
Medlar and Holm BMC Bioinformatics (2018) 19:278
https://doi.org/10.1186/s12859-018-2290-3

SOFTWARE Open Access

TOPAZ: asymmetric suffix array
neighbourhood search for massive protein
databases
Alan Medlar* and Liisa Holm

Abstract

Background: Protein homology search is an important, yet time-consuming, step in everything from protein
annotation to metagenomics. Its application, however, has become increasingly challenging, due to the exponential
growth of protein databases. In order to perform homology search at the required scale, many methods have been
proposed as alternatives to BLAST that make an explicit trade-off between sensitivity and speed. One such method,
SANSparallel, uses a parallel implementation of the suffix array neighbourhood search (SANS) technique to achieve
high speed and provides several modes to allow for greater sensitivity at the expense of performance.

Results: We present a new approach called asymmetric SANS together with scored seeds and an alternative suffix
array ordering scheme called optimal substitution ordering. These techniques dramatically improve both the
sensitivity and speed of the SANS approach. Our implementation, TOPAZ, is one of the top performing methods in
terms of speed, sensitivity and scalability. In our benchmark, searching UniProtKB for homologous proteins to the
Dickeya solani proteome, TOPAZ took less than 3 minutes to achieve a sensitivity of 0.84 compared to BLAST.

Conclusions: Despite the trade-off homology search methods have to make between sensitivity and speed, TOPAZ
stands out as one of the most sensitive and highest performance methods currently available.

Keywords: Homology search, Suffix arrays, BLAST

Background
Protein homology search is the most common analy-
sis task performed in bioinformatics. Unfortunately, the
exponential growth of protein databases and the rising
demands of high-throughput experiments are creating a
computational bottleneck for what was previously a rou-
tine task. This is a problem because homology search is a
crucial step in many data-intensive applications, such as
functional annotation [1], metagenomics [2], comparative
genomics [3] and evolutionary analysis [4]. In addition to
high-throughput experiments, time-sensitive applications
in clinical settings are dependent on the performance
of homology search. For example, with sequence-based
diagnostics for identifying bacterial infections, including
pathogen outbreaks and antibiotic resistance [5], a late
diagnosis could result in death.

*Correspondence: alan.j.medlar@helsinki.fi
Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland

The gold standard for homology search is BLAST [6].
BLAST uses a seed-and-extend approach to perform
database search. In brief, BLAST uses heuristics based on
amino acid substitution rates to identify initial matches,
or seeds, between query and database sequences. These
matches are then extended into local alignments to avoid
the computational overhead of full dynamic program-
ming. While BLAST is highly sensitive, its runtime scales
linearly with the size of the database. BLAST’s perfor-
mance can be improved with parallelism, but further
speedups are only possible at the expense of sensitivity.
With this trade-off in mind, there are numerous BLAST

alternatives for fast homology search. Many of the fastest
methods use either an uncompressed suffix array [7] or
FM-index [8], a compressed full-text index based on the
Burrows-Wheeler transform [9]. SANSparallel, for exam-
ple, uses the concept of a suffix array neighbourhood
(described in methods) to identify proteins which would
be more frequently co-located in the suffix array with the
query sequence. These proteins are ranked and the top

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2290-3&domain=pdf
mailto: alan.j.medlar@helsinki.fi
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Medlar and Holm BMC Bioinformatics (2018) 19:278 Page 2 of 9

hits aligned [10, 11]. LAST uses an uncompressed suffix
array to find adaptive seeds, which are initial sequence
matches that are variable length and defined by their mul-
tiplicity [12]. LAST additionally uses a reduced amino
acid alphabet to improve sensitivity [13]. Lambda uses a
reduced alphabet, double indexing (indexing seeds from
both query and database sequences) and multiple back-
tracking of fixed length seeds to achieve high speed
[14]. Finally, DIAMOND uses a reduced alphabet, double
indexing and spaced seeds [15] to achieve higher sensitiv-
ity [16]. While these methods all use similar techniques,
their performance differs considerably.
In this article we present TOPAZ, a fast and sensitive

homology search method. TOPAZ is based on an exten-
sion of the suffix array neighbourhood search (SANS)
concept used by SANSparallel, called asymmetric SANS.
Asymmetric SANS uses scored seeds and a suffix array
ordering called optimal substitution ordering to improve
the speed and sensitivity of SANS. In our evaluation, we
focus on three metrics: speed, sensitivity and scalabil-
ity. TOPAZ is one of the best performing methods for
each evaluation metric, despite the inherent trade-offs
involved.

