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Cooperation in games and epistemic readings of
Independence-Friendly sentences

Fausto Barbero

Abstract In the literature on logics of imperfect information it is often stated,
incorrectly, that the Game-Theoretical Semantics of Independence-Friendly
(IF ) quantifiers captures the idea that the players of semantical games are
forced to make some moves without knowledge of the moves of other players.
We survey here the alternative semantics for IF logic that have been suggested
in order to enforce this “epistemic reading” of sentences. We introduce some
new proposals, and a more general logical language which distinguishes be-
tween “independence from actions” and “independence from strategies”. New
semantics for IF logic can be obtained by choosing embeddings of the set of
IF sentences into this larger language. We compare all the semantics proposed
and their purported game-theoretical justifications, and disprove a few claims
that have been made in the literature.

Keywords Independence-Friendly logic · Subgame Semantics · coordination ·
imperfect recall · subjective strategies · dominance solvability

Independence-Friendly Logic is an extension of first-order logic which al-
lows expressing independence among quantifiers. Synctactically, this is spec-
ified by “slashed quantifiers” of the form (∃v/V ), where V is a finite set of
variables, with the intended reading “there is a v independent of the vari-
ables in V ”. Such languages were introduced in a form close to the modern
one in Hintikka and Sandu (1989) (with some anticipations in Humberstone
(1987), where a similar device was suggested in order to attempt a composi-
tional analysis of the Henkin quantifiers of Henkin (1961)). In that paper it is
suggested that these languages may be given a semantics by means of a gener-
alization of the Game-Theoretical Semantics (GTS) of first-order logic; a first
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detailed account of this approach can be found in Sandu (1993). In the same
way as the truth of a first-order sentence in a structure can be characterized
as the existence of a winning strategy in a specific 2-player semantic game of
perfect information, appropriate games of imperfect information yield a defi-
nition of truth (and falsity) for IF logic. Both kinds of games are played in
the same way. The two players, usually called Verifier (or ∃loise) and Falsifier
(∀belard) examine the synctactical tree of sentence ϕ starting from the most
external logical operator. One path in the synctactical tree is followed, and an
assignment s is gradually constructed (∀belard picks an element from M – the
structure under consideration – every time a universal quantifier is met, while
∃loise takes care of existential quantifiers); when a literal α is reached, victory
is assigned to either player depending on whether s satisfies α or not. Now the
difference between the first-order and the IF case lies not in the rules of the
games, but instead in the truth conditions: a first-order sentence ϕ is said to
be true in M if ∃loise has a winning strategy in the corresponding game; but
if ϕ is an IF sentence, truth is postulated to be equivalent to the existence of
a winning strategy of a special kind (a uniform winning strategy). A uniform
strategy makes choices for quantifiers of the form (∃v/V ) without making use
of parameters associated to the variables in the slash set V ; this restriction
encodes the game-theoretical requirement of imperfect information. See sec-
tion 2 below for a more detailed description of the games and the standard
semantics of IF logic.

The resulting semantics is a conservative extension of first-order semantics,
once IF quantifiers of the form (Qv/∅) are identified with first-order quantifiers
Qv. Yet with this semantics come some worries; first of all, the fact that open
formulas do not get a meaning from it1. Secondly, the possible indeterminacy
of the semantical game, which implies that a sentence might be neither true
nor false, in case neither ∃loise nor ∀belard has a winning strategy; this is
exemplified by the game G(ϕ,M), with ϕ := ∀x(∃y/{x})x = y and M =
{a, b}, shown in Figure 1. Here the dotted line connects two nodes (histories)
that are indistinguishable for the player who is supposed to make a move at
the end of such history (in this case, ∃loise). Clearly, none of the players has
a uniform winning strategy, and ϕ is undetermined on M .

Thirdly, with Game-Theoretical Semantics of imperfect information, new
unexpected phenomena like signalling2 emerged; we shall say more about this
later.

In parallel with the formal presentation of GTS in terms of game theory,
the literature on IF logic has been littered with informal explanations of GTS

1 Of course compositionality can be restored, but a price is to be paid; the usual notion
of “being satisfied by an assignment” is inadequate to express the meaning of open formulas
(Hodges (1997), Cameron and Hodges (2001)).

2 The presence of signalling phenomena reveals that IF logic does not only allow partially
ordered quantification; it also allows dependency between quantifiers to be an intransitive
relation. Hintikka (1996) attempted to eliminate this feature by means of the implicit as-
sumption that quantifiers of the same type (∃ or ∀) be always independent of each other. This
stipulation, however, has more unpleasant consequences; with it, IF logic is not anymore a
conservative extension of first-order logic (see Janssen (2002)).



Cooperation in games and epistemic readings of Independence-Friendly sentences 3

∀x

∃y/{x}

a

∃y/{x}

b

∃

a

∀

b

∀

a

∃

b

Fig. 1 The semantic game for ∀x(∃y/{x})(x = y) in a structure M = {a, b}

with an epistemic flavour. Think of ∃loise and ∀belard as two teams of players
(one player for each quantifier or connective occurring in the sentence under
consideration). Then, the quantifier (∃v/V ) is often quoted as meaning “a
value for v can be chosen (by the corresponding player) without knowledge of
the values assigned to V ”. This seemingly innocuous periphrasis turned out
to be wrong, that is, not to correspond to the actual meaning of IF sentences
as induced by Game-Theoretical Semantics. It was first observed in Janssen
(2001) that the sentence ∃x(∃y/{x})(x = y) is valid according to GTS (in-
deed, “choosing a for both x and y” is a uniform winning strategy for ∃loise,
for any fixed element a of the model), but should be non-true (in structures
with at least two elements) under the epistemic reading, since it asserts that
two distinct players have the ability to pick one and the same element from a
structure without knowledge of the other player’s choice. The seemingly coun-
terintuitive truth value assigned by GTS comes from the assumption (implicit
in the usual modelization of game theory) that players can coordinate their
strategies, and so for example decide a priori that they will both choose a
fixed element a. In Barbero (2013), the author considered more examples of
these kinds of discrepancies and attempted a classification of them.

Understanding the distinction between GTS and the epistemic reading is
important in order to make sense of many of the claims that have been put
forward in the literature. For example, Hintikka (2013) interestingly points out
that contingent statements like “there is someone such that if she loses money
in the stock market next year, everyone will do so” are not correctly captured
by what may seem to be their first-order translation: ∃x(A(x) → ∀yA(y))
is indeed a validity. He then asserts that the classical implication must be
replaced with a slashed one, →/x

3, in order to obtain the correct reading.
But, under the GTS semantics, sentence ∃x(A(x) →/x ∀yA(y)) is equivalent
to ∃x(A(x) → ∀yA(y)); Hintikka’s claims make sense only if we assume that
he had the epistemic reading in mind.

3 A formula of the form ψ →/x χ is presumably interpreted by Hintikka as an abbreviation
for ¬ψ ∨/{x} χ; the (GTS) semantics of ∨/{x} is defined analogously to that of (∃v/{x}).
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A few publications, starting with Janssen’s Subgame Semantics papers
(Janssen (2001), Janssen (2002)), have been advancing proposals on how to
define a semantics for IF sentences which respects the epistemic intuitions.
The proposals that have been made are numerous, variegated and in general
rather inconclusive and insufficiently justified. Some are grounded on game-
theoretical concepts, while others on more ad hoc arguments. Claims have
been made for some of the game-theoretical solutions to coincide with some of
the ad hoc ones, and so to justify them; but we do not know of any proof of
such statements. The main purpose of the present paper, which is a shortened
and largely amended version of section 4 of the author’s PhD thesis, Barbero
(2014), is to collect together these ideas, compare them and make some order.
We also introduce some new proposals, mostly of game-theoretical nature, and
a generalization of IF languages which allows discussing separately the notions
of “knowledge of players’ choices” and of “knowledge of players’ strategies”.

In section 1 we briefly outline the general framework in which we compare
different logics. In section 2 we review the standard semantics of IF logic,
and then (section 3) we see in more detail how it clashes with the epistemic
reading, and we give a sketch of what characteristics should be required for a
good semantics of the epistemic reading. Section 4 looks at the notion of sub-
jective strategy as a naive game-theoretical explanation of the (first version
of) Subgame Semantics; sections 5 and 6 examine the two different versions
that have been proposed of Subgame Semantics. Section 7 considers three dif-
ferent proposals that have been made by Sevenster (Sevenster (2007)) and
Janssen (Janssen (2005), Janssen (2007)) to redefine the semantics of IF logic
(and perhaps to give a grounding to Subgame Semantics) in terms of game-
theoretical notions of weak domination of strategies and rationalizability. In
Section 8 we consider a notion of iterated elimination of weakly dominated
strategies known as dominance solvability. In section 9 we introduce the CS
languages, which distinguish between “independence from choices” and “in-
dependence from strategies”; and assign them a game-theoretical semantics
(Cartesian Semantics) based on the idea that players know that the other
players are rational, but they cannot freely communicate with each other. We
also propose some embeddings which allow defining new readings of IF sen-
tences by means of Cartesian Semantics. In section 10 we consider briefly the
Independence logic of Grädel and Väänänen (2013), which has some deceiv-
ing similarity with Cartesian Semantics. Finally, in section 11 we compare the
most promising systems by means of a number of revealing examples. These
show that most of the readings of IF languages considered do not coincide; in
particular, we disprove the claim of Janssen (2005), Janssen (2007) that Ra-
tionalizability Semantics might be the correct game-theoretical justification of
Subgame Semantics on finite structures.
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1 General framework

In the following we shall compare different semantics for one same syntax, or, in
more complicated cases, logics with mutually different syntactical structure.
We write M |=L ϕ to say that, according to logic L, sentence ϕ is true in
structure M (specific semantical clauses for truth will be given for each of the
logical systems considered in the paper). We say that a class K of structures
is defined by ϕ according to L if, first of all, ϕ is a sentence of L; and secondly,
if for all structures M ,

M ∈ K ⇐⇒ M |=L ϕ.

We then say that a class of structures K is definable in L if there is a sentence
ϕ of L which defines K according to L.

The various logics will be differentiated according to two conceptual cri-
teria: comparison of expressive power, and inclusion of “sets of truths”. More
precisely, if we are given two logics L1 and L2, we write 1) L1 ≤ L2 to mean
that every class of structures definable by a sentence of L1 is also definable by
a sentence of L2, and 2) L1 ⊆ L2 to mean that, on all structures M , M |=L1

ϕ
implies M |=L2

ϕ. When the relation ≤, resp. ⊆, holds in both directions, we
use the symbols ≡, resp. =. We also write ≤fin,⊆fin for the analogous notions
restricted to finite structures.

The relationship L1 ⊆ L2 is meaningful only in case the logics L1 and L2

share the same syntax. When this is not the case, the relationship L1 ⊆ L2 will
be intended as the existence of an (injective, but not necessarily surjective)
truth-preserving translation τ of L1 sentences into L2 sentences; that is, a
function such that, for any structure M and any sentence ϕ of L1,

M |=L1 ϕ ⇐⇒ M |=L2 τ(ϕ).

2 The standard semantics

As a reference for the reader, we review in some detail the standard semantics
of (first-order and) IF logic (Mann et al. (2011)).

Consider for the moment a first-order syntax which allows the use of con-
stant, function and relation symbols, and of logical constants ∀v,∃v,∧,∨,¬,
with the obvious formation rules; we may assume, for simplicity, that formulas
be in negation normal form (with negations occurring only in front of atomic
formulas). One can associate, to every pair (ϕ,M) consisting of a sentence
and a structure, a semantic game G(ϕ,M); more generally, it is technically
convenient to allow ϕ to be any formula (possibly with free variables) and to
take into consideration, as a further parameter, an assignment s, defined at
least on all the free variables of ϕ; then, one can speak of games G(ϕ,M, s)
and consider G(ϕ,M) to be an abbreviation for G(ϕ,M, ∅).

