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On Approximating Contours of the Piecewise
Trilinear Interpolant Using Triangular Rational-
Quadratic Bézier Patches

Bernd Hamann, Member, IEEE, Issac J. Trotts, and Gerald E. Farin

Absiract—Given a three-dimensional (30) amay o lunclion values F;, on a recliinear grid, 1he marching cubes (MC) method i the

mast common Echnigues wsed
describe 1ha consiruction of a
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-continucus sursss sonalsting of rational-quadratic surface pakches imtorpolating 1he tianglas in T

Wa datarming the Bézier conbol paints of a single raional-quadratic surlace paich based on he coordinates of the verficas of the
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Index Terma—Approximation, contour, isosuriace, manching cubes, rational Bazior curve, radicnal Béziar suriaca, Iriangular paich,

iripngulabon, trilinear IMeepelation, viswalization,

1 INTRODUCTION

NE of the most commonly used methods to visualize

and study a scalar fisld Fix, v, z) is based on the ap-
proximation and rendering of a contour (isosurface) F = T.
Usually, the function F is evaluated or given on a rectilinear
grid, and piecewise trilinear interpolation is used to ap-
proximate f inside each cell {cuboid) in the grid. In the fol-
lowing, it is assumed that the function values F,j; are given
at uniformly spaced points x, ,, with integer coordinates,

Le, 2.5 = (i, r‘,j.-]r_ Parametrizing a single cell over the

interval [0, 1] in x=, y=, and z—direction and using a local
indexing scheme, ie., denoting the function values at the

comers of a particular cell by fugge fLoo fas e v fi 100 the tri-
linear interpolant for this cell is given by

flxyz)= fos (A=x)(1-y)(1-2)

+fao *  (1=y)(1=2)
+hao (1-2)y (-2)
+han T ¥ {1—z)
+hei (1=x)(1-¥) z
*hoag = (l-y) sz
+foaa [1—1] (1=v) =
th * ¥ z
o EII,EI. i.ﬂ.;.tﬂf{ﬂﬂ."{ﬂﬂ;{:]e (1)
o
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whaere Erll:_.t}, E::yi,mdﬂl[z} are Bernstein-Bézier polyno-

mials of degree one, see [11] and [22]. An alternative repre-
sentation of (1) is given by

flz,y.2)=

fuid &

- TV~
- 1k~

1 .

E .ﬁ.r.r'r.tly'l:.
=0
1

=3 ¥ Y Ay (2

k=il

5

i A=

where A" is the forward difference operator for triple
indices, e.g., A" fioo = fans & fope = fian = fano and

A fono = fian=fios —fass + fase

The MC method computes the intersections of a contour
with the edges of a cell based on trilinear interpolation, see
[19]. The intersections are then connected to form closed
pelygons whose edges all e on certain faces of the cell. The
polygons are triangulated, thus defining a piecewise linear
approximation to the contour. The original MC method
suffers from the fact that the resulting surface triangula-
tions can contain cracks, i.e., certain edges in the triangula-
tion might not be shared by exactly two triangles. Various
strategies have been proposed lo solve this shortcoming,
see, .., [13] and [21].

The authors are not aware of any research that studies
the exact nature of & contour of (1). This paper discusses the
construction of an approximation of a contour of (1) using
triangular rational-quadratic surface patches. The approxi-
mating rational-quadratic surfaces are represented in trian-
gular rational Bézier form, see [9]. In order to model or
postprocess an a tion of a contour of a trivariate
function, one would prefer a representation in terms of
parametric patches. This is the primary motivation for the
schieme presented in this paper.

The authors are aware of only one reference dealing with
the approximation of a contour by parametric surface

1OT 7 BEIAUTEN0.060 © 1907 |[EEE
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Fig. 1. Palygons obisned by MG mathod using asympiatic decider describead in [21],

patches, This reference is [12], The construction described
in [12] yields patches with three, four, five, and six bound-
ary curves. The topology at vertices is characterized by the
fact that exactly four patch boundary curves meet at a
shared patch comer vertex, L.e., each patch comner vertex
has valence four, Furthermore, not all vertices produced by
an MC algorithm are interpolated by their method. Our
method does not require certain valences for patch comer
vertices, and it interpolates all the points generated by an
MC algorithm. We plan to develop an algorithm that can be
used to reduce the number of triangular patches, based on
the idea of identifying patches in (nearly) planar regions
and eliminating those patches.