Implementation
Protein homology searchmethods tend to follow the same
basic template. Protein sequences are held in a database
that is queried with a set of query sequences using the
following procedure for each query:

1 Find initial sequence matches (seeds)
2 Perform local alignment on a subset of those matches
3 Output the top hits meeting some user-defined

criteria

These user-defined criteria include variables such as
statistical significance and maximum number of hits per

query. We will first describe how suffix array neighbour-
hood search (SANS) carries out this procedure, then the
components of asymmetric SANS and how it is imple-
mented in TOPAZ.

Suffix array neighbourhood search (SANS)
The SANS method uses an uncompressed suffix array to
hold a set of proteins, P. A suffix array, SA, is defined as an
array SA [1..n] in which SA[j]= i iff T [i..n] is the jth suffix
of T in lexicographical order. In our case, T is the concate-
nation of the set of proteins, P, separated by a delimiter
character.
Each query sequence, Q, is split into suffixes, Q [i..n],

and k is the position in the suffix array where Q [i..n]
would be inserted. As SA is in lexicographical order, the
position of Q [i..n] can be found in O(log |T |) time using
binary search. Proteins in the database accumulate votes if
they contain a suffix that falls into a fixed-length window,
W, surrounding position k (see Fig. 1, left). For each suf-
fix contained in W, the originating protein gets 1 vote.
The top N proteins in descending order of vote count are
aligned and, of these, the top H proteins by alignment
score are output.

Asymmetric SANS
SANS is highly efficient, but can be suboptimal in bound-
ary cases where the position k is directly before or after a
contiguous block of database suffixes that have low iden-
tity to the query suffix (Fig. 1). More generally, if we
consider that we have a static number of votes, V, where
V = |Q| ·W , then we do not necessarily want to treat each
suffix equally as SANS does. Ideally, we want to weight the
importance of each query suffix by the degree of similarity
with the surrounding suffixes in SA.
Figure 1 (right) shows how an asymmetric window

would work, using the boundary case as an example.

Fig. 1 Suffix array windows. Left: Suffix array neighbourhood search, the insertion point of the query suffix is found and the proteins containing the
suffixes from a symmetric window in the suffix array receive votes. Right: Asymmetric suffix array neighbourhood search, the window is not
necessarily symmetric, but extends greedily based on the ungapped alignment score between query and database suffixes

Medlar and Holm BMC Bioinformatics (2018) 19:278 Page 3 of 9

The window originally centred around position k is now
defined by kupper and klower that are greedily expanded
based on the sequence similarity between the query suf-
fix and the database suffix at the edge of the window.
Asymmetric SANS applies the total number of votes, V,
across all suffix windows, allowing it to focus on the most
“promising” areas of the suffix array. Indeed, some suffixes
may not contribute to the final result at all if they are only
surrounded by dissimilar sequences.
Algorithm 1 describes the asymmetric SANS algorithm.

For priority queues, we use red-black trees because they
are self-balancing, making the worst-case lookup time
O(log n) [17]. The functions push(), pop_lowest() and
pop_highest() are functions that push items on to the
queue, pop the item with the lowest and highest pri-
ority. align() performs a pair-wise local alignment using
a substitution matrix specified by the user. increment()
increments the position if it is an upper bound or decre-
ments the position if it is a lower bound of a window.
get_protein() retrieves the protein associated with the
suffix at a given position in the suffix array.

