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Abstract

Visual performance is asymmetric across the visual field, but locational biases that occur

during dichoptic viewing are not well understood. In this study, we characterized horizontal,

vertical and naso-temporal biases in visual target detection during dichoptic stimulation and

explored whether the detection was facilitated by non-spatial auditory tones associated with

the target’s location.

The detection time for single monocular targets that were suppressed from view with a

10 Hz dynamic noise mask presented to the other eye was measured at the 4˚ intercardinal

location of each eye with the breaking Continuous Flash Suppression (b-CFS) technique.

Each target was either combined with a sound (i.e., high or low pitch tone) that was congru-

ent or incongruent with its vertical location (i.e., upper or lower visual field) or presented with-

out a sound. The results indicated faster detection of targets in the upper rather than lower

visual field and faster detection of targets in the nasal than temporal hemifield of each eye.

Sounds generally accelerated target detection, but the tone pitch-elevation congruency did

not further enhance performance. These findings suggest that visual detection during

dichoptic viewing differs from standard viewing conditions with respect to location-related

perceptual biases and crossmodal modulation of visual perception. These differences

should be carefully considered in experimental designs employing dichoptic stimulation

techniques and in display applications that utilize dichoptic viewing.

Introduction

Visual perception is asymmetric across the visual field. Visual performance is known to gener-

ally decrease with increasing distance from the fovea due to losses in the contrast sensitivity

and spatial resolution of the eye [1], but performance consistently varies across the visual field,

even at isoeccentric locations. Indeed, a number of studies demonstrate performance differ-

ences for equidistant stimuli presented in the left and right visual fields, upper and lower visual

fields, and temporal and nasal hemifields of the eyes [2–12]. However, because these perfor-

mance asymmetries have been defined under standard viewing conditions, in which stimuli

are viewed either binocularly or monocularly, the results do not necessarily comply with

PLOS ONE | https://doi.org/10.1371/journal.pone.0199962 July 23, 2018 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Mustonen T, Nuutinen M, Vainio L,
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dichoptic viewing, during which both eyes are simultaneously presented with different stimuli.

The present study aims to clarify this largely unexplored topic by investigating spatial biases in

target detection during dichoptic viewing and the influence of crossmodal cueing on detection

performance with a dichoptic stimulation technique known as Continuous Flash Suppression

(CFS; [13]).

When an observer’s right and left eye are presented with dissimilar images at corresponding

retinal locations, the images cannot be fused and the conscious percept varies between the two

alternatives. This phenomenon, known as binocular rivalry, is characterized as a random alter-

nation of dominance and suppression phases between the two eyes [14]. At a given moment

during dichoptic viewing, the observer only perceives the stimulus presented to the dominant

eye, whereas the stimulus presented to the suppressed eye remains outside conscious percep-

tion. Although the mechanisms that control the alteration of the suppression and dominance

phases are not fully understood [14,15], research has shown that the ability of a stimulus to

break suppression, in other words, to become detected, is strongly defined by low-level visual

features, such as contrast, orientation, and spatial frequency [16,17]. However, another funda-

mental feature that is likely to modify the stimulus strength under dichoptic stimulation is the

location of the target in the visual field.

Research on location-based biases in visual performance suggest that horizontal, vertical,

and naso-temporal asymmetries originate from different stages of the visual processing stream.

Most horizontal asymmetries (left vs. right visual field) reflect the lateral specialization of the

two hemispheres. Because the left hemisphere is more sensitive to local features and high spa-

tial frequencies and the right hemisphere is sensitive to global features and low spatial frequen-

cies, high-frequency stimuli are more likely to bias perception rightwards and low-frequency

stimuli are more likely to bias perception leftwards [3,18]. A horizontal bias may also indicate

an uneven distribution of spatial attention, as performance in many attention-demanding

visual tasks is biased toward the left side of space [19]. This leftward bias may result from the

higher involvement of the right hemisphere in tasks that require visuospatial attention [20] or

the left-to-right scanning strategy that resembles reading text in Western languages [21].

Vertical asymmetries (upper vs. lower visual field) greatly depend on the requirements of

the visual task. Stimulus discrimination is more efficient in the lower than upper visual field

[5,8,11,12], which is in line with anatomical asymmetries in the retina [22,23] and lateral

geniculate nucleus (LGN) [24]. A lower visual field bias has also been found for tasks that

require focused sustained attention, including conjunction search and multiple object tracking

[25], as well as attentional tasks that require object individuation [26]. In contrast to these

downward biases, an upward bias is common for tasks that require attention guidance, such as

a visual search [7,27], or semantic processing, including categorical judgments [6,28]. It thus

appears that subcortical and early cortical visual processes tend to bias perception downwards,

whereas attention may bias performance either downwards or upwards depending on the task

demands.

