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ABSTRACT 

The aim of this dissertation was to investigate the use of computer 
vision for tissue characterization and patient outcome prediction in 
cancer. This work focused on analysis of digitized tissue specimens, 
which were stained only for basic morphology (i.e. hematoxylin and 
eosin). The applicability of texture analysis and convolutional neural 
networks was evaluated for detection of biologically and clinically 
relevant features. Moreover, novel approaches to guide ground-truth 
annotation and outcome-supervised learning for prediction of patient 
survival directly from the tumor tissue images without expert 
guidance was investigated. 

We first studied quantification of tumor viability through 
segmentation of necrotic and viable tissue compartments. We 
developed a regional texture analysis method, which was trained and 
tested on whole sections of mouse xenograft models of human lung 
cancer. Our experiments showed that the proposed segmentation was 
able to discriminate between viable and non-viable tissue regions with 
high accuracy when compared to human expert assessment. 

We next investigated the feasibility of pre-trained convolutional 
neural networks in analysis of breast cancer tissue, aiming to quantify 
tumor-infiltrating lymphocytes in the specimens. Interestingly, our 
results showed that pre-trained convolutional neural networks can be 
adapted for analysis of histological image data, outperforming texture 
analysis. The results also indicated that the computerized assessment 
was on par with pathologist assessments. Moreover, the study 
presented an image annotation technique guided by specific antibody 
staining for improved ground-truth labeling. 

Direct outcome prediction in breast cancer was then studied using 
a nationwide patient cohort. A computerized pipeline, which 
incorporated orderless feature aggregation and convolutional image 
descriptors for outcome-supervised classification, resulted in a risk 
grouping that was predictive of both disease-specific and overall 
survival. Surprisingly, further analysis suggested that the 
computerized risk prediction was also an independent prognostic 
factor that provided information complementary to the standard 
clinicopathological factors. 
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This doctoral thesis demonstrated how computer-vision methods 
can be powerful tools in analysis of cancer tissue samples, highlighting 
strategies for supervised characterization of tissue entities and an 
approach for identification of novel prognostic morphological 
features. 
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1 INTRODUCTION 

Despite improved understanding of the molecular characteristics of 
cancer, histological analysis of tumor specimens continues to have a 
key role in diagnosis and outcome prediction of cancer. For instance, 
a pathologist’s evaluation of tumor morphology and series of tissue 
entities have an important role in determining what treatment options 
are best suited for a patient, and what is the likelihood that the disease 
will return. However, manual histological evaluation of cancer tissue 
is poorly reproducible and only semi-quantitative (Vestjens et al., 
2012). Moreover, the evaluations are often time-consuming and labor-
intensive. 

Recent technological advances in digital pathology have allowed 
large-scale and high-precision digitization of tissue specimens 
(Pantanowitz et al., 2011). In parallel, computer vision, supplemented 
with machine learning, has enabled unprecedented accuracy for 
mining information in images (LeCun et al., 2015). Thereby, 
computer-vision methods are increasingly adapted to histological 
analysis of cancer tissue. These novel methods have the potential to 
enable more quantitative and reproducible analysis of tissue 
specimens (Djuric et al., 2017). In addition, computerized analysis of 
cancer tissue specimens may lower the pathologists’ workload and 
thus decrease time needed for diagnosis. 

To develop and identify computer vision methods that can be 
utilized in analysis of histological cancer specimens, we studied tissue 
characterization and patient outcome prediction. Tumor tissue is 
composed of various entities that hold clinically important 
information on the disease. We studied computerized quantification 
of two tumor entities, namely necrosis and tumor-infiltrating 
lymphocytes. Furthermore, computerized methods may be capable of 
discovering novel risk groups in large patient cohorts. To this end, we 
investigated direct outcome prediction using cancer tissue images as 
an input and patient survival data as the endpoint. 
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2 REVIEW OF THE LITERATURE 

2.1 Cancer histopathology 

Histopathology (or histology) of cancer is the study of tumor tissue 
through a light microscope (Weinberg, 2007). Histologic evaluation of 
tumor tissue regularly serves as the gold standard for cancer diagnosis 
and is one of the principal determinants in patient outcome prediction 
and therapeutic decision making (Chan, 2014).  

2.1.1 Histological assessments 

Histological assessment of a tumor tissue facilitates patient 
stratification into subtypes based on the specimens’ morphological 
features and biomarker expression status. Histological grade and type 
are the principal measurements of morphological features, whereas 
immunohistochemistry (IHC) is used for assessment of specific 
biomarkers. (Fletcher, 2013) 

Histological grade is a measurement of tumor differentiation and 
is assessed from hematoxylin and eosin (H&E)-stained tumor 
specimens. Low  grade indicates that a tumor is well differentiated, or 
that the cells and tissue structures resemble the cells and structures in 
normal, non-cancerous tissue (Elston & Ellis, 1991; Epstein et al., 
2016). Higher grade tumors are less differentiated and they differ 
more from normal tissue morphology. In general, higher grade tumors 
are more aggressive and are likely to metastasize. Accordingly, 
patients with higher grade tumors have a less favorable prognosis 
(Meyer et al., 2005; Sun et al., 2006). Depending on the cancer type, 
attributes of different tissue entities are considered in grading. For 
instance, in prostate cancer the grading is based on the Gleason score 
that evaluates tumor histologic patterns (Epstein et al., 2016). On the 
other hand, three well-defined tissue entities (i.e. tubular 
differentiation, nuclear pleomorphism, and mitotic count) are 
considered in breast cancer (Elston & Ellis, 1991). 

Histological tumor type is likewise assessed from H&E-stained 
tissue and is a classification based on which tissue the cancer 
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originates from. The majority of cancers are classified as carcinomas, 
indicating that the cancer cells originated from epithelial tissue 
(Weinberg, 2007). Moreover, morphological features such as growth 
patterns and structures that cancer cells form facilitate more detailed 
histological subtyping. The presence of entities such as necrosis, 
immune cells, vessels, and amount and features of stroma contribute 
to the histological type. Tumors present highly heterogeneous 
histologies and may be mixtures of known types. For example, the 
WHO classification of breast tumors describes at least 17 different 
histological subtypes with distinctive features (Tavassoéli & Devilee, 
2003). 

By definition, biomarkers are measurements that indicate a state 
of a disease (Strimbu & Tavel, 2010). In histological analysis of cancer, 
this usually refers to detection of proteins or amino acids that are 
either predictive or prognostic using IHC (Matos et al., 2010). A 
predictive biomarker is a measurement that has an association with 
patient response to a specific treatment, whereas a prognostic factor 
is associated with patient outcome regardless of therapy (Oldenhuis et 
al., 2008). For instance, in breast cancer steroid hormone receptors 
are important biomarkers and are therefore assessed for complete 
diagnosis to support histological grade and type (Nicolini et al., 2017). 

2.1.2 Tissue preparation 

To prevent tissue degradation and to preserve the morphological and 
molecular composition, the removed tissue specimens require specific 
preparation. The first step in tissue preparation is chemical fixation 
by immersing the tissue in a formaldehyde solution (also known as 
formalin). The tissue specimens are next dehydrated in a series of 
alcohol baths and cleared with xylene, after which they are infiltrated 
and embedded in paraffin. Finally, the formalin-fixed, paraffin-
embedded (FFPE) specimen block is cut with a microtome into thin 
sections (3-7 µm) that are mounted onto glass microscope slides. 
(Junqueira & Carneiro, 2005). 

Tissue microarray (TMA) is a technique for constructing multi-
specimen paraffin blocks (Kononen et al., 1998). Needle biopsies (0.6-
1.0 mm) are punched from prepared FFPE blocks and transferred to a 
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recipient block in an array pattern. TMAs allow for simultaneous 
analysis of up to 1,000 individual patients.   

2.1.3 Staining 

A thin tissue section is nearly transparent and therefore different 
staining methods are used to provide contrast for the morphological 
structures or to highlight specific entities, such as proteins (Weinberg, 
2007). 

H&E has been the principal staining in histology for over a century 
(Chan, 2014). This staining highlights the details of tissues and cells 
and provides the contrast required for visual or computerized 
interpretation. Hematoxylin colors the basophilic tissue components 
(such as cell nuclei) dark blue to violet, whereas eosin provides varied 
shades of red, pink, and orange to the cytoplasm and extracellular 
proteins (Chan, 2014).  

IHC is a technique based on an antigen-antibody reaction that is 
used to visualize and localize specific macromolecules (such as 
proteins and amino acids) within tissues (Coons et al., 1941). The 
antigen-antibody binding reaction is visualized with a chromogenic or 
a fluorescent staining method and detected with a microscope. IHC 
technologies allow for subcellular detection of target molecules and 
can be therefore utilized for visualizing individual cells or cell 
populations of interest. 

