-time anticommutation relations. The
Heisenberg fields act on the Fock space of physical states,
i.e., those states that correspond to observable free particles.

They are obtained by the application of creation operators
to the physical vacuum of the model. Consequently, the
Fock space has to satisfy the requirement that the
Heisenberg fields are expressed in terms of creation and
annihilation operators of the physical free particles. (It is
perhaps more familiar to think that the Heisenberg fields
are expressed by a Dyson expansion in terms of incoming
or outgoing physical fields.) When this condition is
fulfilled, the total Hamiltonian of the system takes the
form of a free Hamiltonian. This is one of the essential
features of the Heisenberg picture and will provide us the
basis for solving the baryon-number violating model
defined by the Lagrangian (2.4). The method described
below is called the self-consistent method, in the sense that
it relies on the self-consistency between the Hamiltonian
and the choice of the Fock space of physical particles [35].
In practice, we obtain first the classical Hamiltonian of

the system starting from the Lagrangian. Then we choose a
candidate for the physical field (i.e., a field that satisfies a
certain free field equation of motion) and quantize it
canonically. We go to the Schrödinger picture and express
the Hamiltonian in terms of the creation and annihilation
operators of the candidate field. It is clear that there are
infinitely many free fields to choose from, each defined by
a different mass. Typically, one makes a meaningful
selection by considering the solution of the free part H0

of the total Hamiltonian H (see, for example, Ref. [37]). If
the Hamiltonian is not diagonal, then the candidate field is
not the physical field. What we need to do is to diagonalize
the Hamiltonian. Upon diagonalization, the Hamiltonian
will be expressed in terms of the creation and annihilation
operators of the true physical fields, acting on the true
ground state of the model. The physical Fock space can be
constructed and the problem is solved (the return to the
Heisenberg picture being then straightforward). The diag-
onalization is achieved by establishing certain relations
between the creation and annihilation operators of the
candidate field and those of the true physical field. These
turn out to be Bogoliubov transformations, preserving the
canonicity of the algebra. The quanta of the physical fields
will therefore be Bogoliubov quasiparticles. The two sets of
canonical operators are related by a transformation that
seemingly is unitary. However, it turns out that they act as
creation and annihilation operators in two orthogonal
Fock spaces, constructed on orthogonal vacua, and there-
fore the transformation is not unitarily implementable [35].
For this reason, the two Fock spaces are said to be unitarily
inequivalent representations of the canonical algebra.
Although there are in principle an infinity of unitarily

inequivalent representations, it should be stressed once
more that only one representation is physical, and that is the
one in which the Hamiltonian is diagonal. The correspond-
ing vacuum is the one and only vacuum of the theory
(except the case when there is spontaneous breaking of
symmetry).
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All the assertions in the above summary will be sub-
stantiated below on the concrete model defined by the
Lagrangian (2.4). We shall also draw some parallels with
the BCS theory or the NJL model whenever these parallels
may prove illuminating.

1. Hamiltonian

We start by writing the Hamiltonian corresponding to the
baryon-number violating Lagrangian (2.4):

H ¼
Z

d3xð−Ψ̄ðxÞiγk∂kΨðxÞ þmΨ̄ðxÞΨðxÞÞ

þ
Z

d3x
ϵ1
2
ðΨTðxÞCΨðxÞ þ Ψ̄ðxÞCΨ̄TðxÞÞ

þ
Z

d3xi
ϵ5
2
ðΨTðxÞCγ5ΨðxÞ þ Ψ̄ðxÞCγ5Ψ̄TðxÞÞ;

¼ H0 þH=B; ð3:2Þ

where H0 stands for the Dirac Hamiltonian of a field with
the mass m, while H=B represents the baryon-number

violating part.

2. Choice of a candidate physical field

The next step is to pick up a candidate ψðxÞ for the role
of physical field. The meaningful choice out of the arbitrary
possibilities is to take ψðxÞ as the would-be neutron field in
the absence of the baryon-number violating interaction.
This is the solution of the free Dirac equation with mass m,

ðiγμ∂μ −mÞψðxÞ ¼ 0; ð3:3Þ
in other words, the eigenfield of the free Dirac Hamiltonian
H0 in (3.2). Hence, we proceed by going to the Schrödinger
picture, at t ¼ 0, and making the identification [2,34,37]

Ψðx; 0Þ ¼ ψðx; 0Þ; ð3:4Þ
in the Hamiltonian (3.2). In this way, we can naturally
assign baryonic quantum numbers to the quanta of the field
ψðxÞ, which will be called bare neutrons and antineutrons.
Moreover, in the limit ϵ1, ϵ5 → 0, the states associated with
the fieldΨðxÞ coincide with the states associated with ψðxÞ.
Consequently, we shall have a handle to define what is
meant by neutron and antineutron when the baryonic
number is violated.

We expand the Hamiltonian (3.2) in terms of the modes
of the bare neutron field,

ψðx; 0Þ ¼
Z

d3p

ð2πÞ3=2 ffiffiffiffiffiffiffiffi
2ωp

p X
λ

ðaλðpÞuλðpÞeip·x

þ b†λðpÞvλðpÞe−ip·xÞ; ð3:5Þ
which is written in helicity basis (see Appendix A), with
ωp¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p
. The charge conjugated spinor ψc ¼ Cψ̄T,

with the conventions from Appendix A, is

ψcðx; 0Þ ¼
Z

d3p

ð2πÞ3=2 ffiffiffiffiffiffiffiffi
2ωp

p X
λ

sgnλðbλðpÞuλðpÞeip·x

þ a†λðpÞvλðpÞe−ip·xÞ: ð3:6Þ
The operators a; a†; b; b† are creation and annihilation
operators on a vacuum j0i, which we may call particle
vacuum,

aλðpÞj0i ¼ bλðpÞj0i ¼ 0; ð3:7Þ
and satisfy ordinary anticommutation relations:

faλðpÞ; a†λ0 ðkÞg ¼ δλλ0δðp − kÞ;
fbλðpÞ; b†λ0 ðkÞg ¼ δλλ0δðp − kÞ; ð3:8Þ

all the other anticommutators being zero. The states

a†λðpÞj0i and b†λðpÞj0i ð3:9Þ
represent bare neutron and antineutron states, respectively,
of mass m and definite momentum and helicity. We assign
baryonic number þ1 to the bare neutron states and −1 to
the bare antineutron states. In analogy with the theory of
neutrino oscillations, we may think about the Fock space of
states built on the vacuum j0i as a space of flavor states.

3. Mode expansion of the Hamiltonian

Using (3.5) and (3.6) in (3.2), we find, with the help of
the relations (A14),

H0 ¼
Z

d3x
X
λ

ωpða†λðpÞaλðpÞ þ b†λðpÞbλðpÞÞ ð3:10Þ

and

H=B ¼
Z

d3p
X
λ

�
ϵ1

m
ωp

sgnλða†λðpÞbλðpÞ þ b†λðpÞaλðpÞÞ

− iϵ1
p

2ωp
ðaλðpÞaλð−pÞ þ a†λðpÞa†λð−pÞ þ bλðpÞbλð−pÞ þ b†λðpÞb†λð−pÞÞ

þ sgnλ
ϵ5
2
ðaλðpÞaλð−pÞ − a†λðpÞa†λð−pÞ þ bλðpÞbλð−pÞ − b†λðpÞb†λð−pÞÞ

�
: ð3:11Þ
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The baryon-number violating part of the Hamiltonian is, as
expected, nondiagonal. The terms containing a†λðpÞbλðpÞþ
b†λðpÞaλðpÞ indicate the neutron-antineutron transition.
The rest of the nondiagonal terms suggest the pairing
of neutrons and antineutrons, in the manner of the
Cooper pairs in the BCS theory.2 We omit the vacuum
energy and present throughout the Hamiltonian in
normal form.
We may proceed from here to the diagonalization, but it

is technically advantageous to take into account the hint
provided by the equations of motion (2.7), namely that the
fields which diagonalize the Lagrangian are Majorana
fields. Therefore, we shall reexpress the Hamiltonian
(3.2) in terms of the creation and annihilation operators
associated with the degenerate Majorana fields of mass m
into which the Dirac field ψðxÞ can be split.
We note that the convention adopted for the charge

conjugation transformation leads to the following action on
the creation and annihilation operators:

CaλðpÞC−1 ¼ sgnλbλðpÞ; CbλðpÞC−1 ¼ sgnλaλðpÞ:
ð3:12Þ

As a result, we obtain the creation and annihilation
operators of the Majorana fields ψ�ðxÞ defined by

ψ�ðxÞ ¼
1ffiffiffi
2

p ðψðxÞ � ψcðxÞÞ; ð3:13Þ

identified by the subscript M, in the form

aMλðpÞ ¼
1ffiffiffi
2

p ðaλðpÞ þ sgnλbλðpÞÞ;

bMλðpÞ ¼
1ffiffiffi
2

p ðaλðpÞ − sgnλbλðpÞÞ: ð3:14Þ

The inverse of the above transformation reads

aλðpÞ ¼
1ffiffiffi
2

p ðaMλðpÞ þ bMλðpÞÞ;

sgnλbλðpÞ ¼
1ffiffiffi
2

p ðaMλðpÞ − bMλðpÞÞ: ð3:15Þ

At t ¼ 0, the Majorana fields ψ�ðx; 0Þ are expressed as

ψþðx; 0Þ ¼
Z

d3p

ð2πÞ3=2 ffiffiffiffiffiffiffiffi
2ωp

p X
λ

ðaMλðpÞuλðpÞeip·x þ sgnλa†MλðpÞvλðpÞe−ip·xÞ;

ψ−ðx; 0Þ ¼
Z

d3p

ð2πÞ3=2 ffiffiffiffiffiffiffiffi
2ωp

p X
λ

ðbMλðpÞuλðpÞeip·x − sgnλb†MλðpÞvλðpÞe−ip·xÞ: ð3:16Þ

Using the formulas (3.15) we recast the Hamiltonian (3.2) in terms of the Majorana operators:

H ¼
Z

d3p
X
λ

��
ωp þ ϵ1

m
ωp

�
a†MλðpÞaMλðpÞ þ

�
ωp − ϵ1

m
ωp

�
b†MλðpÞbMλðpÞ

þ
�
ϵ5
2
sgnλ − iϵ1

p
2ωp

�
ðaMλðpÞaMλð−pÞ þ bMλðpÞbMλð−pÞÞ

−
�
ϵ5
2
sgnλþ iϵ1

p
2ωp

�
ða†MλðpÞa†Mλð−pÞ þ b†MλðpÞb†Mλð−pÞÞ

�
: ð3:17Þ

In this form, the aM- and bM-type operators are disen-
tangled and we can diagonalize each set separately.
Incidentally, in the BCS language the expression

δp ¼
ϵ5
2
sgnλþ iϵ1

p
2Ωp

ð3:18Þ

is the analogue of the gap function [33].

