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Intrinsically-disordered N-termini 
in human parechovirus 1 capsid 
proteins bind encapsidated RNA
Shabih Shakeel1,3, James D. Evans1, Mark Hazelbaker2, C. Cheng Kao2, Robert C. Vaughan2 & 
Sarah J. Butcher   1

Human parechoviruses (HPeV) are picornaviruses with a highly-ordered RNA genome contained within 
icosahedrally-symmetric capsids. Ordered RNA structures have recently been shown to interact with 
capsid proteins VP1 and VP3 and facilitate virus assembly in HPeV1. Using an assay that combines 
reversible cross-linking, RNA affinity purification and peptide mass fingerprinting (RCAP), we mapped 
the RNA-interacting regions of the capsid proteins from the whole HPeV1 virion in solution. The 
intrinsically-disordered N-termini of capsid proteins VP1 and VP3, and unexpectedly, VP0, were 
identified to interact with RNA. Comparing these results to those obtained using recombinantly-
expressed VP0 and VP1 confirmed the virion binding regions, and revealed unique RNA binding regions 
in the isolated VP0 not previously observed in the crystal structure of HPeV1. We used RNA fluorescence 
anisotropy to confirm the RNA-binding competency of each of the capsid proteins’ N-termini. These 
findings suggests that dynamic interactions between the viral RNA and the capsid proteins modulate 
virus assembly, and suggest a novel role for VP0.

Human parechoviruses (HPeV) are important human pathogens for which we lack antivirals or vaccines. They 
have a positive-sense, single-stranded RNA genome and belong to the Picornaviridae family. The mature virion is 
icosahedrally-symmetric with a triangulation number of T = 1 (pseudo T = 3) and is composed of capsid proteins 
VP0, VP1 and VP31–4. Unlike in other picornaviruses, the parechovirus VP0 is not proteolytically cleaved in the 
final maturation of the virions5. There is also an extensive network of VP0 N-termini on the inner capsid surface 
that enhance inter-pentamer stability, along with an annulus of VP3 termini under the vertex3.

Regions of structured RNA were recently identified as packaging signals (PSs) that interact with VP1 and 
VP3 in the HPeV virion4. Upon interaction with viral pentameric assembly intermediates, these PSs drive capsid 
assembly. Multiple VP1 and VP3 residues were found to contact the viral RNA in the atomic models of HPeV1 
(PDB: 4Z92 & 5MJV)3,4. When these residues were mutated to alanine, virus assembly was prevented4. The atomic 
models do not cover the complete sequences of the capsid proteins or the full genome. The N-terminal regions 
of all three capsid proteins were apparently disordered3,4. The virion population may contain multiple states of 
both the RNA and the capsid, as was recently observed for bacteriophage MS26–8. Hence, we expect that there 
are more RNA-protein interactions to be discovered in the virion. More direct methods could be utilized to 
identify the regions of the HPeV1 capsid that interact with the encapsidated RNA. One such method is reversi-
ble cross-linking, affinity purification, and peptide-mass fingerprinting (RCAP) which has previously been used 
to map protein-nucleic acid interaction sites. RCAP has been successfully used to map regions of the capsid 
protein that interact with the virion RNA in brome mosaic virus, adenovirus, and bacteriophage MS29–12. The 
MS2 protein-RNA interactions identified by the RCAP assay have since been confirmed in asymmetric cryoEM 
reconstructions of MS26,13.

Here we mapped regions within the HPeV1 capsid proteins that interact with the encapsidated RNA using 
RCAP. Several regions within VP1 and VP3 were found to interact with the RNA. Surprisingly, VP0 was also 
identified to contact the genomic RNA within the HPeV virion. The N-terminal regions of all capsid proteins 
not visualized in the HPeV1 atomic model apparently contact viral RNA. Recombinantly-expressed VP0 and 
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VP1 protein were shown to bind both the full genome as well as several sub-genome length RNAs. Curiously, 
the RNA binding profile of VP0 differed dramatically when analyzed in the context of the virion or with the 
recombinant VP0. RNA fluorescence anisotropy was used to confirm that the disordered capsid N-termini indeed 
contact the genome. We propose that these highly disordered regions are important for both RNA binding and 
the co-assembly of the virion genome and capsid proteins.

Results and Discussion
RCAP analysis on whole HPeV1 virions identified that several sequences from VP0, VP1 and VP3 contacted the 
encapsidated RNA (Table 1; Fig. 1; Supplementary Figure 1). The RCAP assay used trypsin, which preferentially 
cleaves C-terminal to lysines and arginines11,14. Within these peptides, several lysines and arginines were not 
cleaved, likely due to their crosslinking to RNA15. These missed cleavages increase our confidence in the assign-
ment of the protein sequences that contact the RNA. These RCAP peptides were mapped primarily to the inner 
surface of the capsid from the HPeV1 atomic model, or to disordered regions likely to be in the inner cavity of 
the capsid. Of the peptides that appear on the outer surface of the capsid, they all actually spanned the capsid and 
thus were exposed to the encapsidated RNA, with the exception of one short peptide (VP1 91–98; Supplementary 
Table 1; Supplementary Movie 1). This peptide may have more than one conformation in the capsids present in 
the preparation, there could have been some partial virion dissociation or RNA extrusion from the virion. All of 
the residues predicted to bind RNA in one or both of the atomic models3,4 were present in, or within 3 residues, 
to peptides identified by RCAP. Residues 17, 18, 41, 44, 55–58 and 68 in VP3 and 202 in VP1 were identified to 
contact RNA, both using RCAP, and X-ray crystallography of the HPeV1 virion (PDB: 4Z92)3,4. Residues 19 and 
21 in VP3 and 203 and 205 in VP1 were found to be in RNA-interacting regions in the atomic models, but were 