2.2 Studied histological assessments 

2.2.1 Tumor necrosis 

Necrosis describes cell death that is usually caused by external factors 
such as trauma or extreme conditions (Robbins et al., 2010). Contrary 
to necrosis, apoptosis is a highly regulated process of cell death 
(Green, 2011). There is no specific marker for necrotic tissue regions 
and currently the assessment is based on histological evaluation of 
H&E-stained tissue (Robbins et al., 2010). 

Among cancers, necrosis has an important role in histological 
classification and is generally associated with poor prognosis. For 
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instance, in lung (Swinson et al., 2002), colorectal (Pollheimer et al., 
2010), and thyroid carcinoma (Caruso et al., 2011), tumor necrosis has 
been shown to correlate with shorter survival times. Generally, the 
presence of necrosis is a sign of aggressive disease and is a  result of 
local hypoxia within a tumor (Hockel & Vaupel, 2001). However, in 
some tumors, necrosis can be also an indication of patient response to 
neoadjuvant therapy (Vaynrub et al., 2015).  

In preclinical cancer research on tumor models, tumor necrosis is 
commonly used as a metric of treatment effectiveness when 
investigating anticancer agents. Furthermore, tumor necrosis may 
serve as a metric of quality of archived specimens in biobanks (Muley 
et al., 2012). 

2.2.2 Tumor-infiltrating lymphocytes 

Accumulating evidence suggests that the host immune system may 
have a key role in combatting cancer cells through anti-tumor 
immunity (Luen et al., 2017). Tumor-infiltrating lymphocytes (TILs) 
are mononuclear leukocytes that surround and infiltrate tumors and 
are considered as a potential biomarker of immunogenicity.  

TILs are usually composed of a heterogeneous mixture of different 
leukocyte subtypes that can be identified with IHC (Ruffell et al., 
2012). However, histological assessment of the total amount of TILs 
in H&E-stained tumor specimens is the most common method of 
detection  (Savas et al., 2015).  

The abundance of TILs is often associated with a more favorable 
prognosis in different cancers (Fridman et al., 2017). The first 
evidence of the positive correlation between a high degree of TILs and 
favorable prognosis was reported in breast cancer (Sistrunk & 
Maccarty, 1922). In addition to breast cancer, ample evidence suggests 
an association of TILs and longer survival in ovarian cancer 
(Santoiemma & Powell, 2015) and melanoma (Lee & Margolin, 2012). 
In addition, findings in breast cancer suggest that TILs might be an 
important marker for selecting patients for immunotherapies (Loi et 
al., 2014). 
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2.2.3 Breast cancer outcome prediction 

Histological examination has a significant role in prognostication of 
breast cancer patients. Histological grade and type, expression status 
of cell receptors, and dissemination of cancer cells to axillary lymph 
nodes are all based on histologic analysis and are among the most 
important prognostic factors (Tavassoéli & Devilee, 2003). 

In breast cancer, histological grade is a three-level classification of 
tumor tissue differentiation that considers specific tissue entities 
(tubular differentiation, nuclear pleomorphism, and mitotic count) 
(Elston & Ellis, 1991). Grade 1 is the lowest grade level (most similar 
to healthy tissue) and has the best prognosis, while grade 3 is the 
highest grade level and is associated with poor prognosis (Rakha et al., 
2008).  

Breast cancer originates from epithelial tissue and results in 
morphologically diverse carcinomas with differential survival profiles. 
The most important histological types of breast tumors include in situ 
carcinomas, invasive ductal carcinoma, invasive lobular carcinoma, 
and carcinoma of special type (Fritz et al., 2010). 

Estrogen receptor (ER), progesterone receptor (PR), and human 
epidermal growth factor 2 receptor (HER2) are cell receptors that are 
regularly assessed by IHC for diagnosis and prognosis. Patients with 
tumors that express ER, PR hormone receptors usually have a more 
favorable prognosis (Li et al., 2003). HER2 is a protein that is often 
overexpressed in aggressive disease but is expressed at only low levels 
in normal breast tissue (Hoff et al., 2002). Tumors are classified as 
either negative or positive with regards to the expression status of 
these receptors. Patients with tumors that are negative for all these 
three receptors (triple-negative breast cancer) have a poor prognosis 
(Carey et al., 2006). 

Furthermore, the extent of breast cancer spread is assessed by 
histological examination of axillary lymph nodes. Disease with lymph 
node involvement is associated with rapid tumor growth and is one of 
the strongest prognostic factors (Toikkanen & Joensuu, 1990). 
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2.3 Digital pathology 

Digital pathology is an interdisciplinary field at the intersection of 
pathology and digital technologies (Griffin & Treanor, 2017). 
Digitization of histological specimens into digital image format is the 
key component in digital pathology. High-resolution whole-slide 
scanners enable accurate digitalization of histological specimens with 
sub-micrometer resolution into whole-slide images (WSIs) 
(Pantanowitz et al., 2011). During the last two decades, digital 
pathology has created a new ecosystem around WSIs, which aims to 
improve conventional pathology workflows. These improved 
workflows allow for more efficient solutions to manage and share 
samples and also offer novel opportunities to advance interpretation 
of the histological specimens. 

Digital pathology is still a young field and various naming 
conventions have been used in the literature. Influenced by digital 
mammography, early studies used the term computer-aided 
diagnosis (CAD) broadly for digital pathology applications concerning 
image analysis. The term telepathology (practice of pathology at a 
distance) largely overlaps with modern digital pathology applications 
that aim for improved sharing of digitized tissue sections. Closely 
related to telepathology, virtual microscopy has also been used for 
data sharing, educational applications, and WSI management 
solutions. Furthermore, the term computational pathology is 
frequently used in the literature for computerized analysis 
applications.  

2.3.1 Components of digital pathology 

There are five main components in digital pathology, namely 
digitization, new interface, data sharing, data management, and 
computerized analysis.  

Digitization: A whole-slide scanner takes a glass slide with a 
prepared specimen as an input and transforms it into digital format 
(i.e. WSIs) (Pantanowitz et al., 2011). Briefly, a slide scanner is 
composed of a microscope connected to a light-sensitive sensor and 
robotics are responsible for moving the glass slides, focusing, and 
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changing objectives. The resulting WSIs are constructed of several 
individual images, each capturing a field of view (FOV), which are 
subsequently stitched together. Depending on the objective used, a 
modern slide scanner is capable of digitizing a large specimen in only 
a couple of minutes1. Commonly, objectives with 5´, 10´, 20´, and 40´ 
magnification are used. 

New interface: Digitization of histological specimens allow for 
viewing the WSIs on displays and computer screens instead of 
examining them through the microscope eyepiece. The new interface 
can result in reduced time requirements and improved ergonomics 
(Thorstenson et al., 2014; Vodovnik, 2016). Furthermore, WSIs allow 
for a larger viewing field when compared with traditional 
microscopes. Although this new way of interacting with the slides 
differs considerably from the traditional technique, several studies 
have confirmed the value of digital pathology for diagnostic pathology 
in routine pathology (Bauer & Slaw, 2014; Snead et al., 2016; 
Stathonikos et al., 2013; Vodovnik, 2016). However, digitization can 
produce imaging artefacts such as incomplete scanning and out-of-
focus issues and therefore quality verification is required (Al-Janabi 
et al., 2012). 

Data sharing: In addition to the novel interface, digitization 
enables easy sharing of WSIs. Unlike glass slides, digitized samples 
can be shared and accessed almost immediately throughout the world 
via the Internet (Farahani & Pantanowitz, 2015). Example usages of  
WSI sharing include education, research, remote work, and 
consultation (Al Habeeb et al., 2012; Rocha et al., 2009). For example, 
scanned samples can be shared with pathologists who are experts in 
their subfield for second opinion consultation.  

Data management: Another benefit of digital pathology is 
improved archiving of samples (i.e. data management). Redundant 
digital storage technologies can be utilized in backing up WSI 
collections (Bhargava & Madabhushi, 2016). Additionally, querying a 
sample from a digital database is more convenient when compared 
with retrieving a slide from a pathology archive. However, high-
resolution digitization of specimens will result in WSIs of large size 

                                                
1 https://scanner-contest.charite.de/en/results/ 
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whose dimensions can surpass 100 000 pixels. Therefore, scanning 
large collections of samples will lead to substantial storage 
requirements (Hamilton et al., 2014). 