However, the most intriguing asymmetry in the context of the present study is the bias

between the retinal hemifields (nasal vs. temporal) as the direction of the bias under standard

viewing conditions seems to contradict the findings of dichoptic viewing. Under standard

viewing conditions, visual processing is more efficient in the temporal hemifield than nasal

hemifield of the eye, as demonstrated by sensitivity thresholds [10,12], reaction times [9], and

electrophysiological recordings [12]. This temporal hemifield bias is associated with anatomi-

cal asymmetries in the retina [22,23] and superior colliculus (SC) of the midbrain [29]. By con-

trast, two binocular rivalry studies have previously demonstrated longer dominance durations

for stimuli presented to the nasal hemifield of an eye (i.e., temporal hemiretina; Fig 1) com-

pared to stimuli presented to the temporal hemifield (i.e., nasal hemiretina) [30,31] under
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dichoptic stimulation. Because the nasal hemifield bias was not predicted by asymmetries in

early visual structures, Chen and He [30] and Kaushall [31] suggest that the bias likely reflects

a cortical origin and thus differs from the temporo-nasal bias obtained under standard viewing

conditions. The present study aims to investigate whether the nasal hemifield bias associated

with dichoptic stimulation is specific for extending dominance durations under rivalry alter-

nation or whether it also facilitates detection of suppressed visual targets under strong intero-

cular suppression. Similarly, detection biases for suppressed visual targets along the vertical

and horizontal axes are characterized.

In addition to clarifying location-based asymmetries in target detection during dichoptic

viewing, we aim to take a further step by investigating whether this process is facilitated by an

auditory cue associated with the target’s location. A strong body of evidence indicates that

visual objects combined with an auditory signal are detected, localized and identified more

rapidly and accurately than visual objects alone [32]. Although most of these findings concern

the spatial and temporal compatibility of visual and auditory stimuli, recent findings suggest

that crossmodal facilitation may also operate on non-spatial associative crossmodal correspon-
dences [33–35]. Importantly, in the present study, one such correspondence occurs between an

Fig 1. Lateralized visual processing in standard and dichoptic viewing. In standard binocular viewing (left side),

targets in the left visual field (green) are projected onto the right hemiretina (nasal or temporal) of both eyes and

processed in the right hemisphere. Targets in the right hemifield (orange) are similarly processed in the left

hemisphere. Each hemisphere, therefore, receives information from both eyes via ipsilateral and contralateral

connections. Under dichoptic viewing (right side), targets in the temporal hemifield of an eye (green) are projected

onto the nasal hemiretina of that eye and processed in the contralateral hemisphere and targets in the nasal hemifield

(orange) are projected onto the temporal hemiretina and processed in the ipsilateral hemisphere. Lateralized targets in

a dichoptic viewing task are thus processed in one hemisphere only, which may change the typical course of visual

processing.

https://doi.org/10.1371/journal.pone.0199962.g001
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auditory tone pitch and visual elevation. Responses to visual targets that appear higher in the

visual field are detected faster when the targets are combined with a concurrent high pitch

tone than with a low pitch tone, and targets lower in the visual field are detected faster when

combined with a low pitch tone than with a high pitch tone [36–38]. Under standard viewing

conditions, pitch-elevation compatibility has been suggested to support the processing of

visual stimuli at both perceptual [37] and response selection levels [33,36], even when the

observer is unaware of the connection between the two signals [37]. Whether the compatibility

of a non-spatial auditory sound to a visual target—a connection typically obtained with two

supraliminal stimuli—can similarly accelerate the detection of a suppressed visual target dur-

ing dichoptic viewing has not yet been investigated.

However, other audiovisual effects suggest that crossmodal modulations can also occur

under dichoptic stimulation. From the two competing stimuli presented to an observer’s

eyes during binocular rivalry, the stimulus compatible with a concurrent sound with respect

to frequency [39], directional motion [40], or semantic content [41] dominates perception

most of the time. Furthermore, previous b-CFS studies have demonstrated that a visual

stimulus that matches information simultaneously presented via another modality can

break the suppression faster than a mismatching stimulus [42]. The connection between

visual and auditory stimuli can be physical [43], spatial [44], or semantic [45] in nature. On

the other hand, not all findings similarly support the integration of visual and auditory sti-

muli. Moors and colleagues [46] investigated whether the detection of suppressed visual

looming targets could be influenced by auditory tone pips that were congruent with the

looming cycle. By measuring contrast thresholds for target detection, they found no evi-

dence that auditory tones lowered detection thresholds compared to no-sound trials [46].