Capsid protein Amino acid sequencea

VP0

METIKSIADM ATGVVSSVDS TINAVNEKVE SVGNEIGGNL LTKVADDASN ILGPNCFATT 
AEPENKNVVQ ATTTVNTTNL TQHPSAPTMP FSPDFSNVDN FHSMAYDITT GDkNPSkLVR 
LETHEWTPSW ARGYQITHVE LPKVFWDHQD kPAYGQSRYF AAVRCGFHFQ VQVNVNQGTA 
GSALVVYEPK PVVTYDSKLE FGAFTNLPHV LMNLAETTQA DLCIPYVADT NYVKTDSSDL 
GQLKVYVWTP LSIPTGSANQ VDVTILGSLL QLDFQNPRVF AQDVNIYDN

VP1
NSWGSQMDLT DPLCIEDDTE NCKQTMSPNE LGLTSAQDDG PLGQEkPNYF LNFRSMNVDI 
FTVSHTkVDN LFGRAWFFME HTFTNEGQWR VPLEFPKQGH GSLSLLFAYF TGELNIHVLF 
LSERGFLRVA HTYDTSNDRV NFLSSNGVIT VPAGEQMTLS APYYSNkPLR TVRDNNSLGY 
LMCKPFLTGT STGKIEVYLS LRCPNFFFPL PAPKVTSSRA LRGDMANLTN QSPY

VP3

APNGKKKNWK kIMTMSTKYK WTRTKIDIAE GPGSMNMANV LCTTGAQSVA LVGERAFYDP 
RTAGSKSRFD DLVKIAQLFS VMADSTTPSE NHGVDAKGYF KWSATTAPQS IVHRNIVYLR 
LFPNLNVFVN SYSYFRGSLV LRLSVYASTF NRGRLRMGFF PNATTDSTST LDNAIYTICD 
IGSDNSFEIT IPYSFSTWMR kTNGHPIGLF QIEVLNRLTY NSSSPSEVYC IVQGKMGQDA 
RFFCPTGSVV TFQ

Table 1.  Summary of regions from the HPeV1 virions that crosslinked to the encapsidated genomic RNA. aThe 
residues from the twelve most intense peaks identified are in bold. The missed cleavages are shown in lower case 
letters and highlighted in bold-underline. The disordered regions not identified in the atomic model are underlined. 
Residues hypothesized to contact viral RNA in the atomic model (PDB ID:4Z92) are highlighted in italic.

Figure 1.  Results of whole-virion HPeV1 RCAP. The top hits arising from each of the capsid proteins from 
the virion RCAP are shown on the HPeV1 model (PDB: 4Z92). (a) Visualized on the outer surface of the 
capsid, all but one hit span the capsid and are exposed on the inner surface too. (b) Regions identified by RCAP 
visualized on the inner capsid surface. The peptides from VP0 are cyan, VP1 are magenta and VP3 are orange. 
Note that the N-termini of VP0 and VP1, although in the top hits, are disordered and therefore not seen in this 
representation.
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not directly identified with high confidence by RCAP. Rather, these residues were found in close proximity to 
residues which were identified. In light of this confirmation of previous data, we now went on to consider the 
other RCAP results for which there was no a priori data. Strikingly, several regions which are disordered in the 
HPeV1 atomic model were identified by RCAP to contact RNA, specifically: residues 6–31 of VP0, 1–23 of VP1; 
and 11–14 for VP3 (Table 1).

To confirm the RNA-contacting residues in VP1, we expressed and purified recombinant VP1 from E. coli and 
confirmed that the protein was folded using Fourier transformed infrared (FTIR) spectroscopy (Supplementary 
Figure 2). The obtained spectra showed amide I peaks at 1620 cm−1, characteristic of β-sheets16. The spectrum 
of VP1 showed an additional amide I peak at 1656 cm−1 characteristic of α-helices arising from the thioredoxin 
tag. Amide II peaks were seen in the VP1 spectra at 1530 cm−1. To obtain a reference spectrum of denatured 
peptide, aliquots of VP0 or VP1 fractions were mixed 1:1 with 100% trichloroacetic acid (TCA) and assayed as 
wet drops to obtain spectra of denatured protein. TCA treatment caused the two amide I peaks to collapse into 
a single broad peak at 1654 cm−1 characteristic of disordered peptide, and the complete ablation of the amide II 
peak (Supplementary Figure 2).