Computerized analysis: Digitization of glass slides has opened 
up new opportunities for assessing samples through computerized 
analysis (Madabhushi & Lee, 2016). The same computer vision 
algorithms that are successfully applied in solving complex object 
recognition and image analysis problems can now be integrated into 
analysis of WSIs. Computer vision analysis of WSIs can facilitate 
disease diagnosis, for example by automatically detecting entities of 
interest, such as mitoses (Veta et al., 2015) and immune cells 
(Janowczyk & Madabhushi, 2016) or even determining tumor grade 
(Awan et al., 2017).  

2.4 Computer vision in analysis of cancer 
histology 

Computer vision refers to the broad field of computational methods 
that are used to mimic or even supersede humans’ ability to process 
and understand visual information in digital images. Computer-vision 
methods include algorithms from image processing, image analysis, 
and machine learning (Klette, 2014). 

Computer-vision methods have proven their utility in analysis of 
multifaceted medical imaging data. For instance, recent studies 
demonstrated the applicability of computer vision in automated 
screening for diabetic retinopathy (Gulshan et al., 2016) and 
classification of skin lesions (Esteva et al., 2017). Rapid technological 
advances in both data-storage solutions and computational resources 
have increased the adaptation of digital pathology workflows, 
resulting into more frequent digitization of histological tissue 
specimens. This has subsequently led to increased interest towards 
the adaptation of computer vision and machine-learning methods for 
analysis of cancer histology. 

Histopathological analysis offers a versatile and complex 
environment for computer-vision solutions. Challenges vary from 
technical aspects, such as color normalization (Khan et al., 2014), to 
high-level efforts in mining and linking visual information to patient 
outcome (Beck et al., 2011). H&E is the principal stain for histology 
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and thus a large portion of computer-vision analysis, such as in this 
thesis, is focused on analysis of H&E-stained tissue sections. 
Nevertheless, a large number of studies has investigated the 
quantification of IHC (Sheikhzadeh et al., 2018; Tuominen et al., 
2010). 

Computer-vision applications of tissue specimens stained for H&E 
can be divided into the following three separate levels depending on 
the scale of the entity of interest: cell, region, and sample level. Cells 
are the fundamental building blocks of tissue and therefore 
computerized analysis of cells and nuclei has been of a major interest 
(Al-Kofahi et al., 2010; Xu et al., 2016). In particular, detection of 
proliferating cells has gained considerable attention due to the 
prognostic role in different cancer types (Veta et al., 2015). Moreover, 
increased interest and understanding of the role of immune cells has 
resulted in studies aiming to quantify TILs in tumor samples stained 
for H&E (Fatakdawala et al., 2010; Janowczyk & Madabhushi, 2016). 

Region-level analysis covers another set of fundamental entities of 
cancer histopathology. Segmentation and classification of benign or 
cancerous tissue structures have been studied, such as glands in colon 
(Sirinukunwattana et al., 2017), and prostate tissue (Tabesh et al., 
2007), or breast cancer metastases in lymph nodes (Bejnordi et al., 
2017), and stromal tissue (Fouad et al., 2017). In the case of stromal 
tissue, a cellular analysis approach can be challenging when the entity 
of interest is not composed of cells or cells comprise only a small area 
of the tissue entity of interest. Therefore, segmentation of a specimen 
into homogeneous tissue regions with a regional approach may be 
beneficial. Sliding window or superpixel segmentation are commonly 
used to divide images into regions for subsequent classification. 

Instead of dissecting a tissue specimen into separate entities, 
sample-level analysis aims to automatically categorize the whole 
specimen. Nevertheless, both cell-level and region-level analysis can 
serve as an intermediate step in sample-level analysis. A common 
example of sample-level analysis is computerized grading. Automated 
tumor grading has been studied broadly in different cancer types, such 
as breast (Basavanhally et al., 2013), prostate (Jafari-Khouzani & 
Soltanian-Zadeh, 2003), and glioma (Ertosun & Rubin, 2015). 
Although tumor grading is of prognostic value, computerized analysis 
is not strictly limited to follow grading for prognostication. Large 
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patient cohorts allow for systematic analysis of morphological features 
in multi-parametric fashion, which may be used to directly predict 
patient prognosis without introducing intermediate proxies such as 
grade. Promising results from such an approach have been 
demonstrated in lung (Yu et al., 2016) and breast cancer (Beck et al., 
2011).  

Several thorough summaries of computer-vision applications for 
analysis of digitized histological specimens have been published 
(Bhargava & Madabhushi, 2016; J.-M. Chen et al., 2017; Gurcan et al., 
2009; Litjens et al., 2017; Robertson et al., 2017; Veta et al., 2014). 

2.4.1 Texture analysis 

Texture analysis has been a common approach for computerized 
analysis of histological specimens. Entities present in specimens often 
lack clear boundaries and homogeneous content (such as objects in 
regular photographs). Popular texture descriptors in histological 
analysis include local binary patterns (LBPs) (Pietikäinen et al., 2011), 
grey-level co-occurrence matrix (GLCM) (Haralick et al., 1973), and 
Gabor filters (Fogel & Sagi, 1989). A study using texture descriptors 
proposed a segmentation into epithelial and stromal tissue structures 
in TMAs of colorectal tumor specimens (Linder et al., 2012). Similarly, 
texture analysis was used for stroma-epithelium segmentation in 
breast and ovarian cancer  (Signolle et al., 2008, 2010). Another study 
in colorectal cancer proposed multiclass classification for segmenting 
specimens into seven different tissue entities and backgrounds 
(Kather et al., 2016).  

2.4.2 Deep learning 

During the last 5 years, use of deep learning in computerized analysis 
of histological specimens has become increasingly popular 
(Janowczyk & Madabhushi, 2016). This is due to the significant 
impact deep learning has had in visual object recognition, speech 
recognition, and in many other data domains (LeCun et al., 2015). 
Deep learning is a group of machine-learning methods that learn 
hierarchical data representations in increasing abstraction levels 
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(Schmidhuber, 2015). Recently, deep learning was adapted for 
detection of breast cancer cells in axillary lymph nodes (Bejnordi et 
al., 2017). In addition, the feasibility of deep learning has been 
demonstrated broadly in different tasks, including cell detection and 
classification (Cireşan et al., 2013; H. Wang et al., 2014); in regional 
analysis such as segmentation of epithelial tissue (H. Chen et al., 2017; 
Xu et al., 2016); and in tumor grading (Ertosun & Rubin, 2015). 
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3 AIMS OF THE STUDY 

The overall aim of this doctoral thesis was to investigate the utility of 
computer vision in characterization of tumor tissue and outcome 
prediction through analysis of digitized H&E-stained specimens. 
 
Specifically, the aims were to: 

 
1. Develop a method for quantification of tumor viability in 

lung cancer xenografts. 
 

2. Develop a method for quantification of infiltrating immune 
cells in breast cancer. 

 
3. Study computerized patient outcome prediction in breast 

cancer.  
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4 MATERIALS AND METHODS 

4.1 Study specimens 

4.1.1 Lung cancer xenograft WSI cohort (I) 

In Study I, we investigated tumor viability assessment in a cohort of 
72 tumor sections of human non-small cell lung cancer (NSCLC) 
mouse xenografts. Human NSCLC adenocarcinoma cells (NCIH460-
LNM3512) were implanted subcutaneously into mice. Once the largest 
tumor diameter reached 19 mm in length, the mice were sacrificed and 
the primary tumors were excised, cut into halves and fixed with 4% 
paraformaldehyde. The paraffin-embedded tumor tissues were cut 
into sections of 5 to 7 µm and then stained with H&E. A total of 72 
WSIs were scanned. After an image quality check, a subset of 56 WSIs 
with minimal out-of-focus areas were chosen for further analysis. 

The mice were maintained in the Meilahti Experimental Animal 
Center according to Institutional Animal Care and Use Committee of 
the University of Helsinki and Institutional Review Board guidelines. 
The study protocol was approved by The National Animal Experiment 
Board of Finland (permit number ESAVI/6492/04.10.03/2012). 

4.1.2 Breast cancer WSI cohort (II) 

In Study II, FFPE tumor samples from 20 breast cancer patients were 
used to investigate computerized quantification of infiltrating 
immune cells. The patients (Table 1) were operated for primary 
breast cancer within the Hospital District of Helsinki and Uusimaa, 
Finland. The samples were anonymized and all patient-related data 
and unique identifiers were removed. Therefore, the study did not 
require ethical approval in compliance with Finnish legislation 
regulating human tissues obtained for diagnostic purposes (act on the 
use of human organs and tissue for medical purposes 
2.2.2001/101). The Head of the Division of Pathology and Genetics 
approved of the use of the samples. From each FFPE block, two 3.5-
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µm thick consecutive sections were cut and stained with H&E and for 
CD45. 