2 OUTLINE OF AN MC METHOD BASED ON
RATIONAL-QUADRATIC SURFACES

The fact that the contour of a bilinear interpolant is a hy-
perbola is used for the construction of the edges of the
closed polygons whose vertices lie on the edges of a grid
cell and on a particular contour. In general, one can obtain
closed polygons with three, four, five, six, seven, eight,
nine, or 12 vertices, see [13]. Examples are shown in Fig. 1.

These closed polygons are then triangulated defining &

coarse, piecewise, linear approximation of the contour in-
side the grid cell. The triangulation process itself must
consider various special cases, including certain cases
where additional points on the contour in the interior of
a cell must be added to generate topologically wvalid
triangulations. Again, this is discussed in [21]. In this pa-
per, we propose an alternative approach for the repre-
senitation of a contour approximation inside a grid cell.
This alternative approach uses rational-quadmatic surface
patches.

Trangular quadric surface patches in Bézier representa-
tion are discussed in [2], [3], [16], [17], and [20]. When ap-
proximating a contour of the trilinear interpolant by a ra-
tional-quadratic surface, the construction of the various
triangular rational Bézier patches is rather straightiorward:
The closed polygons defined by points on the edges of a
grid cell are triangulated, and the edges in the resulting
triangulations are used in the construction of patch bound-
ary curves, which completely define a set of triangular
Bézier patches in the interior of the grid cell. These patches
approximate the contour locally, Overall, the patches asso-
clated with a particular cell are constructed by performing
these steps:

Step 1—Triangulnhion. Given the set of all closed polygons
with edges on the faces of a grid cell, these polygons
are triangulated.

Step 2—Boundary curpes on foces, The edges in the triangu-
lations which lie on the faces of a grid cell can be
viewed as linear approximations of hyperbolic arcs;
the exact rational Bézier representation of all these
arcs on the grid cell’s faces are determined,

Step 3—Boundary curves in interior, The edges of the trian-
gulations which lie in the interior of a grid cell are
usged for the construction of patch boundary curves
{conics): First, planes are constructed that will contain
the patch boundary curves; second, conic approxima-
tions in rational Bézier representation of all patch
boundary curves lying in the interior of the grid cell
are determined.

Step 4—Triangular Bézier patches. The conics resulting from
Steps 2 and 3 completely define the analytical ap-
proximation of a contour of the trilinear interpolant
associated with a grid cell; they are used for the defi-
nition of the control nets of trangular rational-
quadratic Bézier patches.

Fig. 2 illustrates these four steps, which are discussed in
detail in Sections 4 and 5. In Section 3, we address issues
related to the general nature of a contour of the trilinear
interpolant.

Fig. 2. Trinngulstion and boundary gurée and palch construction.
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3 THE RaTionalL BILINEAR PATCH AND CONTOURS
OF THE TRILINEAR INTERPOLANT

In [10]. a parametric rational bilinear patch x{n, v} defined
over [0, 1] = [0, 1] i¢ represented as

EI. i“’- by BB (v)

=>4 =
z E ur___.HJIﬂ]H:'I: v}

i={l j={]

i1, i) i3)

Hure, b, , denotes a Bézier control point, and &y denotes its
pssociated weight, The mtional bilinear patch is character-
1red by these facts

1} Any planar section of the rational bilinear patch i a
COTIC

2) The rational bilinear patch is a quadric.

3) The rational bilinear patch is either a hyperbolic
paraboloid or a hyperboloid of one sheet

Using the alternative representation (2) of the trilincar
interpolant (1) and solving for z, the contour x, v, ) = T
can b written as

. i _,llll nga _ .':I.I 08, lﬂlll.l.u:III 5 al I.uw
or )= . :
A

; ., = 4]
T L L

Converting the numerator and denominator in (4] to
Bernstein-Bérier form and uwsing the miles for dividing a
Bemstein-Bérier surface by a (scalar-valued) Bernstein-
Bézier polvnomial of the same degree, see [23]; (4) can be
rewritten in (nonparametric) Bernstein-Bézier form as

EI- Z i, b, .H.II:IIHI![_H]