4. Diagonalization of the Hamiltonian
and Bogoliubov transformations

We diagonalize the Hamiltonian as

H ¼
Z

d3p
X
λ

½Ωþ
p A

†
λðpÞAλðpÞ þ Ω−

pB
†
λðpÞBλðpÞ�;

ð3:19Þ

by adopting the following Bogoliubov transformations,
suggested by the form of the Hamiltonian (3.17):

2In the BCS theory, the Hamiltonian is written in terms of the
creation and annihilation operators of the bare electrons, the
interaction with the lattice providing the nondiagonal terms.
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AλðpÞ ¼ αþp aMλðpÞ þ iβþp eiδpa
†
Mλð−pÞ;

BλðpÞ ¼ α−p bMλðpÞ þ iβ−p eiδpb
†
Mλð−pÞ; ð3:20Þ

where α�p and β�p are complex coefficients and δp are real.
They all depend in principle on the helicity, but we omit the
helicity index. The quantities Ωþ

p and Ω−
p are real, having

the meaning of energies to be determined. In order for the
new operators to satisfy the canonical anticommutation
relations

fAλðpÞ; A†
λ0 ðkÞg ¼ δλλ0δðp − kÞ;

fBλðpÞ; B†
λ0 ðkÞg ¼ δλλ0δðp − kÞ; ð3:21Þ

with all the other anticommutators being zero, the coef-
ficients in (3.20) have to satisfy the conditions

jαþp j2 þ jβþp j2 ¼ 1;

jα−p j2 þ jβ−p j2 ¼ 1: ð3:22Þ

In other words, the conditions (3.22) ensure that the
transformations (3.20) are canonical. Typically, conditions
(3.22) suggest that the Bogoliubov transformations are
rotations in the space of creation and annihilation operators,
for which a customary notation [35,37] is

αþp ¼ cosφþ
p ; βþp ¼ − sinφþ

p ;

α−p ¼ cosφ−
p ; β−p ¼ − sinφ−

p : ð3:23Þ
We shall diagonalize the part of the Hamiltonian depend-

ing on aM, a
†
M. Introducing the Ansatz (3.20) into (3.19),

we findZ
d3p
X
λ

Ωþ
p A

†
λðpÞAλðpÞ

¼
Z

d3p
X
λ

Ωþ
p ½jαþp j2a†MλðpÞaMλðpÞ

þ jβþp j2aMλð−pÞa†Mλð−pÞ
− iðαþp Þ�βþp eiδpa†MλðpÞa†Mλð−pÞ
− iαþp ðβþp Þ�e−iδpaMλðpÞaMλð−pÞ�: ð3:24Þ

Identifying the coefficients with those in (3.17), we arrive at
the following equations:

jαþp j2 − jβþp j2 ¼
ω2
p þmϵ1
Ωþ

p ωp
;

Ωþ
p ðαþp Þ�βþp ðcos δp þ i sin δpÞ ¼ −ϵ1

p
2ωp

þ i
ϵ5
2
sgnλ;

Ωþ
p α

þ
p ðβþp Þ�ðcos δp − i sin δpÞ ¼ −ϵ1

p
2ωp

− i
ϵ5
2
sgnλ:

ð3:25Þ

From the last two relations in (3.25) we infer that αþp and βþp
can be taken to be real, leading to

αþp βþp cos δp ¼ −ϵ1
p

2ωpΩþ
p
;

αþp βþp sin δp ¼
ϵ5
2Ωþ

p
sgnλ:

Thus, we obtain

tan δp ¼ −sgnλ
ϵ5ωp

ϵ1p
; ð3:26Þ

from where

sin δp ¼
tan δpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2δp

q ¼ −sgnλ
ϵ5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ25 þ ϵ21
p2

ω2
p

q ;

cos δp ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tan2δp
q ¼ ϵ1

p
ωp

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ25 þ ϵ21

p2

ω2
p

q : ð3:27Þ

With these results we return to (3.25) and find

αþp ¼ −
1

2Ωþ
p β

þ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ25 þ ϵ21

p2

ω2
p

s
; ð3:28Þ

which we insert into the first equation of (3.25):

1

4ðΩþ
p Þ2ðβþp Þ2

�
ϵ25þϵ21

p2

ω2
p

�
−ðβþp Þ2¼

ω2
pþmϵ1
Ωþ

p ωp
: ð3:29Þ

Equations (3.28) and (3.29), together with the requirement
of canonicity (3.22), are satisfied by the real expressions

αþp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωþ

p þ ωp

2Ωþ
p

þ mϵ1
2ωpΩþ

p

s
;

βþp ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωþ

p − ωp

2Ωþ
p

−
mϵ1

2ωpΩþ
p

s
; ð3:30Þ

where

Ωþ
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þM2þ

q
; with M2þ¼ðmþϵ1Þ2þϵ25: ð3:31Þ

Inspecting the Hamiltonian (3.17), we notice that the
part depending on bM, b

†
M is identical to the part depending

on aM, a
†
M, up to the substitution ϵ1 → −ϵ1. As a result,

we infer immediately the form of the corresponding
coefficients:
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α−p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω−

p þ ωp

2Ω−
p

−
mϵ1

2ωpΩ−
p

s
;

β−p ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω−

p − ωp

2Ω−
p

þ mϵ1
2ωpΩ−

p

s
; ð3:32Þ

where

Ω−
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þM2

−

q
; with M2

−¼ðm−ϵ1Þ2þϵ25: ð3:33Þ

5. The physical vacuum and the Fock space
of the quasiparticles

The set of operators that diagonalize the Hamiltonian act
on a new vacuum jΦ0i, which satisfies

AλðpÞjΦ0i ¼ BλðpÞjΦ0i ¼ 0; ð3:34Þ

and represents the physical vacuum of themodel. The physi-
cal particle states are Bogoliubov quasiparticles, of Majo-
rana type, with the definite masses M2

� ¼ ðm� ϵ1Þ2 þ ϵ25.
The relation between jΦ0i and the bare particles’ vacuum

j0i is derived by assuming that the vacuum of quasiparticles
is written as an arbitrary superposition of pairs of Majorana
particles associated with the fields ψ�ðxÞ:

jΦ0i ¼ NΠp;λe
Rþ
p a

†
MλðpÞa†Mλð−pÞeR

−
pb

†
MλðpÞb†Mλð−pÞj0i; ð3:35Þ

where N is a normalization constant. Using (3.34) and
(3.20), one finds that R�

p ¼ −iβ�p eiδp=α�p . Pauli’s principle
implies that

ða†MλðpÞa†Mλð−pÞÞn ¼ ðb†MλðpÞb†Mλð−pÞÞn ¼ 0; for n > 1;

therefore,

jΦ0i ¼ NΠp;λð1þ Rþ
pa

†
MλðpÞa†Mλð−pÞÞð1þ R−

pb
†
MλðpÞb†Mλð−pÞÞj0i: ð3:36Þ

Recalling (3.22), we note that

h0jðαþp þ iβþp e−iδpaMλðpÞaMλð−pÞÞðαþp − iβþp eiδpa
†
MλðpÞa†Mλð−pÞÞj0i

¼ h0jðjαþp j2 þ jβþp j2aMλðpÞaMλðpÞ†aMλð−pÞa†Mλð−pÞÞj0i
¼ h0jðjαþp j2 þ jβþp j2ð1þ a†MλðpÞaMλðpÞÞð1þ a†Mλð−pÞaMλð−pÞÞÞj0i
¼ h0jðjαþp j2 þ jβþp j2Þj0i ¼ 1;

leading to the normalized quasiparticle vacuum in the form

jΦ0i ¼ Πp;λðαþp − iβþp eiδpa
†
MλðpÞa†Mλð−pÞÞðα−p − iβ−p eiδpb

†
MλðpÞb†Mλð−pÞÞj0i: ð3:37Þ

Just as in the BCS theory, the phase of the “Cooper pairs”
of bare Majorana particles is given by the phase of the gap
function (3.18). This phase, in the present case, is fixed by
the choice of the parameters m; ϵ1; ϵ5 in the Lagrangian
(2.4) and for each pair depends on the momentum of its
constituents. The physical vacuum is therefore unique.3

The bare Majorana particles composing the pairs have
opposite momenta and spins, consistent with the Poincaré
invariance that implies energy momentum and angular
momentum conservation.

The Fock space built on the vacuum jΦ0i consists of
Majorana particle states with two different masses,Mþ and
M−, given by (3.31) and (3.33):

HA†
λðpÞjΦ0i ¼ Ωþ

p A
†
λðpÞjΦ0i;

HB†
λðpÞjΦ0i ¼ Ω−

pB
†
λðpÞjΦ0i: ð3:38Þ

These quasiparticles, with an indefinite baryon number, are
the only physical particles in the model. Neutron and
antineutron do not exist as particle states.

