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Using viral metagenomics we analyzed four bovine serum pools assembled from 715 calves in the United
States. Two parvoviruses, bovine parvovirus 2 (BPV2) and a previously uncharacterized parvovirus
designated as bosavirus (BosaV), were detected in 3 and 4 pools respectively and their complete coding
sequences generated. Based on NS1 protein identity, bosavirus qualifies as a member of a new species in
the copiparvovirus genus. Also detected were low number of reads matching ungulate tetraparvovirus 2,

bovine hepacivirus, and several papillomaviruses. This study further characterizes the diversity of viruses
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in calf serum with the potential to infect fetuses and through fetal bovine serum contaminate cell
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1. Introduction

Fetal bovine serum is a potential source of viral contamination
for cell cultures used in the production of biological products for
human or animal use [1,3,6,10,15—17,20] and is therefore routinely
subjected to a range of virus-specific tests to ensure an absence of
viral contaminations. While regulations list specific viruses whose
absence must be confirmed, such as bovine viral diarrhea virus 1
and 2 and others, bovine viruses of concern beyond that list have
been identified [15]. Viral removal through filtration or inactivation
methods may be used to reduce the risk of viral contamination;
however, small non-enveloped viruses with ssDNA genomes, such
as parvoviruses, are less susceptible to such measures. Using an
unbiased metagenomics approach we characterized viral se-
quences present in pools of bovine serum samples collected from
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calves in the US. The ability of these parvoviruses to contaminate
fetal bovine serum remains to be determined.

2. Materials and methods

Four bovine sera pools collected from different areas of the
United States were analyzed (Table 1). These samples were
collected as part of a hepatitis E virus seroepidemiological study.
The 25 calves in GA1 group and 90 calves in GA2 were sampled at
5—6 time points. The 375 calves in IA2 group and the 225 cows from
VT1 group were sampled once. VT1 group from the Virginia Tech
dairy herd, included animals from a lactating dairy herd (various
lactation and days in milk) as well as pregnant heifers.

Library preparation and computational analysis were performed
as previously described [14,23]. Briefly, serum pools were filtered
through a 0.45-pm filter (Millipore) to remove eukaryotic- and
bacterial cell—sized particles, and 330 pL of each pool was then
subjected to a mixture of nuclease enzymes to reduce the con-
centration of free (non-viral encapsidated) nucleic acids [23]. Viral
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nucleic acids were then extracted (MagMAX Viral RNA Isolation Kit,
Ambion, Inc, Austin, Tx, USA) and random RT-PCR was used to
amplify RNA and DNA. Four libraries were constructed using Nex-
tera XT DNA Sample Preparation Kit (Illumina) and sequenced us-
ing the Miseq Illumina platform with 250 bases paired ends with
dual barcoding for each pool.

3. Results

Four serum pools from a total of 715 animals were enriched for
viral nucleic acids which were then randomly amplified and deep
sequenced on the Ilumina platform. Out of ~47.4 million sequence
reads, ~1% (44,279) were found by BLASTx to contain open reading
frames encoding for parvovirus related proteins (BLASTx E scores
<107>). Two complete coding regions of parvovirus genomes could
be assembled. Bovine parvovirus 2 (BPV2 in the ungulate copi-
parvovirus 1 species) was detected and its genome assembled
(GenBank accession number KY019140). BPV2's nonstructural (NS)
and VP1 proteins showed 94—96 and 89—96% identity to the 3
BPV2 genomes currently available in GenBank database. BPV2 se-
quences were detected in three pools (Table 1). The second
parvovirus genome was more divergent relative to known viral
genomes showing its closest relative to be porcine parvovirus 6
(PPV6 in the ungulate copiparvovirus 2 species) with 40% amino
acid identity in their non-structural protein. The virus was named
bosavirus (Bovine serum associated virus and genome sequence
deposited as GenBank accession number KY019139). Phylogenetic
analyses showed bosavirus' NS clustering with the NS of copi-
parvoviruses (Fig. 1). The bosavirus VP was slightly more closely
related to the VP of the recently described sesavirus (36% identity)
from a sea lion than to that of PPV6 (34% identity) (Fig. 2). Bosavirus
sequences could be detected in all four pools (Table 1). According to
a proposal from the International Committee on Taxonomy of Vi-
ruses (ICTV), members of the same parvovirus genus should share
>30% identity in NS1 while members of the same species should
exhibit >85% identity in NS1 [8]. Based on pair-wise NS1 align-
ments, bosavirus is therefore proposed as member of a new species
in the Copiparvovirus genus (ungulate copiparvovirus 3).

Using the bosavirus and the BPV2 genomes described above and
the program Genious (Genious R6, 5.6.3 software with default
settings) we calculated that 98.21% of the parvovirus-like se-
quences could be matched to the bosavirus genome and 1.28% to
BPV2 genome. Therefore 99.5% of parvovirus-related protein se-
quences detected here belonged to these two parvovirus species.
The remaining parvovirus related reads consisted of mutated BPV2
and bosavirus reads (likely due to sequencing errors), chimeric
reads that were only partly BPV2 or bosavirus, and five reads in GA2
pool that matched (>95% nucleotide similarity) porcine hokovirus
(GenBank EU200677) [13] in the ungulate tetraparvovirus 2 species

Table 1

[8].