A{x.v)=-

Eiw: Bl{x)Bly) |

The necessary substitutions ane

L L -'-.i i

=4
T

[ _"|"'II n
l".".l - .'JII

. .ﬂln,:,l,u ¥ I'.".I )

o ATBT _ O

T ALRR _ AL00 _ ,000 _ 4L10
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l:':lll il = '-"'"." ]u

by,

_.III.H n

11 o

|r|_| .

a, _ AR _r&n:-ll
w0y, = A 4 A% and
. o= AR N0 000 ALl

Formally, {5) is a special, nonparametric case of (3). The
wedghts in this representation can be negative. This causes
problems for the evaluation (poles), eg., the Bézier ordi-
nates and weights implied by the eight comer data fi,; =

Fig. 3. The four components of the cubk surface detined oy comour | =
065 faga= o= foi=hp=0mndfgn=kog=fhoy=hig=1

Fiwn = figa = fora = o =S =fua =faa =L and T =
055 are '!I'-.'.I:' = h|_: = IJEE, |!'||_|'| = h:'.;- = IJ-l:Tl, = fth) = I_. and
fty g = iy = —1. This particular example i8 rendered in Fig. 3
Rewriting (5] in parametric form yields

||I H

1 1 "
T W, ) | EE itk I,JPIIIEII[j.-]H (o)
b i IH“':'I} = | 0
zin. o)

Y ¥ o BBl

E ilﬂ_‘ln]ﬂ:iiﬂl

Feell fefl

Ei B, ()8 (v

i IE el lb: .IH.-I["']E.['L"|

all )il
I

> % o, BB (v) |

j=ll il

i)

which i3 nof a parameiric rational bilinear patch of the form
defined by (3). Due to the fact that (1} confains the cubic
term f 4 X v 2, the contour = T is a cubic surface and, using
rational-quadratic surface patches, we can only approxinute
the confour

In the following, we deseribe the construction of a con-
tour approximation inside a grid cell by means of triangular
rational-quadratic Bézter patches. An in-depth discussion
of conic sections, guadric surfaces, their relation to projec-
tive geometry, and a bibliography regarding these topics
can be found in H]
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Fig. 4. Trinngulation of slx-sided polygon.

4 CONSTRUCTION OF THE TRIANGULAR PATCHES
APPROXIMATING THE CONTOUR

According to the sequence of Steps 1-4 described in Sec-
tion 2, all closed polygons with edges on the faces of a
grid cell must be triangulated. This paper is not concerned
with the construction of “good trangulations™ for such
polygons. For the purposes of this paper, it is sufficient to
use a very simple triangulation strategy: Denoting the
{ordered) vertices of a closed polygon by . vy vy,
vy N & {3,4,56,7,8,9,12}, one possible triangulation is
defined by the vertex triples {v, vy, v} (v vy.v.}
{vp v ¥g}ion, and {w,, ¥y, vy} Using this triangulation
strategy, all triangles—associated with this particular poly-
gon—have the same orientation. An example is shown in
Fig. 4.

IE!:l']-u-: triangulation strategy has an influence on the final
contour approximation, We have nob yet investigabed
which triangulation strategy produces “best” final ap-
proximations. Various criteria regarding the quality of
triangulations in the plane are discussed in [24]. Most of
these criteria can easily be generalized for surface trian-
gulations in three dimensions. A quality criterion that
seema appropriate for our application could relate trian-
gulation quality to the variation of the normals of all pairs
of triangles sharing a common edge, see [5]. Several
methods are known o improve triangulations—by per-
forming local optimization procedures. A commaonly used
miethod 12 described i [18]: the method 5 based on
swapping diagonals of quadrilaterals (defined by pairs of
neighboring triangles sharing a common edge) until one
can no longer improve a certain triangulation quality
measure.