Algorithm 1 Asymmetric SANS pseudocode
Require: H > 0, alignments ≥ H , seeds � alignments

Q ← query protein
qseed ← PriorityQueue
qalignment ← PriorityQueue

for i ∈ 0 . . . |Q| do
klower ← search(SA,Q [i..n])
priority ← score(SA [klower] ,Q [i..n])
push(qseed, klower , priority)

kupper ← increment(klower)
priority ← score

(
SA

[
kupper

]
,Q [i..n]

)

push(qseed, kupper , priority)
end for

for l ∈ 0 . . . seeds do
k, priority ← pop_highest(qseed)
protein ← get_protein(k)
push(qalignment , protein, priority)
if |qalignment| > alignments then

pop_lowest(qalignment)
end if
k ← increment(k)
priority ← score(SA [k] ,Q [i..n])
push(qseed, k, priority)

end for

for protein ∈ qalignment do
align(protein,Q)

end for

Output top H hits with highest alignment scores

Scored seeds
In Algorithm 1 we did not define the function score(),
which is used to greedily increase the extents of the win-
dows in the suffix array. The frontier of each window is
given a score equal to the maximum gapless alignment
score between query suffix and the suffix found at the
current position in the suffix array:

argmax
n

n∑

i
M(Q [i] ,T [SA [k] + i]) (1)

where Q is the query suffix, n = 1..|Q|, k is the current
position in the suffix array, SA, and M is an amino acid
substitution matrix. In the current implementation, the
same substitution matrix is used for scoring and align-
ment. Sequences are repeat masked with SEG [18] during
scoring.
We note that using a gapless alignment score in this

manner is similar to a spaced seed, where a bitmask of 1s
and 0s defines match and “don’t-care” positions, respec-
tively [15]. By maximising the gapless alignment score, we
are effectively using a spaced seed that is variable length
and the bit pattern is not defined a priori.We refer to these
as scored seeds.

Optimal substitution ordering
Suffix arrays are usually sorted into lexicographical order.
However, for protein sequences this is clearly suboptimal,
for example, Cysteine (C) and Aspartic acid (D) are lexi-
cographically consecutive, but have a substitution score of
-3 in BLOSUM62.
In order to find the optimal ordering of amino acids,

i.e. the ordering that minimises the summation of sub-
stitution scores between consecutive letters (and between
the first and last letter), we cast the problem as the
traveling salesman problem (TSP). Instead of cities we
have amino acids and instead of distances between cities
we have substitution scores. We used substitution scores
from BLOSUM62 and converted them to quasi-distances
by negating the score and adding 5. Distances between an
amino acid and itself were set to 0.
We used the Concorde TSP solver (http://www.

math.uwaterloo.ca/tsp/concorde/) on the NEOS server
[19] to find the optimal substitution ordering of
amino acids. The optimal solution was found to be:
ACMLJIVTSKRQZEDBNHYFWXP*G however, we note
that there are many equally good solutions.

TOPAZ implementation
We provide an implementation of asymmetric SANS
called TOPAZ. TOPAZ is written in C and uses libdi-
vsufsort (https://github.com/y-256/libdivsufsort) for suf-
fix array construction and the SSW library for local
alignment [20].

http://www.math.uwaterloo.ca/tsp/concorde/
http://www.math.uwaterloo.ca/tsp/concorde/
https://github.com/y-256/libdivsufsort

Medlar and Holm BMC Bioinformatics (2018) 19:278 Page 4 of 9

Results
We compare the performance of TOPAZ with BLAST
(ver. 2.5.0+) [6], DIAMOND (ver. 0.8.37.99) [16], Lambda
(ver. 1.9.2) [14], LAST (ver. 801) [12] and SANSparal-
lel (ver. 2.2) [11]. While there are many other methods
for protein homology search, we focused on methods
that have demonstrated good performance in previous
benchmarks (see [11]).