 
Table 1. Patient characteristics of the breast cancer WSI cohort 

Patient characteristics N % 

Histological type   
   Ductal carcinoma 13 65 
   Lobular carcinoma 3 15 
   Medullary carcinoma 2 10 
   Adenosquamous carcinoma 1 5 
Histological grade   
   Grade I 3 15 
   Grade II 3 15 
   Grade III 14 70 

 

4.1.3 Breast cancer TMA cohort (III) 

For Study III, we pooled two breast cancer patient cohorts with TMA 
samples and the available follow-up information. For the first dataset, 
we identified 2 864 women diagnosed with breast cancer in 1991 and 
1992 using the Finnish Cancer Registry files. The cohort (FinProg 
Breast Cancer Database) is accessible online2. The other cohort 
comprises tissue samples and follow-up information from 527 women 
with invasive ductal breast cancer treated at the Department of 
Surgery and Oncology, Helsinki University Hospital, between January 
1987 and December 1990. Clinical and pathological information 
associated with the patients were extracted from the hospital and 
laboratory records. 

From this pooled patient cohort, we excluded patients with lobular 
or ductal carcinoma in situ, synchronous or metachronous bilateral 
breast cancer, other malignancies (except for basal cell carcinoma or 
cervical carcinoma in situ), distant metastasis, and those who did not 
undergo breast surgery. We included only those patients who had 
specific survival information available, those with available breast 
                                                

2 http://www.finprog.org/ 
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cancer tissue samples, and those who had a digitized TMA spot image 
where the area of tissue was greater than 400 000 pixels. Altogether 
this yielded 1 299 patients with associated TMA samples, clinical 
characteristics, and follow-up information. The patients were 
randomly divided into a separate training set (66%) and test set (33%) 
(Table 2). The median follow-up of patients in the patient cohort alive 
at the end of follow-up period was 15.9 years (range, 15.0-20.9 years). 

Project-specific ethical approval for the use of clinical samples and 
retrieval of clinical data was approved by the local operating ethics 
committee of The Hospital District of Helsinki and Uusimaa (DNo 
94/13/03/02/2012). Approval was also obtained from the National 
Supervisory Authority for Welfare and Health (Valvira) for the use of 
human tissues for research (7717/06.01.03.01/2015). 
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Table 2. Patient characteristics of the training and test sets in the breast cancer 
TMA cohort 

Variables Training set 
(N=868) 

Test set  
(N=431) P-value 

  % N % N   
Number of positive lymph nodes       
   mean 1.4 1.2 0.407 
   0 58 504 59 253 

0.323 
   1-3 24 206 23 99 
   4-9 8 73 9 38 
   >10 3 30 2 7 
   Unknown 6 55 8 34  

Tumor size, per mm         
   mean 23.7 23.2 0.817 
   Unknown 3 28 5 22  

Histological grade           
   Grade I 16 143 19 83 

0.086    Grade II 34 296 36 154 
   Grade III 23 197 18 76 
   Unknown 27 232 27 118  

Histological type           
   Ductal 76 662 77 333 

0.742 
   Lobular/Special 24 206 23 98 
Age, years           
   ≤39 7 63 7 30 

0.353 
   40-49 21 186 24 103 
   50-59 27 234 22 94 
   60-69 20 172 21 91 
   ≥70 25 213 26 113 
ER           
   Negative 29 248 27 116 

0.572 
   Positive 62 538 64 274 
   Unknown 9 82 10 41  

PR           
   Negative 42 362 41 177 

0.803 
   Positive 49 423 50 215 
   Unknown 10 83 9 39  

HER2           
   Negative 72 623 74 321 

0.713 
   Positive 17 146 16 70 
   Unknown 11 99 9 40  
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4.2 Sample digitization 

All the tumor tissue samples used in this thesis were digitized with an 
automated whole-slide scanner (Pannoramic 250 FLASH, 
3DHISTECH, Budapest, Hungary). The scanning was performed with 
a Plan-Apochromat 20× objective (numerical aperture 0.8) and a 
VCC-F52U25CL camera (CIS, Tokyo, Japan) equipped with three (1 
224 × 1 624 pixels) charge-coupled device sensors. The pixel size of 
the sensors is 4.4 × 4.4 µm. In combination with the 20× objective and 
a 1.0 adapter, the image resolution was 0.22 µm/pixels. Images were 
compressed to wavelet file format (Enhanced Compressed Wavelet, 
ECW, ER Mapper, Intergraph, Atlanta, Georgia, USA) with a 
compression ratio of 1:9. The compressed virtual slides were uploaded 
to a WSI management server (WebMicroscope, Fimmic, Helsinki, 
Finland). 

4.3 Image annotation 

In Study I, we annotated 671 single tissue entity images (STEIs) for 
training (N=177) and for testing (N=494) of the tissue entity classifier. 
The STEIs (945 × 945 pixels) were cropped from homogeneous tissue 
regions, representing only one of the tissue entities of interest (viable 
tumor, necrotic tumor, or host tissue). The training set STEIs were 
extracted from four WSIs and the test STEIs were extracted from 23 
WSIs. Furthermore, we manually annotated viable and necrotic tumor 
tissue regions in each of the 52 WSIs that were not used in extraction 
of the training STEIs. An online WSI-management software 
(WebMicroscope, Fimmic, Helsinki, Finland) was used in annotating 
the STEIs. A raster graphics editor (Adobe Photoshop CS6, Adobe 
Systems, Mountain View, California, USA) was used in annotation of 
the WSIs. 

In Study II, we annotated a training set of image regions of various 
size (N=1 116) from 20 WSIs. Four different tissue entities (leukocyte-
rich, epithelial, stromal, and adipose) and background were 
considered. The manual annotation of the H&E-stained WSIs was 
guided with paired and CD45-stained WSIs. Leukocyte-rich tissue 
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regions were identified with the IHC marker. The IHC staining guided 
the selection of the other tissue entities into regions that were negative 
for CD45 expression and therefore did not contain immune cells. The 
training set was annotated with a raster graphics editor (Adobe 
Photoshop CS6, Adobe Systems, Mountain View, California, USA). 
Moreover, we randomly selected 200 images (1 000 × 1 000 pixels) 
from the 20 WSIs (10 random images per WSI). For ground truth, 
three pathologists assessed the proportional amount of each tissue 
entity of interest within the test images.  

In Study III, training of the outcome-prediction model was guided 
with follow-up information and therefore no training data were 
annotated. However, for comparing the model with human experts, 
the test-set TMAs (N=431) were examined by three pathologists and 
given a visual risk score. The visual risk score (low or high) is a 
pathologist’s assessment of a patient’s risk based on the visual features 
present in the TMAs. Additionally, one pathologist annotated the 
following tissue entities in the test TMAs: mitoses (0 vs. 1 vs. >1), 
pleomorphism (minimal vs. moderate vs. marked), tubules (≤10 vs. 
10-75 vs. >75%), necrosis (absent vs. present), and quantity of TILs 
(low vs. high). All annotations in Study III were performed with an 
online WSI-management software (WebMicroscope, Fimmic, 
Helsinki, Finland).  

4.4 Computer-vision methods 

4.4.1 Texture descriptors (I, II) 

A texture descriptor defined as a joint distribution of the local binary 
pattern (LBP) and the rotation invariant variance (VAR) descriptor 
was applied in studies I and II (Ojala et al., 2002; Pietikäinen et al., 
2011). Prior to feature extraction, input images were converted into 
grayscale with following channel wise weights: 0.2989, 0.5870, and 
0.1140. In the case of LBP, only the rotation invariant 2-uniform (i.e. 
riu2 descriptors) was considered. Both the LBP and VAR descriptors 
are parametrized with the pattern radius (r) and number of sampling 
points (p). In Study I, two joint distributions of LBP and VAR were 
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extracted with (p,r)-parameter pairs of (3,8) and (4,16). For 
classification, the feature vectors were concatenated together. In 
Study II, only one descriptor (4,16) was considered. MATLAB 
implementations for the texture descriptors (available online3) were 
used. 

4.4.2 Image description with a deep CNN (II, III) 

Image descriptors extracted with deep convolutional neural networks 
(CNNs), pre-trained with the ImageNet (Jia Deng et al., 2009) 
database of natural images, were utilized in discrimination of tissue 
entities of interest. In Study II, we exploited the VGG-F (Chatfield et 
al., 2014) by reading the fully connected activations from the 
network’s penultimate layer. Superpixels (Achanta et al., 2012) scaled 
to match the input of the network (224 × 224 pixels) served as an input 
for the CNN, resulting in a descriptor of 4 096 bins.  