6. Vacuum condensate and baryon-number violation

Coleman’s theorem states that “the invariance of the
vacuum is the invariance of the world” [38]. We therefore

3In contrast, in the BCS theory or NJL model, the phase of the
gap function is arbitrary due to the Uð1Þ symmetry of the
Lagrangian, and its variation leads to an infinity of degenerate
vacua, which is the essence of the spontaneous breaking of
symmetry.
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expect to see violation of the baryonic number in the
vacuum condensate. As mentioned earlier, the bare neutron
and antineutron states have definite baryonic numbers. On
the other hand, the baryonic number is undefined for the
states of bare Majorana particles, a†MλðpÞj0i and b†MλðpÞj0i.
We may attempt to rewrite the vacuum condensate as
superposition of pairs of bare neutrons and antineutrons,
a†λðpÞa†λð−pÞj0i and b†λðpÞb†λð−pÞj0i. To this end, we
insert (3.14) into the Bogoliubov transformations (3.20)
and find

AλðpÞ ¼
1ffiffiffi
2

p ðαþp aλðpÞ þ iβþp eiδpa
†
λð−pÞÞ

þ sgnλffiffiffi
2

p ðαþp bλðpÞ þ iβþp eiδpb
†
λð−pÞÞ;

BλðpÞ ¼
1ffiffiffi
2

p ðα−p aλðpÞ þ iβ−p eiδpa
†
λð−pÞÞ

−
sgnλffiffiffi

2
p ðα−p bλðpÞ þ iβ−p eiδpb

†
λð−pÞÞ: ð3:39Þ

The requirement on the physical vacuum (3.34) then
implies

ðαþp aλðpÞ þ iβþp eiδpa
†
λð−pÞÞjΦ0i ¼ 0;

ðαþp bλðpÞ þ iβþp eiδpb
†
λð−pÞÞjΦ0i ¼ 0; ð3:40Þ

simultaneously with

ðα−p aλðpÞ þ iβ−p eiδpa
†
λð−pÞÞjΦ0i ¼ 0;

ðα−p bλðpÞ þ iβ−p eiδpb
†
λð−pÞÞjΦ0i ¼ 0: ð3:41Þ

As long as αþp ≠ α−p and βþp ≠ β−p , relations (3.40) and
(3.41) are in conflict. Consequently, for the general case
with arbitrary ϵ1 and ϵ5 parameters, we have to content
ourselves with the expression (3.37) for the vacuum
condensate.
In the specific case when ϵ1 ¼ 0, we notice that

M� ¼ M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ϵ25

q
;

α�p ¼ αp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωp þ ωp

2Ωp

s
;

β�p ¼ βp ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωp − ωp

2Ωp

s
;

sin δp ¼ −sgnλ; cos δp ¼ 0: ð3:42Þ

This is the only instance when the relations (3.40) and
(3.41) are compatible and the physical vacuum can be
written as

jΦ0ijϵ1¼0 ¼ Πp;λðαp − sgnλβpa
†
λðpÞa†λð−pÞÞ

× ðαp − sgnλβpb
†
λðpÞb†λð−pÞÞj0i; ð3:43Þ

with the pairs or bare neutrons and antineutrons carrying
baryon number �2, and thus explicitly exhibiting the
baryon-number violation.4

7. Unitary inequivalence of representations

Let us calculate the inner product of the two vacua, using
(3.37) and taking into account (3.7), (3.30), and (3.32):

h0jΦ0i¼Πp;λjαþp jjα−p j

¼Πp;λ
1

2

�
1þ ωp

Ωþ
p
þ mϵ1
ωpΩþ

p

�
1=2
�
1þωp

Ω−
p
−

mϵ1
ωpΩ−

p

�
1=2

¼ exp

�Z
d3p
ð2πÞ3

X
λ

1

2
ln

�
1

2

�
1þ ωp

Ωþ
p
þ mϵ1
ωpΩþ

p

��

×
�
1

2

�
1þ ωp

Ω−
p
−

mϵ1
ωpΩ−

p

���
: ð3:44Þ

In the large momentum limit, ½1
2
ð1þ ωp

Ωþ
p
þ mϵ1

ωpΩþ
p
Þ�×

½1
2
ð1þ ωp

Ω−
p
− mϵ1

ωpΩ−
p
Þ� ≈ 1 − ϵ2

1
þϵ2

5

2p2 , and the exponential diverges

as exp ½−ðϵ21 þ ϵ25Þ
R
dp�, which leads to the orthogonality

of the two vacua,

h0jΦ0i ¼ 0: ð3:45Þ

The Fock spaces built on the bare vacuum j0i and on the
quasiparticle vacuum jΦ0i are, consequently, also orthogo-
nal. (This can easily be confirmed by taking the inner
product of two arbitrary states belonging to the two spaces.)
The latter is the physical one, while the former is an
auxiliary space, an artifact of the quantization method.
Although the bare particle states cannot be found among
the physical states, this does not mean that the bare
operators cannot act on the physical vacuum. The operators
a; a†; b; b† act on jΦ0i through their relations to the
quasiparticle operators, i.e., the inverse Bogoliubov trans-
formations (3.49) together with (3.15), always creating and
annihilating particles with masses M� and never bare
particles of mass m. This feature will be used further in
defining neutron and antineutron states in Sec. IV.

4Incidentally, if ϵ1, ϵ5 ≪ m and we expand the coefficients of
the general Bogoliubov transformation (3.20) to second order in
ϵ1 and ϵ5 [see (4.6) below], we find again αþp ¼ α−p and βþp ¼ β−p ,
and the vacuum condensate can be recast in a form similar to
(3.43). In Ref. [11], for example, the physical vacuum was
derived in this approximation, for ϵ5 ¼ 0.
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B. Heisenberg fields

Having diagonalized the Hamiltonian (3.17) in the
Schrödinger picture, we can now easily move to the
Heisenberg picture. We have obtained the solutions of
the Hamiltonian (3.2) as two nondegenerate Majorana
fields. Their time evolution is given by

eiHtΨ�ðx; 0Þe−iHt ¼ Ψ�ðx; tÞ: ð3:46Þ

The corresponding creation and annihilation operators
evolve as

Aðp; tÞ ¼ eiHtAðpÞe−iHt ¼ AðpÞe−iΩþ
p t;

A†ðp; tÞ ¼ eiHtA†ðpÞe−iHt ¼ A†ðpÞeiΩþ
p t;

Bðp; tÞ ¼ eiHtBðpÞe−iHt ¼ BðpÞe−iΩþ
p t;

B†ðp; tÞ ¼ eiHtB†ðpÞe−iHt ¼ B†ðpÞeiΩþ
p t; ð3:47Þ

where we used H in the form (3.19). Thus, the primary
time-dependent Majorana fields will read

Ψþðx; tÞ ¼
Z

d3p

ð2πÞ3=2 ffiffiffiffiffiffiffiffiffi
2Ωþ

p

p X
λ

ðAλðpÞUλðpÞe−iðΩþ
p t−p·xÞ

þ sgnλA†
λðpÞVλðpÞeiðΩþ

p t−p·xÞÞ;

Ψ−ðx; tÞ ¼
Z

d3p

ð2πÞ3=2 ffiffiffiffiffiffiffiffiffi
2Ω−

p
p X

λ

ðBλðpÞŨλðpÞe−iðΩ−
p t−p·xÞ

− sgnλB†
λðpÞṼλðpÞeiðΩ−

p t−p·xÞÞ; ð3:48Þ

with the spinors UλðpÞ; VλðpÞ and ŨλðpÞ; ṼλðpÞ satisfying
the equations of motion (2.7) in momentum space.
Inverting the Bogoliubov transformations (3.20), namely

aMλðpÞ ¼ αþp AλðpÞ − iβþp eiδpA
†
λð−pÞ;

bMλðpÞ ¼ α−pBλðpÞ − iβ−p eiδpB
†
λð−pÞ; ð3:49Þ

we obtain the time evolution of the operators aMλðpÞ;
bMλðpÞ:

aMλðp; tÞ ¼ αþp AλðpÞe−iΩþ
p t − iβþp eiδpA

†
λð−pÞeiΩ

þ
p t;

bMλðp; tÞ ¼ α−pBλðpÞe−iΩ−
p t − iβ−p eiδpB

†
λð−pÞeiΩ

−
p t: ð3:50Þ

Using (3.15) and (3.50), we can express the time-dependent
aλðp; tÞ; bλðp; tÞ as well.

C. Diagonalization of Hamiltonian
and primary Majorana fields

In the typical cases of a mass shift of Dirac fermions by
vacuum condensate encountered in the NJL model [3,34],
the Bogoliubov transformations relating the creation
and annihilation operators of different masses can be
obtained by two equivalent procedures. One of them is what

we have described above: having derived the Hamiltonian
of the system,H ¼ H0 þHint, the fieldΨDðxÞ is replaced in
the Hamiltonian, at t ¼ 0 (Schrödinger picture), by the
solution ψDðxÞ of the equation of motion i∂tψDðxÞ ¼
½ψDðxÞ; H0�, i.e.,

ΨDðx; 0Þ ¼ ψDðx; 0Þ; ð3:51Þ

and the Hamiltonian is subsequently diagonalized by using
Bogoliubov transformations. Thequasiparticle operators that
diagonalize the total Hamiltonian will be the creation and
annihilation operators of the fieldΨDðxÞ, which satisfies the
equation of motion i∂tΨDðxÞ ¼ ½ΨDðxÞ; H�. Typically, the
bare field ψDðxÞ and the quasiparticle field ΨDðxÞ are free
Dirac fields with different masses. In this way, one finds the
solution ΨDðxÞ without solving directly its equation of
motion. This method is essentially a relativistic extension
of Bogoliubov’s approach to the theories of superfluidity and
superconductivity [2].
The second procedure is the one used in the work of

Nambu and Jona-Lasinio [3]: knowing the Hamiltonian H,
one solves the equation of motion i∂tΨDðxÞ ¼ ½ΨDðxÞ; H�,
and subsequently identifies its solution, at t ¼ 0, with the
solution of i∂tψDðxÞ ¼ ½ψDðxÞ; H0�. In other words, one
imposes the “boundary condition” (3.51) to the two known
solutions. In this case, the purpose is strictly to find the
Bogoliubov transformations and the relation between
the bare particle vacuum and the quasiparticle vacuum.
The results are the same as those obtained by the
Hamiltonian diagonalization method.
The mixing of fields in the baryon-number violating

model that we have been analyzing requires more care in
the application of the procedures outlined above. We have
seen that the Hamiltonian diagonalization procedure suc-
ceeds when using the identification [3],

Ψðx; 0Þ ¼ ψðx; 0Þ:

