
This work can be found from:
https://doi.org/10.1007/978-3-319-74433-9_3

To cite this work, use:

Kalske M., Mäkitalo N., Mikkonen T. (2018) Challenges When Moving from Monolith to
Microservice Architecture. In: Garrigós I., Wimmer M. (eds) Current Trends in Web
Engineering. ICWE 2017. Lecture Notes in Computer Science, vol 10544. Springer, Cham

@InProceedings{10.1007/978-3-319-74433-9_3,
 author="Kalske, Miika and M{\"a}kitalo, Niko and Mikkonen, Tommi",
 editor="Garrig{\'o}s, Irene and Wimmer, Manuel",
 title="Challenges When Moving from Monolith to Microservice Architecture",
 booktitle="Current Trends in Web Engineering",
 year="2018",
 publisher="Springer International Publishing",
 address="Cham",
 pages="32--47",
 isbn="978-3-319-74433-9"
}

Authors’ preprint version bellow.

Challenges When Moving from Monolith to

Microservice Architecture

Miika Kalske, Niko Mäkitalo, and Tommi Mikkonen

University of Helsinki,
Department of Computer Science,

Helsinki, FINLAND
{miika.kalske,niko.makitalo,tommi.mikkonen}@helsinki.fi

Abstract. One of the more recent avenues towards more flexible in-
stallations and execution is the transition from monolithic architecture
to microservice architecture. In such architecture, where microservices
can be more liberally updated, relocated, and replaced, building liquid
software also becomes simpler, as adaptation and deployment of code is
easier than when using a monolithic architecture where almost every-
thing is connected. In this paper, we study this type of transition. The
objective is to identify the reasons why the companies decide to make
such transition, and identify the challenges that companies may face
during this transition. Our method is a survey based on di↵erent publi-
cations and case studies conducted about these architectural transitions
from monolithic architecture to microservices. Our findings reveal that
typical reasons moving towards microservice architecture are complexity,
scalability and code ownership. The challenges, on the other hand, can be
separated to architectural challenges and organizational challenges. The
conclusion is that when a software company grows big enough in size and
starts facing problems regarding the size of the codebase, that is when
microservices can be a good way to handle the complexity and size. Even
though the transition provides its own challenges, these challenges can be
easier to solve than the challenges that monolithic architecture presents
to company.

1 Introduction

One of the more recent avenues towards more flexible installations and execution
is the transition from monolithic architecture to microservice architecture. The
motivation for this transition comes from the fact that constantly maintaining
a monolithic architecture has resulted in di�culties in keeping up in pace with
new development approaches such as DevOps, calling for deployment several
times a day. In contrast, microservices o↵er a more flexible option, where in-
dividual services comply with the single responsibility principle (SRP) [1], and
they can therefore be scaled and deployed independently [2]. Although partially
overlooked in a recent paper addressing liquid software design space [3], such
architecture clearly supports building liquid software, as more liberally updated,
relocated, and replaced than their traditional, usually monolithic counterparts.

In this paper, we study the reasons why the companies decide to make the tran-
sition from monolithic architectures to microservices, and identify the challenges
that companies may face during this transition. The study is based on di↵erent
publications and case studies conducted about these architectural transitions
from monolithic architecture to microservices.

The rest of the paper is structured as follows. Section 2 discusses the back-
ground of the paper. Section 3 compares monolithic and microservice based
architectures from several di↵erent viewpoints. Section 4 introduces challenges
encountered in the transition from a monolithic architecture to microservices.
Towards the end of the paper, Section 5 draws some final conclusions.

2 Background and Motivation

Microservices are small services that comply with the single responsibility prin-
ciple (SRP) [1]. Each service is focused only on one functionality. This kind
of approach makes it clear where the boundaries between di↵erent services are
and where code changes should go. Consequently, microservices are by nature
loosely coupled [4]. Loose coupling gives developers a chance to make indepen-
dent changes to services without a↵ecting the rest of the codebase. Because
microservices are not tied to each other, they can be scaled and deployed inde-
pendently [2]. Such architecture is also a key enabler for building liquid software,
as more liberally updated, relocated, and replaced than their traditional, usually
monolithic counterparts.