We employed the VGG-16 (Simonyan & Zisserman, 2014) network 
for feature extraction in Study III. Instead of reading the fully 
connected activations, we took advantage of the last convolutional 
layer of the CNN. This allowed us to input an image of arbitrary size 
into the network, resulting in an activation tensor of 512 channels and 
row and column number being dependent on the input image size. 
Applying first principal component analysis (PCA) to compress the 
local activation, we aggregated the descriptor into a 1-dimensional 
vector with improved Fisher vector (IFV) encoding. 

The mean of the ImageNet training images was in normalization of 
the intensity values of input images. A MATLAB toolbox (Vedaldi & 
Lenc, 2014) for implementation of CNNs was used. The pre-trained 
CNNs are available for download online4. 

4.4.3 Homogenous kernel maps (I, II) 

Homogenous kernel maps (Vedaldi & Zisserman, 2012) were utilized 
in Studies I and II together with a linear support vector machine 

                                                
3 http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab/ 
4 http://www.vlfeat.org/matconvnet/pretrained/ 
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(SVM) classifier. Kernel maps facilitate the use of non-linear kernels 
in large-scale classification problems by approximating kernel 
functions. This in turn enables the use of linear SVM that are rapid to 
train and test and simultaneously enable the use of a more flexible 
model. The feature map offers a low-dimensional approximation for 
many popular kernels (such as intersection and chi-square kernels) 
used in computer vision. Studies I and II applied the chi-square 
feature map for texture descriptors. A computer-vision toolbox 
(Vedaldi & Fulkerson, 2010) for MATLAB offered an implementation 
for the kernel map. 

4.4.4 Improved Fisher Vector encoding (III)  

Fisher vector (FV) encoding is a method for orderless feature pooling 
(Perronnin & Dance, 2007). A feature pooling encoder takes local 
image descriptors as an input and constructs a single output for 
further analysis (such as for classification). The pooling encoders that 
do not maintain the spatial relationship of the local image descriptors 
are considered orderless encoders. FV exploits a Gaussian Mixture 
Model (GMM) as an intermediate quantizer and describes the local 
image descriptors with the mean and the covariance of the soft 
assignments of GMM. The IFV encoding further introduces the use of 
signed square rooting and L2 normalization for improved 
classification performance (Perronnin et al., 2010). A MATLAB 
implementation provided in a toolbox for computer vision (Vedaldi & 
Fulkerson, 2010) was applied for computation of IFV and GMM.  

4.4.5 Linear support vector machine (I, II, III) 

SVMs are a group of supervised learning methods for classification 
and regression (Cortes & Vapnik, 1995). Briefly, a SVM is defined as a 
maximum margin classifier, or a classifier that constructs a 
hyperplane in the feature space that separates two categories by the 
largest margin. SVM is a linear classifier by nature. However, 
incorporation of nonlinear kernel tricks (Theodoridis & Koutroumbas, 
2009) that transform the feature space allow for design of a nonlinear 
SVM. In this thesis, only linear SVM was utilized. A MATLAB 



 

 33 

implementation provided in a toolbox for computer vision (Fan et al., 
2008) was applied.  

4.5 Statistical analysis 

Classification results were evaluated with F-score, area under receiver 
operating characteristics curve (AUROC), and with accuracy, 
sensitivity, specificity, and precision. Cohen’s kappa value (k) and 
Pearson’s product-moment correlation were used for evaluation of 
agreement. The Kaplan-Meier method was used in the analysis of the 
survival profiles (Kaplan & Meier, 1958) and the log-rank test was 
used in comparison of the profiles. The Cox proportional hazard 
model (Cox, 1972) was utilized to estimate the effect size (hazard ratio, 
[HR]) and to adjust for covariates. C-statistics (concordance) were 
used to compare the discriminative accuracy of survival models 
(Gönen & Heller, 2005). The chi-squared test and the Kruskal-Wallis 
test were used in comparison of categorical and continuous variables, 
respectively. Statistical tests with P<0.05 were considered statistically 
significant. Statistical analyses were performed with R and MATLAB 
programming languages. 
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5 RESULTS 

5.1 Assessment of tumor viability 

A computational method that utilized texture analysis was developed 
for quantification of tumor viability in WSIs of H&E-stained NSCLS 
xenograft tumor samples (Figure 1). To quantify tumor viability, the 
WSIs were segmented into the following three distinct tissue entities: 
non-viable (i.e. necrotic) tumor tissue, viable tumor tissue regions, 
and host tissue comprising mostly stromal, adipose, or muscle tissue. 
Separation of these main tissue regions facilitated tumor viability 
assessment. 

 

 
Figure 1. Examples of 12 whole slide images (WSIs) analyzed for viability. Heat 
map displays the predicted viability superimposed on top of the hematoxylin and 
eosin (H&E)-stained tissue specimens. Red color indicates that a tissue region is 
classified as necrotic and blue indicates viable tissue. Pie charts show the ratio of 
viable tissue to whole tumor region. Adapted from (Turkki et al., 2015). 

We hypothesized that the tumor samples stained only for basic 
morphology could be characterized with algorithms proven to 
perform well in analysis of textures. Therefore, a feature combining 
LBP and VAR texture descriptors was considered.  

The large size of the WSIs requires division of the images into 
smaller image batches for analysis. Tiling the WSIs into sub-images (3 
968 ´ 3 968 pixels) and analyzing the sub-images with a sliding 
window classifier enabled the processing of the gigapixel-sized WSIs. 
A sliding window of 128 ´ 128 pixels with displacement of 64 pixels 
was used together with a feature mapping and SVM classifier to 
produce a segmentation map of each NSCLC tumor sample. 

Non-viable 
tumour 

Viable 
tumour 
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5.1.1 Human expert guided training 

A training set of STEIs was created to produce a collection of examples 
representing the three tissue entities. The aim of this approach was to 
eliminate the use of unclear tissue regions (i.e. regions containing 
several tissue entities of interest in a single image) from training. Our 
experience and hypothesis were that using clean training data would 
result in more robust classification. In total, 177 STEIs were labeled 
for training, of which 57, 52, and 68 represented viable tumor, 
necrotic tumor, and non-tumorous host tissue regions, respectively. 
Using the sliding window approach, the training STEIs were 
processed for extraction of the texture descriptors, which were used to 
train a linear SVM classifier. The classifier cost parameter was selected 
via a three-fold cross-validation parameter sweep in the training set. 

5.1.2 Comparison with human experts 

We compared the performance of the suggested approach to those of 
human experts in discrimination of viable and non-viable tumor 
regions in a separate test set of 494 STEIs (N=242, viable tumor; 
N=252, non-viable tumor). An agreement of 95% with a ROCAUC of 
0.995 was obtained. In discrimination between viable and necrotic 
tumors, 23 human expert-labeled viable STEIs were misclassified, 
whereas only two non-viable STEIs misclassified. This corresponds to 
an agreement of k=0.90 (95% CI 0.86–0.97) and a sensitivity and 
specificity of 91% and 99%, respectively. 

5.1.3 Evaluation on WSIs 

We next evaluated the computerized tumor viability assessment in 52 
NSCLC WSIs that were annotated by human experts. At the sample 
level, a correlation of r=0.79 (95%CI 0.66–0.87; P<0.0001) was 
obtained. At the pixel level, the average agreement between 
computerized assessment and human expert assessment was 83.3%.  
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5.2 Quantification of infiltrating immune cells 

A method utilizing specific antibody staining in training data labeling 
and a deep CNN in feature extraction was developed for quantifying 
the degree of immune cell infiltration in WSIs of H&E-stained breast 
cancer samples (Figure 2). The computational pipeline adopts a 
transfer learning in the analysis of digitized histological samples 
through a pipeline that comprises superpixel segmentation, feature 
extraction with a deep CNN, classification, and post-processing. The 
WSIs were tiled (3 000 ´ 3 000 pixels) for analysis. 
 

 
Figure 2. Examples of hematoxylin and eosin (H&E)-stained breast tumor 
specimens segmented into the following five categories: leukocyte rich (LR), 
epithelial (EP), stromal (SR), adipose tissue (AD), and background (BG). Adapted 
from (Turkki et al., 2016a). 

5.2.1 Protein expression guided training 

Objective labeling, or collection of the ground truth, is challenging due 
to the complex nature of histological specimens. We took advantage 
of two consecutively cut tumor sections, staining one section with the 
pan-leukocyte CD45 marker and the other with H&E. The annotation 
of training examples in the WSIs of H&E-stained tumor samples was 
guided with the specific signal present in the digitized IHC samples. 