Experimental setup
Data sets
We used the complete UniProtKB database (downloaded
March 2017) containing 78 million protein sequences. For
query sequences we used the Dickeya solani proteome
(4174 sequences), unless otherwise stated. While these
sequences are themselves contained in UniProtKB, they
contain a mixture of “easy” queries, where there are many
similar sequences in the database and “harder” queries
where BLAST finds very few significant hits.

Program options
Where possible, each method was run to output 1000
hits per query sequence with an E-value less than or
equal to 1. As some methods output more than 1000
search results per query, we only kept the top 1000 hits
by bitscore. Each program was run using 1, 2, 4, 8, 16,
32 and 64 threads to assess scalability. Timing measure-
ments were taken by running the program twice and using
the measurement from the second run to ensure disk
access times were not a factor. These parameter values
were chosen to emphasise the importance of sensitiv-
ity, however, we additionally ran all methods with an
E-value threshold 10−9, outputting 100 and 1000 hits (see
Additional file 1). For BLAST, DIAMOND and TOPAZ
these parameter differences do not affect the runtime. We
note, however, that reducing the maxmimum number of
hits increased the speed of Lambda and SANSparallel, and
a more stringent E-value threshold increased the runtime
of LAST.
Tomake this a fair test, we additionally ran eachmethod

in different modes to trade-off speed and sensitivity.
While we have attempted to fairly represent the perfor-
mance of each method, we make no claim that these are
the best results possible with each program. SANSparal-
lel has several protocols: verifast, fast, slow and verislow.
The verifast mode does not calculate E-values and was
therefore omitted. We ran Lambda for faster, lower sen-
sitivity protein searches (using options -so 5 -sh on) and
slower, higher sensitivity (-so 5). While we additionally
ran Lambda with default options, it was both slower and
less sensitive than fast mode, so the results were omitted.
The Lambda database was constructed using the Murphy10
alphabet and an FM-index. DIAMOND was run with
default parameters, in sensitive mode (--sensitive) and

more sensitive mode (--more-sensitive). For LAST, the
maximum number of hits to output cannot be speci-
fied. It does, however, allow us to specify the maximum
number of initial matches per query suffix (using option
-m). After some experimentation, we decided to run
m = 100, 1000 and 10,000 as these values gave similar
sensitivity results to other methods. TOPAZ was run with
default parameters (--seeds 300000 --alignments 5000)
and with alternate parameters to emphasise speed over
sensitivity (--seeds 100000 --alignments 1500). BLAST
was run with default parameters. The results presented in
Table 1 show the overall sensitivity, runtimes using dif-
ferent numbers of threads and the peak memory usage of
each method.

Sensitivity
Figure 2 shows boxplots of sensitivity values for each pro-
tein in the query set ordered by mean sensitivity. As we
did not have the ground truth for the entire data set, we
instead calculated the sensitivity of each method by com-
paring with BLAST results. For each query, we removed
BLAST results with bitscores equal to the bitscore of the
1000th hit, if it exists (i.e. if there are at least 1000 hits).
This removes the potential for rank ambiguity if, for exam-
ple, a search method were to return what would be the
1001st BLAST result with the same bitscore as the 1000th
result. This procedure resulted in the removal of 0.9% of
BLAST results.
The results show a wide range of sensitivity values for

all methods. The faster run modes (LAST (m = 100),
Lambda (fast), SANSparallel (fast)) have the lowest aver-
age sensitivity. TOPAZ (default) has the 4th highest aver-
age sensitivity, with only LAST (m = 10, 000) and both of
DIAMOND’s non-default modes being higher.
With more stringent E-value thresholds, while the rank-

ing stayed broadly the same, the gap in average sensi-
tivity narrowed (see Additional file 1: Figures S1 and
S3). For example, the average sensitivity for DIAMOND
(more sensitive) was 0.11 higher than TOPAZ (default)
with E-value threshold 1, but decreased to 0.07 with an
E-value threshold of 10−9. When outputting only 100 hits
with an E-value threshold of 10−9, the difference further
decreased to 0.03.