Recall that the field ψðxÞ is a Dirac field of mass m, while
ΨðxÞ is not a Dirac, nor a Majorana, field. In effect, the field
ΨðxÞ does not satisfy a simple equation of motion, but an
equation in which it is mixed with its charge conjugate
ΨcðxÞ, Eq. (2.6). A “rotation” of the creation and annihi-
lation operators of ψðxÞ does not take us to new creation
and annihilation operators, because there are no such
operators for the field ΨðxÞ. This is an indication that
the second procedure outlined above cannot work with the
boundary condition [3].
In hindsight, we realize that the actual identification of

fields for which [3] was standing was

Ψ�ðx; 0Þ ¼ ψ�ðx; 0Þ; ð3:52Þ

where ψ�ðxÞ satisfy
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ðiγμ∂μ −mÞψ�ðxÞ ¼ 0

and Ψ�ðxÞ satisfy Eqs. (2.7),

ðiγμ∂μ − ðmþ ϵ1Þ − iϵ5γ5ÞΨþðxÞ ¼ 0;

ðiγμ∂μ − ðm − ϵ1Þ þ iϵ5γ5ÞΨ−ðxÞ ¼ 0:

We call the fields Ψ� primary Majorana fields, as they are
the simplest combinations of the neutron field Ψ and its
charge conjugate Ψc, which satisfy uncoupled equations of
motion. The two nondegenerate primary Majorana fields
can be related to the two mass-degenerate bare Majorana
fields by different rotations of the creation and annihi-
lation operators. In Appendix B we shall prove that the
Bogoliubov transformations (3.20), with the coefficients
specified by (3.30) and (3.32), can be found also by the
second procedure outlined above, starting from the boun-
dary condition (3.52).
We emphasize specifically the role of the primary

Majorana fields, because in certain situations one can
choose other combinations of Majorana fields that diago-
nalize the Lagrangian as well. For example, when ϵ1 ¼ 0,
ϵ5 ≠ 0, the Lagrangian is diagonal in terms of Ψ�ðxÞ, but
also in terms of the Dirac-type fields NðxÞ which satisfy the
Dirac equation (5.14) (see the discussion in Sec. VA) and
are related to Ψ and Ψc by the relativistic Bogoliubov
transformation (2.5). Because of the simplicity of the
equation of motion for NðxÞ, it may be tempting to use
the relativistic Bogoliubov transformation as the basis for
the boundary condition at t ¼ 0, namely to make the
identification

�
ψðx; 0Þ
ψcðx; 0Þ

�
¼
� Ψðx; 0Þ
Ψcðx; 0Þ

�

¼
�
cosΘNðx; 0Þ − iγ5 sinΘNcðx; 0Þ
cosΘNcðx; 0Þ − iγ5 sinΘNðx; 0Þ

�
:

ð3:53Þ

In this case, the resulting transformations between the
operators of ψðxÞ and those of NðxÞ are essentially
incompatible, in the sense that the two annihilation oper-
ators of NðxÞ, say ANλðpÞ and BNλðpÞ, do not destroy
the same vacuum condensate jΦN0i. This inconsistency
does not appear if one adheres to primary fields and
formula (3.52).
The identification of primary fields is an essential step in

treating any quantum systems with mixings of fields, such
as the seesaw mechanism Lagrangian or various models of
neutrino mixing and oscillation.

IV. NEUTRON STATES IN PHYSICAL FOCK
SPACE AND THE n− n̄ TRANSITION

PROBABILITY

When we embed the quadratic Lagrangian (2.4) into the
Standard Model, the field ΨðxÞ plays the role of neutron
field and takes part in the neutron interactions already
present there. At the same time, we have to give up the
picture of the neutron as a particle with definite mass and
flavor. It is then necessary to redefine the notion of neutron
and antineutron, when there are no creation and annihila-
tion operators for them.
The only possibility for a consistent definition is to

associate the neutron and antineutron with the fieldΨðxÞ, in
other words, to define these states by their dynamical
relations with the other particles with which they interact.
The natural procedure is to use the Schrödinger picture
identification [3],

Ψðx; 0Þ ¼ ψðx; 0Þ;

together with the consistency requirement that, in the limit
when the baryon-number violating interaction vanishes
(i.e., ϵ1, ϵ5 → 0), one recovers the bare, or flavor, neutron
state defined on the vacuum j0i. In practice, we start by
Fourier transforming the field ψðx; 0Þ:

Z
d3x

ð2πÞ3=2 e
ip·xψ̄ðx; 0Þ

¼ 1ffiffiffiffiffiffiffiffi
2ωp

p X
λ0
ða†λ0 ðpÞūλ0 ðpÞ þ bλ0 ð−pÞv̄λð−pÞÞ:

Upon multiplication by γ0uλðpÞ and the use of relations
(A13), we find

1ffiffiffiffiffiffiffiffi
2ωp

p �Z
d3x

ð2πÞ3=2 e
ip·xψ̄ðx; 0Þ

�
γ0uλðpÞ ¼ a†λðpÞ: ð4:1Þ

The operator in the left-hand side of (4.1), acting on the
vacuum j0i, produces the bare neutron state a†λðpÞj0i. We
shall therefore adopt it as the definition of the “neutron
creation operator” on the physical vacuum,5 in which case it
is preferable to also replace ψðx; 0Þ by Ψðx; 0Þ,

5In Ref. [11], the definition of the neutron state is (with our

notations and conventions)
ffiffiffiffi
ωp

2

q
1
m ð
R

d3x
ð2πÞ3=2 e

ip·xψ̄ðx; 0ÞÞuλðpÞ ¼
a†λðpÞ þ i p

m sgnλbλð−pÞ. However, this expression does not give
sensible results when applied to multiparticle (antineutron) states
in the limit when the baryon-number violating interaction
vanishes; therefore, it cannot be a proper neutron creation
operator in any setup. Moreover, it is not applicable to the case
when bare particles are massless.
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jnðp; λÞi≡ 1ffiffiffiffiffiffiffiffi
2ωp

p �Z
d3x

ð2πÞ3=2 e
ip·xΨ̄ðx; 0Þ

�
γ0uλðpÞjΦ0i

¼ a†λðpÞjΦ0i

¼ 1ffiffiffi
2

p ðαþp A†
λðpÞ þ α−pB

†
λðpÞÞjΦ0i; ð4:2Þ

with the coefficients given by (3.30)–(3.33). In writing
the final expression of (4.2), we used (3.15), (3.34), and
the inverses of the Bogoliubov transformations (3.49).
Similar considerations for the antineutron state lead to
the definition

jn̄ðp; λÞi≡ sgnλ
1ffiffiffiffiffiffiffiffi
2ωp

p �Z
d3x

ð2πÞ3=2 e
ip·xΨ̄cðx; 0Þ

�
γ0uλ

× ðpÞjΦ0i ¼ b†λðpÞjΦ0i

¼ 1ffiffiffi
2

p sgnλðαþp A†
λðpÞ − α−pB

†
λðpÞÞjΦ0i: ð4:3Þ

We took advantage of the fact that, in spite of the a- and
b-type operators not being creation and annihilation oper-
ators on the physical vacuum jΦ0i, this does not prevent us
from defining their action on this vacuum, which is
achieved through the inverse Bogoliubov transformations.
Thus, neutron and antineutron states are naturally defined
on the physical Fock space.
The oscillation amplitude between neutron and antineu-

tron is obtained by letting the neutron state evolve
and sampling the amount of antineutron in it at an arbitrary
time t:

Ann̄ ¼ hn̄ðp; λÞjnðp; λÞ; ti≡ hn̄ðp; λÞje−iHtjnðp; λÞi: ð4:4Þ

Using (4.2) and (4.3), as well as the Hamiltonian in the
form (3.19) and its action on the quasiparticle states (3.38),
we obtain

Ann̄ ¼
1

2
sgnλ½ðαþp Þ2e−iΩþ

p t − ðα−p Þ2e−iΩ−
p t�; ð4:5Þ

with the various coefficients and energies given by (3.30)–
(3.33). This is the general expression, valid for any values
of the parameters m, ϵ1, and ϵ5 in Lagrangian (2.4).
To come to a more familiar expression of the transition

amplitude, we shall consider ϵ1, ϵ5 ≪ m and expand (4.5)
to second order in ϵ1 and ϵ5. In this order,

Ω�
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
p � 2mϵ1 þ ϵ21 þ ϵ25

q
≈ ωp

�
1�mϵ1

ω2
p
þ 1

2ω2
p

�
1 −

3m2

ω2
p

�
ϵ21 þ

ϵ25
2ω2

p

�

¼ ωp

�
1�mϵ1

ω2
p
þ Δðϵ21; ϵ25Þ

�
;

ðα�p Þ2 ¼
Ω�

p þ ωp

2Ω�
p

� mϵ1
2ωpΩ�

p
¼ 1

2
þ ωp

2Ω�
p

�
1�mϵ1

ω2
p

�

≈ 1 −
1

4ω2
p

�
p2

ω2
p
ϵ21 þ ϵ25

�
: ð4:6Þ

Returning with (4.6) into (4.5), we find the transition
amplitude

Ann̄ ¼ −isgnλe−iωpð1þΔðϵ2
1
;ϵ2
5
ÞÞt
�
1 −

1

4ω2
p

�
p2

ω2
p
ϵ21 þ ϵ25

��

× sin
�
ϵ1m
ωp

t
�
; ð4:7Þ

leading to the neutron-antineutron transition probability

Pnn̄ ¼ sin2
�
ϵ1m
ωp

t

�
: ð4:8Þ

The probability formula (4.8) shows that the neutron-
antineutron transition is practically unaffected by the
(CP-violation) parameter ϵ5. The result coincides with the
usual free oscillation probability obtained in the framework
of quantum mechanics in the same limit, i.e., ϵ1, ϵ5 ≪ m.
When ϵ1 ¼ 0 and ϵ5 ≠ 0, the free transition probability

vanishes exactly, as can easily be seen from (4.5), taking
into account that in this case αþp ¼ α−p and Ωþ

p ¼ Ω−
p [see

(3.42)]. This is, of course, expected, because the two
primary Majorana fields are in this case degenerate in
mass. However, as we shall see in the next section, the
anomalous baryon-number violating propagator will still be
nonvanishing [22,39].

