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Abstract

Motivation: Estimation of the hidden population structure is an important step in many genetic

studies. Often the aim is also to identify which sequence locations are the most discriminative be-

tween groups of samples for a given data partition. Automated discovery of interesting patterns

that are present in the data can help to generate new biological hypotheses.

Results: We introduce Kpax3, a Bayesian method for bi-clustering multiple sequence alignments.

Influence of individual sites will be determined in a supervised manner by using informative prior distri-

butions for the model parameters. Our inference method uses an implementation of both split-merge

and Gibbs sampler type MCMC algorithms to traverse the joint posterior of partitions of samples and

variables. We use a large Rotavirus sequence dataset to demonstrate the ability of Kpax3 to generate

biologically important hypotheses about differential selective pressures across a virus protein.

Availability and implementation: Kpax3 is implemented as a Julia package and released under the

MIT license. Source code and documentation are available at: https://github.com/albertopessia/

Kpax3.jl.

Contact: alberto.pessia@helsinki.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Identification of crucial positions in DNA and protein sequences is an

important problem in biology and medicine. Types of target locations

vary considerably depending on the scope of the analysis, from sin-

gle sites to long contiguous segments. As an example, this kind of

information is valuable for vaccine development (Kilbourne et al.,

2002) or increasing our understanding of antibiotic resistance

(Chewapreecha et al., 2014). However, interesting patterns hidden in

the data are often masked by the unknown population structure,

which typically must also be inferred from the same data. When

approached more formally, this problem can be formulated as a two-

way cluster analysis where both samples and variables are partitioned

into disjoint subsets. Such an approach is generally referred to as

bi-clustering, or co-clustering (Mirkin, 1996). Here, we introduce

the next-generation version of the bi-clustering software Kpax

(Marttinen et al., 2006; Pessia et al., 2015). Our new build signifi-

cantly improves from the previous two by employing a new statistical

formalization for an increased amount of detailed inference informa-

tion. To highlight the possibilities offered by Kpax3 we demonstrate

it using both synthetic and real datasets.

2 Implementation

Kpax3 employs a Bayesian bi-clustering model (Supplementary

Material S1) that extends and improves the one originally intro-

duced by Pessia et al. (2015). Datasets can be loaded either as fasta

files or as more general csv files. Kpax3 output consists of several

text files containing the clustering of both the rows (sequences) and

columns (sites) of the input dataset. The software is entirely written in

the Julia programming language (Bezanson et al., 2017) and is freely
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available through the Julia’s built-in package manager. The package in-

cludes easy step-by-step tutorials to help the user to get started.

3 Results

Details of a simulation study using synthetic datasets can be found

in Supplementary Material S2. Here, we will illustrate an applica-

tion of Kpax3 to a real dataset of Rotavirus protein sequences. Data

was retrieved from NCBI’s Virus Variation Resource database

(Brister et al., 2013) (accessed 2016-08-15) and protein accession

numbers are provided in Supplementary Material S3. The dataset

consisted of 841 protein sequences whose length, after alignment,

was 783 amino acids of which 683 were polymorphic. When con-

verted into binary variables, the final dataset dimension was 841

rows and 2612 columns. Rotavirus is a double-stranded RNA virus

belonging to the family Reoviridae and can cause gastroenteritis, affect-

ing mostly children and infants. Although it is a common virus and

nearly every child get infected by the age of five, the implied illness can

develop into serious condition and is still a major cause of death in de-

veloping countries (Bernstein, 2009). We chose to focus only on species

A of Rotavirus because it is the most common virus of this type in

humans and we analyzed the VP4 structural protein because it is re-

sponsible of binding the virus to the target cell and under constant selec-

tion pressure from the immune system. VP4 is located on the surface of

the virion, has a spike shape, and is also known to cluster into different

serotypes (Hoshino and Kapikian, 2000). We expect to recover this

structure through our unsupervised clustering. In total, 106 MCMC

samples were collected with default prior hyperparameters. Figure 1

shows the plots of the three posterior distributions estimated by Kpax3.

The 95% credible interval for the total number of clusters is between

11 and 17 groups with a mode at 13 (Fig. 1A). Clusters of protein se-

quences are evident when examining the posterior similarity matrix

(Fig. 1B), where each element is the posterior probability of the corres-

ponding two sample units belonging to the same cluster. As expected,

recovered groups mirror the known protein serotypes with group P[8]

further split into four sub-clusters. The major contribution of our

method is the ability to highlight regions of the gene where selective

pressure might be happening. From the posterior distribution of column

classification (Fig. 1C) we can observe regions at the extremities of the

protein that are responsible for the discrimination of the clusters.

4 Conclusion

We extended the model of Pessia et al. (2015) to a more general frame-

work and derived extensive analytical formulas to enable simulation of

samples from the posterior distribution using a hybrid MCMC ap-

proach. Kpax3 is particularly useful for clustering protein sequences,

providing valuable information about differences in selection pressure

and mutation rates across different genes. In a more general setting, any

kind of matrix-variate categorical data can be bi-clustered by Kpax3.
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Fig. 1. Plots of the posterior distributions generated by Kpax3, representing

uncertainty about the corresponding quantities. (A) Total number of

Rotavirus VP4 protein groups. (B) Matrix of pairwise sequence proximities.

Each pixel represents a pair of strains. Colours indicate the posterior probabil-

ity of them belonging to the same group. Clusters of known serotypes, as re-

covered by Kpax3, have been annotated on the left side of the figure. (C)

Classification of each protein site into the three levels of clustering discrimin-

ation power. Dark colours indicate that amino acid residues were found to be

different, among clusters, at that particular position
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