Other viral sequences were also detected but in much smaller
numbers. Five sequence reads showing 97—100% amino acid
sequence identity to the RNA genome of bovine hepacivirus, a
recently described member in the Hepacivirus genus of the Flavi-
viridae family (GenBank: KP265948.1) [7,21], were detected in GA2
pool. Bovine hepacivirus RNA has been detected in 1.6% of indi-
vidually tested cows and in 3.8% of tested herds in Germany where
its tissue distribution indicated possible liver tropism but no clear
association with disease has been established [2]. Also detected
were 4 papillomavirus reads. The GA2 pool yielded one read that
was 100% identical to human betapapillomavirus HPVX14 (Gen-
Bank: AF054874.1). Pool IA2 yielded three papillomavirus reads.
One was 91% identical to the unclassified human papillomavirus
type 174 (GenBank: HF930491.1), one 98% identical to human
betapapillomavirus RTRX7 (GenBank: U85660.1) and one 96%
identical to human betapapillomavirus type 151 (GenBank:
FN677756.1).

4. Discussion

Our analysis characterizing enriched viral sequences in calf
serum showed that parvovirus sequences dominated relative to
other viruses (Table 1). As bovine fetuses acquire their viral in-
fections from pregnant cows the potential exist for the viruses
described here to also infect fetuses. The detection of a previously
uncharacterized parvovirus (bosavirus) present in each US serum
pool analyzed indicates that its presence and infectivity should be
considered when testing fetal bovine serum for viral contamina-
tion. To date, members of the Copiparvovirus genus (classified based
on NS) have only been reported in bovine or porcine samples [8].
Whether only ungulates can be infected by copiparvoviruses,
therefore posing little risk of infection to non-ungulate mammals,
will become clearer as more parvoviruses are described in addi-
tional mammalian species. While bosavirus can be classified as a
copiparvovirus based on its NS, its VP was more closely related to
that of a parvovirus from the feces of a carnivore (Zalophus cal-
ifornianus or California sea lion) whose NS sequence falls outside
the range of copiparvoviruses [19]. The tropism of bosavirus may
therefore extend beyond that of the currently known copiparvo-
viruses so far described only in ungulate samples. A few reads of
porcine hokovirus, classified in the Tetraparvovirus genus, were also
detected in one pool indicating that this virus, previously reported
in porcine samples, may also infect calves albeit at low level relative
to bosavirus and BPV2 (Table 1).

A low number of bovine hepacivirus (Flaviviridae family), a virus
originally detected in African cattle and then herds in Germany,
were also detected in one pool [2,7]. Whether this hepacivirus can
be transmitted to bovine fetuses or is capable of infecting other

Characteristics of the bovine plasma pools analyzed in this study including viruses identified by NGS. Four sera pools approximately 1 mL collected from different areas of the

United States were applied for NGS.

Pool Animal number Age Age at Sampling States of origin Virus detected (Reads)
GA1 25 calves 3-240 days 3,30,60,120,200,240 GA 1. Bosavirus (30,590)
GA2 90 calves 3-240 days 3,30,60,120,200,240 GA 1. Bosavirus (1,931)
2. Bovine parvovirus 2 (286)
3. Bovine hepacivirus (5)
4. Human papillomavirus (4)
1A2 375 calves Unknown Unknown IA, NE, SD, NM, OK, TX, SD, ND, WY, MT. 1. Bosavirus (9,980)
2. Bovine parvovirus 2 (106)
3. Human papillomavirus (3)
VT1 225 cows Unknown All ages and all stages of lactation VT 1. Bosavirus (989)
2. Bovine parvovirus 2 (184)
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Fig. 1. Genome structure of bosavirus reported in this study (A). Maximum likelihood phylogenies show the relationship of the novel Bosavirus and BPV2 (B) to representatives of
genera in the subfamily Parvovirinae.
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Fig. 2. VP and NS amino acid sequences identities between Bosavirus and Copiparvoviruses. The lower-left triangle shows homology between VP1 protein sequences of the six
Copiparvoviruses generated by ClustalW alignment using Geneious Pro 6.1.8 software with default settings. The upper-right triangle shows NS amino acid sequence identities
against of the six Copiparvoviruses.

species is not known. Another member of the Flaviviridae family, rate of persistent viremia [9,22]. The papillomavirus sequences
bovine viral diarrhea virus classified in a different genus (Pestivirus) detected were closely related to viruses detected in human skin.
was not detected in our study. The absence of BVDV detection may Whether these sequences reflect contamination with human skin
be due to the high rate of BVDV vaccination in US herds and low or bovine papillomaviruses possibly introduced into the serum
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pools from calve skin during phlebotomy is also unknown [4,18].

The vast majority of viral reads therefore originated from BPV2
and bosavirus whose infectivity to other mammal species is un-
known. Parvoviruses are particularly difficult to remove by filtra-
tion, due to small capsid sizes of 20—30 nm [5,11,12]. Based on viral
particle size, the 100 nm pore filtration step used in the manufac-
ture of fetal bovine serum is not expected to completely remove
parvoviruses. The small ssDNA genomes of ~5 Kb may also make
parvoviruses particularly resistant to different viral nucleic acid
inactivation methods [5,11,12]. The FDA mandated testing for the
detection of extraneous viruses (9 CFR 111.47) includes serological
tests for parvovirus antigens of bovine parvovirus (Bocaparvovirus
genus), canine parvovirus (Protoparvovirus genus), feline panleu-
kopenia virus (Protoparvovirus genus), and porcine parvovirus
(Protoparvovirus genus), following cell culture infections. Based on
the high degree of genetic divergence of these parvoviruses to BPV2
and bosavirus (both in Copiparvovirus genus) strong serological
cross reactivity is unlikely.
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