V. ANOMALOUS PROPAGATOR

The purpose of this section is to show that the canonical
quantization procedure outlined in Secs. III and IV is
compatible with the results obtained in the Lagrangian/path
integral approach. This comparison will give more support
to the definition that we adopted for the neutron and
antineutron states. Ordinarily, by the token of fermion
number conservation, in the perturbative Standard Model,
we expect the propagator Ψ�ðxÞ,

hTΨcðxÞΨ̄ðyÞi ¼ θðx0 − y0ÞhΨcðxÞΨ̄ðyÞi
− θðy0 − x0ÞhΨ̄ðyÞΨcðxÞi; ð5:1Þ
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to vanish. However, since baryon-number conservation is
now violated, the above propagator is nonzero. The
calculation of this propagator in the canonical framework
described above and by means of the manifestly relativistic
Lagrangian formalism/path integral will show the coinci-
dence of the two approaches.

For our purpose, it is sufficient to calculate, in the
Hamiltonian formulation, the transition amplitude
hΦ0jΨcðx; tÞΨ̄ðy; 0ÞjΦ0i and compare it with the result
of the path integral approach.
Using [3], (3.5), and (3.6), we find

hΦ0jΨcðx; tÞΨ̄ðy; 0ÞjΦ0i ¼
Z

d3pd3k

ð2πÞ32ðωpωkÞ1=2
X
λ;λ0

sgnλ

× hΦ0j½a†λðp; tÞa†λ0 ðkÞvλðpÞūλ0 ðkÞe−iðp·xþk·yÞ þ bλðp; tÞbλ0 ðkÞuλðpÞv̄λ0 ðkÞeiðp·xþk·yÞ

þ a†λðp; tÞbλ0 ðkÞvλðpÞv̄λ0 ðkÞe−iðp·x−k·yÞ þ bλðp; tÞa†λ0 ðkÞuλðpÞūλ0 ðkÞeiðp·x−k·yÞ�jΦ0i: ð5:2Þ
With the help of (3.15) and (3.50), we obtain the vacuum values involved in (5.2):

hΦ0ja†λðp; tÞa†λ0 ðkÞjΦ0i ¼
i
2
ðαþk βþp e−iδpe−iΩ

þ
p t þ α−k β

−
p e−iδpe−iΩ

−
p tÞδλλ0δðpþ kÞ;

hΦ0jbλðp; tÞbλ0 ðkÞjΦ0i ¼ −
i
2
ðαþp βþk eiδke−iΩ

þ
p t þ α−p β

−
k e

iδke−iΩ
−
p tÞδλλ0δðpþ kÞ;

hΦ0ja†λðp; tÞsgnλbλ0 ðkÞjΦ0i ¼
1

2
ðβþp βþk e−iðδp−δkÞe−iΩ

þ
p t − β−p β

−
k e

−iðδp−δkÞe−iΩ−
p tÞδλλ0δðp − kÞ;

hΦ0jsgnλbλðp; tÞa†λ0 ðkÞjΦ0i ¼
1

2
ðαþp αþk e−iΩ

þ
p t − α−p α

−
k e

−iΩ−
p tÞδλλ0δðp − kÞ: ð5:3Þ

Hence, we find the vacuum-to-vacuum transition amplitude which reads in general

hΦ0jΨcðx; tÞΨ̄ðy; 0ÞjΦ0i ¼
Z

d3p
ð2πÞ32ωp

X
λ

�
sgnλ

i
2
ðαþp βþp e−iδpe−iΩþ

p t þ α−p β
−
p e−iδpe−iΩ

−
p tÞvλðpÞūλð−pÞe−ip·ðx−yÞ

− sgnλ
i
2
ðαþp βþp eiδpe−iΩþ

p t þ α−p β
−
p eiδpe−iΩ

−
p tÞuλðpÞv̄λð−pÞeip·ðx−yÞ

þ 1

2
ððβþp Þ2e−iΩþ

p t − ðβ−p Þ2e−iΩ−
p tÞvλðpÞv̄λðpÞe−ip·ðx−yÞ

þ 1

2
ððαþp Þ2e−iΩþ

p t − ðα−p Þ2e−iΩ−
p tÞuλðpÞūλðpÞeip·ðx−yÞ

�
; ð5:4Þ

with the coefficients given by (3.27), (3.30), and (3.32).

A. Mass-degenerated Majorana
quasiparticles (ϵ1 = 0, ϵ5 ≠ 0)

The comparison is more transparent if we consider
specific cases. The most interesting and illuminating is
the case when ϵ1 ¼ 0. Then, the Majorana quasiparticles
are degenerate in mass and the neutron-antineutron oscil-
lation does not happen (see Sec. IV). However, as discussed
in [22,39], the anomalous propagator derived in the
Lagrangian framework is nonvanishing.
The Lagrangian in this case is

L ¼ Ψ̄ðxÞiγμ∂μΨðxÞ −mΨ̄ðxÞΨðxÞ

−
i
2
ϵ5½ΨTðxÞCγ5ΨðxÞ þ Ψ̄ðxÞCγ5Ψ̄TðxÞ�; ð5:5Þ

leading to the equations of motion:

ðiγμ∂μ −m − iϵ5γ5ÞΨþðxÞ ¼ 0;

ðiγμ∂μ −mþ iϵ5γ5ÞΨ−ðxÞ ¼ 0: ð5:6Þ

We define

m� iϵ5γ5 ¼ Me�2iΘγ5 ð5:7Þ

with

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ϵ25

q
: ð5:8Þ

The equations of motion can be recast in the form
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ðiγμ∂μ −MÞe�iΘγ5ðΨðxÞ ∓ ΨcðxÞÞ ¼ 0: ð5:9Þ

We thus identify the combinations of Majorana type

Ψ̃þ ¼ 1ffiffiffi
2

p eiΘγ5ðΨðxÞ −ΨcðxÞÞ;

Ψ̃− ¼ 1ffiffiffi
2

p e−iΘγ5ðΨðxÞ þ ΨcðxÞÞ; ð5:10Þ

which satisfy the standard Dirac equation

ðiγμ∂μ −MÞΨ̃�ðxÞ ¼ 0: ð5:11Þ
Thus we have the exact solutions of the field equations,

ΨðxÞ ¼ 1ffiffiffi
2

p ½e−iΘγ5Ψ̃þðxÞ þ eiΘγ5Ψ̃−ðxÞ�;

ΨcðxÞ ¼ 1ffiffiffi
2

p ½e−iΘγ5Ψ̃þðxÞ − eiΘγ5Ψ̃−ðxÞ�: ð5:12Þ

The Majorana fields Ψ̃�ðxÞ can also be mixed into a Dirac-
type of field NðxÞ, with a shifted mass M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ϵ2

p
,

NðxÞ ¼ 1ffiffiffi
2

p ðΨ̃þðxÞ þ Ψ̃−ðxÞÞ;

NcðxÞ ¼ 1ffiffiffi
2

p ðΨ̃þðxÞ − Ψ̃−ðxÞÞ; ð5:13Þ

satisfying in its turn the simple Dirac equation

ðiγμ∂μ −MÞNðxÞ ¼ 0: ð5:14Þ
We can than rewrite (5.12) as� ΨðxÞ
ΨcðxÞ

�
¼
�
cosΘNðxÞ − iγ5 sinΘNcðxÞ
cosΘNcðxÞ − iγ5 sinΘNðxÞ

�
: ð5:15Þ

This transformation, mixing the relativistic neutron field
and its charge conjugated, has been named “relativistic
Bogoliubov transformation” [22,29]. It is easy to see that it
preserves the anticommutators, and therefore it is canoni-
cal. In the form quoted above, it is covariant under charge
conjugation transformation. It has been used in [22] to
analyze the neutron oscillations in the Lagrangian descrip-
tion; a charge-conjugation violating version of it has been
used in [23] to provide a two-step solution to the seesaw
mechanism.
Because of the simplicity of the equation of motion

satisfied by the field NðxÞ, the relativistic Bogoliubov
transformation (5.15) leads us immediately to the form of
the anomalous propagator for ϵ1 ¼ 0,

hT�ΨcðxÞΨ̄ðyÞi¼
Z

d4p
ð2πÞ4

ϵ5γ5
p2−M2þ iϵ

e−ipðx−yÞ; ð5:16Þ

for which we used

hT�ΨðxÞΨ̄ðyÞi ¼ hT�ΨcðxÞΨ̄cðyÞi

¼
Z

d4p
ð2πÞ4

i
=p −M þ iϵ

e−ipðx−yÞ: ð5:17Þ

Recall that the propagator theory based on equation of
motion, or the path integral quantization, gives the above
covariant T� product, while the canonical quantization
leads to the usual T product (5.1), which specifies precisely
the equal-time limit of the correlation. The two products
coincide if the T� product vanishes in the limit p0 → ∞,
which is the case also in our situations.
On the one hand, starting with the covariant propagator

(5.16), we easily find

hΦ0jΨcðx;tÞΨ̄ðy;0ÞjΦ0i¼ ϵ5γ5

Z
d3p
ð2πÞ3

I
ΓðΩpÞ

dp0

2π

e−ipðx−yÞ

p2
0−Ω2

p

¼ iϵ5γ5

Z
d3p

ð2πÞ32Ωp
e−iΩptþip·ðx−yÞ;

ð5:18Þ

where ΓðΩpÞ is the contour in the complex p0 plane which
includes the pole of the integrand atΩp and extends to −i∞
in the lower half-plane.
On the other hand, starting from the general formula (5.4)

in the Hamiltonian approach, we obtain

hΦ0jΨcðx; tÞΨ̄ðy; 0ÞjΦ0i

¼ −
Z

d3p
ð2πÞ32ωp

X
λ

αpβp½vλð−pÞūλðpÞ

þ uλðpÞv̄λð−pÞ�e−iΩptþip·ðx−yÞ

¼ iϵ5γ5

Z
d3p

ð2πÞ32Ωp
e−iΩptþip·ðx−yÞ; ð5:19Þ

where we specified the coefficients for the case ϵ1 ¼ 0 as
follows:

Ω�
p ¼ Ωp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2 þ ϵ25

q
;

α�p ¼ αp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωp þ ωp

2Ωp

s
;

β�p ¼ βp ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωp − ωp

2Ωp

s
;

sin δp ¼ −sgnλ; cos δp ¼ 0; ð5:20Þ
and we also used (A16) and (A17).
The coincidence of the results (5.18) and (5.19) indicates

the agreement of the Lagrangian approach, with the use of
the relativistic Bogoliubov transformation (5.15), and the
Hamiltonian formalism via Bogoliubov quasiparticles and
vacuum condensate developed above. In this case, the
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neutron-antineutron conversion takes place in virtual states,
and it is strictly an effect of the vacuum condensate, which
violates the baryon-number conservation. Interestingly, the
relativistic Bogoliubov transformation does not have any
role in the Hamiltonian description.