4,1 Patch Boundary Curve Construction on a Face
of a Grid Cell

Only the edges v,v,, v,v,, vy, ..., and v v, lie on the
faces of the grid cell. All the other edges lie in the interior of
the cell. For each edge v,v, lying on a cell face, we deter-

mine the rational Bérier representation of the hyperbolic
arc passing through v, and v, and lying in the plane de-

Fig. 5. Construclion of Bézar pairl b, and f8 weight oy far hyperbalic
arg an call's taca

fined by the cell’s face, see [21]. In the following, we repre-
sent a conic section ¢(f), 4 @ [0, 1], in standard form, Le.,

b B{t) 4 b RT(H) + bR (2)
B+ o, Br (1) + By (1)

{7

elt) =

see [10], [11].
The Bézier points and their associated weights are com-
puted in a straightforward manner. First, we define

by, =v,by =v, and a = @ = 1. Second, we compute the
middle Bézier point b, as the intersection point of the lines
passing through v, and v, whose directions are defined by
the (normalized) tangent vectors ; (at ) and v, {at ;). The
vectors & and £, on the other hand, are defined by the nor-

mals of the hyperbola at v and v;, The normals are given by
the gradient of the bilinesr interpolant implied by the func-
tion values at the comers of the face. Denoting the mid
point of the edge v v, by m, the line bm intersects the hy-

perbolic arc in the shoulder point s=(1 - iy + ym, 0s s 1
Thus, the weight for b, is given by the ratio

e (5)

see [10], [11] for a derivation of (B). The shoulder point 5
is computed by inserting the parametric line equation
(1 = #ib; + ym into the implicit representation of the hy-
perbola on the particular face. Special cases that can arise
are discussed in Section 5 of this paper. This construchion
assumes that the hyperbolic arc is parametrized over the
interval [0; 1. Fig. 5 illustrates the construction

REMARK 4.1. The notation. ww, implies that this line seg-

ment has a direction: It starts at v, and ends at v,

The angles between t, and v, = v, and between t; and
v =v, must not exceed 90 dégrees. If these condi-

tions are violated, the signis) of the tangent vector(s)
{5 (are) wverted, Possible directions for tamgent wvec-
towrs are ahown in FIH. i
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Fig. A. Possible langant veciors at end poinks of directed lino segment
v,

4.2 Patch Boundary Curve Construction in the
Interlor of a Grid Cell

A more complicated construction is necessary for the com-
putation of the middle Bézier points of the condc sections
associated with edges in the triangulation that lie in the
interior of a grid cell. The construction described in the fol-
lowing utilizes principles that are similar to ideas discussed
in [15], |16], and [17]. Each edge in a cell's interior is shared
by exactly two triangles. Denoting the unit {outward) nor-
mal vectors of the bwo triangles sharing an interior edgt:

v,¥, by ny and ny, their average, +{n, +n,), is used to de-

fine a plane P that contains v; and v; and has a normal that
is perpendicular to 1(n, +n,). Fig. 7 illustrates the con

struction of the plane F and the middle Bézier point b, used
to define an approximating conic section associated with an
edge in the cell’s interior.

Once the plane P is determined, the principle used to
compute the middle Bézier point by of the conic section
lying in this plane—approximating the contour of the tri-
linear interpolant in this plane—differs from the principle
used to define the hyperbolic arcs on the cell’s faces. The
location of the middle Bézier point is still determined by the
intersection of bwo tangenis pa.-'.s.j.ﬁ.g ﬂ'l.'l‘l_‘lLl.Eh v and ¥ bk
the computation of the two tangent vectors and the defini-
hon of the weight of the middle Bézier point are different.

The two tangent vectors are computed as follows: Con-
sidering the fact that the gradient of the trilinear interpolant
is perpendicular to the contour, we compute the intersec-
tions between P and the two tangent planes (defined by the
gradient) of the contour passing through v, and v; the in-
tersections are two lines |; and |; which are used to define
the tangent vectors (lying in F) at w; and v, We can now
compulte the location of the middle Bézier point by inter-
secting |, and 1 in P.

Due to the fact that, in general, the plane P is not paralle
to any of the cell’s faces, one can only determine an ap-
proximating boundary curve tn P. The plane P defines a
planar section of the contour, Considering this planar sec-
tion only, we choose the middle weight according to the
following principle: Denoting the exact curvatures at v, and
v, by & and &, the weight for the middle Bézier point is
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Fig. 7. Construction of plana P and Béziar paint b, for conic section In
Imtenar of ghd call.