Purified VP1 was then mixed with RNA from the sub-genomic HPeV1 regions and subjected to RCAP anal-
ysis. All the RNA-binding peptides identified were subsets of the peptides identified in VP1 from RCAP of the 
virion (Table 2; Fig. 2). Compared to RCAP using whole virions, fewer peptides were identified using the recom-
binant VP1 protein. The coverage dropped from 47% to 15%, and the observed missed cleavages dropped from 3 
to 1. Peptides containing residues 55–74 and 55–90, identified in the atomic model as being on the inner capsid 
surface and in whole virion RCAP to bind viral RNA, were recovered in this experiment and carried the missed 
cleavage at residue 67 originally observed in the whole virion RCAP analysis. However, the N-terminal disor-
dered region and putative RNA-binding residue 202 were both notably missing. Different sub-genomic RNAs 
were employed to determine if protein-RNA contacts were dependent on transcript length, and this turned out to 
not be the case. We could not verify the RNA binding of recombinant VP3 on its own, as it could not be purified 
in a folded state.

Unexpectedly, VP0 was found to contact the encapsidated RNA in virions. To further confirm this observa-
tion, we expressed and purified recombinant VP0 and confirmed that the protein was folded using FTIR spec-
troscopy as for VP1 (Supplementary Figure 2). Amide I absorption was observed at 1626 cm−1, indicating the 
presence of β sheets in the protein15 and amide II at 1517 cm−1. No absorption for α helices was observed due to 
the lack of the thioredoxin tag. Chemically denaturing the purified VP0 resulted in a shift in the amide I absorp-
tion to higher wavenumbers and the loss of signal at amide II, as was the case for VP1.

The purified VP0 was subjected to RCAP in the presence of sub-genomic HPeV1 RNA (Table 3). Unlike for 
VP1, a sharp increase in the number of peptides recovered was observed for recombinant VP0 when compared 
to whole virion experiments. Coverage increased from 49% to 67–78%, and the number of missed cleavages 
increased from 4 to 6 for the shortest sub-genomic RNA. The unique VP0 residues found to interact with RNA 
exclusively in experiments with recombinant VP0 were 175–199, 205–226 and 235–278. The atomic model of the 
virion reveals that residues 205–226 and 262–278 are buried in the pentamer at the interfaces between proteins, 
and 175–199 and 235–261 are on the outer surface of the capsid (Fig. 3). The highly reproducible identification 
of these residues, and the accompanying missed cleavages in RCAP experiments with the recombinant VP0 but 
not with whole virions, and their inaccessible location in the atomic model of the virion, suggest an RNA-binding 
role for these regions before final assembly of the capsid. The N-terminal disordered regions are recovered in 
all recombinant VP0 RCAP experiments, in contrast to the same experiments with recombinant VP1. A single, 
short 10-residue peptide at the C terminus is the only peptide not recovered in recombinant VP0 RCAP which 
was present in the whole virus RCAP (Tables 1 and 3). As with VP1 protein RCAP, varying the sub-genomic RNA 
length had a negligible effect on the regions identified in protein RCAP.

Sub-genomic  
sequence length (n.t.) Amino acid sequencea

1576

NSWGSQMDLT DPLCIEDDTE NCKQTMSPNE LGLTSAQDDG PLGQEKPNYF 
LNFRSMNVDI FTVSHTkVDN LFGRAWFFME HTFTNEGQWR VPLEFPKQGH 
GSLSLLFAYF TGELNIHVLF LSERGFLRVA HTYDTSNDRV NFLSSNGVIT VPAGEQMTLS 
APYYSNKPLR TVRDNNSLGY LMCKPFLTGT STGKIEVYLS LRCPNFFFPL PAPKVTSSRA 
LRGDMANLTN QSPY

2335

NSWGSQMDLT DPLCIEDDTE NCKQTMSPNE LGLTSAQDDG PLGQEKPNYF 
LNFRSMNVDI FTVSHTkVDN LFGRAWFFME HTFTNEGQWR VPLEFPKQGH 
GSLSLLFAYF TGELNIHVLF LSERGFLRVA HTYDTSNDRV NFLSSNGVIT VPAGEQMTLS 
APYYSNKPLR TVRDNNSLGY LMCKPFLTGT STGKIEVYLS LRCPNFFFPL PAPKVTSSRA 
LRGDMANLTN QSPY

3037

NSWGSQMDLT DPLCIEDDTE NCKQTMSPNE LGLTSAQDDG PLGQEKPNYF 
LNFRSMNVDI FTVSHTkVDN LFGRAWFFME HTFTNEGQWR VPLEFPKQGH 
GSLSLLFAYF TGELNIHVLF LSERGFLRVA HTYDTSNDRV NFLSSNGVIT VPAGEQMTLS 
APYYSNKPLR TVRDNNSLGY LMCKPFLTGT STGKIEVYLS LRCPNFFFPL PAPKVTSSRA 
LRGDMANLTN QSPY