B. Mass nondegenerate Majorana quasiparticles
(ϵ1 ≠ 0, ϵ5 = 0)

For completeness, we include also the calculation of the
anomalous propagator for the typical neutron-antineutron

oscillation setup, with ϵ5 ¼ 0. In this case, the equations of
motion for the primary Majorana fields are simply

ðiγμ∂μ −MþÞΨþðxÞ ¼ 0;

ðiγμ∂μ −M−ÞΨ−ðxÞ ¼ 0; ð5:21Þ

with M� ¼ m� ϵ1. The anomalous propagator of the
neutron field is easily obtained with the help of the relations
(2.8) and the ordinary propagators

hT�Ψ�ðxÞΨ̄�ðyÞi ¼
Z

d4p
ð2πÞ4

i
=p −M� þ iϵ

e−ipðx−yÞ; ð5:22Þ

as

hT�ΨcðxÞΨ̄ðyÞi ¼ 1

2

Z
d4p
ð2πÞ4

�
1

=p −Mþ þ iϵ
−

1

=p −M− þ iϵ

�
e−ipðx−yÞ: ð5:23Þ

We note that

hΦ0jΨ�ðx; tÞΨ̄�ðy; 0ÞjΦ0i ¼ i
Z

d3p
ð2πÞ3

I
ΓðΩ�

p Þ

dp0

2π
e−ipðx−yÞ

=pþM�
p2
0 − ðΩ�

p Þ2

¼ −
Z

d3p
ð2πÞ32Ω�

p
e−iΩ

�
p tþip·ðx−yÞðΩ�

p γ0 − p · γ þM�Þ: ð5:24Þ

We shall consider the above amplitudes in the limit ϵ1 ≪ m and in the first order in ϵ1. In this approximation,

1

2Ω�
p
ðΩ�

p γ0 − p · γ þM�Þ ¼
1

2ωp

�
ðωpγ0 − p · γ þmÞ � ϵ1

�
p2

ω2
p
þ m
ω2
p
p · γ

��
:

Then,

hΦ0jΨcðx; tÞΨ̄ðy; 0ÞjΦ0i ¼
Z

d3p
ð2πÞ32ωp

e−iωptþip·ðx−yÞ
�
i sin

�
ϵ1m
ωp

t

�
ðωpγ0 − p · γ þmÞ

− ϵ1 cos

�
ϵ1m
ωp

t

��
p2

ω2
p
þ m
ω2
p
p · γ

��
: ð5:25Þ

We calculate now the same amplitude starting from the canonical quantization result (5.4), up to the first order in ϵ1, in
which case

ðα�p Þ2 ≈ 1 − ϵ21
p2

4ω4
p
; ðβ�p Þ2 ≈ ϵ21

p2

4ω4
p
; α�p β�p ≈ ϵ1

p
2ω2

p
ð5:26Þ

and

sin δp ¼ 0; cos δp ¼ 1: ð5:27Þ

We obtain, using (A18) and (A19),
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hΦ0jΨcðx; tÞΨ̄ðy; 0ÞjΦ0i ¼ i
Z

d3p
ð2πÞ32ωp

e−iωptþip·ðx−yÞX
λ

�
ϵ1

p
2ω2

p
cos

�
ϵ1m
ωp

t

�
sgnλðvλðpÞūλð−pÞ − uλðpÞv̄λð−pÞÞ

− sin

�
ϵ1m
ωp

t

�
uλðpÞūλðpÞ

�

¼
Z

d3p
ð2πÞ32ωp

e−iωptþip·ðx−yÞ
�
i sin

�
ϵ1m
ωp

t

�
ðωpγ0 − p · γ þmÞ

− ϵ1 cos

�
ϵ1m
ωp

t

��
p2

ω2
p
þ m
ω2
p
p · γ

��
: ð5:28Þ

This coincides with formula (5.25), and thus the two
approaches again prove compatible.

VI. DISCUSSION AND CONCLUSIONS

The phenomena of particle oscillations are highly
peculiar, in the sense that the particles which are supposed
to oscillate do not exist as well-defined states in the
quantum field theory. It is perhaps more accurate to speak
about the oscillations of a flavor quantum number than
about the oscillations of particles. Actually, one of the
recurring questions in the theory of neutrino oscillations is
how to define the flavor neutrino states, when the flavor
fields are given as known mixtures of massive fields. The
answer can be found by using the canonical quantization
procedure described in this work. Specifically, in the
baryon-number violating case of the neutron-antineutron
oscillations, the neutron field ΨðxÞ is a mixing of massive
Majorana fields Ψ�ðxÞ [which diagonalize the Lagrangian
(2.4)] according to Eq. (2.13),

ΨðxÞ ¼ 1ffiffiffi
2

p ðΨþðxÞ þ Ψ−ðxÞÞ:

On the other hand, we have found that the neutron
and antineutron states associated with ΨðxÞ are mixings
of states associated with Ψ�ðxÞ according to Eqs. (4.2)
and (4.3):

jnðp; λÞi ¼ 1ffiffiffi
2

p
��

Ωþ
p þ ωp

2Ωþ
p

þ mϵ1
2ωpΩþ

p

�
A†
λðpÞ

þ
�
Ω−

p þ ωp

2Ω−
p

−
mϵ1

2ωpΩ−
p

�
B†
λðpÞ

�
jΦ0i;

jn̄ðp; λÞi ¼ 1ffiffiffi
2

p sgnλ

��
Ωþ

p þ ωp

2Ωþ
p

þ mϵ1
2ωpΩþ

p

�
A†
λðpÞ

−
�
Ω−

p þ ωp

2Ω−
p

−
mϵ1

2ωpΩ−
p

�
B†
λðpÞ

�
jΦ0i;

where jΦ0i is the physical vacuum of the model, A† and B†

are the creation operators corresponding to the Majorana
fields Ψþ and Ψ−, respectively, and ωp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
,

Ω�
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ðm� ϵ1Þ2 þ ϵ25

q
. This mixing of states is

not self-evident just by knowing the mixing of fields,
but it is unambiguous, once the appropriate quantization
scheme is employed.
The present canonical quantization approach to the

neutron-antineutron oscillations is based on the theory of
unitarily inequivalent representations inspired by the BCS
theory of superconductivity [1,2] and the Nambu–Jona-
Lasinio model [3] (see also [34]). In this formulation, the
physical particles are Bogoliubov quasiparticles with def-
inite masses. The neutron field is a mixing of two mass-
nondegenerate Majorana fields; consequently it cannot be a
proper Dirac field. Flavor (in this case, baryonic number) is
introduced into the theory by the would-be neutron fields in
the absence of the baryon-number violating interaction.
These fields provide one of the two inequivalent repre-
sentations of the creation and annihilation operators used in
the analysis, and it should be emphasized that it is a
nonphysical representation.
The intuitive picture is the following: the physical free

Majorana particles, or Bogoliubov quasiparticles, are states
in a Fock space, built on a vacuum that is a coherent
superposition of bosonic pairs of bare neutrons and anti-
neutrons, with opposite momenta and spins. The vacuum
violates baryon-number conservation, since the pairs carry
baryonic number �2. In this Fock space, the neutron and
antineutron are defined using only the physical vacuum and
the neutron field in the Lagrangian, which gives the
dynamical relation of the neutron to the other particles
in the Standard Model. Neutron and antineutron states are
superpositions of Bogoliubov quasiparticles, satisfying the
consistency requirement that, in the limit of vanishing
baryon-number violating interactions, they are identical to
the Standard Model neutron and antineutron states. The
oscillation takes place due to the mass splitting between the
Majorana particles, which is an effect of the vacuum
condensate, that acts also as a reservoir of baryonic number.
The analogy with the BCS theory is only partial. The

BCS ground state is a state of matter—the interaction
couples the electrons in Cooper pairs and provides the
energy gap that renders the system superconducting.
The physical particles are the same, i.e., electrons with a
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well-defined mass, with or without the interaction. On the
other hand, in relativistic models, the only physical states
are quasiparticle states. The bare (or flavor) particles simply
do not exist, either individually or in pairs. This can easily
be seen by the fact that we could have chosen initially a
different unitarily inequivalent representation than the
one corresponding to the bare particles and the result of
diagonalization would have been exactly the same. Hence,
the vacuum condensate is a technical device that mimics the
effect of the interaction in breaking the baryon-number
symmetry and generating the mass splitting and/or the mass
gap for the quasiparticles.
One of the lessons learned from this analysis is that

the identification of the primary fields is influenced by the
conserved symmetries of the model. For instance, in the
case of neutron-antineutron oscillations considered here,
Lagrangian (2.4) is C invariant, and the primary fields are C
eigenfields. In the case of the seesaw mechanism for
neutrinos, when charge conjugation is violated but the
lepton number violation is still given by Majorana mass
terms, the C violation has to be absorbed by the vacuum, in
order for the physical fields to be eigenfields of charge
conjugation. This is achieved in the Lagrangian approach
by the relativistic Bogoliubov transformation [23,32].
Recently, an alternative analysis of the vacuum condensate,
based on the relativistic Bogoliubov transformation, was
performed in [40] for the C-violating model of the seesaw
mechanism for neutrinos [whose Lagrangian is (2.1), with
α ¼ π=2]. It would be interesting to apply the formulation
of the present work also for the seesaw mechanism [41].
The quantization by path integral methods in the