Let us fix ϕ,M and s. The corresponding game G(ϕ,M, s) has two players,
usually called ∃loise (or Verifier) and ∀belard (or Falsifier). The game follows
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the synctactical tree of the sentence, starting from the root; each logical con-
stant prompts a move. If ∀v is met (that is, we are playing G(∀vψ,M, s) for
some formula ψ, structure M and assignment s), then ∀belard chooses from
M a value a for v, and the game G(ψ,M, s(a/v)) associated to the immedi-
ate subformula ψ is played4; an analogous move of ∃loise is triggered by ∃v.
A conjunction corresponds to the choice of a conjunct by ∀belard, and the
game proceeds in the corresponding subtree (say, in a game G(ψ ∧ χ,M, s)
∀belard decides whether it is the case to proceed and play G(ψ,M, s) or in-
stead G(χ,M, s)). Disjunctions are similarly treated by ∃loise. When a literal
α is reached (say, G(α,M, s) is played), one checks whether α is satisfied by s
in M (that is, satisfied by the values that have been picked during the game);
if it is, ∃loise wins, otherwise ∀belard wins. Figure 2 shows a representation of
the game tree of the game G(∀x∃y(x = y),M, ∅), for M = {a, b}.
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∃y

b

∃

a

∀

b

∀

a
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b

Fig. 2 The semantic game for ∀x∃y(x = y) in a structure M = {a, b}

Each node in the tree represents a possible history of the game; edges list
the legal moves that can be performed after a given node (history) is reached.
The symbols ∀,∃ drawn in the terminal (maximal) histories specify which
player wins; the symbols in the non-terminal nodes specify what kind of move
is going to be played next.

A strategy for a game of this kind is a function that associates to each
history of the game a legal move; it is winning for a player P if, following
it, P wins the game, whatever moves may the opponent choose. The truth of
ϕ in M can then be defined as ∃loise having a winning strategy in G(ϕ,M),
falsity as ∀belard having one. One obtains exactly the same truth values of
sentences that would come from Tarskian semantics. In the example in Figure
2, the sentence is indeed true in M , thanks to ∃loise’s strategy “choose for y
the same value that ∀belard chose for x”.

In the case of IF logic, quantifiers are of the forms (∀v/V ), (∃v/V ), for
finite sets V of variables (slash sets). The first-order quantifiers ∀v, ∃v are
identified, respectively, with (∀v/∅) and (∃v/∅). In the following, we show how

4 Of course here s(a/v) denotes the assignment which assigns a to v, and s(w) to any
variable w ∈ dom(s) \ {v}.
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the new quantifiers are standardly treated by introducing imperfect informa-
tion in the games. Following the definitions above, we see that at the end of
each history h of the game some assignment sh is being considered; we say
sh is the assignment associated to h. Now suppose that two histories h, h′

both end up in a choice for (one and the same occurrence of) (∃v/V ); then,
we say that sh ∼V sh′ (sh is indistinguishable from sh′ outside of V ) in case
sh(x) = sh′(x) for any variable x ∈ dom(sh) \ V . The corresponding histo-
ries will also be said to be indistinguishable modulo V (h ∼V h′). Histories
equivalent under this equivalence relation are said to form an information
set; if an history h is not associated to a quantifier choice, then {h} alone is
an information set. We can then say that a strategy σ of ∃loise is uniform
if, whenever h ∼V h′, σ(h) = σ(h′). That is, the fact that ∃loise is supposed
not to know the values associated to v while making a choice for (∃v/V ) is
encoded by the restriction that her strategies assign the same value to his-
tories that are indistinguishable modulo V (we will discuss later under what
circumstances this last clause may fall short of an adequate characterization
of the knowledge of ∃loise). Dual definitions can be given for ∀belard. We then
say that an IF sentence ϕ is true if ∃loise has a uniform winning strategy in
G(ϕ,M); false if ∀belard has one.

In order to be able to discuss examples with more ease, we introduce some
auxiliary concepts and notations. Given a strategy σ of ∃loise, we can decom-
pose it in the following way: if we have an occurrence of a logical operator in
ϕ, for example (∃y/Y ), we may consider the set H((∃y/Y )) of the histories
of G(ϕ,M) that end in that occurrence of (∃y/Y ); the restriction σ�H((∃y/Y )),
that we shall denote for example as fy, f∃y or f∃y/Y (trying to avoid ambi-
guity), is called a strategy function associated to (the occurrence of) (∃y/Y ).
With some abuse of notation, we will write, e.g., fy(x̂, ẑ) (in case (∃y/Y ) oc-
curs under the scope of quantifiers on x and z, and possibly of quantifiers over
variables in Y ) to denote the value that ∃loise picks if she follows strategy
function fy when values x̂, resp. ẑ have been chosen for x, resp. z. Similar con-
ventions apply to ∀belard. These conventions make it easier to speak of ∃loise
and ∀belard as two teams of players (one individual player for each logical
constant, except for negations).

3 Standard versus epistemic semantics

As we mentioned above, the seemingly innocuous liberalization of semantics to
games of imperfect information has remarkable effects: for example, it enforces
the introduction of undetermined semantic games, and thus a three-valued
semantics; and it turns first-order logic into a system which is as expressive
as existential second-order logic. It also allows the possibility of intransitive
dependence between quantifiers, or signalling (Hodges (1997)), as for example
in the sentence

∀x∃y(∃z/{x})(x+ y = z).



8 Fausto Barbero

The structure of the sentence makes so that y depends on x, and z depends
on y, but z does not depend on x (in this sense the relation of dependence is
intransitive). Yet, observe that this sentence is true in N, because the ∃loise
team, which takes care of choosing witnesses for the existential quantifications,
may win the game by answering to any choice of value for x with the strategy
functions fy(x) := x, fz(y) := 2y. Here the statement ”/{x}” means that the
player must make his choice without using the value of x, and indeed x is not
among the parameters of fz; yet, a correct answer to x is reconstructed from
the value of y. The player associated to ∃y is said to signal the value of x
to the player associated to ∃z. A well-known and more extreme example is
the sentence ∀x∃y(∃z/{x})x = z, which turns out to be valid thanks to the
quantification over y. Notice that y does not occur in the atomic part of the
sentence, and so it would be a dummy variable in first-order logic; yet it plays
a crucial role in the semantics of this IF sentence. This difference is expressed
by saying that first-order logic is local, while IF logic is nonlocal. Sometimes in
the literature also the phenomenon of nonlocality is referred to as “signalling”;
we prefer to keep the two notions distinguished. With our terminology, there
are logics which are local and yet have signalling patterns (e.g., Dependence
logic and Dependence-Friendly logic, see Väänänen (2007)5).

The policies about signalling are a particular instance of a more general
problem: what forms of cooperation between players should be allowed in the
semantical games? (Notice indeed that in the previous example the existential
players are required to coordinate their strategies so that the signal is correctly
decoded). The question has been rarely addressed at this level of generality;
yet it appears in the literature, beginning with Janssen (2001). In the present
paper we will examine some non-standard semantics for IF languages, some
of which appeared in the literature, while some are new, that are meant to
either inhibit cooperation among players, or, otherwise, to allow greater control
over forms of cooperation. In a sense, these logics are meant to express more
faithfully the epistemic intuitions that usually come together with informal
presentations of IF logic; in particular, we want to take more seriously the
presentation of IF semantics as a game between two teams.

We return here to the remarkable (but rather special) example analyzed
in Janssen (2001): sentence

∃x(∃y/{x})(x = y). (1)

According to standard IF semantics, formula (1) is valid. Let us review
the reason behind that. Given any structure, we can define a winning strategy
for the ∃loise team, like this:

5 Patterns equivalent to signalling sentences can be obtained in Dependence logic by
means of peculiar combinations of dependence atoms and quantifiers, for example in sen-
tences of the form ∀x∃z(= (x, z) ∧ ∃y(= (z, y) ∧ ψ); and in Dependence-Friendly logic, by
means of quantifier sequences, e.g. the prefix ∀x(∃z\x)(∃y\z). These kinds of patterns allow
expressing concepts beyond first-order, such as infinity over any signature (Enderton (1970))
and NP-complete problems (Sevenster (2014)); actually, any concept definable in existential
second-order logic can be expressed by signalling sentences (Barbero et al. (2017)).
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– Fix an element a of the structure
– As a value for x, choose a
– As a value for y, choose a.

That is, the two ∃loise players play according to the constant strategy func-
tions fx() = a and fy() = a. This strategy employs only 0-ary functions and
so it satisfies, trivially, any independence constraint. So, it seems that our re-
striction to uniform strategies does not force player ∃y to play in ignorance
of the value chosen by player ∃x. It seems that she can play “as if she knew
that player ∃x plays according to the constant strategy a”. So, she manages
indirectly to acquire knowledge of the value of x.

The nonstandard semantics we will consider all try to enforce the following:

We want formula (1) to be true in one-element domains, non-true elsewhere.

This is a very particular constraint, and it does not provide us with any me-
chanichal process to redefine the semantics of all IF sentences. Very different
suggestions have been and will be made, with very different justifications. The
common underlying idea will be that of requiring, for truth, not only the ex-
istence of a winning strategy for the Verifiers; rather, the existence will be
required of a winning strategy which is, in some sense, really playable when
the players are forbidden to cooperate, or limited therein.

A more general guiding principle for devising and testing these kinds of
semantics could be given by the notion of relevance that was introduced
in Barbero (2013). Call an occurrence of a variable x in the slash set Y of
(∃y/Y ) a declaration of independence of y from x; given an IF quantifier pre-
fix Q which contains exactly one declaration of independence of y from x, call
Qy←x the quantifier prefix which differs from Q in that (∃y/Y ) is replaced by
(∃y/(Y \ {x})). Then, we say that the declaration of independence of y from
x occurring in Q is relevant if there are an IF formula ψ and a structure M
such that Qψ and Qy←xψ are sentences which have different truth values on
M .

It would then seem natural to require that

We want all declarations of independence to be relevant.

But we do not know if this constraint is realistic or achievable with some
sensible semantics6.

We want to make one more observation about example (1). In formula
(1), information sets are, in a sense, violated. The second stage of the game
is constituted by a set of indistinguishable nodes, one for each element of the
structure; yet, each one of them is characterizable as “the node which is reached
when ∃x plays the costant function a”, for a certain a ∈M . Thus, knowledge

6 For sure, it would not be sensible to require the same constraint over the notion of
sentence-relevance (also introduced in Barbero (2013)), which is analogous to relevance,
but affects individual sentences instead of quantifier prefixes. For example, we do not want
the declaration of independence in ∃x(∃y/{x})(x = y ∨ x 6= y) to affect the truth value of
what looks like a validity even under an (intuitive) epistemic reading.
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of strategies makes so that information sets do not represent anymore indis-
tinguishability of nodes. This amounts not to an error in the modelization of
IF games; it is instead a common feature of games of imperfect recall7; see for
example Halpern (1996). On some standard Game Theory texts this is taken
as a definition of imperfect recall (Osborne and Rubinstein (1994), Definition
203.3). Notice here that there are two kinds of information being involved in
our semantic evaluation of sentences:

a) Information (= direct access) about the values chosen by other players,
in each single play, for variables.
b) Information about the strategy function chosen by each player8.

In IF semantics, a) is administered according to information states, and it
has a direct correspondence with syntax. About b), the GTS games are played
as if each player knew all the strategy functions employed by his comrades, and
none of the strategies employed by members of the rival team. The alternative
semantics considered in this paper are such that information of type a) is
treated as usual, while information of type b) is not allowed to flow as freely.
As extremal cases, we may informally point out:

– Strict game-theoretical interpretations: each player does not know the
strategy functions used by any other player; so, he cannot use them in
order to define his own strategy function. It is to be expected that most
forms of signalling are blocked.

– Lax game-theoretical interpretations: also access to information of type b)
is regulated by the slash declarations; each player only knows the strategy
functions of those comrades whose variable does not occur in the slash
set. We can then expect that, while coordination of strategies is limited,
signalling of values is still permitted.

– Very lax game-theoretical interpretations: information of type b) (about
comrades) is always accessible.

We can also decide, in order to allow for maximum freedom, to employ two
different slashing devices for information of kind a) or b). For example, we
could write (∃z/{x,w} {x, y}) to express the fact that a strategy function fz
for z must be chosen as a {x,w}-uniform function and be defined without
using strategy functions fx, fy.

We shall call CS the set of formulas with such syntax (having an underscore
set, and not only a slash set), and the corresponding logic. In section 9 we will
design our semantics for this syntax. We shall then obtain a truth semantics
IFCS for IF logic as a special case of CS, by identifying each IF quantifier

(∃v/V )

7 A game has imperfect recall if some of the players in it can forget some of their previous
moves or knowledge. In a sense, most IF games are of imperfect recall (see Mann et al.
(2011), Theorem 6.23).