Speed/sensitivity trade-off
While sensitivity is important, all methods make a trade-
off between sensitivity and speed. We show this trade-off
in Fig. 3. Sensitivity was calculated over all search queries,
again using the BLAST results as the ground truth. Run-
time was the fastest time using any number of threads
(see Table 1). For all methods, the fastest runtime was
obtained with 64 threads, with the exception of SANSpar-
allel (all run modes), where 32 threads was fastest (this
was likely due to communication overhead in MPI). The

Medlar and Holm BMC Bioinformatics (2018) 19:278 Page 5 of 9

Table 1 Runtimes using different numbers of threads and overall sensitivity compared to BLAST results for all methods tested

Runtime using N threads (seconds) Mem.

Method Sens. 1 2 4 8 16 32 64 (GB)

BLAST 1.0 1,801,293 948,124 479,400 247,715 128,401 70,107 43,647 9.9

DIAMOND (default) 0.840 41,863 21,330 10,677 5520 3269 2259 1919 8.6

DIAMOND (sensitive) 0.926 137,100 67,858 35,615 19,077 10,452 8463 7723 10.0

DIAMOND (more sens.) 0.931 166,737 85,689 45,954 23,716 12,849 11,204 10,174 12.0

Lambda (fast) 0.681 3325 1916 1152 776 586 443 435 104.2

Lambda (sensitive) 0.726 5200 2819 1636 940 631 477 456 104.3

LAST (m = 100) 0.636 1714 946 525 326 233 166 141 20.9

LAST (m = 1000) 0.838 7993 4397 2308 1381 859 585 439 24.3

LAST (m = 10000) 0.881 33,411 17,859 9473 5224 3096 1891 1347 30.1

SANSparallel (fast) 0.696 6301 2938 1573 992 577 433 472 230.4

SANSparallel (slow) 0.758 11,258 5123 2801 1770 1150 985 1247 230.4

SANSparallel (verislow) 0.779 18,039 8396 4330 2639 1639 1305 1551 230.4

TOPAZ (fast) 0.800 2267 1111 569 299 160 99 78 57.2

TOPAZ (default) 0.840 5961 2961 1559 779 418 243 175 60.5

TOPAZ (default) has similar sensitivity to LAST (m = 1000) and DIAMOND (default), but is faster than both methods irrespective of the number of threads. Bold indicates the
fastest method for each number of threads. TOPAZ (fast) is the fastest method for 8–64 threads. LAST (m = 100) is the fastest method for 1–4 threads, but suffers from the
lowest sensitivity

perfect method would be in the top-right corner of the
figure, with perfect sensitivity and high speed.
As Fig. 3 shows, faster methods tend to be less sensitive.

However, TOPAZ has high speed while sacrificing less
sensitivity. The only method faster than TOPAZ (default)
is LAST (m = 100) which has the lowest sensitivity of
all methods (Fig. 2). TOPAZ (fast) is the fastest method

overall, while being more sensitive than SANSparallel and
Lambda (all modes).
The four methods with higher sensitivity than TOPAZ

(default) (LAST (m = 10000), DIAMOND (sensitive),
DIAMOND (more sensitive) and BLAST) have far
longer runtimes: 7.7×, 44.1×, 58.1× and 249.4×, respec-
tively. Even methods with similar sensitivity had longer

Fig. 2 Distribution of sensitivity values per protein compared with BLAST results for each method. Methods are ordered by mean sensitivity. TOPAZ
modes are highlighted in grey

Medlar and Holm BMC Bioinformatics (2018) 19:278 Page 6 of 9

Fig. 3 Speed versus average sensitivity across all proteins. The best speed was used for each method using up to 64 threads (all methods used 64
threads, with the exception of SANSparallel, which used 32)

runtimes: LAST (m = 1000) took 2.5× longer and DIA-
MOND (default) took 11.0× longer to run. The same
trend is observed at more stringent E-value thresholds
(Additional file 1: Figure S2) and for fewer hits (Additional
file 1: Figure S4).