All these qualities make microservices desirable option for existing monolithic
applications. Scaling of monolithic application is always harder than scaling mi-
croservices because one has to scale the whole application and deploy the whole
codebase instead of scaling the part of the application that demands more re-
sources [6]. The current development of cloud services make automatic scaling
of resources very easy and cost-e�cient. Microservices make most out of this au-
tomatic scaling. When developing and deploying a big monolithic applications
companies cannot take the full advantage of these functionalities.

As applications grow in size during the many years of development, it be-
comes harder to maintain and make changes to them [5]. It is possible to main-
tain and develop the monolithic software but eventually it becomes obvious that
changes to the architecture of the whole application has to be made. This kind
of trend was first noticed in companies which have a lot of tra�c, many devel-
opers and large codebase. Companies such as Amazon[7], Netflix[8], LinkedIn[9],
SoundCloud[10] and many more have made the transition to microservice archi-
tecture because their existing monolithic application was too hard to maintain,
develop and scale.

Monolithic applications have their downsides when the application codebase
grows big and the changes have to be made rapidly. Fine-grained scaling is also
impossible with monolith, because the whole application needs to be deployed
every time. However, when teams start developing new a application, there are
business requirements to develop new features fast in the beginning so the com-

pany can survive. Monolithic applications make it simple to develop, deploy,
test and scale application when the size of the codebase is relatively small [11].
Most of the applications have monolithic architecture because of these reasons.
Monolithic approach is enough in the beginning and it is possible that the size
of the codebase and need for fine-grained scaling is never needed. Which means
that it is better to stay with the monolith and avoid the technical and orga-
nizational challenges that microservice architecture comes with. There are also
di↵ering opinions. It can be argued that the refactoring of the existing monolith
is too demanding task and instead the organization should spend more time at
the start of the process to evaluate the architecture and functionalities that are
required [12]. It is much easier to introduce accidental tight coupling in a mono-
lithic than in microservices. Breaking up these tight couplings can be hard and
require a lot of time and understanding of the application.

Whether the decision is to start with microservices or monolith that later
will be refactored towards microservices, there are multiple technical challenges
that needs to be solved in order to use microservices. Microservices add more
distribution which adds more points of failure. This brings up many questions
such as how to handle failures, how services communicate between each other,
how transactions are handled and so on [1]. If monolithic application for some
reason stops running in production, it is very fast to recognize that because
nothing is working. With microservices, if one service stops responding other
services still work and these kind of error situations needs to be handled prop-
erly. Communication between microservices is one of the big questions to get
right. Getting the communication wrong can lead to a situation where microser-
vices lose their autonomy and thus the main benefits of the whole approach can
diminish [1]. On top of that, the communication between multiple microservices
can introduce performance issues if the services are too fine-grained [34]. It seems
to be an agreed consensus that the complexity should be within services instead
of messaging pipes [2]. One challenge is also to handle the orchestration of the
microservices in production. Luckily in the last few years many new tools for
supporting this have been made such as Kubernetes [32] and Mesos [33] to name
two.

In most of the cases, the need for architectural change from monolithic to
microservices is realized when the codebase and the size of company has grown
big. In these cases, there are new refactoring and organizational challenges on top
of the existing ones that come with the microservice architecture. Refactoring
of the existing software can be a daunting task. In order to successfully make
the refactoring, a good test coverage is required. Otherwise, there is a chance
that during the introduction of microservices new bugs might end up in the
existing functionalities. It might also be hard to find and define which parts
of the existing software should be split up to microservices and what are good
candidates for microservices. One of the methods is to find seams from the
existing software [1]. A seam is a part of the code that can be isolated and work
alone in separation from the rest of the codebase [13]. Finding the seams requires
good knowledge about the business use cases. However, this knowledge should

already be in the organization. Either in the codebase, if the monolith has good
modular architecture or even if the modules are not well defined then at least
the use cases should be pretty clear.

