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Abstract 

Acute kidney injury (AKI) and sepsis carry consensus definitions. The simultaneous presence of both identifies septic 
AKI. Septic AKI is the most common AKI syndrome in ICU and accounts for approximately half of all such AKI. Its 
pathophysiology remains poorly understood, but animal models and lack of histological changes suggest that, at 
least initially, septic AKI may be a functional phenomenon with combined microvascular shunting and tubular cell 
stress. The diagnosis remains based on clinical assessment and measurement of urinary output and serum creatinine. 
However, multiple biomarkers and especially cell cycle arrest biomarkers are gaining acceptance. Prevention of septic 
AKI remains based on the treatment of sepsis and on early resuscitation. Such resuscitation relies on the judicious use 
of both fluids and vasoactive drugs. In particular, there is strong evidence that starch-containing fluids are nephro-
toxic and decrease renal function and suggestive evidence that chloride-rich fluid may also adversely affect renal 
function. Vasoactive drugs have variable effects on renal function in septic AKI. At this time, norepinephrine is the 
dominant agent, but vasopressin may also have a role. Despite supportive therapies, renal function may be tempo-
rarily or completely lost. In such patients, renal replacement therapy (RRT) becomes necessary. The optimal intensity 
of this therapy has been established, while the timing of when to commence RRT is now a focus of investigation. If 
sepsis resolves, the majority of patients recover renal function. Yet, even a single episode of septic AKI is associated 
with increased subsequent risk of chronic kidney disease.
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Introduction
Septic acute kidney injury (AKI) is a syndrome of acute 
impairment of function and organ damage linked with 
long-term adverse outcomes depending on the extent of 
acute injury superimposed on underlying organ reserve. 
Implicit in this concept is that dysfunction should be 
reversible and rescue is possible, but that duration of the 
insult and underlying renal reserve may limit restoration 
of renal function. Thus, septic AKI is a clinical diagno-
sis based on specific, context-dependent, and imperfect 

definitions [1] with azotemia and oliguria still its key 
diagnostic criteria [2]. In this article, we aim to review 
recent developments and key aspects of the epidemiol-
ogy, pathogenesis, prevention, and treatment of sep-
tic AKI with the goal of increasing understanding and 
awareness among clinicians of this increasingly common 
intensive care syndrome.

Definition and diagnosis of septic AKI
The RIFLE criteria (Risk Injury Failure Loss End-stage 
renal disease) were proposed by the Acute Dialysis 
Quality Initiative [1]. More recently, the Kidney Disease 
Improving Global Outcomes (KDIGO) group produced 
a unified version of all key criteria (Table  1) [2], which 
now represent global consensus. Similarly, a new global 
consensus definition of sepsis has emerged and is likely 
to be used for epidemiologic and clinical purposes [3]. 
Logically, septic AKI (or sepsis-associated AKI or AKI in 
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Take-home message: Septic acute kidney injury is no longer 
considered a disease of the macrocirculation, but rather a disorder of the 
renal microcirculation with associated inflammatory tubular injury. These 
new ideas have profound diagnostic and therapeutic implications.
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sepsis) should describe a syndrome characterized by the 
simultaneous presence of both Sepsis-3 and KDIGO cri-
teria. Nonetheless, clinical judgment is still required [4], 
and a more modern framework for rapid clinical diag-
nosis is evolving which is based on novel biomarkers of 
renal injury (Table 2). Thus, future definitions of AKI may 
soon include such biomarkers. Irrespective of definition, 
knowledge of baseline renal function remains important 
and is needed to apply the KDIGO diagnostic criteria. 
Unfortunately, a baseline creatinine may not be available, 
and a patient with suspected septic AKI and unknown 
baseline function might have sepsis with chronic kidney 
disease (CKD), septic AKI, or both. Ancillary tests and 
checklists might be helpful to make the correct diagno-
sis [4]. In the absence of baseline information, however, 
an estimated GFR using the Modification of Diet in Renal 
Disease (MDRD) equation has been used in patients 
without a history of CKD (Table 2) [1]. Finally, although 
urinalysis and urinary biochemistry have limited clinical 
utility [5], urine output remains important not only for 
diagnosis but also for risk prediction [6]. However, uri-
nary output and creatinine are increasingly being com-
plemented by novel biomarkers of AKI.