Parallel scalability
Figure 4 shows the speedup using different numbers of
threads concurrently. Speedup is r1/rn, where n is the

number of threads and rn is the runtime using n threads.
With zero overhead, the speedup would be equal to the
number of threads.
At higher numbers of threads (16-64), BLAST was

consistently the most efficient, followed by TOPAZ. For
example, at 64 threads BLAST and TOPAZ had speedups
of 41.3× and 34.1×, respectively. BLAST, however, is
doing much more work per query and, therefore, has less
communication overhead allowing it to be highly parallel.

Fig. 4 Speedup versus the number of threads. Speedup is defined as the runtime using 1 thread divided by the runtime with n threads. For 16–64
threads TOPAZ and BLAST achieved the highest speedup

Medlar and Holm BMC Bioinformatics (2018) 19:278 Page 7 of 9

At lower numbers of threads (2–4), both DIAMOND (all
modes) and SANSparallel (all modes) had the highest
efficiency.

Input size scalability
To understand how each method scales with query set
size, we tested the fastest methods on increasingly large
proteomes. We used the following proteomes as query
sets: Dickeya solani (4174 sequences), Anopheles dar-
lingi (10,447), Homo sapien (SwissProt only, 20,336),
Drosophila melanogaster (21,953), Arabidopsis thaliana
(39,365), Homo sapien (71,607), Zea mays (99,369) and
Hordeum vulgare (189,611). We ran all methods with
the exception of BLAST and the most sensitive modes
for DIAMOND and SANSparallel due to long runtimes.
We did not run LAST (m = 10000) due to the size
of the output files. For Lambda we needed to remove
the longest queries from the Homo sapiens proteome
as these sequences caused the program to crash. We
ran all methods with an E-value threshold of 1 and
to output a maximum of 1000 hits. All methods were
run with 64 threads, with the exception of SANSpar-
allel which was run with 32. The results are shown
in Fig. 5.
For 6 of the 8 proteomes, TOPAZ (fast) was the fastest

method. The second fastest method, LAST (m = 100),
was previously shown to be the least sensitive for these

parameter settings. In general, the fastest methods tended
to be those shown previously as having lower sensitivity
(Lambda (both modes) and LAST (m = 100)), with
the exception of TOPAZ (both modes). We had expected
DIAMOND to be faster as the cost of online indexing
should be amortised over large query sets, but it appears
to scale similarly to methods that process queries indi-
vidually. It is possible that this efficiency is only realised
with query sets larger than the H. vulgare proteome.
Unlike other methods, SANSparallel has constant speed,
irrespective of query set. This is detrimental in lesser stud-
ied organisms where there are simply fewer significant
alignments to be found.

Optimal substitution versus lexicographical ordering
Using optimal substitution ordering for building the suf-
fix array in TOPAZ (default) resulted in higher sensi-
tivities for 1395/4174 Dickeya solani proteins (average
difference = 21.8 extra hits per protein) and lower sen-
sitivities for 548 proteins (average difference = 2.0 less
hits per protein) compared with lexicographical order-
ing. Across all proteins, optimal substitution ordering
gave 7.1 more hits per protein on average than lex-
icographical ordering. While we acknowledge this is
a modest improvement, as we are simply redefining
the ordering of amino acids, there is no performance
penalty.

Fig. 5 Speed in queries per second for the fastest homology search methods. Query sets were 8 different proteomes containing 4,174–189,611
query sequences. TOPAZ (fast) is the fastest method in 6/8 proteomes