Lagrangian formalism [39] and the present canonical
formalism converge, as it was shown by comparing the
anomalous propagators obtained in the two approaches. In
our canonical description, the relativistic Bogoliubov trans-
formation that is used for the (partial) diagonalization of the
Lagrangian [22,39] does not play any role. The advantage
of the canonical formalism is that it allows us to define the
neutron and antineutron states and the vacuum condensate
offers a richer picture. Flavor states are defined only as
auxiliary notions, which bring the baryonic number into the
picture, and their Fock space is unphysical. An alternative
procedure in the context of neutrino mixing has been
developed in [42] (see also [43] and references therein, and
[44] as well for a critique of the method), invoking unitarily
inequivalent representations, but in which the flavor Fock
space features as a physical space. The technical details are
at variance with the approach presented in our work.
The method of quantization for oscillating particle

systems described in this work can be easily applied to
mixings of Dirac neutrinos. Regarding the seesaw mecha-
nism, a possible extension of the method will provide also
a clarification of the charge conjugation violation by the
vacuum condensate. We plan to study these issues
elsewhere.
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APPENDIX A: CONVENTIONS FOR SPINORS

We work with the Dirac representation of the γ matrices:

γ0 ¼
�
σ0 0

0 −σ0

�
; γi ¼

�
0 σi

σi 0

�
;

γ5 ¼
�

0 σ0

σ0 0

�
; ðA1Þ

where σ0 ¼ 12×2 and σi, i ¼ 1, 2, 3 are the Pauli matrices.
The solution of the Dirac equation

ðiγμ∂μ −mÞψðxÞ ¼ 0 ðA2Þ

is written in mode expansion as

ψðxÞ ¼
Z

d3p

ð2πÞ3=2 ffiffiffiffiffiffiffiffi
2ωp

p X
λ

ðaλðpÞuλðpÞe−ipx

þ b†λðpÞvλðpÞeipxÞ; ðA3Þ

where λ ¼ � 1
2

are the helicity eigenvalues and

p0 ¼ ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, with the notation p ¼ jpj. The

spinors uλðpÞ and vλðpÞ are helicity eigenvectors,

Ŝ · p
p

uλðpÞ ¼ λuλðpÞ;
Ŝ · p
p

vλðpÞ ¼ −λvλðpÞ; ðA4Þ

with the spin matrix

Ŝi ¼ 1

2
Σi ¼

�
σi 0

0 σi

�
: ðA5Þ

The left- and right-handed helicity spinors read

u↑ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωp þm

p � χ↑
p

ωpþm χ↑

�
;

u↓ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωp þm

p � χ↓

− p
ωpþm χ↓

�
;

v↑ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωp þm

p �− p
ωpþm η↑

η↑

�
;

v↓ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωp þm

p � p
ωpþm η↓

η↓

�
; ðA6Þ

where the symbol ↑ denotes the right-handed spinor, while
↓ denotes the left-handed spinor. We use the helicity basis
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χ↑ ¼ η↓ ¼
�
cos θ

2
e−i

ϕ
2

sin θ
2
ei

ϕ
2

�
; χ↓ ¼ η↑ ¼

�− sin θ
2
e−i

ϕ
2

cos θ
2
ei

ϕ
2

�
;

ðA7Þ

with θ and ϕ being the polar and azimuthal angles of
the momentum vector, p ¼ ðp sin θ cosϕ; p sin θ sinϕ;
p cos θÞ. The basis spinors χλ and ηλ satisfy

ðσ⃗ · pÞχλ ¼ 2λpχλ; ðσ⃗ · pÞηλ ¼ −2λpηλ ðA8Þ

and are normalized as

χ†λχλ0 ¼ η†ληλ0 ¼ δλλ0 ; where λ; λ0 ¼ � 1

2
: ðA9Þ

We note as well the relations

χ↑χ
†
↑ þ χ↓χ

†
↓ ¼ 12×2; ðA10Þ

χ↑χ
†
↑ − χ↓χ

†
↓ ¼

�
cos θ sin θe−iϕ

sin θeiϕ − cos θ

�
¼ σ⃗ · p

p
: ðA11Þ

The helicity spinors for the inverted momentum vector
−p are obtained by taking θ → π − θ and ϕ → π þ ϕ in
(A6), and they read as follows:

u↑ð−pÞ ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωp þm

p � η↑
p

ωpþm η↑

�
;

u↓ð−pÞ ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωp þm

p � η↓

− p
ωpþm η↓

�
;

v↑ð−pÞ ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωp þm

p �− p
ωpþm χ↑

χ↑

�
;

v↓ð−pÞ ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωp þm

p � p
ωpþm χ↓

χ↓

�
: ðA12Þ

The helicity spinors are normalized as

u†λðpÞuλ0 ðpÞ ¼ 2ωpδλλ0 ;

u†λðpÞvλ0 ð−pÞ ¼ 0; ðA13Þ

and satisfy the relations

ūλðpÞuλ0 ðpÞ ¼ 2mδλλ0 ;

v̄λðpÞvλ0 ðpÞ ¼ −2mδλλ0 ;

ūλðpÞvλ0 ð−pÞ ¼ −2ip sgnλδλλ0 ;

v̄λðpÞuλ0 ð−pÞ ¼ −2ip sgnλδλλ0 ; ðA14Þ

as well as

ūλðpÞγ5uλ0 ðpÞ ¼ 0;

v̄λðpÞγ5vλ0 ðpÞ ¼ 0;

ūλðpÞγ5vλ0 ð−pÞ ¼ 2iωpδλλ0 ;

v̄λðpÞγ5uλ0 ð−pÞ ¼ −2iωpδλλ0 : ðA15Þ

We also have the relations

X
λ

vλð−pÞūλðpÞ ¼ iðωp þmÞ
 − p

ωpþm
σ⃗·p
p

p2

ðωpþmÞ2 12×2

12×2 − p
ωpþm

σ⃗·p
p

!
;

ðA16Þ

X
λ

uλðpÞv̄λð−pÞ ¼ iðωp þmÞ

0
B@

p
ωpþm

σ⃗·p
p 12×2

p2

ðωpþmÞ2 12×2
p

ωpþm
σ⃗·p
p

1
CA;

ðA17ÞX
λ

sgnλvλð−pÞūλðpÞ

¼ iðωp þmÞ
 − p

ωpþm 12×2
p2

ðωpþmÞ2
σ⃗·p
p

σ⃗·p
p − p

ωpþm 12×2

!
; ðA18Þ

X
λ

sgnλuλðpÞv̄λð−pÞ

¼ iðωp þmÞ

0
B@

p
ωpþm 12×2

σ⃗·p
p

p2

ðωpþmÞ2
σ⃗·p
p

p
ωpþm 12×2

1
CA: ðA19Þ

Under the parity transformation,

γ0uλðpÞ ¼ iu−λð−pÞ;
γ0vλðpÞ ¼ −iv−λð−pÞ; ðA20Þ

such that the parity operation acts as

Pψðx; tÞP−1 ¼ γ0ψð−x; tÞ; ðA21Þ

if

Paλðp; tÞP−1 ¼ ia−λð−p; tÞ;
Pbλðp; tÞP−1 ¼ ib−λð−p; tÞ: ðA22Þ

Under the classical charge conjugation transformation,
we have

CūTλ ðpÞ ¼ sgnλvλðpÞ;
Cv̄Tλ ðpÞ ¼ sgnλuλðpÞ; ðA23Þ

such that
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CψðxÞC−1 ¼ Cψ̄TðxÞ

¼
Z

d3p

ð2πÞ3=2 ffiffiffiffiffiffiffiffi
2ωp

p X
λ

sgnλðbλðpÞuλðpÞe−ipx

þ a†λðpÞvλðpÞeipxÞ; ðA24Þ

with

CaλðpÞC−1 ¼ sgnλbλðpÞ; CbλðpÞC−1 ¼ sgnλaλðpÞ:
ðA25Þ

APPENDIX B: BOGOLIUBOV COEFFICIENTS
FROM SOLUTIONS OF EQUATIONS

OF MOTION

As explained in Sec. III C, the Bogoliubov transforma-
tions can be found alternatively by equating the explicit
solutions of the equations of motion governed by the free
Hamiltonian H0 and by the total Hamiltonian H. This
procedure was used by Nambu and Jona-Lasinio [3] (see
also [36]) for going from massless to massive free Dirac
fields. In this appendix we confirm that this alternative
procedure works in the case of the baryon-number violating
system with C invariance described by the Lagrangian
(2.4), as long as we apply it to primary Majorana fields and
not to the mixed field ΨðxÞ.
For the sake of transparency, we shall consider two

simpler cases, ϵ5 ¼ 0 and ϵ1 ¼ 0, respectively. In the first
case, we use a top-down approach, which consists in
imposing the boundary condition and deriving the
Bogoliubov transformation. In the second case, we use a
bottom-up approach, proving the compatibility of the
Bogoliubov transformations (considered to be known) with
the boundary condition and the solutions of the equations
of motion.