Novel biomarkers
Over the last decade several biomarkers have been evalu-
ated for their capacity to detect kidney “stress” and/or 
“damage” and to predict the development of AKI. They 
apply to septic AKI as well. The strong interest in bio-
markers relates to the desire to achieve early diagnosis 
in order to deliver prevention and early therapy when it 
may be most effective. Biomarkers can provide additional 
insights into AKI pathophysiology and are complemen-
tary to functional tests [7]. These biomarkers might also 
detect renal stress or damage before functional change 

is evident (preclinical AKI) or even in the absence of 
functional change (subclinical AKI). In other cases, low 
biomarker levels may help diagnose physiologic in con-
trast with pathologic oliguria. Their role in different renal 
syndromes including septic AKI is a rapidly evolving area 
of research. Neutrophil gelatinase-associated lipoca-
lin (NGAL) has been the most extensively investigated 
renal biomarker [8]. NGAL is upregulated in kidney tis-
sue exposed to nephrotoxic or inflammatory stress, but 
also released by activated neutrophils with specific forms 
of the molecule released from the kidney (monomeric) 
and neutrophils (dimeric) [9]. Unfortunately, commer-
cial assays only measure a mixture of the different forms 
making their specificity, reproducibility, and diagnostic 
accuracy unclear and creating uncertainty regarding the 
role of NGAL as a biomarker of AKI. In a pooled analysis 
of >2000 critically ill patients, one-fifth were NGAL-pos-
itive without an increase in serum creatinine (subclini-
cal AKI or false positive results). Yet, these patients were 
at greater risk of subsequent renal replacement therapy 
(RRT), longer ICU and hospital stay, and death [10]. 
Similar findings were observed in emergency depart-
ment patients [11] and support the existence of a state of 
subclinical damage, which is associated with worse renal 
outcomes, and can only be detected by novel biomarkers. 
Other molecules have been studied as biomarkers of AKI. 
Among these, kidney injury molecule (KIM-1) appears to 
perform similarly to NGAL [7] but has not been studied 
in a large cohort of septic ICU patients. Cell cycle arrest 
may be protective during cellular stress. Two major regu-
latory proteins involved in initiating cell cycle arrest were 
recently discovered to play a role in AKI: tissue inhibi-
tor of metalloproteinases-2 (TIMP-2) and insulin-like 
growth factor binding protein-7 (IGFBP-7). In 2013, a 
prospective, observational, international investigation 

Table 1 Criteria and staging for acute kidney injury

Minimum criteria for acute kidney injury include an increase in SCr by ≥ 0.3 mg/dl (>26.5 µmol/l) observed within 48 h; or an increase in SCr to ≥1.5 times baseline, 
which is known or presumed to have occurred within the prior 7 days; or urine volume <0.5 ml/kg/h for 6 h

Stage Serum creatinine Urine output

1 1.5–1.9 times baseline
OR
≥0.3 mg/dl (>26.5 µmol/l) increase

<0.5 ml/kg/h for 6–12 h

2 2.0–2.9 times baseline <0.5 ml/kg/h for ≥12 h

3 3.0 times baseline <0.3 ml/kg/h for ≥24 h

OR OR

Increase in serum creatinine to ≥4.0 mg/dl (353.6 µmol/l) Anuria for ≥12 h

OR

Initiation of renal replacement therapy

OR

In patients <18 years, decrease in eGFR to <35 ml/min per 1.73 m2
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of critically ill patients, including many with septic AKI 
[12], found an area under the receiver operating charac-
teristic curve (AUC) of 0.80 for [TIMP-2]·[IGFBP-7] for 
the prediction of KDIGO stage 2 and 3 AKI. These mark-
ers were significantly superior to all previously described 
biomarkers. Moreover, tubular cells may undergo cell 
cycle arrest (as demonstrated by cell cycle arrest bio-
markers in the urine) [12] to decrease energy consump-
tion and protect themselves. This phenomenon may then 
result in activation of the tubulo-glomerular feedback 
mechanism [13], which would contribute to a decrease 
in GFR aimed at attenuating ultrafiltration. However, this 
theoretical framework, like others, remains speculative. 
These biomarkers may also help change the definition 
of AKI in the future and contribute to a better under-
standing, diagnosis, prevention, and treatment of septic 
AKI (Fig.  1). Other approaches to assess renal function 
have been considered. They include the furosemide stress 
test, and assessment of the response to protein loading 
[14] and the application of real-time GFR measurements 
[15]. None of these approaches have yet been tested for 
their accuracy and robustness in large multicenter stud-
ies and remain investigational in nature. However, there 
is no evidence at this time that knowledge of biomarker 
values in septic AKI allows better and more successful 
early treatment. Thus, current epidemiologic information 
remains linked to traditional diagnostic criteria.