8 This statement must be intended in its de dicto reading: we are talking about knowledge
of which strategy function is chosen, not knowledge of the strategy as an object.
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with the CS quantifier

(∃v/V V ∃)

where V ∃ is V restricted to existentially quantified variables. This means that
each player of ∃loise’s team can see the strategies of exactly those comrades
whose chosen values she can see. Otherwise stated, information of types a)
and b) coincide for team comrades; it will be unimportant, due to our defini-
tion of the semantics of CS, to specify that ∃loise players cannot see any of
the strategies of ∀belard players. This is a “lax” semantics according to our
previous classification.

Standard IF semantics is obtained when we identify each IF quantifier
(Qv/V ) with the CS quantifier (Qv/V ∅). This is an example of “very lax”
semantics.

An example of “strong” semantics is obtained by identifying each IF quan-
tifier (Qv/V ) with the CS quantifier (Qv/V W ), where W is the set of all
variables which are existentially quantified in quantifications which are super-
ordinated to (Qv/V ). IF logic equipped with this semantics will be denoted
as IF0.

4 Subjective strategies

Janssen (2002) introduced a new semantics for IF languages, which was called
Subgame Semantics; this semantics is defined on IF sentences, but the values
it assigns to some couples (sentence, structure) are different from those which
are generated by standard IF semantics. Janssen himself admitted that the
development of this semantics was quite an empiric enterprise. It seems that
this search was driven partially by the attempt to give an intuitively sound
interpretation to some specific examples, and partially by the attempt to fulfill
some general abstract requirements. Before presenting Subgame Semantics (in
the following sections) we want here to analyze these theoretical demands, and
to propose a game-theoretical semantics which seems to satisfy them. This will
help understand better where the peculiaritiess of Subgame Semantics come
from.

Subgame Semantics was born as an answer to:

(A) a GAME-THEORETICAL concern: Janssen wanted all IF sentences to
represent the behaviour of players of games without communication. The
players should know the moves that are not in their slash sets, and be
ignorant about the slashed moves; they should not be able to reconstruct
the slashed information by different means (signalling, coordination, etc.).
In this way, a formula like ∃x(∃y/{x})(x = y) should be non-true in every
domain with at least two elements.

(B) a MATHEMATICAL concern: declarations of independence between quan-
tifications should express functional independence. So, if a sentence de-
clares y to be independent from x, and the game is won by reaching a
final atomic formula ϕ and an assignment s, then the game should be won
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also in (ϕ, s(a/x)), for any a in the model. This is not the case, under
standard IF semantics, for formula ∃x(∃y/{x})(x = y). (For reasons that
will be explained later, this request will be weakened in the following way:
asking only that (ϕ, s(a/x)) is a win for any a such that there is a b which
makes (ϕ, s(a/x, b/y)) a win).

(C) a LOGICAL concern: the meaning of a subformula should be indepen-
dent of the context in which the subformula appears (for example, it
should not depend on variables which do not occur in the subformula
itself; using the terminology introduced earlier, the logic should be lo-
cal). This is somewhat related to (A): dependence on the context allows
forms of communication (“signalling”) between the players, as in formula
∀x∃z(∃y/{x})(x = y) (z does not occur in subformula (∃y/{x})(x = y),
yet, in standard IF logic it is essential in the evaluation of the sentence).
Notice however that locality does not block all possible forms of commu-
nication (consider for example the sentence ∀x∃z(∃y/{x})(x = y∧z = z):
here we cannot appeal to locality in order to establish that ∃z is a dummy
quantifier).

These requirements are of a very variegated nature, and finding a semantics
which satisfies them all, without any guiding principle, looks rather difficult.
We make here a first, coarse attempt to reduce these expectations to a se-
mantics which is based on a simple game-theoretical solution concept. What
we will choose is not the most obvious or well-known solution concept. It is
rather a sort of ghost which haunts game-theoretical literature, and especially
the literature on Alternating Time Logics: the notion of subjective strategy. To
explain what it means for a strategy to be objectively winning, we quote from
such literature (Jamroga and van der Hoek (2004)):

...for planning purposes, the agent should be rather interested in having
a strategy and knowing it (i.e. not only knowing that he has some
strategy)!

This relates with the concern (A) stated above: declarations of indepen-
dence may happen to be irrelevant precisely because ∃loise knows, at any
stage of the game, which (global, objective) strategy she is applying. Instead,
in an imperfect recall scenario it may be also reasonable that, in each history,
she only knows the (local) strategy function that she is meant to use in the
current node (and yet be sure that such choice is winning). In the example
∃x(∃y/{x})(x = y) (see Figure 3), ∃loise’s second strategic function is a con-
stant choice (say, either a or b). Suppose she is in this information state, and
her global strategy is “choose a for x, choose a for y”. It would make no sense
to state that now she does not know that she is supposed to choose a for
y. But, does she know whether she has had to choose a or b for x? We can
imagine both scenarios.

In one scenario she knows, and thus knows the whole strategy she is adopt-
ing. In her current state, the strategy function “choose a for x” is objectively
a winning strategy; but ∃loise also knows at this point that her str. function
will lead to a win; therefore her strategy is also subjectively winning.



Cooperation in games and epistemic readings of Independence-Friendly sentences 13

∃x

∃y/{x}

a

∃y/{x}

b

∃

a

∀

b

∀

a

∃

b

Fig. 3 The semantic game for ∃x(∃y/{x})(x = y) in a structure M = {a, b}

In the other scenario, ∃loise has forgotten what she was meant to choose
for x. So, in the moment when she is supposed to choose a value for y, she
does not know whether she is in the history ha, where a has been chosen for
x, or in history hb, where b has been chosen. Thus, even though she knows
she must choose a for y, she does not know whether this choice will lead to a
victory. It will, if she is in ha; it will not, if she is in hb. So, her global strategy
is objectively but not subjectively winning in the current information state.
This phenomenon can be thought also in these terms: in games of imperfect
recall, total or partial knowledge of one’s own strategy may be represented
as a constraint which shrinks (partitions) the information states; or, we may
think that knowledge of the strategy forces us to consider a smaller game tree,
in which only reachable nodes are represented. This process may reduce the
size of information states in case the game is a game of imperfect recall.

We called these notions by the name of ghosts, because we never happened
to find in the literature a formal definition. Thus, we will try to formulate it
here. Notice first of all that the notion of “being subjectively winning” does not
apply to classical game trees, which have only one root: it is of some interest
only in case the game may start from different roots (according, for example,
to some random choice procedure), and in case some of these initial nodes
are in a common information state. To emphasize the fact that we are not
considering classical games, we will speak of game forests whenever there is
more than one initial node.

A history h can be decomposed in consecutive segments, each of them
constituted by some consecutive nodes. For example, we might split a history
h in three segments p, q, r such that p contains the root node and some of the
nodes below; below that, a few nodes constitute q; the last nodes until the
end of h constitute r. In this case, we can write h as a concatenation of p, q, r:
h = p_q_r. With this notation, we can define subforests:

Definition 1 A subforest of a game forest F is a set G of segments of his-
tories of F satisfying the condition that, if p_q_r ∈ F and q ∈ G, then also
q_r ∈ G. The information sets of G are all the nonempty intersections S ∩G,
where S is an information set of F .
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Plainly speaking, a subforest GC is obtained by choosing a subset C of a
game forest, and keeping only those nodes and actions that occur in C or after
a node of C. We shall say that GC is the subforest generated by C.

Denote by A(S) the set of actions that can be performed in any node of
the information set S. As usual, we may think of a strategy, for a game forest,
as a function f from the set of information sets to the set of actions, such that
for all information states S, f(S) ∈ A(S) (which, in the case of IF games,
means that either f(S) ∈M or f(S) ∈ {L,R}, depending on whether the next
move associated to S is a quantifier or a connective move).

We are mainly interested here in subforests generated by an information
set of an IF game. This will make things fairly simpler.

Definition 2 Let G(ϕ,M) be an IF game, and let S be one of its information
sets. A function f is a local subjectively winning strategy for the subforest
GS if

1. It is the restriction to GS of a winning strategy of G(ϕ,M)
2. For each s ∈ S, f restricted to G{s} is a winning strategy for (the game)
G{s}.

Definition 3 A strategy f for an IF game G = G(ϕ,M) is subjectively
winning if, for each information set S that can be reached by playing ac-
cording to f , its restriction to GS is a local subjectively winning strategy in
GS .

Notice that, even though it is not immediately obvious from the statement,
this definition enforces the local subjectivity condition on all information states
that are crossed by histories which are indistinguishable from the actual one.

Definition 4 We say that ϕ is true in M according to Subjective Strategy
Semantics, and we write

M |=SSS ϕ

if ∃loise has a subjectively winning strategy in G(ϕ,M).

Example 1 Let us go back to the sample sentence ∃x(∃y/{x})(x = y), in a
structure M = {a, b} (as depicted in Figure 3). Let us call G the associated
game. It has two information states: S1, which contains the root node, and S2,
containing the two remaining nodes (say, ea, where a has been chosen for x, and
eb). S2 is crossed by any play of the game. Yet, the strategy function “choose
a for y” is not winning in G{eb}, and the strategy function “choose b for y”
is not winning in G{ea}. So, there is no strategy satisfying condition 2. of the
definition of local subjective winning strategy: M 6|=SSS ∃x(∃y/{x})(x = y).

Example 2 Let us now consider, over the same structure, Hodges’ signalling
formula ∀x∃y(∃z/{x})(x = z). Let S be the information state constituted by
the two nodes circled in darker lines in Figure 4. Call e1 its left node, e2 its
right node.
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Fig. 4 The semantic game for ∀x∃y
(
∃z

/
{x}

)
(x = z) in M = {a, b}

There are two winning strategies for ∃loise. The first is “choose for y the
value of x, choose for z the value of y”; call it f . But we can check that this is
not a subjectively winning strategy. Indeed, state S can be reached when f is
used (it happens in case ∀belard chooses a). But the restriction of f to G{e2}
is not a winning strategy for G{e2}.

The other winning strategy is “choose for y the value that was not chosen
for x, choose for z the value that was not chosen for y”. Again, S can be
reached following this strategy (in case ∀belard chooses b). So this strategy is
not subjectively winning, either, because it leads to a loss from the leftmost
node e1.

So, M 6|=SSS ∀x∃y(∃z/{x})(x = z). We see that some form of signalling
fails under Subjective Strategy Semantics. More precisely, this example de-
scribes a situation in which the second ∃loise player sees the signal that is
sent by the first ∃loise player, but does not know how to interpret it (she
does not know which strategy the other player is using for the purpose of
communication).

Sadly, this semantics assigns very counterintuitive values to some sentences:

Example 3 The following example is taken from Janssen (2002), where it is at-
tributed to J. Väänänen. Consider sentence ∃x(∃y/{x})(x = 0), in a language
containing at least the constant symbol 0.

Any strategy σ in which ∃loise chooses 0M for x is winning. But for it to
be subjectively winning, we need σy (the strategy function of σ which picks a
value for y) to constitute a winning strategy also in the rightmost node, which
cannot be the case. So, this sentence is non-true due to the dummy variable
y.
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Fig. 5 The semantic game for ∃x(∃y/{x})(x = 0) in a structure M = {0M , b}

5 Subgame Semantics, first version

In the previous section we staged a mental experiment, in an endeavour to
isolate the core idea of Subgame Semantics. Now it is time to show the real
thing, with all of its contingent peculiarities. But we have a surprise: in the
literature we find two different versions of Subgame Semantics! The two pub-
lications Janssen (2001) and Janssen (2002) may look at first as two versions
of the same paper; a closer investigation reveals instead that the logical sys-
tems introduced in each work present many substantial differences. Here we
introduce the oldest version, with some interpolation. We add explicit clauses
for conjunction and universal quantification.

We consider here a variant of IF syntax in which slashes may occur after
existential quantifiers and disjunctions (that is, we may have subformulas of
the form (∃v/V ) or (∨/V ), but not of the form (∀v/V ) or (∧/V )). Janssen
also states that only singletons should be considered as possible slash sets, but
we do not see any clear necessity for this restriction.

The set of free variables of a formula is defined inductively as for first-order
formulas, with the following special clauses:

FV (ψ ∨/W χ) = FV (ψ) ∪ FV (χ) ∪W

FV ((∃y/W )ψ) = (FV (ψ)− {y}) ∪W.