In total, we collected 1 116 separate tissue regions from 20 WSIs 
representing immune cell-rich and -poor regions. Five different tissue 
entities were considered, namely TIL-rich tissue regions (LR), 
epithelial tissue with none or few TILs (EP), stromal tissue with none 
or few TILs (SR), adipose tissue with none or few TILs (AD), and 
background (BG). Guiding the annotation process with IHC allowed 

LR 

EP 

SR 

AD 
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us to identify smaller clusters of TILs within the large WSIs that would 
have been difficult to identify otherwise. Similarly, in annotation of 
TIL-poor regions we could easily verify the absence of TILs.  

The annotated regions were divided into superpixels for training, 
serving as an input of the classifier after scaling to 244 ´ 244 pixels. 
The antibody-guided annotation resulted in a total of 123 442 
superpixels that represent different tissue entities of interest. Three-
fold cross-validation in the training data was used for optimizing the 
cost parameter of the classifier.  

5.2.2 Image descriptor comparison 

We studied the suitability of a deep CNN to describe and discriminate 
the different tissue categories. By performing 10 random three-fold 
cross-validation rounds, we compared features extracted with the 
deep CNN to texture descriptors. The results showed that the fully 
connected activations extracted from the penultimate layer of the 
VGG-F network provided stronger discrimination than the texture 
descriptors based on LBP and VAR. The overall F-score for the 
transfer-learning approach was 0.96 whereas with texture descriptors 
the F-score was 0.92 (Table 3). Furthermore, the method reached a 
sensitivity of 91% (range, 88%–92%), specificity of 100% (range, 
100%–100%), and a precision of 96% (range, 96%–97%) to 
discriminate TIL-rich and TIL-poor superpixels. 

 
Table 3. Discrimination of tissue entities according image descriptor 

Descriptor 
Mean F-score (range) 

LR EP SR AD BG Overall 

LBP/VAR 0.87  
(0.86-0.88) 

0.87  
(0.85-0.88) 

0.85  
(0.84-0.87) 

0.92  
(0.91-0.92) 

0.95  
(0.95-0.96) 

0.89  
(0.84-0.96) 

LBP/VAR-
KHCI2 

0.88  
(0.87-0.89) 

0.90  
(0.88-0.90) 

0.89  
(0.87-0.89) 

0.94  
(0.94-0.95) 

0.97  
(0.97-0.97) 

0.92  
(0.87-0.97) 

VGG-F 0.94  
(0.92-0.94) 

0.96  
(0.96-0.96) 

0.96  
(0.95-0.96) 

0.98  
(0.97-0.98) 

0.99  
(0.99-0.99) 

0.96  
(0.92-0.99) 

LBP/VAR, local binary pattern and local variance descriptors; LBP/VAR-KCHI2, local binary 
pattern and local variance descriptors with chi-square kernel map; VGG-F, local image 
descriptors extracted with the VGG-F network. Tissue entities of interest: LR, leukocyte rich; EP, 
epithelium; SR, stroma; AD, adipose; BG, background 
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5.2.3 Comparison with pathologists 

Using a leave-one-out strategy, we analyzed all 20 WSIs. Comparison 
of the TIL assessments from two pathologists with the computerized 
assessment showed an agreement of 90% (k=0.79). Inter-agreement 
of 90% (k=0.78) was observed between the two pathologists, which is 
on par with the computerized assessment. 

Detailed analysis revealed a clear pattern in the pathologists’ 
assessments that favored numbers that are divisible with 5% in 
evaluation of TIL percentage. Naturally, computerized methods do 
not have similar bias. The greatest differences between the 
computerized assessment and pathologists’ visual assessment were 
seen in the range between 25% to 75%. Interestingly, this 
phenomenon was also observed between the pathologists.  

Correlation analysis indicated the largest disagreement in TIL 
quantification when compared to the other tissue categories, 
suggesting this to be the most difficult to quantify. Analysis showed a 
high correlation (r>0.90) in assessment of TIL-poor tissue entities, 
while the correlation was more moderate in assessment of TILs. On 
average, the correlation between the pathologists and the 
computerized methods was r=0.66, while the pathologists’ 
assessments had correlations of r=0.82. 

5.3 Patient outcome prediction 

We developed a computerized pipeline that takes a digitized TMA spot 
image as an input and classifies it into a low or high digital risk score 
(DRS) group (Figure 4). The risk grouping is learned in a training set 
of images of H&E-stained TMAs using image descriptors extracted 
with a deep CNN.  
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Figure 3. Method for patient outcome prediction in tumor tissue images. 

5.3.1 Survival status guided training 

We first divided the training set into low-risk and high-risk groups 
based on patient follow up. Those patients who died of breast cancer 
within 10 years after diagnosis were considered as examples of high-
risk cases. The remaining patients (i.e. those who did not die of breast 
cancer during the follow-up time or within 10 years) were labeled as 
examples of low-risk patients. Utilizing deep-CNN activations and 
feature aggregation, each training set sample was then captured into 
one feature vector and used together with the risk label to train a linear 
SVM classifier. The SVM classified the samples into a low or high DRS 
group. In total, our training set comprised 868 tumor tissue images.  

5.3.2 Associations with clinicopathological variables 

With the DRS classifier, we analyzed the test set of 431 patients with 
tumor tissue images. The analysis of the DRS grouping revealed 
significant differences in clinicopathological variables (Table 4). 
Patients who were classified into the low DRS group more often had 
lower grade tumors (P=0.014), smaller tumors (P<0.001), and less 
frequently had positive lymph nodes (P=0.003). These tumors were 
also more often negative for PR when compared with the patients in 
the high DRS group.  
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Table 4. Patient characteristics between test set patients classified into low and high 
digital risk score (DRS) groups 

Variables Low DRS (N=237) High DRS (N=194) P-
value % N % N 

Number of positive lymph nodes     
   Mean 0.9 1.6 0.003 
   0 63 150 53  103 

0.057 
   1-3 23 54 23  45 
   4-9 6  15 12 23 
   >10 1  2 3  5 
   Unknown 7  16 9  18  
Tumor size, per mm     
   Mean 21.5 25.3 <0.001 
   Unknown 5  13 5  9  
Histological grade     
   Grade I 23  54 22  43 

0.014    Grade II 32  75 41  79 
   Grade III 14  33 22  43 
   Unknown 32  75 22  43  
Histological type     
   Ductal 74  175 81  158 0.079 
   Lobular/Special 26 62 19  36 
Age      
   ≤39 9  21 5  9 

0.140 
   40-49 27  64 20  39 
   50-59 21  49 23  45 
   60-69 20  47 23  44 
   ≥70 24  56 29  57 
ER      
   Negative 25  60 29  56 0.443 
   Positive 65  155 61  119 
   Unknown 9  22 10  19  
PR      
   Negative 36  86 47  91 0.015 
   Positive 56  132 43  83 
   Unknown 8  19 10  20  
HER2      
   Negative 76  181 72  140 0.136 
   Positive 14  32 20  38 
   Unknown 10  24 8  16  
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5.3.3 Survival analysis 

In survival analysis, women in the low DRS group were found to have 
both better disease-specific survival (DSS) (P<0.001) and overall 
survival (OS) (P=0.003) when compared with the high DRS group 
patients (Figure 5). The analysis further indicated a 10-year DSS 
status of 82% (95% CI 78%-87%) for the low DRS patients. In contrast, 
the corresponding value in the high DRS group was only 65% (95% CI 
58%-73%). 

 

 
Figure 4. Disease-specific survival (DSS) and overall survival (OS) according to low 
and high digital risk score (DRS) groups. 

We studied the DRS group stratification separately in different 
patient subgroups with subset analysis. Division according to 
histological grade displayed significant differences only among grade-
I patients (P<0.001) (Figure 6). When divided according to hormone 
receptor status, we observed significant differences in the survival 
profiles of the DRS groups among ER+ (P=0.025), ER- (P<0.001), 
and PR- (P=0.003) patients. Similarly, DRS stratification was 
significant in both HER2+ (P<0.001) and HER2- (P=0.015) patients.  
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Figure 5. Disease-specific survival according low and high digital risk score (DRS) 
groups in patients with tumors of different grades and estrogen receptor (ER), 
progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) 
status. 

With multivariate survival analysis, we analyzed the effect of the 
DRS grouping adjusted for other clinicopathological variables. The 
analysis indicated that the DRS is an independent predictor for DSS 
(P=0.005) with a HR of 2.06 (95% CI 1.24-3.42) (Table 5). The 
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number of positive lymph nodes (P<0.001) and tumor size (P<0.001) 
were also identified as independent predictive factors in the 
multivariate analysis.  
 