Previous studies, thus, suggest that some but not all forms of crossmodal modulations

emerge under interocular suppression. By demonstrating that the pitch of an auditory tone

facilitates the detection of suppressed visual targets whose location (in the upper or lower

visual field) is associated with the pitch of the given tone, the present study not only pro-

vides further support for the automaticity of crossmodal correspondences [34,37] but also

introduce a new means to modulate location-specific visual processing during dichoptic

viewing.

Present study

The goals of the present study were twofold. First, we aimed to characterize visual field asym-

metries in the detection of suppressed visual targets during dichoptic stimulation. Second, we

explored whether this detection process could be facilitated by an auditory tone associated

with the target’s vertical location in the upper or lower visual field.

For these purposes, we employed the CFS technique, in which a stimulus (i.e., the target)

presented to one eye is deliberately rendered invisible by a strong suppressor (i.e., dynamic

noise) simultaneously presented to the other eye [13]. In CFS, a conflict between the two reti-

nal images creates a strong rivalry condition in which the observer only perceives the suppres-

sor and not the target, even though both stimuli are physically present. The CFS thus

represents an evolved version of the binocular rivalry paradigm in which both eyes are simulta-

neously presented with different images and each eye’s dominance periods are reported during

natural perceptual alternation [14]. Because the strong suppressor utilized in CFS elevates tar-

get detection thresholds over 10-fold compared to binocular rivalry [13,17], even a highly

salient target remains invisible for an extended period of time. This process makes the CFS

particularly suitable for studying factors that drive the alteration between the two competing

views.

Visual biases during b-CFS
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Visual targets, suppressed from view by the CFS noise mask presented to the other eye,

were displayed at four intercardinal locations of each eye. Therefore, we were able to compare

the performance for targets presented in the two horizontal (right vs. left), vertical (upper vs.

lower), and hemiretinal (nasal vs. temporal) locations of the visual field. To clarify whether the

target detection could be modulated by associated sounds, each target in two of three experi-

mental blocks was combined with a simple tone (i.e., high or low pitch) that was either com-

patible or incompatible with the target’s vertical location (i.e., upper or lower visual field). The

targets in the third block were presented without sounds to provide a baseline for visual perfor-

mance without crossmodal effects. Performance was defined as the time required for target

detection with a procedure known as “breaking CFS” (b-CFS) [47]. This procedure provides a

means to explore visual and audiovisual effects on target detection within a single design that

closely resembles faster classification tasks under standard viewing conditions [32,34].

Based on previous dichoptic stimulation studies [30,31], we expected to find a nasal hemi-

field bias in the speed of target detection during the b-CFS task. No a priori assumptions were

made concerning performance biases along the horizontal and vertical dimensions of space,

but these biases were expected to provide valuable information about the demands of the

dichoptic task and the processes involved in rivalry alteration. Regarding the crossmodal mod-

ulation of target detection during the b-CFS task, we expected the presence of sounds and tone

pitch-target elevation congruency to increase speed of performance. Briefly, our results dem-

onstrated the shortest b-CFS times for targets presented in the upper nasal hemifield of each

eye and indicated that the presence of a sound but not pitch-location compatibility increased

the speed of the detection performance.

Method

Subjects

The subjects were 30 students from the University of Helsinki (7 males; mean age = 24.7 ± 3.1

years) who were all right-handed (L.Q. > 62 in Edinburgh Handedness Inventory) [48]. All

subjects reported normal hearing and normal or corrected-to-normal vision and wore normal

corrective lenses during the experiment. Subjects were screened for stereopsis (TNO test for

stereoscopic vision), heterophoria (Maddox Wing Test, Hamblin Instruments Ltd), and near

distance visual acuity at three contrast levels (SLOAN near vision charts at 100%, 10%, and

2.5% contrast; Precision Vision1). Eighteen subjects were right-eye dominant, as determined

by a hole-in-the-card test [49]. Eye dominance was controlled for in the statistical analysis due

to its known effects on performance during dichoptic viewing [50]. Subjects gave written

informed consent prior to the experiment and received two movie tickets as remuneration.

This study was conducted with ethical approval of the University of Helsinki Ethical Review

Board in Humanities and Social and Behavioral Sciences and adhered to the tenets of the Dec-

laration of Helsinki.