Definition 5 (Janssen (2001), 4.2; Janssen (2002), 10.3)
Given an IF formula ϕ and an assignment s s.t. FV (ϕ) ⊆ dom(s), we

write sϕ for its restriction to the free variables of ϕ. Given a structure M , let
Pϕ be the set of assignments on the set FV (ϕ).

These definitions clearly go in the direction of enforcing the locality of IF
logic. In the same spirit, some small but very significant changes are made in
the definition of the semantic games.

Definition 6 (Janssen (2001), 4.3; Janssen (2002), 10.4)
To each pair (ϕ,M), ϕ being an IF formula, M a structure, we associate

an SGS game GSGS(ϕ,M). The possible positions of the game are the
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assignments, ranging in M , to the free variables of ϕ (that is, the elements of
Pϕ). The game allows the following moves (assuming that the game is played
from a position s):

– If ϕ is R(x1, . . . , xn) or ¬R(x1, . . . , xn), the game ends.
– If ϕ is ψ1∧ψ2, then ∀belard chooses a conjunct ψi and game GSGS(ψi,M)

is played from position sψi
.

– If ϕ is ψ1∨/W ψ2, then ∃loise chooses a disjunct ψi and game GSGS(ψi,M)
is played from position sψi .

– If ϕ is ∀xψ, then ∀belard chooses a value a for x from M , and game
GSGS(ψ,M) is played from position s(a/x)ψ.

– If ϕ is (∃x/X)ψ, then ∃loise chooses a value a for x from M , and game
GSGS(ψ,M) is played from position s(a/x)ψ.

Definition 7 (Janssen (2001), 4.4; Janssen (2002), 10.5)
For each of ∃loise’s operators in GSGS(ϕ,M), a strategy is a function of

one of the following forms:

– If ϕ = ψ ∨/W χ a function Fϕ : Pϕ → {L,R}.
– If ϕ = (∃x/X)χ a function Fϕ : Pϕ →M .

(L,R being two arbitrary distinct objects).

Now, given a set W of variables occurring in an IF formula ϕ, we can
define DW as the set of variables that depend on variables from W in formula
ϕ. The definition is ambiguous, in that it might include only the variables
whose strategy functions have variables from W among its parameters; or,
instead, it might take into account also indirect dependencies (e.g., if w ∈W ,
u depends on w, and v depends on u, then v ∈ DW ). We will lean towards this
second interpretation, although it must be said that the original text itself
(Janssen (2001)) is ambiguous in this respect. Remembering that we write
t ∼W s to mean that assignments t and s coincide everywhere except possibly
on variables from W , winning positions and winning strategies are defined as
follows:

Definition 8 (Janssen (2001), 4.5, although there the definition only applies
to singleton slash sets; the clauses for ∧ and ∀ are our addition)

We define winning strategies and winning positions for the game
GSGS(ϕ,M) by simultaneous induction:

– If ϕ = R(x1, . . . , xn) then s is a winning position if (s(x1), . . . , s(xn)) ∈
RM .

– If ϕ = ¬R(x1, . . . , xn) then s is a winning position if (s(x1), . . . , s(xn)) /∈
RM .

– If ϕ = ψ ∨/W χ, then s is a winning position if there is a strategy Fϕ
satisfying three conditions:
1. If t ∼W∪DW

s, then Fϕ(t) = Fϕ(s).
2. If Fϕ(s) = L, then sψ is a winning position in game GSGS(ψ,M); if
Fϕ(s) = R, then sχ is a winning position in game GSGS(χ,M).
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3. If t ∼W s, then there is an r ∼DW
t such that one of the following

holds:
– Fϕ(t) = L and rψ is a winning position for GSGS(ψ,M).
– Fϕ(t) = R and rχ is a winning position for GSGS(χ,M).

Such a strategy is a winning strategy for this game.
– If ϕ = ψ ∧ χ, then s is a winning position iff both sψ and sχ are winning

positions for GSGS(ψ,M), resp. for GSGS(χ,M).
– If ϕ = (∃y/W )ψ then s is a winning position if there is a strategy Fϕ

satisfying three conditions:
1. If t ∼W∪DW

s, then Fϕ(t) = Fϕ(s).
2. s(Fϕ(s)/y)ψ is a winning position in game GSGS(ψ,M).
3. If t ∼W s, then there is an r ∼DW

t such that r(Fϕ(s)/y)ψ is a winning
position.

Such a strategy is a winning strategy for this game.
– If ϕ = ∀yψ, then s is a winning position if and only if, for all a ∈ M ,
s(a/y)ψ is a winning position.

Definition 9 (implicit in Janssen (2001))
An IF sentence ϕ is true iff the empty assignment ∅ is a winning position

for GSGS(ϕ,M) according to Definition 8. In such case we write M |=SGS1 ϕ.

Dual definitions could be given of ∀belard’s winning positions and strate-
gies and thus of falsity.

Notice that, apart from some extra conditions on which we shall dwell
below, the core idea of Subgame Semantics is, as it was the case for Subjec-
tive Strategy Semantics, to require strategies to be uniformly winning over
subforests generated by some information states. Thus, the use of the word
“subgame” is somewhat improper and in contrast with game-theoretical liter-
ature (where a subgame is usually required to have only one root, and to be
closed with respect to the indistinguishability relation).

A first general observation that we must make is that this semantics still
falsifies Väänänen’s example ∃x(∃y/{x})(x = 0) (see again Figure 5). Indeed,
the only winning choice for x is 0M . Let us check point 3 of the existential
clause. We have (x, 0M ) ∼x (x, b), and the ∼∅-class of (x, b) is a singleton;
but neither (x, b), (y, 0M ) nor (x, b), (y, b) is a winning position for the game
of x = 0.

So, also this semantics is counterintuitive. But this system has a peculiarity,
the following result by Janssen:

Proposition 1 (Janssen (2001), 5.2) Let ϕ be a Henkin sentence, that is a
sentence of the form ∀x∃y∀z(∃w/{x})ψ. Then M |=IF ϕ iff M |=SGS1 ϕ.

The importance of this result can be understood knowing that Henkin’s

partially ordered quantifier H1
2 =

(
∀x ∃y
∀z ∃w

)
(Henkin (1961)), added to first-

order logic with empty signature, can express higher-order concepts, such as
infinity. As a side note, the correct expression of a branching quantification
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should be ∀x∃y∀z(∃w/{x, y}) (notice the extra y in the slash set); but, in
our opinion, Janssen’s proof is not spoiled by this mistake. So, we have as an
immediate consequence that

Proposition 2 IF logic with SGS1 semantics is not equiexpressive to a frag-
ment of first-order logic.

The fact that the meaning of a formula is expressed in terms of sets of
assignments, and not sets of sets of assignments, suggests however that this
semantics, most likely, does not have full Σ1

1 expressive power (cp. with the
results of Cameron and Hodges (2001)).

Let us compare briefly this system with first-order logic and with Subjec-
tive Strategy semantics. Notice that the SGS1 clauses for atomic formulas,
negations, conjunctions and universal quantification, are taken care of by the
classical notion of winning strategy, plus the restriction of locality (strategies
depend only on variables occurring in the subformula under consideration);
for first-order formulas, this restriction is irrelevant. Similarly, in the disjunc-
tive clauses, the locality restriction and clauses 2. and 3. are irrelevant for
first-order formulas; thus, we can conclude that FO ⊂ IFSGS1 .

The comparison with Subjective Strategy semantics is more problematic.
IFSSS might perhaps be immune from signalling, but we have no reason to
think that it enjoys locality; the restriction of locality is instead imposed in
IFSGS1 , making games more difficult to win in IFSGS1 than in IFSSS . On the
contrary, the clauses 3. (for disjunctions and existential quantifiers) of IFSGS1

impose more liberal restrictions on winning strategies than subjectivity of the
winning strategies (the latter condition requires a strategy to be winning in all
indistinguishable nodes; the former only requires that for some such nodes).
So, we are inclined to think that the two logics are incomparable.

We make some more specific comments about the semantic clauses for ∨/W
and (∃y/Y ).

It is noteworthy that condition 1. (of both clauses) states that the choice
function should be independent not only from the variables occurring in the
slash sets, but also from variables which depend on the variables from the slash
set (this is obtained by addingDW to the parameters of the indistinguishability
relation). We may call this the Transitive Closure condition. This is a marked
difference with standard IF semantics, and it yields as a consequence that
many possible forms of signalling are inhibited.

Reading Janssen’s commentary to his own semantics (see in particular
Janssen (2001), 3.4-3.5), we got the impression that prescription 3. is meant
to embody the following Covariance Condition (which, for simplicity, we only
express for singleton slash sets); this is fundamentally a way to prohibit sig-
nalling. Notice also that the objects cx, cy,b mentioned below are not nec-
essarily arguments of the strategy functions which are named, but might be
arguments of some subterm.

CC. If a subformula is of the form (∃y/{x})ψ, and

{(x, cx), (v1, fv1(..., cx, ...)), ..., (vn, fvn(..., cx, ...)), (y, cy), ...},
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where v1, . . . , vn are all the variables which directly or indirectly depend on x,
is a winning position for ψ, then also

{(x,b), (v1, fv1(...,b, ...)), ..., (vn, fvn(...,b, ...)), (y, cy), ...}

is a winning position, for any b ∈M .
This condition stipulates that, if the choice for y is winning in the current

play of the game, then it should have also been winning if a different value
had been chosen for x (and, consequently, the strategies adopted had modified
accordingly the values of all variables that depend on x).

It is not evident that CC may be really enforced by condition 3; we suspect
it does, but lack a proof.

We think this Covariance Condition to be a rather reasonable and some-
what neglected requirement to impose on a notion of independence; it could
perhaps be interesting to introduce a variant of Subgame Semantics which ex-
plicitly includes this clause. The Transitive Closure Condition, instead, blocks
any form of signalling and induces a literal observance of the independence
requirements.

6 Subgame Semantics, second version

The second version of Subgame Semantics differs from the prototype in the
following clauses, coming from Janssen (2002), 10.4, and in some lesser detail
which we shall ignore here:

– If ϕ = ψ ∨/W χ then s is a winning position for G(ϕ,M) if there is a
strategy Fϕ satisfying three conditions:
1. If t ∼W s, then Fϕ(t) = Fϕ(s).
2. If Fϕ(s) = L, then sψ is a winning position in game GSGS(ψ,M); if
Fϕ(s) = R, then sχ is a winning position in game GSGS(χ,M).

3. If t ∼W s, then one of the following holds:
– Neither tψ is a winning position for GSGS(ψ,M), nor tχ is a win-

ning position for GSGS(χ,M).
– Fϕ(t) = L and tψ is a winning position for GSGS(ψ,M).
– Fϕ(t) = R and tχ is a winning position for GSGS(χ,M).

Such a strategy is a winning strategy for this game.
– If ϕ = (∃y/W )ψ then s is a winning position if there is a strategy Fϕ

satisfying three conditions:
1. If t ∼W s, then Fϕ(t) = Fϕ(s).
2. s(Fϕ(s)/y)ψ is a winning position in game GSGS(ψ,M).
3. If t ∼W s, then, if there is a c ∈ M such that t(c/y)ψ is a winning

position, then t(Fϕ(s)/y)ψ is a winning position for GSGS(ψ,M).
Such a strategy is a winning strategy for this game.

If in a certain position s there is no move which leads to a winning position,
we may say that s is a losing position. So, we may restate clause 3. for
existential formulas as stating that the requested function must be a winning
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strategy in all positions which are indistinguishable from the current one and
which are not losing positions. This last specification (called “clause 3b.” by
Janssen) was devised to treat properly sentences like Väänänen’s example
∃x(∃y/{x})(x = 0), which would otherwise have a totally counterintuitive
meaning.

We shall call this semantics SGS2. Besides the introduction of clause 3b.,
the remarkable difference with SGS1 is the absence of any requirement in the
direction of the Transitive Closure Condition or the Covariance Condition.
We wonder why the author may have abandoned these important intuitions;
perhaps he deemed them to be overly complicated and intractable clauses. Or,
he might have seen a problem in the fact that a precise definition of these
clauses involves accounting for variables (those in DW ) that are quantified
not in the subformula associated to the subgame under consideration, but
rather in the sentence that contains it; this ruins the dream of a compositional
semantics.