Epidemiology of septic AKI
Several cohort studies have described the frequency 
of sepsis among patients with AKI. The multinational 
Beginning and Ending Supportive Therapy for the Kidney 
(BEST Kidney) [16] found sepsis in nearly half the cohort. 
Septic AKI was associated with higher risk of in-hospital 
mortality. More recently, an international consortium 
confirmed these findings [17]. Angus et  al. examined 
192,980 patients with severe sepsis from seven US states 
using diagnostic codes [18]. AKI occurred in 22% and 
was associated with a mortality of 38.2%. The Sepsis 
Occurring in Acutely ill Patients (SOAP) cohort study 
recruited patients admitted to 198 ICUs across Europe 
[19]. Of 3147 patients, 37% had sepsis. AKI occurred in 
51% of cases and was associated with an ICU mortality of 
41%. The FINNAKI study enrolled 2901 critically ill con-
secutive patients from 17 Finnish ICUs [20]. Among the 
918 patients with severe sepsis, 53% met the KDIGO cri-
teria for AKI. In the recent Vasopressin vs. Norepineph-
rine as Initial Therapy in Septic Shock (VANISH) trial, 
AKI occurred in about 45% of patients, and AKI requir-
ing RRT developed in 30% of patients [21].

There may also be genetic susceptibility to AKI in 
general and to septic AKI specifically. Polymorphism 
of cytokine-controlling genes has been associated with Ta
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sepsis and polymorphism of catechol-O-methyl trans-
ferase activity has been associated with AKI risk [22]. 
More recently a genome-wide association study of 
patients with AKI (including septic AKI) found that 
polymorphism of the likely controller of a transcription 
factor (on chromosome 4) involved in innate immunity 
pathways was associated with greater risk of AKI. Simi-
larly, another gene involved in the likely control of trans-
forming growth factor beta (on chromosome 22) was also 
associated with greater risk [23].

The outcomes of critically ill patients with sepsis [24] 
and AKI requiring RRT [25], however, have improved 
in recent years. It remains unclear if these improve-
ment reflect a true decline in mortality or greater diag-
nostic sensitivity or more liberal indications to initiate 
RRT. Moreover, little is known about AKI in septic gen-
eral ward patients. The advent of the Sepsis-3 definitions 
will force a reassessment of the characteristics and out-
comes of sepsis-associated AKI. However, such assess-
ment must logically be based on an understanding of its 
pathophysiology.

Pathophysiologic theories
Our understanding of the pathogenesis of septic AKI is 
limited, but it is now clear that septic AKI is profoundly 

different from ischemic AKI both in the experimental 
setting and in the clinic. It is markedly affected by our 
inability to monitor renal blood flow (RBF), microvas-
cular flow, cortical and medullary perfusion and oxy-
genation, and tubular well-being. Thus, animal models of 
septic AKI have been developed to enable sophisticated 
and invasive measurements that cannot be performed 
in humans. In early experimental studies of septic AKI, 
global RBF was reported to decline after the administra-
tion of endotoxin [26]. These endotoxin-based experi-
ments, which were associated with a hypodynamic 
systemic circulation, led to the view that human septic 
AKI must be due to renal vasoconstriction and ischemia 
[26]. More recent studies of hyperdynamic sepsis have 
demonstrated that the renal circulation participates in 
the systemic vasodilatation of sepsis. Thus, in such mod-
els, septic AKI develops in the presence of increased RBF 
[27, 28].