Table 2.  Summary of peptides derived from capsid protein VP1 that were crosslinked to sub-genomic HPeV1 
RNA. aThe RCAP peptides identified are in bold. The missed cleavages are shown in lowercase and highlighted 
in bold-underline. The disordered regions not identified in the atomic model are underlined. Residues 
hypothesized to contact viral RNA in the atomic model highlighted in italic.
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Whole-virion RCAP suggested that the N-terminal regions of VP0, VP1 and VP3 contact the encapsidated 
RNA. All of these regions were not resolved in the HPeV1 atomic model, and were predicted to be intrinsically 
disordered (Supplementary Figure 3). To further confirm that the intrinsically-disordered sequences identified 
in VP0, VP1 and VP3 can interact with RNA, and to more narrowly define the binding residues, peptides were 
synthesized corresponding to the disordered N-terminal regions (A-suffixed peptides in Fig. 4) and to structured 
regions elsewhere in the capsid proteins (B-suffixed peptides in Fig. 4). All peptides overlapped regions that were 
found to bind viral RNA in whole-virion RCAP experiments. Regions represented by VP0-A and VP0-B were 
found to bind sub-genomic viral RNA in protein RCAP experiments, while regions in VP1-A and VP1-B did 
not. The peptides were synthesized with a fluorescence tag and their RNA binding properties were examined 
using both the RCAP assay (Fig. 4A, Supplementary Figure 4A) and fluorescence anisotropy (Fig. 4B). Use of 
proteases that cleaved at other residues allowed us to further delineate regions within these sequences competent 
for RNA binding. Peptides containing cysteine residues were alkylated immediately prior to digestion using bro-
moethylamine, which converts cysteine residues to aminoethylcysteine, which are susceptible to proteolysis by 
trypsin17,18. RCAP analysis of these peptides verified that each of the N-terminal disordered regions bound viral 
RNA, as did two peptides derived from structured regions in VP0 and VP1. The peptide-RCAP experiment fur-
ther defined the RNA-interacting residues of these sequences. Both of the peptides derived from VP0 were robust 
RNA binders with virtually the entire peptide sequence recovered in RCAP. The same was true of the structured 
peptide derived from VP1. In contrast, the peptide-RCAP experiment with the N-terminal disordered region 
of VP1 only recovered the C-terminal half of the peptide corresponding to residues 15–23, and the experiment 
with disordered VP3 sequence recovered only the N-terminal half of the peptide corresponding to residues 1–9. 
(Fig. 4A, Supplementary Figure 4B). The VP3-B peptide was not recovered (Fig. 4A). These results demonstrate 
that the intrinsically disordered regions of VP0, VP1 and VP3 do not require an assembled capsid or to be part of 
a structured protein to contact the sub-genomic HPeV1 RNAs.

Fluorescence anisotropy was used to examine the binding of these peptides to viral RNA (Fig. 4B). Binding 
with the sub-genomic RNAs resulted in an increase in anisotropy which was observed (p < 0.02) at all RNA con-
centrations for VP0-A, VP1-A, VP1-B, and VP3-A as well as at 50–100 nM RNA for VP0-B (Fig. 4B). The 3–4 fold 
increase in anisotropy observed in the VP3-A peptide can be explained by the presence of predicted RNA-binding 
residues 17–19 in this peptide. No significant increase in the anisotropy was observed for the peptide VP3-B, 

Figure 2.  RCAP of capsid protein VP1. RCAP results of recombinantly-expressed VP1 are shown on the 
HPeV1 model (PDB: 4Z92). (a) Peptides from VP1 identified by RCAP that are localized to the outer capsid 
surface (b) Peptides from VP1 identified by RCAP that localize to the inner capsid surface. (c) Locations of the 
peptides that contact RNA on a monomer of VP1 with a view corresponding to the outer capsid surface whereas 
(d) A view of VP1 that corresponds to the inner capsid surface.
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despite containing predicted RNA-binding residues 41 and 44. These results further confirm that intrinsically 
disordered regions of VP0, VP1, and VP3 can bind HPeV1 RNA and further bolster confidence in the RCAP data.

The three sets of RCAP experiments allowed us to mimic putative stages of virion capsid assembly and explore 
the importance of primary, tertiary and quaternary protein structure in binding RNA. Results from the protein 
RCAP experiments involve only isolated capsid proteins and viral RNA, and as such represent the earliest steps 
in assembly, before pentamer formation. Whole-virion RCAP represents the final form of the infectious virus, 
and so RNA-contacting residues observed here have the advantage of being stabilized by the overall quaternary 
structure of the assembled capsid. RNA-contacting sites gained or lost along the way to capsid assembly might 
give some clue as to the underlying assembly mechanism. One such residue identified in this work is 202 of VP1. 
This residue was found to be in contact with encapsidated viral RNA in the crystal structure of the virus3, and as 
well was found to be critical for virus viability in a tissue culture infectivity assay4. Similarly, this residue was iden-
tified in whole-virion RCAP, but was notably missing in analysis with recombinant protein. Elsewhere in VP1, the 
N-terminal disordered regions were found to bind RNA in whole-virion RCAP and in peptide-RCAP, but were 
similarly missing from the protein RCAP data. These findings suggest that VP1-RNA contacts are common in the 
assembled capsid, but are rather limited early in assembly.