On top of the technical challenges, adopting microservice architecture re-
quires organizational changes [1]. The organization needs to adapt accordingly
to the new architecture. Every team needs to take ownership of the services or
service that they own. This means developing, testing, deploying and taking care
of the service in production. DevOps culture needs to be adopted as teams now
need to deploy, monitor and address issues also in production [14]. Teams have
to set up their own continuous integration (CI) and continuous delivery (CD)
pipelines. Microservices also require the composition of the teams to change.
It is very typical that in organizations where monolithic applications are built,
that the developers, quality assurance and operations work as separate teams.
An organization which uses microservices, these horizontal borders needs to be
broken and teams should be vertical in the sense that every team should consist
of people from development, quality assurance and operations. Melvin Conway’s
paper How Do Committees Invent states the following: ”Any organization that
designs a system (defined more broadly here than just information systems)
will inevitably produce a design whose structure is a copy of the organization’s
communication structure.” [15]. In other words, organizations that build mi-
croservices also need to adapt their communication structure to this new style
of architecture. Otherwise, the conflict between organization structure and the
structure of architecture design will cause problems.

3 Comparison of monolithic and microservice

architecture

Monolithic architecture is the standard way to start application development
because it is more straightforward. A monolith application is developed and
deployed as a single unit containing all the needed parts. A typical monolith
application consists of UI-layer, business logic layer and data access layer which
communicates with the database as can be seen from the Figure 1 on page 5.
Monolithic architecture is a good way to start development because it makes the
initial development faster than with microservices [16].

However, as the codebase grows in size, the problems of monolithic archi-
tecture increase [11]. The new features and modifications of old features are
harder to implement because the developer has to find the correct place to ap-
ply these changes. It takes a long time to get familiar with the big codebase.
This means that it takes time for new developers to get up to speed as they
feel lost and cannot find the correct place to apply changes. With big monolith
codebase refactoring changes can reflect many parts of the software. This might
lead to that developers fear to make big refactoring tasks, because their changes
e↵ect numerous places and testing that everything still works is a big task. This
can even result in situations where refactoring is ignored because it is too risky.
Which will lead to code that is not clean. Because developers are not familiar

with the codebase, it is very likely that the code duplication level raises as it is
almost impossible to find existing code which would already do the same thing.
Also, it is very likely that the modularity of the codebase goes down as the
codebase grows, as there are no hard module boundaries [11].

Fig. 1. Typical monolithic application consisting of three layers.

There are also other reasons to split up the monolith than just the size of
the codebase. One of the reasons is team structure [1]. If the teams are located
in di↵erent geographical areas and their communication is very slow, it makes
sense that they take ownership of di↵erent parts of the code. This eases up
the development as now the teams in di↵erent geographical areas do not have
conflicts about modifying parts of the software. The team that has the ownership
of a service can decide what happens inside that service and the other teams
only have to care about the interface of the service. With this kind of approach
the communication doesn’t have to be as fast and as fine-grained as before. Also,
if a team has ownership of a service it is more likely that the code stays cleaner
and technical issues are solved faster as there is no one else to blame about the
quality of the code. This division also means that if the team wants to publish
a new version of the service to production it is a lot faster and easier, because
the team doesn’t have to communicate and coordinate the changes with other
teams so much.

In general, it can be said that if the following requirements apply to the
organization, then monolithic approach might be the correct choice: the number

of the teams is low, the codebase is relatively small and it will stay that way
for the coming years, the teams are close to each other geographically and their
communication is easy. On top of these, the complexity of the domain plays a
big factor and it is not easy to say when to use monolithic approach instead
of microservices or vice versa. It is possible to have a monolithic that has good
modularity and clean code but it requires more work to keep that modularity
when working with monolith instead of microservices as microservices provide
the modularity in their nature and make it harder to break the modularity [16].

Fig. 2. Example of microservice architecture.

A typical monolithic application can be seen in the Figure 1. A layered archi-
tecture with three layers is very common especially in enterprise applications. As
we can see, there is usually only one database which means that if some of the
data would require better scaling, this kind of architecture does not support it.
This limits the choices that the teams can make to support the business require-
ments and scaling requirements. For example, most of the data would fit fine in a
relational database management system, but some parts of the application data
require greater scalability and performance which for example Cassandra would
provide. One database also means that schema changes have to be coordinated
between multiple teams which slows the development.

In Figure 2 on page 6 we can see that with microservices it is possible to select
the database engine per microservice. This kind of pattern is called database per
service [17]. This gives teams more freedom to select their tools. Designing and
scaling of the database are easier when the database consists of fewer tables and
the microservice has full control of the data and the schema of the database. Some

of the microservices can even be without database, if they for example write to
disk. From Figure 2 we can also see that microservices usually communicate with
each other and the UI can request data from multiple services.