In a study of 160 original articles of animal models 
[29], if the model reported a high cardiac output (CO), 
RBF was either preserved or increased. However, despite 
such global renal hyperemia, oliguria and AKI develop 
rapidly (hours) and are marked. This phenomenon, 
where RBF is dissociated from glomerular filtration 
rate (GFR), requires explanation. Changes in intrarenal 

Fig. 1 Potential contribution of novel renal injury biomarkers to the detection, prevention, and treatment of septic AKI
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hemodynamic (microvasculature) may logically provide 
such an explanation. For example, GFR may be decreased 
by changes in the relationship between the afferent and 
efferent glomerular arterioles, with greater efferent than 
afferent dilatation leading to loss of intraglomerular fil-
tration pressure. This theory offers an explanation for the 
dissociation between perfusion and function in septic 
AKI (a phenomenon also seen in man [30]) but remains 
empirically untested. In this regard, the renal microcircu-
lation may be a key area in determining function, injury, 
and recovery as it lies at the interface of endothelial and 
immune cells. In the most vascular organ in the body, 
it appears logical that it should be fundamental to both 
function and dysfunction [31].

Despite increased RBF, ischemia may still occur. More 
recent experimental evidence supports the view that in 
septic AKI, there is redistribution of flow away from the 
renal medulla to the renal cortex with a degree of med-
ullary deoxygenation [32–34]. This change in regional 
distribution of blood flow implies the activation of intra-
renal shunting pathways [35].

There is also limited systematic information on 
the renal tubules in sepsis, while GFR may be lost as 
described above. A pathophysiological theory of tubular 
injury has suggested that ultrafiltration of toxic blood is 
the inciting mechanism for tubular stress and then dam-
age [13]. According to this theory, during sepsis, blood 
is full of small and medium-sized molecules (cytokines, 
chemokines, complement fragments, and the like), which 
have a toxic effect on tubular cells when concentrated 
in the ultrafiltrate acting on the luminal surface of the 
tubules [13]. This “inflammatory theory of AKI” is sup-
ported by experimental observations [36]. For example, 
pathogen-associated molecular patterns such as lipopoly-
saccharide can interact with Toll-like receptors (TLR) on 
tubular cells, and experimental studies have shown that 
the administration of TLR antagonists can attenuate sep-
tic AKI [36]. Moreover renal endothelial and tubular cells 
both express cytokine receptors and release pro-inflam-
matory molecules which can recruit T cells to the kidney 
and blood from septic patients can induce tubular cell 
apoptosis in vitro [36]. Thus, one of the renal responses to 
inflammation may be directed to decreased energy con-
sumption with autodigestion of organelles (autophagy), 
digestion and dysfunction of mitochondria (mitophagy), 
and loss of cell polarity [37]. How these complex inflam-
matory events, which now include the release of histones, 
microparticles, and micro RNA, affect renal function 
remains unknown [36].

However, many of the above theories are based on ani-
mal models of sepsis and do not fully address the micro-
scopic anatomical changes that might occur in renal 
tissue.

Animal models and histopathology
Most early in vivo models of septic AKI do not replicate 
the typical hyperdynamic state seen in man [38]. More-
over, models of renal ischemia are not relevant to the 
pathophysiology of septic AKI. Sheep, however, develop 
a cardiovascular response to sepsis similar to humans, 
and they have been used extensively to study septic AKI 
using live Gram negative bacteria infusions which over-
come the flaws of endotoxin-based models [28, 33]. How-
ever, the choice of bacteria, strain, amount, and infusion 
rate can alter the septic response and standardization is 
difficult. Polymicrobial abdominal sepsis can be induced 
by cecal ligation and puncture (CLP), bowel ischemia, 
or intra-abdominal implantation of feces. These meth-
ods of inducing sepsis are relatively easy, but the amount 
and type of bacteria released are variable with a vari-
able severity of sepsis that does not consistently lead to 
AKI. Clinicians need to understand these factors when 
interpreting data acquired from models including renal 
histopathology.

Structural lesions of the kidney have been thought 
to contribute to the renal dysfunction of septic AKI. In 
particular, acute tubular necrosis (ATN) is assumed to 
account for such dysfunction. However, in human septic 
AKI postmortem studies, ATN is uncommon [39, 40]. 
Similarly, ATN is uncommon in experimental septic AKI 
[41]. Moreover, ATN may not be a useful term because it 
lacks a clear definition, is not quantifiable, and does not 
account for the functional changes seen during sepsis. In 
this regard, studies have compared the histology of post-
mortem renal tissue of those who died with and without 
sepsis. They found more minor tubular lesions, leuco-
cyte infiltration, and apoptosis in septic kidneys [39, 40]. 
These changes were only focal, most nephrons appeared 
normal, and indices of renal dysfunction poorly predicted 
renal histological changes. Thus, like RBF, histology 
appears dissociated from function. The picture is further 
clouded by the sampling of tissue from patients dying fol-
lowing variable severity of renal dysfunction, premorbid 
renal disease, therapeutic interventions, nephrotoxin 
exposure, and severity of illness.