Table 5. Multivariate Cox regression 

Variables HR 95% CI P-value 
DRS group   
   Low Risk ref   
   High Risk 2.06 (1.24-3.42) 0.005 
Number of positive lymph nodes  
   0 ref   
   1-3 1.65 (0.91-2.95) 0.102 
   4-9 1.47 (0.75-2.85) 0.260 
   >10 3.45 (1.04-2.85) 0.043 
Tumor size    
   per mm 1.04 (1.02-1.06) <0.001 
Histological grade   
   I ref   
   II or III 1.54 (0.76-3.14) 0.235 
Histological type   
   Ductal ref   
   Lobular/Special 0.91 (0.42-1.98) 0.808 
Age    
   ≤39 ref   
   40-49 0.48 (0.19-1.21) 0.118 
   50-59 0.49 (0.19-1.23) 0.141 
   60-69 0.67 (0.27-1.64) 0.377 
   ≥70 1.33 (0.54-3.29) 0.535 
PR    
   Negative ref   
   Positive 0.41 (0.24-0.69) <0.001 
HER2    
   Negative ref   
   Positive 1.16 (0.65-2.07) 0.626 
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5.3.4 Comparison with visual risk score 

Test TMA spot images that were marked by at least one of the 
pathologists as not evaluable (N=109) were excluded from the 
analyses. The percent agreement of the pathologists’ visual risk 
scoring in the remaining subset of 322 TMA spot images was 32%. The 
assessments between pathologists 1 and 3 were significant (P<0.001), 
whereas the assessments between pathologists 1 and 2 and between 2 
and 3 were not significant. 

In univariate survival analysis, the merged visual risk score (based 
on majority vote) was found to be a significant predictor of DSS with 
a HR of 1.74 (95% CI 1.16-2.61; P=0.006) and C-statistics of 0.58 (95% 
CI 0.53-0.63) and of DRS with a HR of 2.10 (95% CI 1.40-3.18; 
P<0.001) and C-statistics of 0.60 (95% CI 0.55-0.65). Interestingly, 
the survival models resulted in significantly different predictions 
(P<0.001). Multivariate survival analysis further indicated that the 
visual risk score and the DRS were both independent predictors for 
DSS (HR=2.05; P<0.001 for DRS and HR=1.68; P=0.012 for visual 
risk score), reaching a C-statistics of 0.64 (95% CI 0.58-0.69). An 
analysis with the morphological cancer features and with the risk 
scores showed that DRS significantly associated with nuclear 
pleomorphism and tubule formation, whereas the visual risk score 
had a significant association with mitotic count, presence of necrosis, 
and TILs (Table 6). 
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Table 6. Association of morphological cancer features and digital risk score and 
visual risk score 

 Digital risk score  Visual risk score  
Variables Low (N=177) High (N=145)  Low (N=193) High (N=129)  

 % N % N P-value % N % N P-value 
Mitoses           
  0 84 148 74  107 

0.095 
96  186 53  69 

<0.001   1 9 16 15  22 2  3 27  35 
  >1 7 13 11  16 2  4 19  25 
Pleomorphism          
  Minimal 22 39 6  8 

<0.001 
21  41 5  6 

<0.001   Moderate 59  105 60  87 72  139 41  53 
  Marked 19  33 34  50 7  13 54  70 
Tubules, %          
  <10 81  144 88  127 

0.020 
76  146 97  125 

<0.001   10-75 14  24 12  18 20  38 3  4 
  >75 5  9 0  0 5  9 0  0 
Necrosis           
  Absent 95  169 98  142 0.370 99  192 92 119 0.001 
  Present 5  8 2  3 1  1 8  10 
TILs           
  Low 90  160 83  120 0.063 91  175 81  105 0.024 
  High 10  17 17  25 9  18 19  24 
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6 DISCUSSION 

For over a century, examination of histological tissue sections for 
detection and diagnosis of cancer has relied solely on the visual 
interpretation of experienced pathologists. Empowered by digital 
whole-slide scanners and advanced machine-learning algorithms, 
histological diagnostics is undergoing a paradigm shift towards 
precision histology (Djuric et al., 2017). These novel digital pathology 
workflows are likely to improve both accuracy and throughput of 
cancer histology assessment and to support personalized cancer care 
through improved reproducibility and stratification. 

The overall goal of this doctoral thesis was to investigate the use of 
computer vision for characterization and outcome prediction in 
cancer by mining biologically relevant signals in tumor tissue 
specimens. Although cancer cells are the foundation of malignant 
neoplastic diseases, cancer biology cannot be thoroughly understood 
without considering the complex and dynamic interaction of cancer 
cells and the tumor microenvironment (Hanahan & Weinberg, 2011). 
The characteristics of the tumor microenvironment influence patient 
response to treatments (Tredan et al., 2007) and the ability of the 
tumor to grow and obtain nutrients (Whiteside, 2008) and the ability 
of the cancer cells to invade distant organs (Mlecnik et al., 2016). To 
gain a better understanding of tumor characteristics and the varied 
features of its microenvironment, novel tools are needed that enable 
more systematic and accurate quantification and characterization of 
the composition of tissue specimens (Letai, 2017). 

In Study I, we aimed to detect and quantify tumor necrosis in WSIs 
of H&E-stained human lung cancer xenograft tumors. The 
quantification of necrosis has not been studied extensively. However, 
early studies have been published for glioblastoma (Le et al., 2012), 
kidney carcinoma (Nayak et al., 2013), and liver (Homeyer et al., 2013) 
tissue images. It should be noted that direct comparison between 
studies is difficult due to varying experimental setups and different 
cancer types. However, a more recent study that also used texture 
analysis reported an accuracy of 85% in detecting necrosis in gastric 
adenocarcinoma specimens (Sharma et al., 2015). The authors 
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showed that use of CNN improved necrosis detection accuracy from 
73% to 82% when compared to texture descriptors (Sharma et al., 
2017). The results obtained in Study I indicated an accuracy of 95% 
for the proposed texture analysis approach. 

Taken together, we demonstrated  in Study I that computerized 
analysis of tumor tissue texture can facilitate accurate quantification 
of necrosis. Moreover, our experiments showed that the texture 
features used offer comparable or even superior discrimination when 
compared with the other methods presented in the literature. 
Although the material was from an animal model, there is no reason 
why the method could not be adjusted for human tissue specimens. In 
fact, we later successfully adapted a similar approach for analysis of 
human tumor specimens (Turkki et al., 2016b). Although texture 
analysis can facilitate accurate segmentation of histological specimens 
into entities of interest (such as necrosis), more recent findings by our 
group (Turkki et al., 2016a) and others (Bejnordi et al., 2017) suggest 
that CNNs can yield stronger discrimination. 

Recent findings in breast cancer suggest that patients with strong 
immune infiltration have less aggressive disease (Savas et al., 2015). 
Particularly in patients with HER2-positive and the triple-negative 
subtype of breast cancer, the abundance of TILs is linked with a 
favorable prognosis. Presently, the assessment of TILs is based on 
visual examination of histological tumor samples stained for H&E 
(Salgado et al., 2014). In Study II, we investigated the use of computer 
vision to quantify TILs in WSI of breast tumors. We achieved an 
agreement of 90% (k=0.79) between computerized and pathologist 
assessments. Further analysis showed that this was consistent with 
the pathologists’ inter-observer agreement (90%, k=0.78). 

 To expand the texture analysis presented in Study I, we 
incorporated deep learning into our analysis via a transfer-learning 
approach. Transfer learning has been shown to improve performance 
in both texture analysis and object-recognition tasks (Cimpoi et al., 
2016). The findings in Study II showed that transfer learning can lead 
to significant performance improvement in analysis of histological 
specimens. Although LBP-based descriptors reached high accuracy in 
TIL quantification (F-score=0.88), the local image descriptors 
extracted with the VGG-F network reached superior performance (F-
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score=0.94). The performance gain was strongest with TILs when 
compared with other studied tissue entities (epithelium, stroma, 
adipose, and background). This finding most likely reflects the overall 
difficulty of discriminating TILs from the other tissue entities of 
interest.  