Table 1 contains comparison of these two architecture styles. As we can see,
both of them have pros and cons. As a conclusion about the table we can notice
that microservice architecture style becomes attractive when we are working with
big codebase. With smaller projects the technical challenges that microservices
bring out might not have enough time to pay back. Also, if the DevOps skills
of the team are lacking then it might be better to stick with monolith in the
beginning.

Category Monolith Microservices

Time to market Fast in the beginning, slower
later as codebase grows.

Slower in the beginning because
of the technical challenges that
microservices have. Faster later

Refactoring Hard to do, as changes can af-
fect multiple places.

Easier and safe because changes
are contained inside the mi-
croservice.

Deployment The whole monolith has to be
deployed always.

Can be deployed in small parts,
only one service at a time.

Coding language Hard to change. As codebase is
large. Requires big rewriting.

Language and tools can be se-
lected per service. Services are
small so changing is easy.

Scaling Scaling means deploying the
whole monolith.

Scaling can be done per service.

DevOps skills Doesn’t require much as the
number of technologies is lim-
ited.

Multiple di↵erent technologies a
lot of DevOps skills required.

Understandability Hard to understand as complex-
ity is high. A lot of moving
parts.

Easy to understand as codebase
is strictly modular and services
use SRP.

Performance No communicational overhead.
Technology stack might not
support performance.

Communication adds overhead.
Possible performance gains be-
cause of technology choices.

Table 1. Comparing monolith and microservices

4 Challenges in adopting microservice architecture

The challenges with adopting microservice architecture can be divided in two
parts; the technical challenges and the organizational challenges [1]. Both of
these are equally important to get right. The challenges are a bit di↵erent
whether the application development will be started from scratch compared to
converting a big existing codebase from monolith to microservices. In this paper,
we focus on the challenges that are related to refactoring existing monolithic ap-
plication towards microservice architecture. Most of these challenges needs to be
addressed also when starting with microservices from the beginning. The biggest
di↵erences are that, there is no need for a big organizational change and refac-
toring is not needed, but the selection of services and their business requirements
might be harder, if the teams decide to start with microservice architecture from
beginning.

4.1 Technical challenges

There are various technical challenges that needs to be solved before it is possible
to utilize microservice architecture. When the starting point is a monolithic ap-
plication, the organization is then most likely familiar with the domain already
and have an idea where the seams of application can be found [1]. The biggest
problem in these cases is to separate these services. It can take a lot of time and
e↵ort to refactor the services out from the monolithic architecture. This is why
the refactoring towards microservices should be done in small parts. Also, when
implementing new functionalities, they should not be appended to monolith even
though it might be faster. Instead, organizations should expand their microser-
vices o↵ering and add new microservices to replace the old monolithic code [18].
By applying this mechanism organization is slowly moving most of the codebase
towards microservices. It is extremely important to be careful when doing this
refactoring, because there is the possibility of introducing new bugs in existing
features. This is why good test coverage is needed before starting this process.

Testing can be seen as an enabler to the whole refactoring project. If most
of the testing is done manually, then it might be good idea to first get the au-
tomatic test coverage up and postpone the refactoring towards microservices.
Good automatic test coverage helps refactoring, and it also gives the option
to get more out of the microservices. Microservices can be released frequently
only if it is possible to validate that the software does what it needs to do [1].
There are multiple automatic testing strategies which developers can apply to
their application depending on its needs. Continuous integration and continuous
delivery both go hand in hand with microservices [19]. Without these two prac-
tices, it comes very hard to handle the multiple services, their deployments and
validating the actions of the service.

After the automatic test coverage is in place it comes feasible to start thinking
about the other challenges. The first thing to do is to define the microservices
and their responsibility areas. It is important that the decomposition of services
is correct [1]. This is important, because it is expensive to make a lot of changes

across the services. Instead it is easy to change functionality inside one service,
but when the changes e↵ect multiple services and their interfaces, then the task
becomes harder and more time consuming. This is where the earlier experience
working with monolith and designing its components is helpful as developers
should already have a good understanding about the business concepts of the
application. It is probably best to start from the easiest and most obvious services
and when the organization has more knowledge about microservice architecture
then the services can become more fine-grained. Existing microservices can be
split up to smaller services, when there is better understanding about the service
composition.