Recently, a controlled experimental study of septic AKI 
in sheep concurrently monitored renal function, renal 
blood flow, obtained sequential renal biopsies over 48 h, 
and undertook systematic histological assessment [42]. 
As severe septic AKI developed, RBF and renal oxygen 
consumption were unchanged and the only histologi-
cal abnormality was minor focal mesangial expansion on 
electron microscopy. Thus, there is a disconnect between 
function and structure in septic AKI, and the early 
changes in renal function with sepsis appear to primar-
ily represent a functional rather than structural disease. 
If it is true that early (first 24–48 h) septic AKI represents 
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functional changes in the microvasculature and tubules, 
then early intervention and prevention of progression 
acquire great importance.

Prevention
There is a strong rationale to prevent the occurrence of 
AKI. The first priority for prevention is the identification 
of patients at increased risk. Such information is crucial 
to the development of a prevention and treatment plan 
(Fig.  2). Recent evidence has focused on clinical risk 
prediction [43], novel kidney damage biomarkers [44], 
automated electronic alerts embedded within electronic 
health records [45], and the concept of the renal angina 
index (RAI) [46]. Moreover, adaptive risk identification 
tools can be developed for adult critically ill patients, 
integrating known susceptibilities (i.e., age, diabetes 
mellitus, heart failure, chronic kidney disease, liver dis-
ease, malignancy) and other potentially modifiable fac-
tors (i.e., urine output, fluid balance). Such tools could 
be integrated into an ICU bedside clinical decision sup-
port system [47]. Risk identification tools can now be 
used in combination with novel kidney damage urine 
biomarkers [7]. Recent data have suggested that urine 
TIMP2·IGFBP-7 significantly improved risk prediction 
when added to a nine-parameter clinical model [48].

To date, implementation of automated alerts for 
AKI has not been shown to consistently improve pro-
cesses of care or outcomes. However, in an ICU setting, 
among patients who had an automated alert issued for 
AKI, more interventions were given (i.e., diuretics, fluid, 

vasopressors); time to intervention was shortened and a 
greater proportion recovered kidney function to baseline 
[45]. Patients at increased risk should have appropriate 
adjustment, discontinuation, or avoidance of nephrotox-
ins, including unnecessary exposure to contrast media. 
Beyond such seemingly obvious interventions, only a 
limited number of preventive treatments are potentially 
available.

Antibiotics and source control
Earlier and appropriate antimicrobial therapy, along with 
septic source control, has been associated with lower risk 
of AKI [49]. For each hour that appropriate antimicrobial 
therapy was delayed, the risk of AKI increased by approx-
imately 40%. Moreover, earlier antimicrobial therapy was 
associated with greater likelihood of kidney recovery 
within 24 h [49]. Finally, experimental studies focused on 
immune modulation and microcirculatory performance 
have characterized a number of possible new interven-
tions. None, however, have yet been tested in robust clin-
ical trials.

Hemodynamic optimization
Early goal-directed therapy (EGDT) failed to show benefit 
for reducing AKI, utilization of RRT, or kidney recovery 
[50]. The ProMISe [51], ProCESS [52], and ARISE trials 
[53] demonstrated no difference in mortality or improved 
renal outcomes with EGDT. However, post hoc analy-
sis from a multicenter trial suggested, among patients 
with mild AKI, that addition of low-dose vasopressin 

Fig. 2 Diagram illustrating how identification of a patient at risk of septic AKI can correctly inform all aspects of care
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to norepinephrine infusion for hemodynamic support 
in septic shock was associated with reduced likelihood 
of worsening AKI, receipt of RRT, and mortality [54]. 
Recently, the VANISH trial found no significant differ-
ences in the rate of stage 3 AKI or kidney injury-free days 
among 409 septic shock patients randomized to either 
vasopressin or norepinephrine as initial vasopressor [21]. 
Fenoldopam, a selective dopamine receptor-1 agonist, 
was found to reduce the number of patients who reached 
a serum creatinine  greater than 150  µmol/l in a rand-
omized trial of 300 septic critically ill patients; however, 
this effect did not translate into decreased mortality [55] 
and has not yet been confirmed in subsequent studies.