Apparatus and stimuli

Stimulus generation and presentation were controlled using MATLAB with the Psychophysics

toolbox 3 extension [51]. An open-source collection of MATLAB functions that we created for

this purpose are described in a previous paper [52]. Experiments were run on a PC with a Win-

dows 7 operating system. Visual stimuli were displayed on a 21-in. Sony Trinitron CRT moni-

tor (2048 x 1536; 75 Hz). Visual output was linearized with gamma correction (of 0.48) that

was derived from gray level measurements captured by a Minolta LS-110 luminance meter.

The monitor was viewed perpendicularly through a mirror stereoscope so that the left half of

the screen was only seen by the left eye and right half was only seen by the right eye. An 83-cm
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viewing distance was maintained with a chin rest. Experiments were performed in a darkened

room in which the only light source was the display.

Visual stimuli were displayed against two 9˚ gray squares (30 cd/m2) positioned 13.8˚ apart

from each other to the left and right halves of the screen and surrounded by 0.5˚ wide black-

and-white frames (Fig 2). The frames and red central fixation crosses (0.6˚) were present at all

times to promote stable binocular fusion. The farther background of the monitor was black

(0.2 cd/m2). The suppressor stimulus consisted of a rapid series (10 Hz) of achromatic Mon-

drian-patterned images that filled one of the frames. Each image consisted of rectangles that

varied in size, luminance and location. The mean luminance of the suppressor was (30 cd/m2),

and its spatial characteristics followed the statistics of natural scenes (“Dead Leaves Model”)

[53]. Target stimuli were achromatic leftwards and rightwards arrow shapes (1.5˚ x 1.5˚; Fig

2C and 2D) that were generated from rectangular Gabor patches (1.5 cpd; 25˚ clockwise or

counterclockwise orientation) by mirror-reversing the lower halves of the patches. The target

characteristics were carefully controlled because the spatiotemporal properties of stimuli are

known to affect the suppression strength in CFS [16]. A target appeared at one of four loca-

tions of the other frame (upper left, upper right, lower left, lower right) at a 4˚ eccentricity and

55˚ radial angle from the vertical meridian. These locations enabled unilateral presentation of

the targets while avoiding eye movements that were needed for target detection at farther

eccentricities [21,54].

The auditory stimuli were two sinusoidal tones: 1750 Hz for the high pitch and 250 Hz for

the low pitch. The tones were presented using headphones at approximately 60 dB for 100 ms

Fig 2. Schematic illustration of a trial. (a) The trial starts with a fixation cross presented to both eyes. The subject

initiates the actual trial with a key press. (b) Dynamic Mondrian noise is presented to one of the eyes. (c-d) The target

is presented to the other eye, and its contrast is gradually ramped up. The target remains until the subject’s response.

When sound is included, a high or low pitch tone is provided for 400 ms after target onset.

https://doi.org/10.1371/journal.pone.0199962.g002
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using the Psychtoolbox PsychPortAudio command library [51]. The high and low pitch tones

were matched in subjective loudness according to ISO 226 equal-loudness contours [55].

Procedure

Each trial began with a framed grey square presented to each eye and fused together (Fig 2).

Subjects were instructed to fixate on the cross in the middle of the frame and indicate the stim-

ulus detection by pressing the space key. The CFS mask then appeared in one of the frames.

After a random delay of 1200–1600 ms, a target began to appear in the other frame. The eye of

target presentation changed on each trial to avoid the effects of eye dominance and adaptation

on detection performance [50,56]. None of the subjects was aware of this controlled sequence

when asked after the experiment. The contrast of the target was gradually ramped up from 0 to

100% over 4000 ms to avoid an abrupt transition. The target remained until the response was

given or timeout at 6000 ms. In sound-associated blocks, a high or low pitch tone was pre-

sented binaurally after 400 ms of target onset (for a similar procedure, see [44]). At this point,

the target reached 10% contrast. Subjects’ ability to detect targets at this contrast level was vali-

dated with a pilot study. Subjects’ task was to respond to the target occurrence based on its

horizontal location (i.e., left vs. right to the fixation cross). Upon detecting a target, subjects

were instructed to press one of two colored keys on the keyboard: “e” with the left hand for tar-

gets on the left and “o” with the right hand for targets on the right. This indirect task in which

the dimensions of response selection and response keys (i.e., left vs. right) were orthogonal to

the dimension on which the expected crossmodal correspondence occurred (i.e., up/high vs.

down/low) was adopted to avoid response selection bias in detection performance (see [37]). If

the pitch-elevation congruency effect was to be found, it could not be accounted for by conver-

gence at the decision or response level. Performance was measured as the reaction time (RT)

using the b-CFS procedure [47].