When splitting up the services, attention should be paid to the fact that the
services do not become too fine-grained. Microservices can introduce a perfor-
mance overhead especially if the communication is done over network [1]. For
example, if the communication is done using REST over HTTP each inter-service
call adds overhead from the network latency and from marshalling and unmar-
shalling the data. If the services are too fine-grained there will be a lot of tra�c
between them and as each call adds overhead the outcome can be a system that
does not perform well enough.

One of the biggest challenges is the integration between di↵erent microser-
vices [2]. It is not recommended to tie the integration between services to some
specific technology, because the teams might want to use di↵erent programming
languages when implementing services. Instead using a technology which does
not require a specific programming language is better choice. There are also mul-
tiple other challenges when thinking about the integration of microservices. The
interface of microservice should be simple to use and it should have good back-
wards compatibility so when new functionalities are introduced, the clients using
the service do not have to be necessarily updated. Like every good interface, it
should also hide the implementation details inside.

Using microservices in production environment provides new challenges that
needs to be handled. There can be hundreds of di↵erent services running in pro-
duction and many services can have multiple instances running to comply with
the scale that is needed from the application. This big amount of microservices
organizations run in production means that there has to be tools to automat-
ically to deploy, scale and manage these services. Manual deployment process
is not an option when deployments to the production environment are made
multiple times per day. Docker and similar technologies enable easier develop-
ment and deployment of microservices [30]. Docker makes microservices easily
portable and isolated [31]. There are no conflicts of dependencies or the need to
configure each environment. With Docker developers can easily imitate the pro-
duction environment in their local development environment. If the decision is
to use Docker in production environment, then there are multiple tools to handle
the scaling, deployment and management of these containers. These tools such
as Kubernetes make it easier when solving these challenges [32]. Kubernetes pro-
vides multiple features like horizontal scaling, service discovery, load balancing
and so on.

In addition to the infrastructure challenges, there are also challenges like
logging and monitoring which need more attention with microservices than when
working with a monolithic application [30]. In case of failures, there needs to be
good logging in microservices. This logging has to be easily searchable and all
services should aggregate logs to one place so problem finding becomes easier.
When there is only one monolithic software running in production, it is a lot
easier to monitor that. The monolithic application might be scaled to multiple
nodes, but still there is less nodes or containers to monitor than when running
microservices in production. This means that when there is more to monitor,
there should also be good automated tools which notify the persons who need to
act when a microservice fails. Because there are more moving parts it becomes
more likely that a service will go down or have other problems such as high
latency. Users might not notice that one microservice is down and it might seem
that everything is working properly. When running monolith in production the
users will immediately notice that the whole service is not working.

When the organization has more than a few microservices, then it should also
take in to consideration the possibility that a service might not respond [20]. The
design of microservices has to be fault-tolerant. With distributed system that has
a lot of services it is inevitable that at some point a service might be under heavy
load and cannot respond in timely manner or the service might down. This where
circuit breaker pattern becomes useful. Circuit breaker pattern handles failures
fast and can provide fallback which returns default data instead of waiting for
the response from a dependency [20]. Circuit breaker monitors for failures and
when there are enough failures the subsequent calls to the dependency won’t be
made and instead an error is returned [22]. This means that instead of adding
more load to the dependency by making new calls to it, an error is returned
immediately to the user which gives the dependency time to recover from the
load. Also, a fallback method can be provided if it is possible. For example,
when a product service fails to fetch personalized product recommendations, it
could fallback to recommendations that are tied to that product as a default or
instead just return nothing as recommendations and the UI could then handle
this case. This kind of approach means that the user might not even notice that
the microservice serving the recommendations is down. There are multiple ready
solutions which can be used in microservices. The most famous one is probably
Hystrix [21]. Hystrix is a library that provides latency and fault tolerance to
distributed systems. Using Hystrix is simple and makes it easy for developers to
make their calls to dependencies latency and fault tolerant.