Fluids
Traditional teaching suggests that aggressive fluid ther-
apy is crucial to the successful management of both sepsis 
and AKI. However, as discussed above, septic AKI may 
not be characterized by hypoperfusion. Thus, aggressive 

fluid administration may be physiologically illogical and 
ineffective; it may contribute to renal edema which, in an 
encapsulated organ, may induce congestion and ischemia 
(Fig. 3).

Fluid bolus therapy (FBT), combined with the oligu-
ria of AKI, is likely to lead to fluid accumulation in sep-
tic patients [56]. Fluid accumulation was associated with 
adverse outcomes and increased mortality from the 
Vasopressin versus Norepinephrine Infusion in Patients 
with Septic Shock [57] and in the Fluids and Catheters 
Treatment [58] trials, and in the Program to Improve 
Care in Acute Renal Disease group [59], with persistent 
and pervasive data demonstrating harm in a variety of 
patient populations including those with septic AKI. In 
contrast, the pilot Conservative vs. Liberal Approach to 
fluid therapy of Septic Shock in Intensive Care (CLAS-
SIC) trial demonstrated that restricting resuscitation 
volumes in patients with septic shock is feasible and may 
improve renal outcomes [60]. In the CLASSIC study, a 

Fig. 3 Illustration of possible injury pathways that might be associated with overzealous fluid resuscitation in patients at risk of or developing 
septic AKI (interpretation of data from references [29–32])
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pilot assessment of more restrictive fluid therapy, AKI 
was more likely to worsen in patients receiving standard 
care (restrictive: 37% vs. standard: 54%, P = 0.03). Other 
recent studies have shown lack of effect of FBT on renal 
function or urinary output [61–63].

Fluid type
A preference for balanced crystalloid solutions is emerg-
ing, with observational evidence linking chloride load-
ing with AKI and mortality [64, 65]. However, a recent 
multicenter, cluster-randomized, double-crossover ran-
domized controlled trial (RCT) demonstrated no such 
toxicity in an undifferentiated population of critically ill 
patients or, on subgroup analysis, in those with sepsis 
(n =  84) [66]. However, in such a study the amount of 
trial fluid administered was limited, making assessment 
of an effect problematic. In a prospective, open-label, 
cluster-randomized, multiple-crossover trial compar-
ing the use of saline and balanced crystalloids in a single 
medical ICU where the type of fluid administered alter-
nated monthly after random allocation, no difference 
was seen between groups in the rate of major adverse 
kidney events at 30 days. However, on analysis of the 260 
patients with sepsis, balanced solution led to a significant 
reduction in the risk of the composite outcome (odds 
ratio 0.56) [67]. These variable effects may be related to 
the dose of exposure to exogenous chloride.

While 4% albumin does not appear injurious to the kid-
ney [68], artificial colloids have been demonstrated to be 
nephrotoxic. Hydroxyethyl starch [69] and gelatin solu-
tions [70] have been associated with an increased risk of 
AKI in septic patients and an increased risk of mortality 
in patients with septic AKI. Given the lack of a survival 
advantage, the risks associated with their use, their accu-
mulation in tubular cells (Fig. 3), and their elevated cost 
in comparison to crystalloid solutions, it is difficult to see 
a role for artificial colloids in the modern management 
of septic AKI. In contrast, in many patients with septic 
AKI, another key intervention, often combined with fluid 
therapy and perhaps more physiologically rational, is the 
use of vasoactive drugs.

Vasoactive drugs
In patients with sepsis-induced AKI, vasoactive drugs 
remain the cornerstone of hypotension management 
and can restore adequate organ perfusion pressure [71, 
72]. The most commonly used vasoactive drugs are nor-
epinephrine, epinephrine, vasopressin, dopamine, and 
phenylephrine. However, new evidence from clinical 
and experimental studies suggests that angiotensin  II 
may also be effective in septic shock [71]. In the setting 
of septic AKI, it is unclear whether any one vasopres-
sor drug confers better renal protection than another. 

Nevertheless, norepinephrine can restore blood pressure 
and transiently improve renal function, with fewer side 
effects than alpha dose dopamine [73].