In any case, the Covariance Condition should be reformulated to take into
account clause 3b:

CC’. If a subformula is of the form (∃y/{x})ψ, and

{(x, cx), (v1, fv1(..., cx, ...)), ..., (vn, fvn(..., cx, ...)), (y, cy), ...},

where v1, . . . , vn are all the variables which directly or indirectly depend
on x, is a winning position for ψ, then also

{(x,b), (v1, fv1(...,b, ...)), ..., (vn, fvn(...,b, ...)), (y, cy), ...}

is a winning position, for any b such that there is a winning position

{(x,b), (v1, fv1(...,b, ...)), ..., (vn, fvn(...,b, ...)), (y, e), ...}.

Or, perhaps, it would be reasonable to add to these kinds of semantics a
different covariance requirement, which takes into account, for clause 3b, also
the correlation of variables which depend on the variable y which is chosen in
the current stage; this is obtained by replacing the last proviso above with (in
slightly simplified notation):

{(x,b), (y, e), (vi, fvi(...,b, e, ...)), ...}.

We can explicitly show with an example that CC’ is violated in SGS2.

Example 4 Consider the sentence ϕ := ∀x∃y(x = y ∧ (∃u/{x})(u > y)) over
the structure of natural numbers.

We argue that this sentence, on an intuitive reading and in observance of
the Covariance Conditions, should be non-true in N.

Indeed, suppose ∀belard chooses an element a for x; ∃loise must respond
with the identity function fy(x) := x and with some function fu(y) whose
value is greater than its argument (e.g. fu(y) := y + 3). By the Covariance
Condition, if we keep fixed the value b := fu(a) and change, for example, the
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value assigned to x into a′ := a + 5 then the value assigned to y becomes
fy(a′), that is, a′, and there we have no more u > y. Thus, ∃loise has no
winning strategies for ϕ.

In contrast with this, we prove the truth of the sentence ϕ according to
SGS2 semantics by demonstrating that the empty assignment is a winning
position for ϕ on N. Here we have that:

– By ordinary semantics, the set of winning positions corresponding to the
formula x = y is

WPos(′′x = y′′) = {{(x, a), (y, b)} | a, b ∈ N, a = b} (2)

and also
– WPos(′′u > y′′) = {{(y, b), (u, c)} | b, c ∈ N, c > b}.
– WPos(′′(∃u/{x})(u > y)′′) ⊆ {{(x, a), (y, b)} | a, b ∈ N}.

We prove that the inclusion is an equality. Let us check the semantic con-
ditions of the existential clause.
2) By the strategy fu({(y, b)}) := b + 1 we can extend the assignment
{(x, a), (y, b)} to an assignment {(x, a), (y, b), (u, b+1)} ∈WPos(′′u > y′′).
1) fu does not depend on the slashed variable x.
3) If we assign to x a new value a′, then {(x, a), (y, b), (u, b + 1)} is still
a winning position. (Notice that the value assigned to y has not changed
according to the new value of x)
Thus,

WPos(′′(∃u/{x})(u > y)′′) = {{(x, a), (y, b)} | b ∈ N}. (3)

– WPos(′′x = y ∧ (∃u/{x})(u > y)′′) = {{(x, a), (y, b)} | a = b}, since these
assignments must satisfy the defining condition of (2), and also the trivial
defining condition of (3).

– WPos(′′∃y(x = y∧(∃u/{x})(u > y))′′) = {{(x, a)}| a ∈ N} since the strat-
egy function fy({(x, a)}) := a allows extending the assignment {(x, a)} to
a couple {(x, a), (y, a)} ∈WPos(′′x = y ∧ (∃u/{x})(u > y)′′).

– Thus, WPos(′′∀x∃y(x = y ∧ (∃u/{x})(u > y))′′) = {∅}. The sentence is
true in N.

This argument shows that SGS2 semantics, although it takes into account
independence from slashed variables (in this case, x), does not account for
independence from variables which should be adjusted together with x (in this
case, y; failing to adjust it together with x may falsify the conjunct x = y). It
would be interesting, perhaps, to devise a new version of Subgame Semantics
that has both clauses 3. from SGS2 and 1. from SGS1, and which is thus likely
both to have the CC property and not to give very counterintuitive values to
sentences; we will not pursue here this possibility.

Finally, it must be remarked that the sentence considered in this example
is not true in SGS1 semantics; so, it does not disprove our claim that SGS1

respects CC.
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Let us close this parenthesis, and go back analyzing SGS2. It is clear that
first-order formulas keep their standard values under this semantics. As in
the case of Subjective Strategy Semantics, and in contrast with what we said
about SGS1, we can state that:

Theorem 1 IF logic with SGS2 semantics is equiexpressive with first-order
logic.

Proof (Sketch)

This is fundamentally an argument of Hodges (2012). Each IF sentence ϕ
evaluated under SGS2 semantics can be translated into a first-order sentence
ϕ by replacing each existential subformula (∃y/W )ψ with

∃y(ψ ∧ ∀w̄(∃sψ[s/y]→ ψ))

(where w̄ is W written as a sequence); and replacing each disjunctive subfor-
mula ψ ∨/W χ with

(ψ ∧ ∀w̄((¬ψ ∧ ¬χ) ∨ ψ)) ∨ (χ ∧ ∀w̄((¬ψ ∧ ¬χ) ∨ χ)).

7 Rationalization

As far as we know, after Janssen (2002) there have not been further devel-
opments of SGS semantics in the literature. However, there have been some
attempts to find alternative semantics or game-theoretical justifications of Sub-
game Semantics. All these attempts were based on the game-theoretical notion
of rationalizability (weak domination). The common idea in these kinds of se-
mantics is that of considering the semantic games not as (extensive) 2-player
games, but rather as (strategic) multiplayer games. A strategic game can be
formalized as a triple (N, {Si}i∈N , {ui}i∈N ), where N is the set of players, Si a
set of strategies for player i, and ui :

∏
i∈N Si → R the payoff function of player

i. In our specific case, the player i corresponding to a certain (occurrence of)
logical operator has as its strategy set Si the set of allowed strategy functions
(for the extensive game) corresponding to that (occurence of) logical operator;
the players associated to existential quantifiers and disjunction have, each, the
same payoff (to be defined precisely below) as ∃loise has in the 2-player games
(1 if she wins, 0 if she looses); and universal and conjunction players have the
payoff of ∀belard. Yet, as stated explicitly in Sevenster (2007), these semantics
are not thought out in order to make the players behave as if they formed two
teams, each of which is coordinated by a common strategy; rather, the players
should act as rational individuals who choose the most convenient individual
strategies, but have not the possibility to coordinate themselves with other
players.
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The first two examples9 of these kinds of semantics appeared in Seven-
ster (2007). We mention them only briefly, since it is clear that they are in-
adequate semantics and only embryonal attempts towards a semantics that
is described in more clear terms in publications of Janssen (Janssen (2005),
Janssen (2007)).

The first of these attempts was based on the notion of weak dominance.
We consider the semantic games of IF logic as games between two teams
of players (one player for each logical operator, except for negations). Each
single player wins the game if his team wins. Given a game G(ϕ,M), we call
profile a sequence π of strategy functions, one for each of the players in the
game. Of course, we can always identify a profile with a pair (σ, τ), where σ
is a strategy for the ∃loise team and τ is a strategy for the ∀belard team.
We obtain a strategic game from this extensive game by defining the payoff
function of player i on profiles of G(ϕ,M):

ui(π) =

{
1 if i wins when players follow π
0 otherwise

The strategies of this strategic game are the strategy functions of the corre-
sponding extensive game.

We also write u∃ for ui if i is an ∃loise, and u∀ if i is an ∀belard player.
Furthermore, we follow the conventions of game theory in writing πi for the
strategy (function) for player i in profile π; in writing π−i for the (partial)
profile obtained removing from π the strategy (function) πi of player i; and in
writing (π−i, f) for the profile obtained replacing, in π, the strategy (function)
πi with f .

Definition 10 A strategy fi is weakly dominant if, for any strategy profile
π,

u∃(π−i, fi) ≥ u∃(π).

This notion of dominance is used to define a semantics in the following way:
we say that sentence ϕ is true in M (M |=WD ϕ) if there is a combination
σ of strategies for the ∃loise players such that each component of σ is weakly
dominant for its player, and such that, for all combinations of strategies τ of
the ∀belard players, u∃(σ, τ) = 1. One weak point of this definition lies in the
notion of dominance that was chosen; not many games have weakly dominant
strategies. As a result, this semantics is strictly weaker than first-order logic
and even falsifies some classical validities.

The second idea in Sevenster’s paper is based on iterated removal of weakly
dominated strategies (Sevenster (2007), sec. 5); if all possible combinations
of the surviving strategies are winning for ∃loise players, then the sentence is
true in the model under consideration (M |=IWD ϕ). This idea seems far more

9 Actually, the paper Janssen (2005) of Janssen appeared earlier, but from acknowledge-
ments occurring in his paper, the precedence of Sevenster’s attempts is evident. See also the
Bibliographical Note at the end of the paper for even earlier suggestions coming from the
works of van Benthem.
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reasonable than considering the existence of such strategy profiles (and we will
reconsider it in the next section); yet, somewhat bizzarrely, the definition of
the removal process seems to depend on the sentence being in prenex normal
form, and on the extensional, rather than strategic structure of games: the
specific process of iterated removal is indeed determined by the order in which
variables are quantified in the sentence. In the next section, we will consider
an order-independent variant of this notion.

The next contribution we shall examine comes again from Janssen. The
system we are going to describe figures in two distinct but similar papers,
“Independence Friendly Logic as a strategic game” (Janssen (2005)) and “In-
dependence and Hintikka games” (Janssen (2007)). This semantics is based on
rationalization, applied to the multiagent game.

Definition 11 A strategy gi for player i is weakly dominated by fi if for
every profile π

ui(π−i, fi) ≥ ui(π−i, gi)

and for some profile π̂

ui(π̂−i, fi) > ui(π̂−i, gi).

A strategy for player i is rational if it is not weakly dominated by any
other strategy of the same player.

Definition 12 We state that a sentence ϕ is true in a structure M , and we
write M |=R ϕ, if for any combination σ of rational strategies of the ∃loise
players, and any combination τ of rational strategies of the ∀belard players,
u∃(σ, τ) = 1.

For any finite structure M , we have

M |=R ϕ⇒M |= ϕ

where the second assertion expresses standard IF semantics. Indeed, the re-
lation “g is weakly dominated by f” is a strict partial order on the set of
strategies of a player; if the structure is finite, so is the set of strategies of each
player; consequently, the set P of profiles constituted of rational strategies
is non-empty. Then, if M |=R ϕ holds, any collective strategy for the ∃loise
players which is extracted from a profile in P is a winning strategy.

An interesting aspect of this semantics, from the point of view of linguis-
tics, is that it assigns more reasonable interpretations to some variant of the
classical townsman/villager example of branching quantification (see Janssen
(2007), sect.6).

Comparing this semantics with WD, we have here a (more reasonable) uni-
versal requirement instead of an existential one. But notice that, as observed in
Janssen (2007), this kind of semantics becomes very paradoxical when applied
to infinite structures; for example, sentence

θ := ∃x∃y(y < x) ∧ ∃z∀w(z = w) (4)
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is unreasonably true in N (each strategy for x is dominated by strategies which
choose a greater value; so, no profiles survive).

Two positive results are stated in Janssen’s paper. The first one asserts that
any rational strategy can be replaced by an equivalent strategy which depends
only on the variables occurring in the subformula under consideration. This
should point to the existence of a formulation of the semantics which is both
compositional and local, in the sense that the meaning of a subformula does
not depend on the context in which it occurs. This result is rather fishy, since
no definition is given of rationality for the strategy associated to an open
formula. Furthermore, the proof of the statement looks rather suspect, since
it seems not to use the hypothesis that certain variables do not occur in the
subformula.

The second result, depending on the first, is precisely a compositional clause
for existential formulas. We need to specify what it means for an assignment s
to satisfy a formula: writing M |= ϕ(x̄)[s] we mean that all rational strategies
are winning, when played against any collection of moves, for the sentence
which is obtained replacing the free variables x̄ with s(x̄). (It is clear that here
Janssen has in mind a first-order compositional semantics).