Data management is an important part of every application. There are many
important questions such as whether to use relational database or NoSQL, what
database provider suits best for the use cases of the application and which kind of
schema the database should have. Microservices provide the freedom to use mul-
tiple database engines. This pattern, which is called database per service, comes
with its own challenges [17]. Multiple di↵erent databases means that managing
them is harder and the organization might not have that much of knowledge
about the database. Previously if the monolith application used traditional rela-

Fig. 3. A database per service.

tional database then using ACID (Atomicity, Consistency, Isolation, Durability)
transactions was easy. Now when there are multiple services which each have
their own database the transactions are harder to handle and more time needs
to be spent dealing with the transactions. Instead of transactions microservices
can agree on eventual consistency of data [23]. This means that the changes done
by other services might not be persisted immediately, but they will be eventually
persisted, when the service has processed the message. If previously the user had
to wait for the whole transaction to complete now the user might not be able to
immediately explore the data that the dependency service will create. Figure 3
illustrates the one database per service approach. In this case, the service owns
the data and if for example the order service needs to know something about
the invoices it has to go through invoice API. This leads to loose coupling of the
services. If the team managing invoice service has to modify invoice database
schema they can do it without changing any other service than invoice service
as long as the API stays the same.

It is also possible to use one single database for all the services [24]. This
approach is illustrated in Figure 4. One database for all services is however
problematic as now the database schema is tightly coupled [23]. One database
also mean that services have access to data that should only be available through
calls to other services. This can result in loss of modularity as it is very easy to
rather query the data from di↵erent table directly instead of making a service
call to proper service which should return this data. In Figure 4 we can see
that the order service has access also to the schema of invoices. This makes it
now easy for order service developers to get data from invoices without going
through the invoice API. Which leads to tight coupling during development
time, if team developing invoice service wants to change the schema they now
have to coordinate this e↵ort with multiple other teams [24]. Shared database
diminishes many good sides of microservices and use of one shared database is not
recommended [1]. Instead, when refactoring towards microservice architecture

Fig. 4. One shared database for all services.

also the monolith database should be split up to multiple databases which can
be accessed only by the service that handles that business context.

4.2 Organizational challenges

Besides the technical challenges that microservices provide, there are organi-
zational challenges that needs to be addressed when moving from monolithic
architecture to microservice architecture. Even if the organization solves all the
technical challenges, the structure and skills of organization should also support
the new architecture [1].

One of the organizational challenges is the structure of the organization. In or-
der to develop good application, the organization must align their structure with
the structure of the application architecture [25]. If previously with monolithic
application the organization had big teams which had clear roles like quality
assurance, development and database administration then this kind of organiza-
tion structure does not work with microservices. Conway’s law states that the
organization which designs the system will produce a system which structure is
a copy of the organizations structure [15]. If the structure of the organization is
monolithic then microservices approach does not work. The organization must
split these big teams to smaller teams which can work autonomously. This way
the structure of the architecture is in line with structure of the organization and
they do not conflict with each other.

Figure 5 contains a monolithic organization which consists of teams which
have very specialized focus areas. The teams are very good in their specialized
areas but when delivering a business functionality, they need to collaborate with
each other and there is a hand-o↵ process before a release can be made [26].
This kind of structure results in slower development cycles. Figure 6 shows an
organization that is structured around microservices and products. When teams
are organized like this they have more autonomy considering their releases. Now

Fig. 5. Monolithic organization which delivers monolithic application.

there is no hand-o↵ process to a third party and teams do not have to wait for
other teams to complete their changes. If there are new business requirements
for invoicing then the team that is responsible for invoice service can deploy
their changes to production when they are ready. This kind of structure reduces
the need for fine-grained communication as teams can work separately. Teams
have full control of their service and deployment timetable which introduces
ownership of the product to the teams. They will also develop product specific
skills on top of their technical skills which means that for example the accounting
service team will have better business capabilities considering that area.

Fig. 6. Organization structure that supports microservices.