Medlar and Holm BMC Bioinformatics (2018) 19:278 Page 8 of 9

Discussion and conclusions
Wepresented TOPAZ, a protein homology searchmethod
based on asymmetric suffix array neighbourhood search,
scored seeds and optimal substitution ordering. All
BLAST alternatives trade-off sensitivity in exchange for
speed. In doing so, database search can be used in high-
throughput and time-sensitive applications that would
have otherwise taken a prohibitively long time. This trade-
off was considered at all points in TOPAZ’s development,
where our design goals were speed, sensitivity and the
efficient use of parallelism.
We have demonstrated that TOPAZ is one of the most

sensitive and fastest homology search methods. TOPAZ
had one of the highest average sensitivity scores (Fig. 2),
whereas more sensitive methods had 8–250× longer run-
times (Fig. 3). Similarly, the only method that was faster
than TOPAZ had the worst average sensitivity (Fig. 2).
TOPAZ’s speed comes from how efficiently it uses the
processing power available to it (Fig. 4). TOPAZ was the
second most efficient method using 16–64 threads with
only BLAST scaling better. Across a range of query set
sizes TOPAZ (fast) was the fastest method in a majority
of cases and TOPAZ (default) was consistently faster than
methods which had previously shown similar sensitivity
(Fig. 5).
The fastest methods tended to have the highest peak

memory usages (Table 1). From one perspective high
memory usage is not a problem because servers are
increasingly well provisioned for data-intensive appli-
cations. However, the exponential growth of protein
databases suggests that this might become a problem
in the future. TOPAZ makes extensive use of memory-
mapped IO to ensure that the operating system can
move parts of the database in and out of memory as
the workload changes. Other techniques could be used
to mitigate this issue, for example, LAST builds multi-
ple suffix arrays using 32 bit integers. While this limits
the maximum size of the database to 4GB, it is over-
come by splitting the database into multiple partitions.
Despite the added complexity of moving from 64 to 32
bits, it has the added benefit of halving total memory
requirements.
While all methods in this study make use of process-

level, and possibly instruction-level, parallelism, none
make use of alternative architectures such as general pur-
pose GPUs that are increasingly common in computer
clusters and desktop computers. While GPU-enabled ver-
sions of, for example, BLAST exist [21], the speedups are
underwhelming compared with those achieved in other
areas of bioinformatics (e.g. [22]). We note, however, that
homology search is more data-intensive than applications
which have achievedmassive performance improvements,
making memory size and bandwidth the main impedi-
ments to adoption.

Finally, in studies such as this, there is a focus
on comparing results with BLAST, which is widely
considered the gold standard for homology search.
However, to our knowledge, there is no analysis of
the downstream effects of different sensitivity scores
in different application domains. For example, trans-
fer of functional annotation is only performed at
higher similarities and, therefore, does not require
highly sensitive search results. We would like to see
more analysis on requirements for different domains,
enabling research in homology search to have a more
application-specific focus.

Availability and requirements
Project name: TOPAZ
Project home page: https://github.com/ajm/topaz
Operating system(s): Linux
Programming language: ANSI C
Other requirements: TCMalloc
License: GNU GPL version 3
Any restrictions to use by non-academics: none

Additional file

Additional file 1: Supplementary results showing method performance
with different parameter settings. (PDF 120 kb)

Abbreviations
SANS: Suffix array neighbourhood search

Acknowledgements
We would like to thank the anonymous reviewers for their helpful comments.

Funding
This work was supported by the Academy of Finland (grant number 292589)
to LH. The Academy of Finland had no role in the design of this study, in the
collection, analysis, and interpretation of data and did not contribute to
writing the manuscript.

Availability of data andmaterials
The data sets analysed during the current study are available from UniProt
with the following proteome IDs: Anopheles darlingi (UP000000673),
Arabidopsis thaliana (UP000006548), Dickeya solani (UP000029510), Drosophila
melanogaster (UP000000803), Homo sapien (UP000005640), Hordeum vulgare
(UP000011116) and Zeamays (UP000007305).

Authors’ contributions
AM and LH conceived of the project. AM wrote software, ran experiments,
analysed results. AM and LH wrote the manuscript. Both authors read and
approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://github.com/ajm/topaz
https://doi.org/10.1186/s12859-018-2290-3

Medlar and Holm BMC Bioinformatics (2018) 19:278 Page 9 of 9

Received: 1 May 2018 Accepted: 18 July 2018

References
1. Törönen P, Medlar A, Holm L. PANNZER2: a rapid functional annotation

web server. Nucleic Acids Res. 2018;46(W1):84–88.
2. Medlar A, Aivelo T, Löytynoja A. Séance: Reference-based phylogenetic

analysis for 18s rRNA studies. BMC Evol Biol. 2014;14(1):235.
3. Medlar A, Törönen P, Holm L. AAI-profiler: fast proteome-wide

exploratory analysis reveals taxonomic identity, misclassification and
contamination. Nucleic Acids Res. 2018;46(W1):479–485.