1. Primary fields with scalar Majorana mass
(ϵ1 ≠ 0, ϵ5 = 0)

The primary fields are Majorana fields, satisfying the
free Dirac equations

ðiγμ∂μ −MþÞΨþðxÞ ¼ 0;

ðiγμ∂μ −M−ÞΨ−ðxÞ ¼ 0; ðB1Þ

with M� ¼ m� ϵ1.
The natural identification of fields in the Schrödinger

picture is then

Ψ�ðx; 0Þ ¼ ψ�ðx; 0Þ; ðB2Þ

where Ψ�ðx; 0Þ satisfy the equations of motion (B1), and
ψ�ðx; 0Þ satisfy the Dirac equation with mass m, having
the expressions (3.16). These solutions are easy to find and
quantize. For example,

Ψþðx; 0Þ ¼
Z

d3p

ð2πÞ3=2 ffiffiffiffiffiffiffiffiffi
2Ωþ

p

p eip·x
X
λ

ðAλðpÞUλðpÞ

þ sgnλA†
λð−pÞVλð−pÞÞ;

ψþðx; 0Þ ¼
Z

d3p

ð2πÞ3=2 ffiffiffiffiffiffiffiffi
2ωp

p eip·x
X
λ

ðaMλðpÞuλðpÞ

þ sgnλa†Mλð−pÞvλð−pÞÞ; ðB3Þ

where

ð=p −MþÞUλðpÞ ¼ 0;

ð=pþMþÞVλðpÞ ¼ 0; ðB4Þ

and we shall consider them of the form (A6), with m
replaced by Mþ and ωp replaced by Ωþ

p . Using (B2) and
(B3), we find

AλðpÞ ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
Ωþ

p ωp

p U†
λðpÞuλðpÞaMλðpÞ

þ sgnλ
1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
Ωþ

p ωp

p U†
λðpÞvλð−pÞa†Mλð−pÞ: ðB5Þ

Comparing this expression with (3.20), we infer that (B5)
represents the Bogoliubov transformation for ϵ5 ¼ 0. Let us
calculate the coefficient of aMλðpÞ in (B5), using (A6) with
the appropriate adjustments for UλðpÞ:

1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
Ωþ

p ωp

p U†
λðpÞuλðpÞ ¼

1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
Ωþ

p ωp

p ðΩþ
p þMþÞðωp þmÞ þ p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΩþ

p þMþÞðωp þmÞp
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ωþ
p ωp

p ðΩþ
p þMþ þ ωp −mÞðωp þmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðΩþ
p þMþÞðωp þmÞp

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ωþ

p ωp

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
½ðωp þmÞðΩþ

p þ ωp þ ϵ1Þ þ ðωp −mÞðΩþ
p þ ωp − ϵ1Þ�

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωþ

p þ ωp

2Ωþ
p

þ mϵ1
2Ωþ

p ωp

s
; ðB6Þ
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which is indeed identical to αþp from (3.30), for ϵ5 ¼ 0. All
the other coefficients will be similarly found to agree with
those obtained by the method of Hamiltonian diagonaliza-
tion in (3.30) and (3.32). For m ¼ 0, one obtains the
Bogoliubov coefficients of the Nambu–Jona-Lasinio model
[3], with the distinction that in that case the vacuum
condensate is formed by pairs of massless particles
(nucleons) and antiparticles of opposite spin and momenta,
since the usual Uð1Þ symmetry is preserved by the
Lagrangian at all stages of the analysis.

2. Primary fields with pseudoscalar Majorana mass
(ϵ1 = 0, ϵ5 ≠ 0)

Now we consider the primary Majorana fields satisfying
the equations of motion

½iγμ∂μ − ðmþ iϵγ5Þ�ΨþðxÞ ¼ 0;

½iγμ∂μ − ðm − iϵγ5Þ�Ψ−ðxÞ ¼ 0: ðB7Þ

We expand Ψþðx; 0Þ according to (3.48) with ϵ1 ¼ 0, as

Ψþðx; 0Þ ¼
Z

d3p

ð2πÞ3=2 ffiffiffiffiffiffiffiffi
2Ωp

p eip·x
X
λ

ðAλðpÞUλðpÞ

þ sgnλA†
λð−pÞVλð−pÞÞ; ðB8Þ

where Ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2 þ ϵ25

q
and

ð=p − ðmþ iϵ5γ5ÞÞUλðpÞ ¼ 0;

ð=pþ ðmþ iϵ5γ5ÞÞVλðpÞ ¼ 0: ðB9Þ

Writing

UλðpÞ ¼
�
UAðpÞ
UBðpÞ

�
; VλðpÞ ¼

�
VAðpÞ
VBðpÞ

�
;

we find from (B9) that

UBðpÞ ¼
σ⃗ · p − iϵ5
Ωp þm

UAðpÞ;

VAðpÞ ¼
σ⃗ · p − iϵ5
Ωp þm

VBðpÞ; ðB10Þ

or

UBðpÞ ¼
2λp − iϵ5
Ωp þm

UAðpÞ;

VAðpÞ ¼
−2λp − iϵ5
Ωp þm

VBðpÞ; ðB11Þ

if we require the spinors UλðpÞ and VλðpÞ to be eigen-
vectors of the helicity operator as well.

Similarly, Ψ−ðx; 0Þ has the mode expansion

Ψ−ðx; 0Þ ¼
Z

d3p

ð2πÞ3=2 ffiffiffiffiffiffiffiffi
2Ωp

p eip·x
X
λ

ðBλðpÞŨλðpÞ

− sgnλB†
λð−pÞṼλð−pÞÞ; ðB12Þ

where

ð=p − ðm − iϵ5γ5ÞÞŨλðpÞ ¼ 0;

ð=pþ ðm − iϵ5γ5ÞÞṼλðpÞ ¼ 0: ðB13Þ

In this case, for

ŨλðpÞ ¼
�
ŨAðpÞ
ŨBðpÞ

�
; ṼλðpÞ ¼

�
ṼAðpÞ
ṼBðpÞ

�
;

we find from (B13) that

ŨBðpÞ ¼
σ⃗ · pþ iϵ5
Ωp þm

ŨAðpÞ;

ṼAðpÞ ¼
σ⃗ · pþ iϵ5
Ωp þm

ṼBðpÞ; ðB14Þ

which become, for helicity spinors,

ŨBðpÞ ¼
2λpþ iϵ5
Ωp þm

ŨAðpÞ;

ṼAðpÞ ¼
−2λpþ iϵ5
Ωp þm

ṼBðpÞ: ðB15Þ

We can impose now the boundary conditions at t ¼ 0,

Ψ�ðx; 0Þ ¼ ψ�ðx; 0Þ; ðB16Þ
where ψ�ðx; 0Þ are given by (3.16). By equating the
solutions according to (B16), we expect to obtain the
Bogoliubov transformations (3.20) for ϵ1 ¼ 0, i.e.,

AλðpÞ ¼ αpaMλðpÞ þ sgnλβpa
†
Mλð−pÞ;

BλðpÞ ¼ αpbMλðpÞ þ sgnλβpb
†
Mλð−pÞ; ðB17Þ

with

αp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωp þ ωp

2Ωp

s
; βp ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωp − ωp

2Ωp

s
: ðB18Þ

In contrast to the preceding subsection, we shall adopt
this time a bottom-up approach, proving the consistency of
the boundary condition (B16) with the Bogoliubov trans-
formations (B17). To this end, we start from ψ�ðx; 0Þ
written in terms of aMλ; a

†
Mλ and bMλ; b

†
Mλ, as in (3.16). We

consider the Bogoliubov transformations (B17) known, and
apply their inverses
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aMλðpÞ ¼ αpAλðpÞ − sgnλβpA
†
λð−pÞ; bMλðpÞ ¼ αpBλðpÞ − sgnλβpB

†
λð−pÞ: ðB19Þ

The resulting solutions have to beΨ�ðx; 0Þ, i.e., solutions of the equations of motion (B7), if the boundary conditions (B16)
are compatible with the Bogoliubov transformations (B17). We have only to confirm whether that is indeed the case, by
verifying if the conditions (B11) and (B15) are fulfilled.
Let us proceed with ψþðx; 0Þ:

ψþðx; 0Þ ¼
Z

d3p

ð2πÞ3=2 ffiffiffiffiffiffiffiffi
2ωp

p eip·x
X
λ

ðaMλðpÞuλðpÞ þ sgnλa†Mλð−pÞvλð−pÞÞ;

¼
Z

d3p

ð2πÞ3=2 ffiffiffiffiffiffiffiffi
2ωp

p eip·x
X
λ

½ðαpAλðpÞ − sgnλβpA
†
λð−pÞÞuλðpÞ

þ sgnλðαpA†
λð−pÞ þ sgnλβpAλðpÞÞvλð−pÞ�;

¼
Z

d3p

ð2πÞ3=2 ffiffiffiffiffiffiffiffi
2ωp

p eip·x
X
λ

½ðαpuλðpÞ þ βpvλð−pÞÞAλðpÞ

þ sgnλðαpvλð−pÞ − βpuλðpÞÞA†
λð−pÞ�;

¼
Z

d3p

ð2πÞ3=2 ffiffiffiffiffiffiffiffi
2Ωp

p eip·x
X
λ

ðAλðpÞUλðpÞ þ sgnλA†
λð−pÞVλð−pÞÞ;

¼ Ψþðx; 0Þ: ðB20Þ

Thus, we identify

UλðpÞ ¼
ffiffiffiffiffiffi
Ωp

ωp

s
ðαpuλðpÞ þ βpvλð−pÞÞ; VλðpÞ ¼

ffiffiffiffiffiffi
Ωp

ωp

s
ðαpvλðpÞ − βpuλð−pÞÞ: ðB21Þ

It remains now to check whether UλðpÞ and VλðpÞ defined by (B21) do satisfy the conditions (B11). Let us verify this for
U↑ðpÞ, using (A6), (A12), and (B18):

U↑ðpÞ ¼
ffiffiffiffiffiffi
Ωp

ωp

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωp þm

p " ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωp þ ωp

2Ωp

s � χ↑
p

ωpþm χ↑

�
− i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωp − ωp

2Ωp

s �− p
ωpþm χ↑

χ↑

�#

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωp þm

2Ωp

s  ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωp þ ωp

p þ i p
ωpþm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωp − ωp

p Þχ↑
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ωp þ ωp
p p

ωpþm − i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωp − ωp

p Þχ↑

!
: ðB22Þ

This spinor is a solution of (B9), provided that it satisfies (B11) for λ ¼ 1=2, i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωp þ ωp

p p
ωpþm − i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωp − ωp

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωp þ ωp

p þ i p
ωpþm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωp − ωp

p ¼ p − iϵ5
Ωp þm

: ðB23Þ

This equality is straightforwardly confirmed. All the other spinors defined by (B21) are similarly proven to satisfy (B11).6

By similar considerations starting from ψ−ðx; 0Þ, one proves that

ŨλðpÞ ¼
ffiffiffiffiffiffi
Ωp

ωp

s
ðαpuλðpÞ − βpvλð−pÞÞ; ṼλðpÞ ¼

ffiffiffiffiffiffi
Ωp

ωp

s
ðαpvλðpÞ þ βpuλð−pÞÞ ðB24Þ

satisfy the corresponding equations of motion (B15).

6The expression (B22) justifies why we preferred to adopt the bottom-up approach: the form of the solution for which the Bogoliubov
transformations (B17) are obtained would be very difficult to guess based only on the conditions (B11).
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