A large majority of earlier studies, as well as the following, have 
approached TIL quantification through cell detection and subsequent 
classification. A challenge for the cell-level approach is the 
requirement of ground truth that is usually difficult to obtain. This 
may be the reason why some of the studies have been conducted on 
limited data sets (Fatakdawala et al., 2010; Nawaz et al., 2015; 
Panagiotakis et al., 2010). Deep learning has also been adapted for 
immune cell detection (Janowczyk & Madabhushi, 2016). In that 
study, a detection accuracy of F-score=0.90 was obtained across 3 064 
immune cells. In contrast to the earlier studies, our method was 
implemented as a region-level analysis; the WSIs were divided into 
superpixels that were then classified into different tissue categories. 
However, this limits the analysis into quantification of tissue regions 
that are densely packed with TILs. Consequently, single immune cells 
that are scarcely scattered around the tissue compartments are not 
captured by our method. Despite the region-level approach, our 
results indicated high agreement with pathologists’ analysis. In fact, 
the international TIL working group recommended that instead of 
counting individual cells, TILs should be assessed as an area that the 
dense clusters cover in a whole section (Salgado et al., 2014). A benefit 
of the regional approach over cell-level analysis is fewer 
computational demands. No separate detection algorithm is required, 
and several cells can be analyzed simultaneously when a WSI is 
processed in patches.  

Importantly, we also introduced an antibody-guided image 
annotation that can be broadly generalized into different supervised 
analysis settings. The annotation process requires two consecutively 
cut tissue sections and follows staining with H&E and a specific IHC 
marker, which stains the tissue entity of interest. To identify TILs, we 
used the pan-leukocyte marker CD45. IHC marker guided the 
annotation process of the H&E-stained section and aided detection 
and verification of small or otherwise unclear regions and thus 
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enabled more accurate and faster labeling. This provides an 
opportunity to automate the annotation process by image registration 
and IHC analysis. However, antibody-guided labeling can only be 
applied if a suitable marker exists. For instance, this approach cannot 
be used in case of necrosis but can be beneficial in annotation of 
entities such as mitoses, blood veins, and tumor tissue. 

To summarize, in Study II we demonstrated the feasibility of TIL 
quantification in WSIs with regional tissue analysis. Our evaluation 
showed that the performance of the computerized assessment was 
comparable with pathologists’ assessments. Additionally, we adapted 
the use of a pre-trained CNN in analysis of a digitized histological 
specimen and proposed a novel approach for improving image 
labeling via IHC.  

Studies I and II focused on tumor tissue characterization via 
assessment of particular tumor features and the tumor 
microenvironment. Our results and work by others clearly show that 
computerized assessment of these characteristics is feasible and 
highly concordant with pathologist assessments. When incorporated 
in analysis of large patient cohorts, automated tumor tissue 
characterization, such as assessment of tumor viability and TILs, may 
provide a deeper understanding of tumor heterogeneity and the tumor 
microenvironment. Perhaps more importantly, machine-learning 
algorithms offer also novel opportunities to systematically analyze 
large patient data sets in a blinded fashion. These kinds of exploratory 
analyses may discover unobserved patterns and associations with 
outcomes of interest.  

In Study III, we studied breast cancer patient outcome prediction 
with computer vision using a large nationwide patient cohort with 
TMA spots and clinical follow-up information. We hypothesized that 
using only the raw pixel values (the plain image) without any domain 
knowledge or introduction of fundamental tissue entities (i.e. cell 
types, tissue compartments, or distinction between cancerous and 
non-cancerous tissue) we could potentially identify prognostic signals 
that are complementary to traditional prognostic factors. 
Stratification of cancer patients into subgroups with different 
outcomes may guide treatment decision making and ultimately 
improve the understanding of cancer biology.  
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The limited availability of patient cohorts with tumor specimens 
and corresponding follow-up information is a challenge for the 
development of direct computerized outcome prediction. 
Nevertheless, patient outcome is largely influenced by tumor grade, 
and computerized grade classification has been studied broadly in 
different cancers, including brain (Ertosun & Rubin, 2015), kidney 
(Yeh et al., 2014), and prostate (D. Wang et al., 2015). Although cancer 
grade correlates with patient outcome, it is only an intermediate 
endpoint and might not completely capture the visual signs in the 
specimen that are relevant for the outcome. A seminal work in 
computerized outcome prediction (Beck et al., 2011) identified 
stromal features as independent prognostic factors for overall survival 
(HR=1.78) in breast cancer. Later, morphological features, prognostic 
for 8-year disease-free survival, were identified through a 
computerized analysis of H&E-stained specimens (J.-M. Chen et al., 
2015). Another study combined image features with gene expression 
data for breast cancer patient prognostication (HR=1.70) (Popovici et 
al., 2016).  

In Study III, we exploited a deep CNN in feature extraction and a 
feature-aggregation method that adjusts the local convolutional 
descriptors to the data domain. This yielded a risk stratification that 
turned out to be an independent predictor of breast cancer-specific 
survival (HR=2.06) when adjusted for relevant clinicopathological 
factors. These findings in breast cancer are supported by our work in 
colorectal cancer, where digital risk grouping predicted disease-
specific survival (HR=1.89) when adjusted for a comprehensive set of 
covariables (Bychkov et al., 2018). 

Subset analyses showed that DRS had differential survival profiles 
among patient subgroups. Notably, we found that patients with 
HER2-positive cancer were stratified with an over 40% difference in 
10-year DSS, and that only grade-I cancers displayed a significant 
difference between the low and high DRS groups. In addition, survival 
profiles were significantly different in ER-, ER+, PR-, and HER2- and 
in both node-negative and node-positive cancers. This highlights the 
potential of data-driven approaches to discover novel patient groups 
for further analyses and for hypothesis generation. 
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A limitation of the suggested prediction method was the difficulty 
in fully explaining the source of the prediction. To compare the DRS 
with the current gold standard and to gain further insight of the DRS, 
we visually scored the same TMA spots that were studied. The visual 
scoring was performed by three experienced pathologists, whose 
assessments of the risk (low vs. high) were combined into a consensus 
score via majority voting. Correlation analysis revealed that the 
computerized prediction had a significant association with 
pleomorphism and tubule formation, whereas the visual risk score 
also captured mitoses, presence of necrosis, and TILs. This indicates 
that the DRS might partly capture the same tumor features that 
pathologists usually assess. Interestingly, survival analysis with the 
visual risk score and DRS as covariates implied both as independent 
predictive factors despite the overlap. In fact, the combined survival 
model resulted in a stronger discrimination than either of the risk 
scores alone, indicating that DRS holds complementary information 
to the pathologists’ visual risk assessment. 

Taken together, we demonstrated in Study III that direct outcome 
prediction with computer vision is not only feasible but can also 
provide independent predictive information complementary to 
clinicopathological factors and pathologists’ visual risk scorings. 
Direct outcome prediction can thereby potentially reveal 
prognostically relevant visual features that may be undiscovered.  
However, studies on different cancer types and larger patient cohorts 
are still required for validation.  

Computerized analysis of medical information has held the 
promise of improving patient care for decades (Schwartz, 1970). 
During the last few years, technological development in the field of 
machine learning has been faster than ever before. In particular, 
methods based on deep learning have repeatedly pushed the upper 
performance limit higher in many data domains and computational 
tasks. The two key components driving this development are open 
data sets and open computational frameworks. The frameworks are 
directly applicable for digital pathology by providing the complex 
algorithms in easy-to-use packages, which can be used to build 
computer-vision applications for analysis of histological specimens. 
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However, there are only a few high-quality data sets5,6,7 available for 
the research community.  

A superhuman performance level has been achieved in specific 
tasks using machine-learning algorithms. This means that computer 
software can solve a particular problem more precisely and faster than 
human experts. A famous example of such software is the algorithm 
developed by DeepMind that defeated the leading world champion in 
the game of Go (Silver et al., 2016, 2017), a decade earlier than 
anticipated. Rapid digitization of cancer specimens has enabled use of 
these same tools and algorithms to improve histological assessments. 
This may provide superhuman skills for future researchers and 
clinicians to better understand their data, ultimately leading to 
improved patient care.  

                                                
5 http://tupac.tue-image.nl/ 
6 https://camelyon17.grand-challenge.org/ 
7 https://www.kaggle.com/c/data-science-bowl-2018 
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7 CONCLUSIONS 

In this doctoral thesis, we developed and evaluated computer-vision 
methods for characterization of tumor tissue and prediction of patient 
outcome. The main conclusions of our work are as follows: 
 

1. Texture analysis can facilitate robust quantification of tumor 
necrosis.  
 

2. Image descriptors extracted with a deep CNN can be adapted 
for characterization of breast cancer tissue into different 
compartments with accuracy comparable to pathologists’ 
assessments. 

 
3. IHC-guided image labeling facilitates accurate and fast ground-

truth annotation. 
 

4. Direct outcome prediction may identify novel prognostic image 
features that are complementary to traditional prognostic 
factors. 
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