chosen such that the approximating conic’s curvatures at
the end paints v, and v; closely approximate the exact ones
The absolute curvatures of the conic section at its two end
paints, corresponding to the parameter values | = Oand ¢ = 1,
are givien by

k() = ——— and x{l) =

- ()
Lr:;

whare A is the area of the triangle with vertices by, by, and
by ay is the weight of by, and [; is the Euclidean distance
between b, and by, See [10] for a derivation of (9). Solving
the l'wu nq-n.ml.-i:m-a in {¥) for &y, one obtains the bwo ex-

pressl
{ '{DHJ@L and ||' I| | l:]fl||'3

The exact curvatures at the end points v; and v, a5 im-
plied by the contour f= T res-h'lctrd to the plane P, are de-
noted by x and &, respectively, Their computation is de-
scribed in the Appendix. The signs of & and & can, in prin-
ciple, be positive or negative. In the following, we view the
conic section to be constructed as a convex curve with posi-
Hive curvatures at its end points. Therefore, we assume that
the curve implied by the end points v; and v, and the asso-
ciated tangent vectors ¢ and L is convex, too. If this is not
the case, we have to use the subdivision scheme for non-
convex data that is discussed in Section 5, Using a [eest
syuares approximation approach, we define the weight ay of
by as

‘"l n1

{10}

fip, = : J H_ + ¢ (11)
Vi l‘llr;.l |'f,|| I!J.z
[t must be made clear again that the conic section assoc-

ated with an interior edge is only an approximation of the
intersection of the contour with the plane containing the



Fig. 8. Triengular Bézier condnol nats associated wilh four-sided pokygon.

canic, If one wants an exact representation of this boundary
curve, one must use higher-degree rational curves, There-
fore, one also has to use higher-degree triangular rational
patches. Our scheme will lead to tangent plane disconti-
nuities along shared patch boundary curves that lie on cell
faces, even if one uses higher-degree rational curves in the
interior of a particular cell. Therefore, we have chosen to
use rational-quadratic patches everywhere and not to use
higher-degree patches. We want to investigate this issue
further in the future.

At this point, we have computed the rational Bézier rep-
resentation of all conic sections associated with the edges in
the triangulation of a closed polygon. These conic sections
completely determine the tfangular rational Bézier patches
whose union approximates that part of a contowr of the
trilinear interpolant that is clipped against the faces of a

particular grid cell. An example of the resulting patch con- .

trol nets is shown in Fig, 8 for a four-sided polygon.

5 SPECIAL CASES

There are several special, degenerate cases that must be
considered. They are discussed in this section. Cases 1-6
address problems related to the actual degree of the trilin-
ear interpolant.

Case 1—Constant function on face. The four function values
at the comers of a cell's face are equal. If the values
equal T, the cell face is represented by two planar tri-
angular rational-quadratic Bézier patches.

Case 2—Constant function. All eight function values at the
comners of a cell are equal. If the values equal T, the
gix faces of the cell are represented by 12 planar trian-
gular rational-quadratic Bézier patches.

Case 3—Linear function on face. The four function values at
the comners of a cell’s face imply & function that varies
linearly on the face, If the contour f = T intersects the
face in two different points along two of its four
edges, the resulting line segment is represented as a
comic,

Case 4—Linear function. The eight function values at the cell
comers imply a function that is linear in 1, y, and z. If

IEEE TRANSACTIONS 0N VESUALZATIO AND COMPLUTER GRAPHICS, WOL 3, MO, 3, JULY-SEPTEMBER 1897

the contour f = T of this linear function intersects
edges of the grid cell, the resulting closed (planar)
polygon is triangulated, and each triangle is repre-
sented as a (planar) triangular rational-quadratic
Bézier patch.

Case 5—Confour coincides with asymploles on face. The asymp-
totes of a contour of the bilinear interpolant fix, y) =

El‘_qu o A'x'y! are the two (orthogonal) lines

ﬂﬂ.'l ﬁ:l.ﬂ
. _;:'.:Ilu-EFrand _t,rm=—ELT, (12)

A" # 0, see [21]. On a face of a grid cell the hyper-
balic arcs degenerate to these lines whenever the
contour value T equals the value of the bilinear inter-
polant on these two lines (the bilinear interpolant is
constant on this pair of orthogonal lines). In this case,
fwo line segments are used as boundary curves for the
triangular rational-quadratic Bézier patches to be con-
structed. Thehvuh:maegmenmnred:ﬁ:mihy&m
lines x =x_ and y = ¥y

Case 6—Conlour coincides with .nsympmrs. The asymptotes
of a contour of the trilinear interpolant (2) are the

three (mutually orthogonal) planes

AR Ao 1,10
S PEnE Yoy =~ ALLT and z,,, =- A (13)