When organization adopts microservice architecture style, the teams should
have more freedom and responsibility but less process [26]. This means that the
teams can deploy their service to the production when they need to instead of
waiting for approval from someone else. Teams own their codebase and are re-
sponsible for the functionality of the service. They no longer can blame someone
else about their failures and if there are problems in the production the team
that is responsible for that service has to fix it. Ownership of code brings devel-
opers pride in appearance, improvement and commits developers to long-term

involvement instead of always thinking that the problems in the codebase are
someone else’s problems and the next person will clean up the mess [27]. The
ownership also gives teams freedom to develop the service as they want. It might
still be sensible to have some constraints but there are far less constraints with
microservices than with monolith. This kind of change is very dramatic. It might
be scary to suddenly be fully responsible of the code, if before the architectural
refactoring people had the chance to hide from responsibility. It takes time that
teams adopt to this new responsibility and see the good sides of it. A good mid-
dle ground would be to have an operations team in the beginning which still has
the main responsibility of production so teams have time to adopt that they own
the codebase [1]. When teams are comfortable with owning the codebase then
they can gradually also take over the production responsibility of their service.

When teams take full responsibility of their service, they might require new
skills in order to deploy and fix problems in production. This means adopting
DevOps mentality. DevOps can be described as ”a set of practices intended to
reduce the time between committing a change to a system and the change be-
ing placed into normal production, while ensuring high quality” [28]. Since fast
change cycle is one of the main points of microservices, the deployments need
to be fast and smooth. This kind of deployment process is called continuous
delivery. It aims to shorten the release cycle of application by making develop-
ers and operations work together [29]. In a monolithic organization developers
just committed code and then the deployments were responsibility of operations
team. Now every team needs to be able to handle deployments. There might not
be enough people with corresponding skills so team members need to learn new
skills and enhance their deployment process. When operations and developers
are working together in same team they have similar goals but the education
and adaptation takes time and patience.

5 Conclusion

Based on the di↵erent challenges that organizations face when they move from
monolith architecture to microservice architecture we can conclude that this
transition is not easy and it will require a lot of time and e↵ort from various
parts of the organization. Making a system distributed introduces new challenges
that needs to be addressed. Even though microservices can be considered novel
software architecture, they are still somewhat mature in the sense that the tool-
ing around microservices is pretty good and most of the challenges can be solved
by applying open sourced tools made by companies which have already made the
transition from monolith to microservices. These tools do not however solve the
problem of refactoring and removing the tight coupling of codebase. Most of the
focus will of course be on the technical side of the challenges, but organizations
should not forget the Conway’s law. The structure of the organization has to
be similar as their architecture. So, the technical and organizational challenges
have to be both solved in order to be successful with microservices.

Refactoring to microservices is a big process which can take a long time and
this process requires buy-in from every part of the organization. This transition
is still doable, as previous examples have showed us. Organization that is con-
sidering this transition should however evaluate the cost and the reward of the
transition and think about their own problem base. Microservice architecture is
not a silver bullet that works for every organization and in some cases the chal-
lenges outweigh the rewards. However, for some organizations it is the only way
to continue the rapid development and deliver software fast to their customers.

Acknowledgements

The research was supported by the Academy of Finland (project 295913).

References

1. Sam Newman, Building Microservices, Designing Fine-Grained Systems, 1st ed.
United States of America: O’Reilly Media Inc., 2015.

2. James Lewis, Martin Fowler, (2014, March) Microservices a definition of this new
term [Online] https://martinfowler.com/articles/microservices.html

3. Andrea Gallidabino, Cesare Pautasso, Ville Ilvonen, Tommi Mikkonen, Kari Systä,
Jari-Pekka Voutilainen, and Antero Taivalsaari. On the Architecture of Liquid Soft-
ware: Technology Alternatives and Design Space. In Proceedings of the 2016 13th
Working IEEE/IFIP Conference on Software Architecture, 122–127, 2016, IEEE.

4. Chris Richardson, (2014, March) Microservices — Pattern: Microservice Architec-
ture [Online] http://microservices.io/patterns/microservices.html

5. Johannes Thones, Microservices IEEE Software, 32, no. 1, pp. 116-116, 2015.
6. M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca, R. Casallas and S.