The experiment consisted of three blocks of 160 trials each. Visual targets differed only with

respect to location and orientation, which were counterbalanced within the blocks. In two of

the blocks, visual targets were combined with mixed high and low auditory cues. No cues were

used in the third block. Half of the subjects first completed the cued blocks and half the no-

sound block. The block order was taken into account in statistical analysis to control for learn-

ing effects and because the block order may give rise to performance differences between the

visual field areas [28]. High and low pitch tones appeared equally often with each of these com-

binations. Approximately ten minutes of training was given before the actual experiment.

Each actual block was preceded by 20 warm-up trials that were removed from the final data.

Results

Only correct response trials (99.3%) were included in the RT analysis. Very long or short RTs

(beyond 3SDs from the subject’s mean within sound or no-sound trials) were considered to be

outliers and removed from the data. In total, 2.5% of the original data were excluded. Because

the distribution of the RTs was skewed, the dataset was log-transformed before any statistical

tests. For the same reason, the descriptive statistics below represent the geometric means of the

RT distribution produced by backward transformations of the analyzed data.

Data were analyzed using a mixed-design ANOVA with Location (upper left, upper right,

lower left, lower right), Eye (left, right) and Sound (high sound, low sound, no sound) as

within-subject factors and Dominance (left eye, right eye) and Order (sound first, no-sound

first) as between-subject factors (S1 Table). A Greenhouse-Geisser correction was applied

whenever Mauchly’s test indicated that sphericity could not be assumed. An alpha level of .05

was used for all statistical tests.

Visual biases during b-CFS

PLOS ONE | https://doi.org/10.1371/journal.pone.0199962 July 23, 2018 7 / 17

https://doi.org/10.1371/journal.pone.0199962


A significant main effect was found for Location, F(3, 78) = 10.9, p < .001, ηp
2 = .30. Bon-

ferroni-adjusted post-hoc tests (six comparisons) revealed an upward vertical bias, as the

targets presented in the upper quadrants of the visual field (left M = 1083 ms, 95% CI [980,

1197]; right M = 1052 ms, 95% CI [958, 1155]) were detected faster than the targets pre-

sented in the lower quadrants of the visual field (left M = 1168 ms, 95% CI [1064, 1283];

right M = 1161 ms, 95% CI [1056, 1277]; padj = .001- .041; Fig 3). Furthermore, the Location
x Eye interaction, F(1.53, 39.8) = 21.4, p < .001, ηp

2 = .45, indicated that the time to detec-

tion also depended on the eye of presentation, as left-side targets resulted in shorter RTs

when presented to the right eye and right-side targets had shorter RTs when presented to

the left eye (Fig 4). Thus, targets presented to the nasal half of an eye’s visual field (i.e., tem-

poral hemiretina) were detected faster than targets presented to the temporal hemifield (i.e.,

nasal hemiretina) of that eye.

The main effect of Sound was also significant, F(1.16, 30.1) = 9.55, p = .003, ηp
2 = .27.

Bonferroni-adjusted post-hoc tests (three comparisons) indicated that targets combined

with a sound (high pitch tone M = 1088 ms, 95% CI [993, 1191]; low pitch tone M = 1098

ms, 95% CI [1002, 1204]) broke through suppression faster than no-sound targets

(M = 1161 ms, 95% CI [1053, 1279]; padj = .005 - .027), but the RTs associated with high and

low pitch tones did not differ (padj = .41; Fig 3). Notably, the Sound x Location interaction

did not reach significance, F(4.05, 105) = .59, p = .67, ηp
2 = .022. This finding suggests that

tone pitch-elevation compatibility did not facilitate the detection of suppressed visual tar-

gets during dichoptic stimulation. However, the Sound x Order interaction, F(1.16, 30.1) =

Fig 3. Effects of location and sound cue on the detection of suppressed visual targets. Mean b-CFS RTs for targets

presented at four display quadrants when associated with high pitch tone, low pitch tone, or presented without a

sound. Error bars represent the standard errors of the mean. � p< .05, �� p< .01, ��� p< .001.

https://doi.org/10.1371/journal.pone.0199962.g003
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67.4, p < .001, ηp
2 = .73, indicated that the presence of auditory tones influenced learning

during the experiment (Fig 5). The first b-CFS block always resulted in the longest RTs,

independent of the presence of auditory tones, which suggests that the subjects became

more proficient with the task over the course of the trials. Interestingly, RTs for sound-asso-

ciated visual targets varied much less with trial iteration than RTs for non-sound targets, as

the latter were slow in early trials but notably faster at the end of the experiment. This find-

ing suggests that simple sounds associated with visual targets facilitated learning in the b-

CFS task. No significant main effects were found for Eye, F(1, 26) = 3.18, p = .086, ηp
2 = .11;

Dominance; F(1, 26) = .041, p = .84, ηp
2 = .002; or Order, F(1, 26) = 1.84, p = .19, ηp

2 = .07.