In contrast, VP0-RNA contacting residues appear to have a role in early stages of capsid assembly. This was 
especially striking for the C-terminal third of the protein (residues 175–278), which was recovered consistently 
and with associated missed cleavages in protein-RCAP experiments, but was missing in whole-virion RCAP. 
In the atomic model of HPeV1, this region is unavailable to the encapsidated RNA. It stands to reason that this 
region could have a role early in assembly, but these contacts are lost later on, presumably after the pentamer has 
been formed and VP1 and VP3 are available to help stabilize pentamer-RNA binding. The N-terminal disordered 
region of VP0 is present in both whole-virion and protein-RCAP, again in contrast to VP1 where it only appears 
in whole-virion RCAP. A role for the N- and C-terminal regions of VP0 early in capsid assembly is attractive 
because VP0 is the first sequence synthesized during polyprotein translation, and would have the earliest and 
least-encumbered access to the viral mRNA. Such a transient interaction might help in the initial nucleation of 
capsid assembly. Subsequently, the VP3 N-terminus interacts with four other VP3 N-termini to form the VP3 
annulus stabilizing the pentamer (Supplementary Movie 1). Formation of the pentamer creates new RNA binding 
sites formed from VP1 and VP3 which have high affinity for the multiple PS present on the genome4. At this stage 
collapse of the genome will bring the pentamers spatially close together on the genome19, allowing growth of the 
capsid that requires free VP0 N-termini for the inter-pentameric interactions observed in the virion structure.

Although technical challenges prevented us from performing a protein RCAP experiment on isolated VP3, 
the analysis of peptides derived from VP3 sequences in peptide RCAP and RNA fluorescence anisotropy pro-
vides some details. Residue 44 of VP3, like residue 202 of VP1, was predicted to bind viral RNA in the viral 
atomic model and confirmed in an in vitro infectivity assay. This residue was recovered in whole-virion RCAP, 
but was not recovered in peptide RCAP nor found to significantly increase the anisotropy of RNA fluorescence. 
Similarly, the predicted and confirmed RNA-binding residue 19 was in close proximity to recovered peptides 
in whole-virion RCAP. However, this residue was not recovered in peptide RCAP, which instead indicated that 
the N-terminal 10 residues had the highest affinity in the primary sequence for binding RNA. Generally, the 
previously-observed RNA-binding residues of the HPeV1 capsid appear to only contact RNA in RCAP experi-
ments in the quaternary structure of the assembled capsid. Hence the high affinity binding pocket in the capsid 
for the packaging signal cannot be the nucleation point for virus assembly if nucleation happens prior to pen-
tamer formation. A novel finding in this work is that the N-terminal disordered regions of VP0 and VP3 can 
contact viral RNA in the absence of an assembled capsid, and are thus potential early events in the capsid-RNA 
co-assembly route. The highly differential RNA-binding properties of VP0 in particular suggest that several 
protein-RNA contacts are gained and lost during assembly.

Sub-genomic sequence 
length (n.t.) Amino acid sequencea

1576

METIKSIADM ATGVVSSVDS TINAVNEKVE SVGNEIGGNL LTKVADDASN  
ILGPNCFATT AEPENkNVVQ ATTTVNTTNL TQHPSAPTMP FSPDFSNVDN 
FHSMAYDITT GDKNPSKLVR LETHEWTPSW ARGYQITHVE LPkVFWDHQD 
kPAYGQSRYF AAVRCGFHFQ VQVNVNQGTA GSALVVYEPk PVVTYDSkLE 
FGAFTNLPHV LMNLAETTQA DLCIPYVADT NYVKTDSSDL GQLkVYVWTP 
LSIPTGSANQ VDVTILGSLL QLDFQNPRVF AQDVNIYDN

2335

METIKSIADM ATGVVSSVDS TINAVNEkVE SVGNEIGGNL LTKVADDASN  
ILGPNCFATT AEPENKNVVQ ATTTVNTTNL TQHPSAPTMP FSPDFSNVDN 
FHSMAYDITT GDkNPSKLVR LETHEWTPSW ARGYQITHVE LPkVFWDHQD 
kPAYGQSRYF AAVRCGFHFQ VQVNVNQGTA GSALVVYEPk PVVTYDSkLE 
FGAFTNLPHV LMNLAETTQA DLCIPYVADT NYVKTDSSDL GQLKVYVWTP 
LSIPTGSANQ VDVTILGSLL QLDFQNPRVF AQDVNIYDN

3037

METIKSIADM ATGVVSSVDS TINAVNEKVE SVGNEIGGNL LTKVADDASN  
ILGPNCFATT AEPENkNVVQ ATTTVNTTNL TQHPSAPTMP FSPDFSNVDN 
FHSMAYDITT GDKNPSKLVR LETHEWTPSW ARGYQITHVE LPKVFWDHQD 
kPAYGQSRYF AAVRCGFHFQ VQVNVNQGTA GSALVVYEPK PVVTYDSKLE 
FGAFTNLPHV LMNLAETTQA DLCIPYVADT NYVKTDSSDL GQLkVYVWTP 
LSIPTGSANQ VDVTILGSLL QLDFQNPRVF AQDVNIYDN