However, recent studies suggest that tissue ischemia 
and hypoxia may occur in the medulla, but not the cor-
tex, before the development of septic AKI [34]. In such 
experimental models, restoring blood pressure with nor-
epinephrine further exacerbates the degree of medul-
lary ischemia and hypoxia (Fig. 4) [34]. These intrarenal 
changes occur independently of changes in global RBF 
and oxygen delivery and suggest that, while treatment 
with norepinephrine has beneficial effects on the sys-
temic circulation and transiently increases renal func-
tion, it may also enhance medullary hypoxia and lead to 
long-term injury. These results suggest the need to care-
fully study different types of vasopressor drugs with or 
without fluid therapy in order to better define the opti-
mal approach to preserving medullary oxygenation. Fur-
ther studies of the renal microcirculation in septic AKI 
are therefore required to determine the causes of the 
reduced medullary perfusion and the effects of the sub-
sequent medullary hypoxia. At this time, it is unclear 
whether norepinephrine-induced changes of medullary 
perfusion carry clinical implications and consequences. 
However, identifying whether vasoactive drugs, other 
than norepinephrine, have the potential to preserve, or 
even improve, regional kidney oxygenation and perhaps 
modify the shunting that is likely to take place in septic 
AKI appears important. However, not only the type of 
vasoactive agent but also the target mean arterial pres-
sure may be important. In this regards, increasing mean 
arterial pressure to levels  above 80  mmHg with greater 
norepinephrine dosage [74] appears to have poten-
tial beneficial effects on renal function in patients with 
premorbid hypertension. If these hemodynamic inter-
ventions fail, clinicians are then faced with the need to 
consider RRT.

Renal replacement therapy
A proportion of septic patients ultimately receive RRT 
due to severe AKI. However, very few RCTs [75–78] of 
RRT (excluding reports related to immunomodulation) 
have included only septic patients (Table  3). Nonethe-
less, in septic AKI patients timing, dose, and modality 
are key RRT-related issues. When assessing the timing of 
RRT, one should consider both the phase of sepsis and 
AKI. Commencing RRT early in the disease process of 
both sepsis and AKI could improve outcomes by limiting 
fluid overload, organ injury, and by removing inflamma-
tory mediators. However, it may also expose patients to 
inadequate dosing of antibiotics and the adverse effects 
of an extracorporeal circuit. An RCT of non-oliguric 
severe sepsis patients with mean baseline creatinine 
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around 190  μmol/l (suggestive of KDIGO stage 2 AKI) 
found that early RRT increased the degree of organ fail-
ures [75].

In contrast, a single-center RCT among mainly surgical 
patients found that early RRT improved survival [79]. A 
third RCT with almost 80% septic patients found no dif-
ference in survival between early and delayed RRT [80]. 
These differences reflected variation in design, popu-
lation, and choice of RRT modality. Two much larger 
RCTs studying the timing of RRT are underway, one 
among septic patients (IDEAL-ICU, NCT01682590) and 
one among mixed septic and non-septic ICU patients 
(STARRT-AKI, NCT02568722).

Once a decision is made to start RRT, continuous RRT 
modalities are more frequently used and recommended 
for hemodynamically unstable patients. However, there is 
no clear evidence that choice of modality alters outcome 
in this patient population. Subgroup analyses among sep-
tic patients in the RENAL [81] and ATN [82] trials also 
found no significant difference between different levels 
of treatment intensity. Subsequent trials investigating 
high-volume hemofiltration among septic patients have 
failed to show any benefit (Table  3). Thus, a delivered 
dose of 20–25  ml/kg/h is recommended. Notably, in a 
substudy of the RENAL trial, a quarter of patients receiv-
ing CRRT were outside target antibiotic concentrations 

regardless of continuous RRT dose, highlighting the need 
for improving the prescribing and monitoring of antibi-
otic levels during RRT [83]. Once septic patients have 
developed severe AKI and RRT is started a remaining key 
issue is that of prognosis and recovery.