All other interactions were also non-significant, F� 3.18, p� .09, ηp
2� .11.

Discussion

To characterize visual field asymmetries for target detection during dichoptic viewing, we

compared the b-CFS times for targets presented in the upper or lower, left or right, and nasal

or temporal hemifield of each eye. Whether the detection process was modulated by simple

auditory tones whose pitch (i.e., high or low) was or was not compatible with the vertical loca-

tion of the targets (i.e., upper or lower visual field) was also explored. The results demonstrated

that visual targets broke suppression faster when presented in the upper rather than lower

visual field and faster in the nasal rather than temporal hemifield of the eye. The symmetric

performance for targets in the left and right visual fields indicated that results were not con-

founded by factors such as strategic scanning [21] or spatial frequency content [3,18], as these

factors were expected to bias performance along the horizontal dimension of space.

Fig 4. Location x eye interaction in the detection of suppressed visual targets. Mean b-CFS RTs for targets at four

display locations in the left and right eye. Error bars represent the standard errors of the mean. �� p< .01, ��� p< .001.

https://doi.org/10.1371/journal.pone.0199962.g004
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Furthermore, simple auditory tones generally increased the speed of detection of suppressed

visual targets, but tone pitch-target elevation congruency did not improve performance fur-

ther. These findings suggest that visual processing during dichoptic viewing differs from stan-

dard viewing conditions with respect to perceptual biases and the crossmodal modulation of

visual processing.

Nasal hemifield bias and upward bias in b-CFS

The nasal hemifield bias in the b-CFS task contradicts the temporal hemifield bias that is char-

acteristic of performance under standard viewing conditions [9–11]. However, the bias is in

line with previous dichoptic stimulation studies that have demonstrated a nasal hemifield bias

in dominance durations during binocular rivalry [30,31]. Chen and He [30] and Kaushall [31]

suggested that this specific bias could reflect the altered dominance of crossed and uncrossed

visual processing pathways during dichoptic stimulation. In normal binocular viewing, each

hemifield is projected onto the nasal hemiretina of the ipsilateral eye and the temporal hemire-

tina of the contralateral eye (Fig 1). Both hemispheres thus receive information from the right

and left visual fields. However, when the two eyes’ visual fields are separated, as in dichoptic

viewing, each hemifield (of a given eye) is projected onto only one hemiretina and one hemi-

sphere. In this case, the nasal hemifield of an eye (i.e., the temporal hemiretina) with an

uncrossed connection to the ipsilateral hemisphere dominates perception over the temporal

hemifield of that eye (i.e., the nasal hemiretina) with a crossed connection to the contralateral

side. The nasal hemifield bias could thus result from the dominance of the uncrossed visual

pathway over the crossed visual pathway under the specific case of dichoptic viewing [30,31].

Based on this interpretation, cortical connections that take place after the initial stimulus

encoding play a greater role in defining visual performance biases in dichoptic viewing than

Fig 5. Sound-associated learning in the b-CFS task. Mean b-CFS RTs for three stimulus blocks (in order of

presentation). Visual targets were combined with auditory tones in two of the blocks (open squares) and presented

without sounds in one block (filled circles). The blocks were carried out in one of two orders so that the no-sound

block was either the first block (solid line, n = 15) or last block (dashed line; n = 15) of the sequence. The presence of

sounds was associated with an increased learning rate during the course of the experiment.

https://doi.org/10.1371/journal.pone.0199962.g005
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the biased representation of the visual field in the retina and subcortical structures [22,23,29],

which in turn, are supposed to be responsible for the temporal bias under standard viewing

conditions. By demonstrating that the nasal hemifield bias is not limited to the binocular

rivalry paradigm but that it also occurs for the strong interocular suppression induced by the

CFS, the present study provides further support for this spatial asymmetry pattern, which is

specific to dichoptic viewing.