Gil, Evaluating the monolithic and the microservice architecture pattern to deploy

Web applications in the cloud In Proc. of CCC 2015, pp. 583-590
7. Chris Munns, (2015, October) I Love APIs 2015: Microservices at Amazon [On-

line] https://www.slideshare.net/apigee/i-love-apis-2015-microservices-at-amazon-
54487258

8. Tony Mauro, (2015, February) Nginx — Adopting Microservices at Neflix: Lessons
for Architectural Design [Online] https://www.nginx.com/blog/microservices-at-
netflix-architectural-best-practices/

9. Seven Ihde, (2015, March) InfoQ: From a Monotlith to Microservices
+ REST: the Evolution of LinkedIn’s Service Architecture [Online]
https://www.infoq.com/presentations/linkedin-microservices-urn

10. Phil Calcado, (2014, June) SoundCloud: Building Products
at SoundCloud - Part 1: Dealing with the Monolith [Online]
https://developers.soundcloud.com/blog/building-products-at-soundcloud-part-1-
dealing-with-the-monolith

11. Chris Richardson, (2017, March) Microservices — Pattern: Monolithic Architecture
[Online] http://microservices.io/patterns/monolithic.html

12. Stefan Tilkov, (2015, June) Don’t start with a monolith when your goal is a mi-
croservice architecture [Online] https://www.martinfowler.com/articles/dont-start-
monolith.html

13. Michael Feathers, Working E↵ectively with Legacy Code, Prentice-Hall
14. A. Balalaie, A. Heydarnoori, P. Jamshidi, Microservices Architecture Enables De-

vops, IEEE Software, vol 33, no. 3, 2016, pp. 42-52.
15. Conway, M. E. (1968). How do committees invent. Datamation, 14(4), 28-31.
16. Martin Fowler, (May, 2015) Microservice Premium [Online]

https://martinfowler.com/bliki/MicroservicePremium.html
17. Chris Richardson, (March, 2016) Microservices — Pattern: Database per service

[Online] http://microservices.io/patterns/data/database-per-service.html
18. Josh Clemm, (July, 2015) A Brief History of Scaling LinkedIn [Online]

https://engineering.linkedin.com/architecture/brief-history-scaling-linkedin
19. Balalaie A., Heydarnoori A., Jamshidi P. (2016) Migrating to Cloud-Native Archi-

tectures Using Microservices: An Experience Report. In: Celesti A., Leitner P. (eds)
Advances in Service-Oriented and Cloud Computing. ESOCC Workshops 2015.
Communications in Computer and Information Science, vol 567. Springer, Cham

20. Montesi, F., Weber, J. (2016). Circuit Breakers, Discovery, and API Gateways in
Microservices. arXiv preprint arXiv:1609.05830.

21. Netflix Inc., (2013) [Online] https://github.com/Netflix/hystrix
22. Martin Fowler, (March, 2014) [Online]

https://martinfowler.com/bliki/CircuitBreaker.html
23. Hasselbring, W. (2016, March). Microservices for scalability: keynote talk abstract.

In Proceedings of the 7th ACM/SPEC on International Conference on Performance
Engineering (pp. 133-134). ACM.

24. Chris Richardson, (November, 2015) [Online]
http://microservices.io/patterns/data/shared-database.html

25. Sam Newman, (June, 2014) [Online]
https://www.thoughtworks.com/insights/blog/demystifying-conways-law

26. Tony Mauro, (March 2015) [Online] https://www.nginx.com/blog/adopting-
microservices-at-netflix-lessons-for-team-and-process-design/

27. Nordberg, M. E. (2003). Managing code ownership. IEEE software, 20(2), 26-33.
28. L. Bass, I. Weber, L. Zhu, DevOps: A Software Architect’s Perspective, Addison-

Wesley Professional, 2015
29. Wettinger J., Andrikopoulos V., Leymann F. (2015) Enabling DevOps Collabo-

ration and Continuous Delivery Using Diverse Application Environments. In: De-
bruyne C. et al. (eds) On the Move to Meaningful Internet Systems: OTM 2015
Conferences. Lecture Notes in Computer Science, vol 9415. Springer, Cham

30. Stubbs, J., Moreira, W., Dooley, R. (2015, June). Distributed systems of microser-
vices using docker and serfnode. In Science Gateways (IWSG), 2015 7th Interna-
tional Workshop on (pp. 34-39). IEEE.

31. Merkel, D. (2014). Docker: lightweight linux containers for consistent development
and deployment. Linux Journal, 2014(239), 2.

32. Kubernetes (March, 2017) [Online] https://kubernetes.io/
33. Mesos (May, 2017) [Online] http://mesos.apache.org/
34. Mark Richards, Microservices Antipatterns and Pitfalls, 1st ed. United States of

America: O’Reilly Media Inc., 2016.