Table 3.  Summary of peptides derived from capsid protein VP0 that were crosslinked to sub-genomic HPeV1 
RNA. aThe RCAP peptides identified are in bold. The missed cleavages are shown lowercase and highlighted in 
bold-underline. The disordered regions not identified in the atomic model are underlined.
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Figure 3.  RCAP of capsid protein VP0. RCAP results of recombinantly-expressed VP0 are shown on the 
HPeV1 model (PDB: 4z92). (a) Peptides derived from VP0 identified to contact RNA that localize to the outer 
capsid surface whereas (b) shows the peptides on the inner capsid surface. (c) Location of peptides from VP0 
that contact RNA on a monomer of VP0 with a view corresponding to the outer capsid surface whereas (d) A 
view of VP0 that corresponds to the inner capsid surface.

Figure 4.  Intrinsically disordered regions in VP0, VP1 and VP3 can interact with HPeV1 RNA. (A) RCAP 
results of peptides from VP0, VP1, and VP3 that could interact with the HPeV1 RNA. The residues in the 
peptides crosslinked to RNA are underlined. The VP0-A, VP1-A and VP3-A peptides were all missing from 
the X-ray structure and predicted to be intrinsically disordered. The VP0-B, VP1-B and VP3-B peptides were 
all modelled in the X-ray structure. (B) Peptides from intrinsically disordered regions of VP0, VP1, and VP3 
can bind to HPeV1 RNA in a fluorescence anisotropy assay. Each error bar shows one standard deviation of 
three independent measurements. The asterisk denotes the samples whose anisotropy values differ from the 
anisotropy value of the peptide alone by a p value of <0.02 in the Student’s T-test.
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Many of the steps proposed here in our assembly model need to be tested. The concept of controlled assem-
bly stages, regulated through multiple protein and nucleic acid interactions has been illustrated in other more 
tractable virus systems. In the positive-sense, single-stranded RNA virus, Alfalfa mosaic virus the N-terminus 
of the capsid protein and RNA co-fold upon interaction with each other priming the viral RNA for replication20. 
Similarly, Brome mosaic virus has an intrinsically disordered N-terminal tail that interacts differentially with 
encapsidated RNA, and can recognize specific RNA motifs in the BMV genomic RNA21,22. Both MS2 and Turnip 
crinkle virus form capsid protein dimers where the dimer conformation is altered by RNA binding, and is essen-
tial for capsid assembly to occur, limiting the number of potential assembly pathways23–25.

In other picornaviruses, an ordering of the encapsidated RNA likely occurs prior to the proteolytic processing 
of VP0 to generate VP2 and VP4. After the VP0 cleavage, the resulting VP4 and the N-terminus of VP2 are rear-
ranged within the capsid, hence losing their ordered interactions with the RNA. Far fewer bases are ordered and 
are in base-stacking interactions with VP2 in icosahedrally-symmetric X-ray structures of a poliovirus and a rhi-
novirus26,27. RCAP analysis could be useful in exploring the dynamic RNA-protein interactions during assembly 
in the picornaviruses that undergo cleavage of VP0 to VP2 and VP4.

The results in this work demonstrate that intrinsically disordered sequences in the HPeV1 capsid play impor-
tant roles in contacting the encapsidated RNAs. Intrinsically disordered sequences are highly abundant in viral 
capsid proteins28. In enveloped positive-sense RNA viruses such as flaviviruses and retroviruses, interactions with 
viral RNA are positively correlated with virulence29,30. In non-enveloped positive-sense RNA viruses like brome 
mosaic virus, the intrinsically disordered capsid protein N-terminus is known to associate specifically with viral 
RNA so that only the viral RNA are encapsidated during assembly31.

Additionally, the work establishes a role for VP0 in binding the viral RNA which was not observed in the X-ray 
structure of HPeV1, and provides some clues as to the sequence of protein-RNA binding events that eventually 
lead to capsid assembly. A general scheme of an early role for VP0 and a later or capsid-stabilized role for VP1 in 
binding the viral genome seems evident.

In conclusion, although the identification of VP0-RNA interaction via VP0 disordered N-terminus by RCAP 
is thus far seen only in parechoviruses, probably en route to assembly, we hypothesize that similar interactions will 
be important in the assembly of many other picornaviruses too.

Methods
Virus growth and purification.  HPeV1 Harris strain was cultured in HT29 cells (SIGMA) and purified 
by cesium chloride gradient as described previously2,4. The virus was buffer exchanged using 100 kDa membrane 
filters (Amicon) to 20 mM Hepes, pH 8.0, 150 mM NaCl and 2 mM MgCl2.