Similarly, the upward bias in target detection during the b-CFS task contradicts the findings

from the discrimination and localization tasks carried out in non-dichoptic viewing. Sensitiv-

ity for visual targets in such tasks is typically greater in the lower than upper visual field

[5,8,11,12], which corresponds with the anatomical asymmetries in the retina and geniculate

areas [22–24]. Instead of this early perceptual asymmetry, the upward bias is consistent with

the vertical bias typically obtained in visual search tasks that require higher-order perceptual

and attentional processing [6,7,27,28]. The b-CFS task employed in the present study might

thus have operated as a dichoptic version of visual search, in which the dynamic noise mask

presented to one distracted bottom-up driven processes related to the detection of the target

presented to the other eye, thus requiring an increased top-down search for the target. In other

words, given that people tend to orient their spatial attention towards the upper rather than

lower visual field [6,7], it is possible that the current task boosted top-down attention toward

the upper space before the target reached a threshold for conscious perception. This tendency

might have led to faster responses for targets presented higher in the visual field in the present

b-CFS task. Correspondingly, Kanai et al. [57] utilized a CFS task to demonstrate that the neu-

ral representation of suppressed visual stimuli can be modulated by top-down attention guid-

ance. In support of our results, their findings suggested that attentional factors may contribute

to the processing of visual stimuli, even in the absence of, or prior to, conscious perception

[57].

However, one methodological constraint must be considered when generalizing the present

results. From the RTs obtained in b-CFS experiments, one cannot separate the unconscious

suppression phase that precedes target detection and the conscious reaction phase that follows

target detection [42,58]. Faster responses to targets at certain locations of the visual field might

therefore result from enhanced processing in either of these phases. Whereas the present

results convincingly show that the upper nasal hemifield location speeds up the detection of

visual targets during dichoptic stimulation, further investigation with other CFS techniques is

needed to tease apart the effects of the pre and post perceptual processing phases and validate

the prevalence of the upper nasal hemifield bias in other types of dichoptic stimulation tasks.

Auditory facilitation of visual processing during CFS

Simple sounds combined with target occurrences reduced the time required for target detec-

tion during CFS, showing an advantage of approximately 130 ms over non-sound targets.

However, no support for a crossmodal pitch-elevation compatibility effect was found, as high

and low pitch tones similarly affected the RTs in the upper and lower visual field. This finding

suggests that pitch-elevation mapping, which facilitates visual processing under standard view-

ing conditions [34,36–38], cannot be utilized in the processing of suppressed targets under

dichoptic viewing.

In contrast to the present finding, some previous b-CFS studies have indicated that there

are faster responses to suppressed visual targets compatible with simultaneously presented

auditory stimuli [43,44]. Alsius and Munhall [43] found that a suppressed talking face video

broke through suppression faster when combined with a voice speaking a sentence that

matched (rather than mismatched) the lip movements of the talking face. Furthermore, Yang
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and Yeh [44] showed that discrete sound signals increased the speed of detection of suppressed

visual targets when the sound was spatially congruent with the target (i.e., presented at the

same depth plane via loudspeakers), but not when the sound was incongruent (i.e., presented

at different depth plane via headphones). The most likely explanation for the discrepancy

between the results of these studies, indicating crossmodal integration under CFS, and ours,

showing no crossmodal congruency effect, is the type of audiovisual stimuli employed in the

experiments. A talking face is a naturalistic stimulus that people are continuously exposed to

and whose perception and understanding strongly depends on the quality of the audio-visual

integration. This integration might therefore operate even between a suprathreshold auditory

stimulus and preconsciously processed visual signal during CFS [43]. The spatial compatibility

of a suppressed visual target to a suprathreshold auditory tone might similarly enable audio-

visual integration at an early preconscious level [44]. By contrast, the pitch-elevation compati-

bility effect and other crossmodal effects based on the associative-semantic integration of

abstract audio-visual features (see [34]) might require conscious processing of stimuli and

hence not be easily observed in CFS tasks.

One could ask whether a larger spatial separation between targets in the upper and lower

halves of the visual field might have amplified the pitch-elevation congruency effect. The dis-

tance between upper and lower targets (6.5. deg center-to-center distance) was adjusted here

to ensure that a target breaking through suppression at either location could be detected while

keeping the eyes at the center fixation cross; otherwise, the detection performance would have

been confounded by eye movements. The study by Evans and Treisman [37] demonstrated

that under standard viewing conditions, even a small spatial separation between upper and

lower targets (6 deg) created a pitch-elevation congruency effect. It should be noted, however,

that the results of the two studies are not necessarily fully comparable, as performance under

standard viewing conditions is based on supraliminal perception, whereas both subliminal and

supraliminal processes were likely involved in the present b-CFS task.