Clinical implications of trials
Available trials as described above provide clinicians with 
several reference points which can then be applied and 
adjusted to individual situations in patients with or at 
risk of septic AKI. They indicate that early goal-directed 
therapy is not beneficial to renal function, that aggressive 
fluid loading with a positive fluid balance is not beneficial 
to renal function and may be injurious, and that artificial 
colloids are injurious to the kidney but that 4% albumin is 
not as shown in the SAFE and 20% is also safe as shown 
in the ALBIOS study [84]. They suggest that balanced 
solution may be safer than saline. They suggest that in 
patients with a history of hypertension, a higher blood 
pressure may protect renal function and that achieving 
blood pressure targets with the addition of vasopressin 
may improve renal function compared with norepineph-
rine alone. Moreover, they indicate that RRT intensity of 
20–25 ml/kg/h of solute clearance is the current standard 
of practice. However, the optimal timing and cessation of 
such RRT remain uncertain.

Fig. 4 Histograms summarizing the effects of norepinephrine in an experimental model of septic acute kidney injury in sheep using data from ref-
erence [34]. Even though mean arterial blood pressure and global renal blood flow increase, medullary perfusion and oxygenation decrease. Phase I 
indicates baseline, phase II indicates infusion, phase III indicates post infusion status
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Ongoing phase II trials dealing with the potential 
value of alkaline phosphatase to protect the kidney from 
inflammation [85], and phase III trials dealing with 
the potential value of angiotensin II [86] as a vasopres-
sor agent in sepsis and addressing the issue of timing of 
RRT (STARRT-AKI, NCT02568722) will likely provide 
more level 1 information to assist clinicians with their 
decisions.

Prognosis of septic AKI
Compared with other AKI etiologies, septic AKI may 
have specific prognostic implications. In most reports, 
it is associated with a higher short-term mortality rate. 
In a subgroup analysis of the BEST Kidney trial [16], 
the odds of dying in hospital were 50% higher in septic 
AKI compared with non-septic AKI. Obviously, the dif-
ferent prognosis between septic and non-septic AKI is 
largely influenced by the composition of the non-septic 
group and its proportion of conditions with poor prog-
nosis (such as cardiogenic shock). In addition, the role of 
confounding in the association between septic AKI and 
mortality needs to be addressed as all studies consistently 
report higher illness severity at onset and more frequent 
need for RRT in such patients.

In contrast, for those patients who survive to hos-
pital discharge, septic AKI has been associated with 
improved renal recovery compared with other AKI eti-
ologies. In the BEST Kidney study [16] there was a trend 
for a lower serum creatinine and RRT dependence (9 vs. 
14%, P =  0.052). Obviously, numerous other factors are 
likely to play a role in renal recovery such as RRT modal-
ity, timing of RRT, and further nephrotoxic or ischemic 
insults. Renal recovery is also highly influenced by pre-
morbid conditions as illustrated by a French multicen-
tric observational study, which suggested that diabetic 
patients with septic AKI who survived to hospital dis-
charge were more likely to require long-term RRT and 
had higher serum creatinine levels [87]. Irrespective of 
short-term recovery, however, it is now clear that even a 
single episode of AKI is associated with a greater risk of 
subsequent CKD and even end-stage kidney disease [88].

Conclusions
In critically ill patients, AKI is a common complication 
of sepsis, and sepsis is the most common trigger of AKI. 
Consensus criteria for both sepsis and AKI now exist 
and can be used to more clearly define its epidemiology. 
However, the development of novel biomarkers of AKI 
may soon lead to modifications in the definition of septic 
AKI. Irrespective of its epidemiology, our understanding 
of its pathophysiology remains limited and mostly based 
on animal models. Such models suggest that, at least in 
the first 24–48  h, septic AKI may be a unique form of Ta
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AKI with increased RBF, intrarenal shunting, and lim-
ited histological changes. Partly because of this limited 
understanding, our ability to prevent and treat septic 
AKI is also limited. In this regard, reliance on aggres-
sive fluid-based therapy may be unwarranted and per-
haps injurious. The use of vasoactive drugs to support 
blood pressure is warranted, but blood pressure targets 
may depend on premorbid blood pressure. If renal pro-
tection fails and RRT becomes necessary, the best tim-
ing and modality of such intervention remain uncertain. 
In contrast, dose of RRT is currently robustly based on 
findings from two large trials. If patients survive sepsis, 
recovery occurs in the majority, but our understanding of 
the mechanisms behind renal repair or failed renal repair 
remains poor and the lifetime risk of CKD and end-stage 
kidney disease is higher. Finally, the research agenda 
remains large, as recently reviewed [89], and should be a 
major focus for all clinicians dedicated to improved out-
comes in this field.
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