4. Veidenberg A, Medlar A, Löytynoja A. Wasabi: An integrated platform for
evolutionary sequence analysis and data visualization. Mol Biol Evol.
2015;33(4):1126–30.

5. Fournier P-E, Dubourg G, Raoult D. Clinical detection and characterization
of bacterial pathogens in the genomics era. Genome Med. 2014;6(11):114.

6. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K,
Madden TL. BLAST+: architecture and applications. BMC Bioinformatics.
2009;10(1):421.

7. Manber U, Myers G. Suffix arrays: A new method for on-line string
searches. SIAM J Comput. 1993;22(5):935–48.

8. Ferragina P, Manzini G. Opportunistic data structures with applications.
In: Foundations of Computer Science, 2000. Proceedings. 41st Annual
Symposium On. Washington, DC: IEEE; 2000. p. 390–8.

9. Burrows M, Wheeler DJ. A block-sorting lossless data compression
algorithm. 1994. Technical report 124, 1994, Digital Equipment
Corporation, Palo Alto, CA.

10. Koskinen JP, Holm L. SANS: High-throughput retrieval of protein
sequences allowing 50%mismatches. Bioinformatics. 2012;28(18):438–43.

11. Somervuo P, Holm L. SANSparallel: Interactive homology search against
Uniprot. Nucleic Acids Res. 2015;43(W1):24–29.

12. Kiełbasa SM, Wan R, Sato K, Horton P, Frith MC. Adaptive seeds tame
genomic sequence comparison. Genome Res. 2011;21(3):487–93.

13. Murphy LR, Wallqvist A, Levy RM. Simplified amino acid alphabets for
protein fold recognition and implications for folding. Protein Eng.
2000;13(3):149–52.

14. Hauswedell H, Singer J, Reinert K. Lambda: The local aligner for massive
biological data. Bioinformatics. 2014;30(17):349–55.

15. Ma B, Tromp J, Li M. PatternHunter: faster and more sensitive homology
search. Bioinformatics. 2002;18(3):440–5.

16. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using
DIAMOND. Nat Methods. 2015;12(1):59–60.

17. Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to Algorithms.
Cambridge: MIT press Cambridge; 2009.

18. Wootton JC, Federhen S. Analysis of compositionally biased regions in
sequence databases. Methods Enzymol. 1996;266:554–71.

19. Czyzyk J, Mesnier MP, Moré JJ. The NEOS server. IEEE Comput Sci Eng.
1998;5(3):68–75.

20. Zhao M, Lee W-P, Garrison EP, Marth GT. SSW library: An SIMD
Smith-Waterman C/C++ library for use in genomic applications. PloS
ONE. 2013;8(12):82138.

21. Vouzis PD, Sahinidis NV. GPU-BLAST: Using graphics processors to
accelerate protein sequence alignment. Bioinformatics. 2010;27(2):182–8.

22. Medlar A, Głowacka D, Stanescu H, Bryson K, Kleta R. SwiftLink: Parallel
MCMC linkage analysis using multicore CPU and GPU. Bioinformatics.
2012;29(4):413–9.

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Implementation
	Suffix array neighbourhood search (SANS)
	Asymmetric SANS
	Scored seeds
	Optimal substitution ordering
	TOPAZ implementation

	Results
	Experimental setup
	Data sets
	Program options

	Sensitivity
	Speed/sensitivity trade-off
	Parallel scalability
	Input size scalability
	Optimal substitution versus lexicographical ordering

	Discussion and conclusions
	Availability and requirements
	Additional file
	Additional file 1

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	References