Capsid proteins expression and purification.  VP0 was cloned in pCOLD-I (Takara Bio) which has an 
N-terminal His-tag. The primers used for cloning were:

5′-gaagaactcgagATGGAGACAATTAAGAGTATTG-3′; and
5′-gccgccaagcttTCAATTATCATATATGTTGAC-3′

The restriction sites for enzymes XhoI and HindIII are underlined in the primer sequence, respectively, and 
gene-specific regions in uppercase. The PCR running conditions were 98 °C (3 min), 80 °C (1 min), 55 °C (10 s), 
72 °C (1 min), [98 °C (10 s) + 55 °C (10 s) + 72 °C (35 s)] × 29, 72 °C (10 min), 4 °C. The expression was performed 
in BL21 (DE3) by induction with 1 mM IPTG at 15 °C for 18 h. The cell pellet was resuspended in 20 mM bicine, 
pH 8.0, 150 mM NaCl, 2 mM dithiothreitol, 1 EDTA-free protease inhibitor tablet (ThermoFisher Scientific), 
0.1 mg/mL lysozyme, ~25 units of benzonase (Merck Millipore) and kept on ice for 30 min. The cells were lysed 
at 15000 psi for 6 min in an Emulsiflex C3 (Avestin) high pressure homogenizer. The supernatant was added to 
nickel-bound agarose beads and VP0 was eluted from the beads with 1 M imidazole in 20 mM bicine pH 8.0 
and 150 ml NaCl. The eluted VP0 was further purified by gel filtration on a superdex 75 10/300 GL column (GE 
Healthcare Life Sciences) in 20 mM bicine pH 8.0 with 150 mM NaCl.

The VP1 pET102 plasmid (ThermoFisher Scientific) was a kind gift from Katja C. Wolther, Amsterdam 
Medical Centre32. This plasmid has a His-patch thioredoxin on its N-terminus and 6 histidines on its C-terminus. 
The plasmid was transformed in E coli BL21 (DE3) for expression and induced with 1 mM IPTG at 18 °C for 
18 h. The cells were lysed in 20 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 EDTA-free protease inhibitor tablet 
(ThermoFisher Scientific), 0.1 mg/mL lysozyme, ~25 units of benzonase (Merck Millipore) by keeping on ice 
for 30 min followed by sonication for 10 min in pulse mode. The lysed cells were centrifuged and the pellet was 
washed twice in 20 mM Tris-HCl pH 7.5, 0.5 M NaCl, 5 mM imidazole, 0.5% Triton X-100 and resuspended in 
solubilization buffer: 20 mM Tris-HCl pH 8.0, 0.5 M NaCl, 8 M urea. The resuspended pellet was sonicated for 
10 min in pulse mode. The soluble protein was recovered by centrifugation in rotor A-4-62 (Eppendorf 5810 R 
centrifuge) at 4000 rpm, 30 min and 4 °C. The chromatography and on-column folding was performed on a 1 mL 
HisTrap column (GE Healthcare Life Sciences). The solubilized protein was loaded onto the solubilization-buffer 
equilibrated column using a P1 pump. The column was washed with 5 column volumes of 20 mM Tris-HCl pH 
8.0, 0.5 M NaCl, 8 M urea, 20 mM imidazole and returned to solubilization buffer. The column was then installed 
onto an Äkta FPLC system and a 20 ml linear gradient was run from 8 M urea (20 mM Tris-HCl pH 8.0, 0.5 M 
NaCl) to 0 M urea (20 mM Tris-HCl pH 8.0, 0.5 M NaCl). A step gradient of 5 mM, 10 mM, 20 mM, 40 mM, 
60 mM, 300 mM and 500 mM imidazole in 20 mM Bicine pH 8.0, 500 mM NaCl was used to elute the on-column 
folded VP1 protein. Protein purity was assessed by SDS-polyacrylamide gel electrophoresis (Supplementary 
Figure 5).

The refolding of VP0 and VP1 was confirmed by Attenuated Total Reflectance Fourier Transform Infrared 
(ATR-FTIR) spectroscopy (Smiths Detection DuraSamplIR II and Bruker IFS 66/S). The FPLC fractions 
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containing protein eluting at 1 or 0.5 M imidazole (VP0 and VP1, respectively) were assayed by pipetting 2 µL 
onto the ATR crystal surface and drying with forced air. Fractions that did not contain protein served as blanks. 
To obtain a reference spectrum of denatured peptide, aliquots of VP1 fractions and non-protein containing frac-
tions were mixed 1:1 with 100% trichloroacetic acid (TCA) and assayed as wet drops to obtain spectra of dena-
tured protein.

In vitro transcription.  The HPeV1 sub-genomic RNAs used in RCAP and RNA fluorescence anisotropy 
experiments were PCR amplified from an HPeV1 infectious cDNA clone33 with T7 promoter region present in 
the forward primer. Sub-genomic lengths of 1576, 2335 and 3037 nucleotides correspond to the 5′UTR-VP0, 
5′UTR-VP3 and 5′UTR-VP1 regions of the HPeV1 genome. The forward primer used for amplifying all the three 
sub-genomic regions is:

5′-taatacgactcactatagggTTTGAAAGGGGTCTCCTAGAGAG-3′.
The reverse primers are:
5′-gccgccaagcttTCAATTATCATATATGTTGAC-3′ (for 1576 n.t.);
5′-gccgccaagcttTCAATATGGACTCTGATTTG-3′ (for 2335 n.t.);
5′-gaagccaagcttTCACTGGAATGTAACAACAG-3′ (for 3037 n.t.).