The compositional clause for existential sentences is as follows (with a small
correction on our part10):

M |= (∃y/{x̄})ψ(x̄, y)[s]

m

there is a function f : FV (ψ)→M such that

M |=
(
ψ(x̄, f(x̄)) ∧ ∀z̄

(
∃uψ(z̄, u)→ ψ(z̄, f(z̄))

))
[s],

z̄ being a sequence of new variables. As Janssen observed, this clause has a
very strong resemblance to the corresponding clause of SGS2; this led him to
suggest that the two semantics may coincide, and that R semantics may be a
game-theoretical justification of SGS2. In the following, we shall disprove this
claim: sentence ζ from example 13 shows that R and SGS2 do not coincide,
even on finite structures; the sentence (4) mentioned above provides a coun-
terexample in infinite structures, and it also excludes the possibility that the
set of truths of IFR be a subset of the truths of IFSGS2 . This seems also to
suggest that the compositional clause just exposed may be uncorrect. (In any
case, it is not general enough, since it seems to cover only formulas ψ which
contain at most one free variable besides those listed in the slash set).

8 Dominance solvability

It may be natural, at this point, to restrict further the set of strategies con-
sidered by Janssen by iterating the removal of weakly dominated strategies.

10 In the original text, z is written as a single variable, not a vector; and in the left term
of the implication, x̄ took the place of our z̄.
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This can be done in a more reasonable way than the procedure described in
Sevenster (2007); strangely enough, this line of thought has not been pursued
in the literature, and we introduce it here. The idea emerged during some
conversations between Pietro Galliani and the author; we were not aware, at
the time, of the affine publications of Sevenster and Janssen.

Definition 13 Let G(ϕ,M) be a semantic game, with N = {1, . . . , n} its set
of players, defined as before, and let S0

i be the set of strategies of player i. We
inductively define

G0(ϕ,M) := G(ϕ,M)

Gk+1(ϕ,M) := {N, {Sk+1
1 , . . . , Sk+1

n }, {ui}i∈N}
where Sk+1

i is the subset of Ski which is constituted by the strategies which
are rational for player i in Gk(ϕ,M).

Let GDS(ϕ,M) be the fixed point of this procedure11.

Definition 14 We say that a sentence ϕ is true in a structure M , and we
write M |=DS ϕ if for all profiles σ in GDS(ϕ,M), u∃(σ) = 1.12

This notion of dominance is based on simultaneous removal of all strate-
gies, of all players, which are weakly dominated; and on an iteration of the
process. It is required for truth that all the profiles that can be formed from
the surviving strategies be winning for ∃loise players. Falsity (and thus unde-
terminedness) may be defined analogously.

This solution concept shares the same dubious interpretational status of
all procedures of removal of weakly dominated strategies. Yet it seems to us
to be the most natural among such kind of processes; and at least it is not
dependent on the extensive structure of the game, as the procedure related
to IWD semantics is. Furthermore, the present procedure seems to have a
special place in the literature, and even a name: dominance solvability (Moulin
(1979), and see also Osborne and Rubinstein (1994), Exercise 63.2). Some
recent results from epistemic game theory (Halpern and Pass (2009)) seem
to suggest that dominance solvability is the correct solution concept for the
description of a game in which each player only knows, about other players,
that they are rational. Our intendended epistemic interpretation differs from
such a setup in that players know something more beyond the rationality of
all players: they know the type of each player, that is, his/her payoff function.
This suggest that DS might not yet capture the epistemic intuition; so, in the
next section we will consider a clause that seems to be more appropriate.

Example 5 Consider sentence ϕ := ∃x∃y(x = y), and a structure M = {a, b}.
We list in the following table all the strategies available to the two players.
We denote as id : M →M the identity function, and as switch : M →M the
switching strategy switch(a) := b, switch(b) := a.

11 Also known, in the literature, as the set of rationalizable strategies, due to a character-
ization theorem of Pearce (1984).
12 As in the previous section, u∃ denotes the payoff function of any ∃loise player.
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∃x ∃y
s1 : a t1 : a
s2 : b t2 : b

t3 : id(x)
t4 : switch(x)

Strategies t1, t2 and t4 of player ∃y are all weakly dominated by strategy t3.
So, the game reduces to G1(ϕ,M), characterized by the following strategies.

∃x ∃y
s1 : a t3 : id(x)
s2 : b

No strategies in this game are weakly dominated anymore, so GDS(ϕ,M) =
G1(ϕ,M). For this game two strategy profiles are available: (s1, t3) and (s2, t3).
Both are wins for ∃loise players (i.e., u∃(s2, t3) = u∃(s1, t3) = 1), so M |=DS

∃x∃y(x = y).

Example 6 The following sentences

∃x(∃y/{x})(x = y)

∀x∃z(∃y/{x})(x = y)

∀x∃z(∃y/{x, z})(x = y)

are all non-true for a common reason: no strategy for any player is weakly
dominated, but the profiles in the games are not all wins for ∃loise.

Example 7 However, for infinite structures we have similar problems as for
IFR. The sentence (4) of the previous section is again true for trivial reasons.
This proves that dominance solvability is not a game-theoretical justification
of Subgame Semantics. Yet, we cannot exclude the possibility that it is the
correct justification over finite structures.

We obviously have

Theorem 2

M |=R ϕ⇒M |=DS ϕ

In section 11, we will show that the inclusion IFR ⊆ IFDS is strict (Ex-
ample 12).
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9 Cartesian semantics

We introduce here a new semantics which is related to some solution concepts
which were discussed, for example, in Luce and Raiffa (1957). It is founded on
an intuition of what it means for a set of rational players to have a winning
strategy when they share the same utility function but they cannot com-
municate among themselves. This semantics will be defined not only for IF
languages, but also for the more general CS languages described above, and
which we define more formally here.

An IF sentence is said to be strongly regular if no variable is quantified
more than once in it.

Definition 15 Let ϕ be a strongly regular IF sentence. Replace each quanti-
fier (∃v/V ) occurring in ϕ with (∃v/V U), where U is a set of variables which
are quantified before v. Then the resulting string is a CS sentence.

We reason in a similar framework as in the previous sections, associating
a player to each quantifier and binary connective, and partitioning them into
∃loise and ∀belard players, with the usual utility functions.

We want to model a semantic concept that expresses the fact that the
existential players have a method for winning (getting payoff 1) under the fol-
lowing epistemic conditions:

1) Each player knows that her comrades share the same payoff function, and
that they play rationally.
2) Each player only knows the strategy functions applied by those players
whose associated variable does not occur in her underscore set, and in whose
underscore set she does not appear.

Notice that in 2) we are postulating that players are always unaware of
the strategies employed by players whose quantifier or connective occurs sub-
ordinated. Thus, declarations of (strategy-)independence will always state a
condition of symmetrical independence. (Asymmetrical independencies surely
have some theoretical interest, and should be investigated in future work).

We will try to express the idea of “having a winning method under condi-
tions 1) and 2)” by requesting that the set of winning strategies has a peculiar
form. For sure, it must be non-empty, but that is not enough! We want each
player to be able to pick up one of his (potentially winning13) strategy func-
tions trusting that, if all of his comrades do the same (which they must, by
rationality), then the strategy obtained collecting all the strategy functions
of the members of the team is a winning strategy. We think that this can be
achieved only if the set of winning strategies satisfies very restrictive condi-
tions, which we are going to describe. Essentially, the idea is that,

13 We say that a strategy function fv is potentially winning if it is part of a winning
strategy, that is, there is a strategy σ = (. . . , fv , . . . ) of ∃loise such that, for every strategy
τ of ∀belard, u∃(σ, τ) = 1.
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A) whenever u is in the underscore set of v (or viceversa), the set of “best”
uniform strategies of ∃loise, restricted to the players ∃u and ∃v, must be a
cartesian product Bu × Bv, so that it does not make a difference for each
single ∃loise player to choose among his set of “best” choices.

B) The set of “best” strategies of the ∃loise team is nonempty.

But what does it mean for a strategy to be a “best” one? For simplic-
ity, we begin considering the set of all winning strategies of ∃loise, until a
counterexample will show us that this is not the right notion.

Let ϕ be a CS sentence, and assume (∃v1/Vi), . . . , (∃vm/Vm) is the list of
existential quantifiers occurring in ϕ, from left to right; suppose each variable
is quantified only once in ϕ. Let ∃(ϕ) be the set of existentially quantified
variables of ϕ. Let ≺ be the relation of superordination (vi ≺ vj iff vj occurs
in ϕ in the scope of a quantifier over vi). We define the independence relation

^ϕ:= {(i, j)|vi ≺ vj ∧ vi ∈ Vj ∧ vi, vj ∈ ∃(ϕ)}

on indices of variables. Let l = |^ϕ |. In order to express a condition on strate-
gies, we make use of Skolem functions; we review here the context-dependent,
first-order Skolemization of IF sentences and formulas. We follow the defini-
tion 4.3 of Mann et al. (2011). Let ψ be an IF formula, U ⊇ FV (ψ) a finite
set of variables. Then:

SkU (ψ) = ψ (ψ is a literal)
SkU (ψ ∨ ψ′) = SkU (ψ) ∨ SkU (ψ′)
SkU (ψ ∧ ψ′) = SkU (ψ) ∧ SkU (ψ′)
SkU ((∃vi/Vi)ψ) = Sub(SkU∪{vi}(ψ), vi, hi(y1, ..., yn))
SkU ((∀vi/Vi)ψ) = ∀vi SkU∪{vi}(ψ)
Sk(ϕ) := Sk∅(ϕ) for ϕ IF sentence.

where y1, ..., yn enumerate the variables in U \Vi; hi is a new function symbol
(Skolem function) associated to vi; and the operation Sub(ψ, x, t) is substi-
tution of free occurrences of variable x in ψ with term t. In case ϕ is a CS
sentence, denote as ϕ# the corresponding IF sentence which is obtained re-
moving the underscore sets, and define Sk(ϕ) := Sk(ϕ#).

If the function symbols f1, . . . , fm are thought as strategy functions for the
variables v1, . . . , vm respectively, then we can express the fact that (f1, . . . , fm)
is a collective winning strategy (uniform according to the slash sets) for the
∃loise team by the following sentence WStratϕ(f1, . . . , fm):

Simsub(Skϕ, (h1, . . . , hm), (f1, . . . , fm))

that is, the simultaneous substitution, in Skϕ, of each fi for the corresponding
hi. Let Ωϕ be the condition[
∃f1 . . . ∃fmWStratϕ(f1, . . . , fm)

]
∧
[ ∧

(i,j)∈^ϕ

∀g1 . . . ∀gm∀g′i∀g′j(ψ → χ)
]
,
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where

ψ = WStratϕ(g1, . . . , gm) ∧WStratϕ(g1, . . . , g
′
i, . . . , g

′
j , . . . , gm)

and

χ = WStratϕ(g1, . . . , gi, . . . , g
′
j , . . . , gm)∧WStratϕ(g1, . . . , g

′
i, . . . , gj , . . . , gm).

Under the identification of “best” with “winning”, the left conjunct expresses
condition B, that the set W of winning strategies is nonempty. If we call Si
the set of strategies of player i, then for any set {i1, . . . , in} we can talk of the
{i1, . . . , in}-projection of W , p{i1,...,in}(W ) = {(fi1 , . . . , fin) ∈ Si1 × · · · ×
Sin |∃σ ∈ W (∀j = 1..n(σij = fij ))}. Then, the right conjunction expresses
condition A, that, for any pair i, j of mutually independent ∃loise players, the
projection p{i,j}(W ) is a cartesian product (say, Bi ×Bj).

We immediately show with a counterexample that Ωϕ does not capture
correctly the notion of “lack of knowledge of some player’s strategy”.

Counterexample 1 Consider the CS sentence ϕ = ∃x(∃y/∅ {x})(x 6= y).
The intended meaning of it is that the player who picks a value for y can see
the value picked for x, but does not know the strategy used by the ∃x player.
With this interpretation, this sentence is obviously true in any structure with
at least two elements (just let ∃y choose β(x), where β is any bijection without
fixed points). But Ωϕ does not entail this conclusion. To fix ideas, consider a
two-element domain M = {a, b}. Notice that both strategies fx() = a, fy(x) = b
and fx() = b, fy(x) = a are winning strategies for the ∃loise team in the game
of M and ϕ. And yet, the strategy fx() = a, fy(x) = a is not winning; thus,
the “cartesian” constraint stated in Ωϕ is not respected.