Similar to our findings, a study by Moors et al. [46] found no evidence of the influence of

congruent auditory tones on the detection of visual looming targets that were suppressed from

view with CFS. By measuring the contrast thresholds for target detection, the researchers

showed that visual looming stimuli resulted in lower thresholds than a simple static grating,

but auditory tone pips that were matched with the cycle of the looming stimulus did not fur-

ther enhance performance. Based on their results, Moors et al. [46] concluded that certain

forms of multisensory integration are not evident when the visual stimulus is suppressed from

awareness. In the same vein, the lack of a pitch-elevation effect in the present study suggests

that CFS, or dichoptic viewing in general, might limit the access of visual stimuli to the pro-

cessing levels at which the binding of associative crossmodal information could occur. As a

consequence, observers were able to benefit from sounds used as general detection cues for

suppressed visual targets, but the subtler elements of crossmodal stimuli, such as pitch-eleva-

tion compatibility, could not be utilized.

It should be noted that the pitch-elevation congruency effect might have been diluted by

non-optimal timing between the visual and auditory stimuli. Auditory tones were delivered

400 ms after visual target onset, at which point the target, gradually increasing in contrast,

reached the 10% contrast level. This level was selected based on a pilot study, as most subjects

were able to detect the target at this point. However, because of the simultaneity of stimulus

presentation, a prerequisite for crossmodal integration to occur [32], could not be unequivo-

cally determined by the combination of the subliminal visual targets and supraliminal discrete

sounds, further studies should be carried out to clarify whether jittering the presentation time

of the auditory stimulus or individually adjusting the stimulus timing would better support the

crossmodal binding of associative audiovisual stimuli under dichoptic stimulation.
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Nevertheless, as already stated, we found an RT advantage in sound-present trials independent

of the target location and tone pitch. This finding is in line with previous studies that showed that

sound stimuli can either enhance the processing of all visual stimuli [59] or act as warning signals

for a change to occur in the visual field [60,61]. In other words, any co-occurring sound might

have increased the saliency of a visual target within its dynamic background or improved the

observer’s alertness by signaling the presence of a target before its detection, which might, in

turn, also impair the observation of any potential audiovisual correspondence effects.

Interestingly, it appears that auditory stimuli played another important role, as the presence

of sounds sped up learning during the course of the experiment. Observers who first ran b-

CFS blocks containing auditory stimuli demonstrated shorter overall RTs than observers who

first ran b-CFS blocks without auditory stimuli. The former group of observers showed faster

target detection in the no-sound block presented after the sound-present blocks. These find-

ings are consistent with previous research showing that multisensory stimulation facilitates

visual learning [62], and such enhancements may emerge even within a single experimental

session [63]. As such, the present results add to previous knowledge by showing that multisen-

sory learning may also occur under dichoptic stimulation.

Practical implications

Because dichoptic stimulation techniques are increasingly utilized as a means to manipulate

visual awareness for various research purposes, understanding the visual asymmetry character-

istics of dichoptic viewing are also of practical relevance. The upper nasal hemifield bias found

in the present study calls for careful consideration of location-related effects and design fea-

tures, particularly in CFS experiments, as the target location in such experiments is often

employed as a response criterion [17,44,47,64,65]. Therefore, knowledge of the specific biases

characteristic of dichoptic stimulation helps one to control unwanted locational effects and

reduce their impact on the interpretation of results.

Furthermore, the findings are of practical value for novel display devices, such as monocu-

lar head-mounted displays (HMDs) that present display information to one eye while the

other eye views the surrounding environment. Binocular rivalry is a common concern in these

devices, and uncontrollable perceptual alternation between the two eyes’ views can compro-

mise the user’s performance in any ongoing task [66–68]. Positioning the display in the user’s

visual field so that the most critical information for a given task is available in the upper nasal

visual field could alleviate rivalry alternation. Finally, based on our findings, crossmodal audi-

tory cueing provides a potential means to influence visual target detection during dichoptic

viewing.

Conclusions

Suppressed visual targets during dichoptic viewing are most quickly detected when presented

in the upper nasal hemifield of the eye. The target detection process can also be sped up by

concurrent auditory tones, which seem to facilitate performance independent of the target

location or associative tone pitch-target location congruency. These findings suggest that the

processing of visual information under interocular suppression differs from that under stan-

dard viewing conditions in terms of location-based perceptual biases and crossmodal modula-

tion of visual perception.
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