The gene-specific regions are in uppercase. The PCR was performed for 25 cycles with a denaturation tempera-
ture of 98 °C, annealing temperature of 55 °C and extension temperature of 72 °C. The PCR products were used for 
in vitro transcription of RNA using MEGAscript T7 transcription kit (ThermoFisher Scientific, Supplementary 
Figure 5A). The transcription was done at 37 °C, for 2 h. The RNA purification was done using the MEGAclear 
transcription clean-up kit (ThermoFisher Scientific) and RNA quality checked by agarose gel electrophoresis 
(Supplementary Figure 5).

RCAP.  The RCAP assay was done as described previously11, using two moles of recombinant protein to one 
mole of RNA. Formaldehyde was then added to a final concentration of 0.1% and incubated for 10 min at room 
temperature. Glycine (0.2 M) was added to quench the formaldehyde and incubated for 10 min at room tem-
perature, then crosslinked protein-RNA complexes were subjected to trypsin digestion using sequencing-grade 
trypsin (Trypsin Gold, Promega) for 16 hours using a 1:20 w/w ratio of enzyme to capsid. RNA-peptide com-
plexes were then selectively precipitated using lithium chloride, and to facilitate mass spectrometric analysis 
peptide-RNA conjugates were reversed by supplementing the buffer with 150 mM sodium chloride and heating 
at 65 οC for 1 h. Control reactions lacking formaldehyde, and when using the recombinant protein lacking RNA, 
were performed in parallel.

RCAP assays performed with chemically synthesized peptides with an N-terminal carboxyfluorescein 
(Zhejiang, China). Each peptide was purified using HPLC to at least 95% purity and the molecular mass was con-
firmed by mass spectrometry to be accurate to within 1 Dalton. The peptides were present at two molar excess to 
the HPeV1 RNA and crosslinked as described above. To facilitate ionization and proteolysis, cysteine-containing 
peptides were supplemented with 200 mM Tris-HCl (pH 9.0), 5 mM TCEP, and alkylated with 20 mM bro-
moethylamine prior to digestion as described previously17,18. The crosslinked peptide-RNAs were digested with 
either 1 μg trypsin, chymotrypsin, or Asp-N as specified (Pierce MS-grade protease) overnight at 37 °C. Controls 
included RNAs and peptides without formaldehyde, and proteolyzed samples.

For the virion RCAP data, peptides were analyzed using an LTQ Velos Pro dual-pressure linear ion trap mass 
spectrometer (ThermoFisher Scientific). Tryptic digests were injected into a C18 column (Dionex UltiMate 3000 
HPLC) and eluted using a linear gradient of 2–45% acetonitrile in water with 0.1% formic acid, over a 90 minute 
gradient. The flow rate was 50 uL/min, and effluent was electro-sprayed into the LTQ. Tandem mass spectra were 
obtained using collision-induced dissociation. Experiments using recombinant protein were analyzed on an LTQ 
Orbitrap mass spectrometer (ThermoFisher scientific), and separated similarly using an Accela HPLC. Peptide 
RCAP data was generated on a Bruker Autoflex III MALDI-ToF and analyzed using GPMAW (General Protein/
Mass Analysis for Windows, Supplementary Figure 4).

Database searches used searchGUI and the peptide sequences were compiled with peptideshaker34,35. 
Databases were created using HPeV1 protein sequences appended to a FASTA file containing the uniprot human 
proteome and the common repository of adventitious proteins database36. Linear ion trap data was searched 
using a 0.3 Da mass error, and Orbitrap using 10 ppm error. Peptides appearing in the negative controls were used 
to gauge the quality of LiCl precipitation, and results were discounted if peptides were detectable. Only identifi-
cations with a confidence score of 98% or better were included. The identified peptides for the virion RCAP are 
listed in Supplementary Table 1 and the top 12 hits for each protein were considered as most significant. This 
accounted for 81% of the unique observations. Disorder predictions were retrieved from the PONDR server 
(http://www.pondr.com/) using the VL-XT algorithm37.

Fluorescence Anisotropy Assay.  Peptide binding to HPeV1 RNA used peptides containing an N-terminal 
carboxyfluorescein. HPeV1 RNA was titrated into 100 µL solution of peptide (0.1 µM) to final concentrations 
25–100 nM and the results were normalized to the anisotropy of the peptide alone. Fluorescence anisotropy data 
was generated on a Synergy H1 microplate reader (BioTek) and calculations were performed in Gene 5 software 
(Biotek). Pairwise T-Tests were performed using Microsoft Excel.

Data availability.  The datasets generated and analyzed during the current study are available from the cor-
responding authors on request.

http://www.pondr.com/
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