So, the mere fact of being part of a uniform winning strategy does not work
well as a notion of being a “best” strategy function in the present context.
We will rather try with what seemed to emerge, in the previous sections, as
the most reasonable notion of “best” strategy: dominance solvability. Another
option could be to consider the set of winning equilibria: in that case we
would obtain the solution concept known as (Luce and Raiffa’s) solution in
the strict sense (Luce and Raiffa (1957)). We will not pursue here this idea,
but see Schelling (1960), Appendix C for a discussion of how this solution
concept relates to issues of cooperation and signaling. The solution concept
we develop can be seen instead as special case of Luce and Raiffa’s solution in
the complete weak sense14.

Let DSϕ(f1, . . . , fm) be the assertion that each of the strategy functions in
the tuple (f1, . . . , fm) survives the process of iterated elimination of all weakly
dominated strategy functions (as in the treatment of the semantics |=DS). Let
DSWinϕ(f1, . . . , fm) be an abbreviation for the formula DSϕ(f1, . . . , fm) ∧
14 Actually, Luce and Raiffa argue that using, in this context, single-stage elimination of

weakly dominated strategies instead of iterated elimination leads to a more plausible solution
concept (what they call solution in the weak sense). This point is not investigated further
in the present paper, but surely deserves future attention.
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WStratϕ(f1, . . . , fm). Finally, let ΩCSϕ stand for the statement which one ob-
tains from Ωϕ by replacing all occurrences of WStratϕ with DSWinϕ:

ΩCSϕ = Ωϕ[DSWinϕ/WStratϕ].

We then define, for any structure M and CS sentence ϕ:

M |=CS ϕ⇔ ΩCSϕ

This definition seems to work better, at least on the previous example.

Example 8 Consider again sentence ϕ = ∃x(∃y/∅ {x})(x 6= y) and a two-
element structure M . The only strategies of ∃loise that survive iterated elimi-
nation are fx() = a, fy(x) = switch(x) and f ′x() = b, fy(x) = switch(x), where
switch(x) is once more the function that picks b if x equals a, and vice versa.
The set {(fx, fy), (f ′x, fy)} forms a cartesian product {fx, f ′x}×{fy}, and both
strategies are winning; so, M |=CS ∃x(∃y/∅ {x})(x 6= y).

Example 9 This example shows that underscore sets allow disabling signalling
possibilities. Let ϕ = ∀x∃z(∃y/{x} {z})(x = y), (here player ∃y “does not
know” the value chosen for x and the strategy applied by ∃z) and M a two-
element structure as above. The strategy functions that survive the elimination
process are fz(x) = x, fy(z) = z, f ′z(x) = switch(x), f ′y(z) = switch(z). So,
the surviving profiles are (fz, fy), (f ′z, fy), (fz, f

′
y), (f ′z, f

′
y). Yet, both (fz, fy)

and (f ′z, f
′
y) are winning, but (fz, f

′
y) is not: so, the the set of winning strategies

in the dominance solvability set is not a cartesian product. Thus, M 6|=CS ϕ.
This is in accordance with the intuitive idea that, if the two ∃loise players do
not share a convention on how signals must be interpreted, then they cannot
appropriately communicate.

Notice that this semantics does not coincide with IFDS . In IFDS we re-
quired all the surviving strategies to be winning; here we require only that,
among the strategies that survive, the winning ones satisfy conditions A and
B. But, viceversa, notice that the dominance solvability set itself (the set of
strategies that survive the iterated elimination of weakly dominated strate-
gies) always satisfies automatically condition B, and, on finite structures, also
condition A. Asserting that a sentence is true according to IFDS amounts to
saying that all strategies in the dominance solvability set are winning, so that
we get:

Theorem 3 Let M be a finite structure. Let ϕ be an IF sentence, and ϕ′ be
obtained by adding arbitrary underscore sets to ϕ. Then

M |=DS ϕ⇒M |=CS ϕ
′.

Till now, we have not specified explicitly what the formula DSϕ(f1, . . . , fn)
should be. Specifying that a strategy function fi is rational amounts to a Π1

2

sentence:

RATi : ∀gi[∃π(u∃(π−i, gi) < u∃(π−i, fi)) ∨ ∀π(u∃(π−i, gi) ≤ u∃(π−i, fi))]
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where π is a sequence of function symbols, and u∃(π−i, gi) ≤ u∃(π−i, fi) stands
for

Skϕ[π−i/h−i, gi/hi]→ Skϕ[π−i/h−i, fi/hi]

and so on (here of course, writing π−i/h−i we mean simultaneous substitution
of each function variable in the sequence π−i for the corresponding function
symbol from the sequence h−i). Specifying that a strategy survives the sec-
ond stage of elimination can be done by an identical formula, restricting all
second-order quantifiers to the set of rational strategies. A careful process of
extraction of quantifiers shows that this is (equivalent to) a Π1

3 sentence. Anal-
ogously, the 3rd stage of elimination is expressed by a Π1

5 sentence, and so on,
in increasing complexity. Furthermore, none of these sentences captures dom-
inance solvability, since the index of the final stage of elimination is bounded
only by a function of the domain size (O(2card(M))); the statement “fi is in
the dominance solvability set” is a fixed point of this sequence of sentences;
and DSϕ(f1, . . . , fn) is a conjunction of these kinds of statements. So, the only
upper bound we can see for expressivity of cartesian semantics is second-order
fixpoint logic. We consider lower bounds in the next section.

We conclude this section noticing that in the literature there are at least
two other examples of semantics of imperfect information which are based on
cartesian products. One is Independence logic, on which we shall dwell later.
The other is the definition of branching quantification given by G. Sher (Sher
(1990)), which requires, for the truth of Br(Q1, Q2)xyψ, that the set S of
tuples satisfying ψ contains a maximal cartesian product A × B such that
A ∈ Q1 and B ∈ Q2. Our condition seems to be more restrictive: we require
a specific set (the winning subset of the dominance solvability set) to be a
cartesian product.

If we identify each IF quantifier (∃v/V ) with the CS quantifier (∃v/V ∅),
we can translate each IF sentence ϕ into a CS sentence ϕ ∅; this translation
preserves truth and, on finite structures, also non-truth. This holds because,
when all underscore sets of a CS sentence are empty, the rightmost clause of
ΩCSϕ is an empty conjunction (i.e., some valid sentence); while the leftmost

conjunct of ΩCSϕ just states that some strategy survives the iterated elimi-
nation procedure (which is equivalent, on finite structures, to the existence
of a winning strategy – which is the usual truth condition of standard IF
semantics). So, IF logic can be identified with a fragment of CS:

Theorem 4 On finite structures, for any IF sentence ϕ,

M |= ϕ iff M |=CS ϕ ∅.

In the same spirit, a number of different semantics can be defined for IF
sentences depending on what kind of identification is made of the IF formulas
with (a set of) CS formulas. Our favourite interpretation is the following:

Definition 16 Given an IF formula ψ, we call ψCS the CS formula obtained
replacing each quantifier (∃v/V ) occurring in ψ with the quantifier (∃v/V V ∃),
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where V ∃ is the subset of V containing all the existentially quantified vari-
ables15.
Then, for any IF sentence ϕ, define: M |=IFCS

ϕ if M |=CS ϕ
CS .

This makes slash sets forbid communication of both the kinds of infor-
mation that we identified at the beginning of the paper (information about
choices and information about individual strategies).

Definition 17 Given an IF formula ψ, we call ψ0 the CS formula obtained
replacing each quantifier (∃v/V ) occurring in ψ subordinated to existential
quantifications over the variables in Wv with the quantifier (∃v/V Wv).
Then, for any IF sentence ϕ, define: M |=0 ϕ if M |=CS ϕ

0.

This corresponds to forbidding all exchange of information about individual
strategies.

With these conventions, Theorem 3 can be specialized as follows:

Theorem 5 Let ϕ be an IF sentence. Then, for any finite structure M ,

M |=DS ϕ⇒M |=0 ϕ⇒M |=IFCS
ϕ

We must point out the peculiar role played, in relation to the IFCS in-
terpretation, by the fragment IF ∃AR of IF sentences with action recall (for
∃loise). These are the regular16 sentences that correspond to games in which
∃loise never forgets her own moves; that is, sentences in which the slash sets
of existential quantifiers do not contain existentially quantified variables (see
Mann et al. (2011), 6.4). Now, the IFCS interpretation identifies each IF ∃AR
quantifier (∃v/V ) with the CS quantifier (∃v/V ∅), as the translation ϕ 7→ ϕ ∅
did for the whole IF logic; arguments similar to earlier ones show that, for
ϕ ∈ IF ∃AR and on finite structures, M |= ϕ iff M |=IFCS

ϕCS . And IF ∃AR
is a proper extension of FOL; actually, it is as expressive as full IF logic
(Barbero et al. (2017)). Therefore, IFCS is at least as expressive as existential
second-order logic.

And, summarizing the observations above, we have:

Theorem 6 1) Over finite structures, CS is a conservative extension of IF ∃AR
(more precisely, of the image of IF ∃AR under the IFCS translation).
2) FOL < IF ∃AR ≡ IF ≤fin IFCS ≤ CS.

On infinite structures, instead, CS semantics, in its current form, suffers
of the same problems that were pointed out for IFR and IFDS with regards
to example 4; it is itself inadequate for providing a semantics for statements
about infinite structures.

15 In case some variable x from V is quantified more than once above (∃v/V ) (as may
happen in an irregular sentence), we consider it existentially quantified if the quantifier over
x which is closest above (∃v/V ) is existential.
16 The regular sentences of IF logic are those in which variables are not requantified; for

example, ∀x∃xψ is not regular. Sentence ∀xP (x) ∨ ∃xQ(x) instead is regular, because the
two quantifiers over x do not occur in the same branch of the synctactical tree (but it is not
a strongly regular formula, because it contains two quantifiers over the same variable).
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Example 10 It is probably better, at this point, to check that the seman-
tics introduced in the last sections do not falsify the critical sample sentence
∃x(∃y/{x})x = 0 on M = {0M , b}. The individual strategies for each player
are the constant strategy 0 that picks 0M and the constant strategy b that
picks b. In the first round of elimination of weakly dominated strategies, the
strategy b is eliminated from the set of strategies of player ∃x, and a fixed point
of the elimination procedure is reached. Two possible profiles are left: (0, 0)
and (0, b). Since they are both winning, we have M, |=R ∃x(∃y/{x})x = 0 and
M, |=DS ∃x(∃y/{x})x = 0. Since {(0, 0), (0, b)} = {0} × {0, b} is a cartesian
product, we also have that M |=IFCS

∃x(∃y/{x})x = 0. The same argument
also shows that M |=0 ∃x(∃y/{x})x = 0.

10 CS and independence atoms

As was mentioned above, there is some formal analogy between our cartesian
semantics and the Independence logic of Grädel and Väänänen (2013). This
is one of many logics based on teams (sets of assignments with a common
variable domain) that were proposed in the last decade. Team semantics was
introduced in Hodges (1997) in order to give a compositional semantics to
IF logic; since it makes no sense to speak of independence while describing
a single state of affairs, satisfaction of open formulas needs to be defined on
sets of assignments. The semantic clauses for first-order operators are just
very explicit forms of the clauses of Tarskian semantics; but the framework is
sufficiently general to allow defining satisfiability for IF quantifiers. Given a
team X and a structure M , a function F : X →M is said to be V -uniform if
F (s) = F (t) whenever s ∼V t. Then:

M,X |= (∃v/V )ψ ⇔ ∃F : X →M, V -uniform, s.t. M,X[F/v] |= ψ

where X[F/v] is the team {s(F (s)/v)|s ∈ X}.
Similarly, in Independence logic one considers atomic formulas x̄ ⊥z̄ ȳ

(x̄, z̄, ȳ being sequences of variables) with the special meaning

∀s, s′ ∈ X[s(z̄) = s′(z̄)→ ∃s′′ ∈ X(s′′(z̄) = s(z̄)∧s′′(x̄) = s(x̄)∧s′′(ȳ) = s′(ȳ))]

which is a notion of mutual independence which is considered in database
theory. (Here s(z̄) = s′(z̄) stands for the conjunction of the equalities s(zi) =
s′(zi) for each zi ∈ z̄, etc.). One can immediately see a strong formal analogy
between this clause and the semantic clause of CS logic, especially in the case
z̄ = 〈〉 (the empty sequence of variables).

In order to compare these two logics, we need to fix a translation be-
tween Independence formulas and IF formulas. It was suggested in Grädel
and Väänänen (2013) (and it seems to be the most natural choice) to replace
each existential subformula of an IF formula

(∃y/{x̄})ψ(x̄, y, z̄),
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occurring inside the scope of quantifications over variables x̄, z̄, with the In-
dependence formula

∃y(y ⊥z̄ x̄ ∧ ψ).

(An inverse translation is not obvious; first of all, because it is not clear how
to preserve the parameter z̄, and secondly, because slash sets are in a bijection
with quantifications, while the occurrences of independence atoms may be
more numerous than the quantifications).

Using this interpretation we can see that, despite the formal analogies, CS
and Independence logic are radically different systems; Independence logic is
not a logic inhibiting cooperation, as the following example shows.

Example 11 The translation of sentence ∃x(∃y/{x})(x = y) into Independence
logic is ∃x(x ⊥ 〈〉∧∃y(y ⊥ x∧x = y)), where again we denote by 〈〉 the empty
sequence of variables. The satisfaction clause for x ⊥ 〈〉 is trivial, so this
sentence is equivalent to ∃x∃y(y ⊥ x ∧ x = y). An Independence sentence is
said to be true if it is satisfied by team {∅}. Then

M, {∅} |= ∃x∃y(y ⊥ x ∧ x = y)

m

∃C : {∅} →M
(
M, {∅}[C/x] |= ∃y(y ⊥ x ∧ x = y)

)
m

∃C : {∅} →M,∃F : {∅}[C/x]→M
(
M, {∅}[C/x][F/y] |= (y ⊥ x ∧ x = y)

)
m

∃C,F...
(
∀s ∈ X(s(x) = s(y))∧∀s, s′ ∈ X∃s′′ ∈ X(s′′(x) = s(x)∧s′′(y) = s′(y))

)
,

where in the last line X stands for {∅}[C/x][F/y].

Choosing for C any constant c ∈M , and for F the “identity function” s 7→
s(x), we have X = {{〈x, c〉, 〈y, c〉}}, a team containing a single assignment.
One can easily see that X satisfies the two conjuncts in the last formula, so
that M |= ∃x∃y(y ⊥ x ∧ x = y).

The difference between the two logics is that in IFCS we impose the carte-
sian product condition on global strategies, while in Independence logic the
condition is applied only to some specific set of assignments, which is deter-
mined by the form of the team which is constructed (by means of particular
choices) while evaluating compositionally the fomula.
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11 CS, SGS and the rest: some comparative examples

Notice at this point that the system IFCS does not coincide with Subgame
Semantics. Indeed, Hodges’ signalling formula

∀x∃z(∃y/{x})(x = y) (5)

is not true on M = {a, b} according to Subgame Semantics; it is true in IFCS .
Indeed, since this formula does not contain any declaration of independence
between existential quantifiers, its truth condition coincides with the standard
truth condition of IF logic, and (5) is known to be true in IF logic.

Notice, instead, that formula (1) (section 3) is false in IFCS : no strategy
function is weakly dominated, so that the “cartesian product” condition must
be imposed on the whole set of winning strategies. But the only winning choices
(for x and y, respectively) are (a, a) and (b, b); (a, b) is not a winning strategy,
and so the set of winning strategies does not form a cartesian product.

So, we have some evidence that IFCS could be a system which 1. prevents
forbidden coordination of strategies, but at the same time 2. allows signalling.

Is it possible, instead, to particularize CS logic in order to obtain a system
which, in the same fashion of subgame semantics, forbids both signalling and
unwanted cooperation? A good candidate for this role could be the semantics
IF0 which we introduced earlier (although, this may seem to be an exaggerate
solution, since it means forbidding all forms of cooperation, and not only those
which are unwanted).

So, does this semantics really coincide with subgame semantics? A theo-
retical comparison seems to be difficult. We shall look at some enlightening
examples.

Example 12 (IF0 6⊆ IFR, IFR ⊂ IFDS)
Let M = {a1, a2, a3} be a set of three distinct objects. We want to de-

scribe a strategic game of three players ∃x, ∃y,∀z (each of them having three
constant strategies a1, a2, a3). Consider the following table. Rows correspond
to strategies of ∃x, columns to strategies of ∃y. The three numbers in each
cell, from left to right, describe the utility function of the ∃loise players in case
∀belard answers to their pair of strategy functions by choosing a1, a2 or a3

respectively for z.

a1 a2 a3

a1 (0,0,1) (1,1,1) (1,1,1)
a2 (0,0,1) (1,1,1) (1,1,1)
a3 (0,1,1) (0,1,1) (0,1,1)

Now define SM (x, y, z) to be true if and only if the z-th number of the
sequence contained in the box corresponding to row ax and column ay is a
1. Let M = (M,SM ). The IF formula ζ = ∀z(∃x/{z})(∃y/{x, z})S(x, y, z),
evaluated on M, defines the game described in the table.

Looking at the table, we see that there are four uniform strategies for
team ∃loise which survive iterated elimination of weakly dominated strategies:
(a1, a2), (a1, a3), (a2, a2), (a2, a3). For ∀belard, only strategy a1 survives.
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a2 a3

a1 a1: 1 1
a2 1 1

The surviving profiles are all winning for ∃loise, and they form a cartesian
product. So,

M |=0 ∀z(∃x/{z})(∃y/{x, z})S(x, y, z)

M |=DS ∀z(∃x/{z})(∃y/{x, z})S(x, y, z).

But if we perform only one round of elimination of weakly dominated strate-
gies, we obtain (since u∃(a3, a1, a2) = 1 > 0 = u∃(a2, a1, a2)) the table:

a2 a3

a1 a1: 1 1
a2 1 1
a3 0 0

So, there are some profiles, like the triple of strategies (a3, a3, a1) for ∃x, ∃y,∀z,
which are formed by rational strategy functions, but they are a loss for ∃loise.
(We may also state it like this: (a3, a3) is not a winning strategy for ∃loise
team, since it loses against ∀z choosing a1).

So, M 6|=R ∀z(∃x/{z})(∃y/{x, z})S(x, y, z). We may conclude that IFR is
strictly included in IFDS and does not coincide with our minimal logic with
cartesian semantics, IF0 (not even on finite domains).

Example 13 (IFSGS2 6⊆ IFR)
What does Subgame Semantics say about the last sentence? Our first im-

pression was that it should be untrue, as in IFR. But, if you draw the game
tree, you can see that there is one strategy for ∃loise team (“choose a2 for x
and also for y”) which, applied in any node of the second stage of the game,
brings to a winning position, with one exception: node ((z, a1), (x, a3)). But
this node is a losing position – whatever choice ∃loise makes for y at this point
leads to a loss – and so it is not required that the strategy leads to a winning
position from there. Thus M |=SGS2 ∀z(∃x/{z})(∃y/{x, z})S(x, y, z). So, we
see that, even on finite structures, IFR is not the correct game-theoretical
justification of Subgame Semantics, in spite of the similarity pointed out by
Janssen (section 3 of Janssen (2005), section 5 of Janssen (2007)). We may
suspect that IF0 is not, either; the following example will prove this fact.

Example 14 (IF0 6⊆ IFSGS2 , IFCS 6⊆ IFSGS2 , IFDS ⊂fin IFCS, IFDS ⊂fin
IF0) Consider again the sentence ζ of the previous examples, on a structure
M′ with relation SM defined by the following table:

a1 a2 a3

a1 (0,0,1) (1,1,1) (1,1,1)
a2 (0,0,1) (1,1,1) (1,1,1)
a3 (1,1,0) (0,1,1) (0,1,1)
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Here, no individual strategy is weakly dominated. But not all pairs of
strategies of the ∃loise players are winning; so, M′ 6|=DS ζ and M′ 6|=R ζ. But
the set of the winning pairs, (a1, a2), (a1, a3), (a2, a2), (a2, a3), is a cartesian
product; so M′ |=IF0

ζ, and also M′ |=IFCS
ζ.

If instead one looks at each single winning strategy of the ∃loise team, one
can see that the strategy function for ∃y is losing in the history which only
differs in that ∃x chooses a3, and ∀z chooses a1; and none of the corresponding
histories is a losing position. So, M′ 6|=SGS2 ζ.

By example 13 we know that M |=SGS2 ϕ does not imply M |=R ϕ, but a
possibility remains open that, on finite structures, IFR ⊂fin IFSGS2 .

Looking globally at the previous examples, we have the strict inclusions
IFR ⊂ IFDS ⊂fin IF0 ⊂ IFCS (the third of which holds not only because the
examples above, but also because the two semantics disagree about the truth
values of Hodges’ signalling formula).

Comparing these logics with Subgame Semantics seems more difficult; we
do not even know if IFR is contained in it. IF0 (and thus IFCS) might contain
IFSGS2 , but not be equal to it; we cannot instead exclude the coincidence of
IFDS and IFSGS2 on finite structures, which would yield a partial game-
theoretical justification of Subgame Semantics.

It seems difficult to compare these logics with the standard IF semantics,
or with (the expressive power of) first-order logic (we only know that IFSGS2 ≡
FO, and IF ∃AR ≤fin IFCS).

12 Conclusions

We analyzed the few papers in the literature where non-standard semantics
for IF syntax are introduced which falsify (or, more precisely, not-verify)
Janssen’s example (1), and we added a few new proposals (including one
semantics, IFCS , which falsifies the example but preserves some signalling
phenomena). We did not reach a definitive conclusion on which of these frame-
works better grasps the epistemic view of imperfect information; for sure, some
of these semantics have strong counterindications. That is the case of IWD,
whose game-theoretical justification seems ill-founded; of WD, which makes
false even some trivial first-order validity; of IFSSS and IFSGS1 , which give
totally counterintuitive truth values for some sentences. Yet, these last two log-
ics may still have some interest, in that they seem to be able to characterize
some non-elementary classes.

The semantics which survive this selection have been compared; IFCS dif-
fers from all the others because of its tolerance of signalling; some systems
were proved to differ from each other (IF0, IFR and IFSGS2); the differentia-
tion between the last two disproves a conjecture of Janssen, according to which
the notion of rationalizability could be a game-theoretical account of Subgame
Semantics on finite structures. The possibility is left open that IFSGS2 be a
proper fragment of IF0, or at least a proper fragment of IFCS . Furthermore,
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we proved the proper inclusions IFR ⊂ IFDS ⊂fin IF0 ⊂ IFCS (the sec-
ond inclusion being correct only over finite structures). Many question are left
open. One is: how to compare the expressive power of IF0 and IFCS with that
of standard IF logic. The recent proof (Barbero et al. (2017)) of IF ∃AR ≡ Σ1

1

gives a partial answer to this point: IF ≤fin IFCS . Another thing we wonder
about is the status of semantics IFDS . We excluded that it may coincide with
IFSGS2 , but the possibility is left open that it provides a correct justification
for Subgame Semantics over finite structures (while IF0 contains too many
truths). Thirdly, we think that perhaps also the logic CS, which has a more
general syntax, and which was here considered instrumentally for the study of
IF logic, would deserve to be studied on its own. Fourth, we suspect that all
of these systems might be compared more effectively if probabilistic extensions
were developed for them (as it was the case for the standard IF semantics).

We wish to point out that the game-theoretical solution concept which
underlies CS semantics, and which we developed here with logical applications
in mind, might as well be of interest for game theory itself. Indeed, the usual
formal models of (either noncooperative or cooperative) games seems to be
completely inadequate to describe correctly the epistemic relationships among
players in conditions of imperfect recall; this inadequacy seems to amount
to the lack of simple instruments, in the classical model, for the description
of knowledge about strategies. A solution concept like that underlying CS
semantics can be used to account for this missing possibility.

13 A bibliographical note

At the time of the final redaction of this article, we were informed of the
existence of a paper of J. van Benthem (van Benthem (2004)) that predates
the publications described in section 7, and which anticipates the idea of using
elimination of strategies in the evaluation of IF sentences. The influence of
this work on the above-mentioned publications might be confirmed by the
presence of a bibliographical reference, in Sevenster (2007), to an earlier draft
of the book Logic in Games (van Benthem (2014)), in which the arguments of
van Benthem (2004) are briefly reviewed.
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