A # 0. A contour degenerates to these planes when
the value of T equals the value of the trilinear inter-
polant in these planes. In general, the trilinear inter-
polant vares linearly in these three plim':s.. which can
be verified by inserting x sy NMO (2). If
a contour degenerates mﬁm plinﬂ-.. we use planar
triangular rational-quadratic Bézier patches as repre-
sentation,

Cases 79 are related to the boundary curve construction
described in Section 4. They deal with non-convex and &
cure for “oversh “ ‘boundary curves, i.e., boundary
curves that deviate significantly from a straight line.

Case 7—Nonconvex boundary curve. An interior edge ?vj in

the triangulation of a closed polygon subdivides the
plane P containing the conic into two half
spaces: One half space lies to the left of the directed

||.1‘u:.~-d-u:'ﬂru.:':lI:|3|.r1||rJ . and the other half space lies to the
right of this line. Arnm:rnm boundary curve is im-
plied by the data when the two tangent vectors | and §
point into the same half space. In this case, the bound-
ary curve will be represented by two conic sections.
First, we reflect the tangent vectors t, and t; with
respect to the axis passing through v, and v, denoting
the reflected vectors by t and t;. Next, we compute
the intersection points i) between the lines v, + st; and
'H',+H;T and i between the lines v, + ut] and v, + ot
We define the middle Bézier points of the two conic
sections as iy and i, respectively, and use the average
of the two intersection points as break point of the



Fig. B. Constnictian ol nonconyes boundany CUrve.

two conic sections. This construction also works for
parallel end tangent vectors, ie, ;= = t, as long as

they are not both perpendicular or parallel to (v, - v)).
Crther solutions to this problem are described in [15]
and [16]. The construction is illustrated in Fig. 9.

The weights of the two middle Bézier points of the
twio conic sections are determined as follows: Know-
ing the exact curvatures & at v; and & at v, (see Sec-
tion 4), one computes the middle weight of the first
conic (passing through v) by requiring that it must
interpolate & at v, and the middle weight of the sec-
ond conic {passing through v) by requiring that it
must interpolate & at v;. Since the break point of the
twar sections is, in general, not a point on the contour,
we do not care about the implied curvature at the
break point of the two sections,

Whenever a nonconvex boundary curve is split in
this tashion, one must also split the triangular patch
into multiple triangular patches. One must consider
three cases:

1) One boundary curve is nonconvex and is split into
twin conle sections;

21 Two boundary curves are nonconvex and are each
split into two conic sections; and

3) All three boundary curves are nonconvex and are
each split into two conic sections.

We will consider only Cage 1) in more detail. The
other two cases require similar treatments. Assuming
that the only nonconvex boundary curve ks assoclated

with the edge v,v , the original triangle with vertices
v, v, and v; is split into two subtriangles. Denoting
the break point of the one boundary curve consisting

of two conic sections by m, an interior patch bound-
ary curve (also a conic section) is constructed in the

plane P that contains the two points v, and m and is
perpendicular to the triangle passing through v, v,
and v The normal of the interior patch boundary
curve at v, is defined by projecting the original nor-
mal n; into the plane P. We define the first and last

Bézier points of this curve as v; and m and the middle
Bézier point as
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Fig. 10. Construction of interier petch boundasy curve

1 jm-v, (14

B TE s

where & is the tangent vector of the curve in P at v,
This means that the perpendicular projection of the
middle Bézier point onto the line v,m is the midpoint
of ik "Overshooting™ can be controlled by using the
scheme described under Case 9 (see below). If k
forms & right angle with (m-v, ), we define the
middle Bézier point as v, + 4fm - v Jt,. The given
(precompulted) curvabure value at vy defines the
weight for the middle Bézier point. Fig, 10 illustrates
this constroction.

Cases I) and 3) require the generation of three and
four triangular patches. Assuming that the two trian-
gle edges rvl and TI_v, both imply nonconves
boundary curves, we construct a first interior patch
boundary curve for the edge vm,, (see previous

paragraph) and a second one for the edge m m. .

Here, my; denotes the break point of a curve consist-
ing of two conle sections passing through v and v,
respectively. We choose the line segment m, m , as
the second interior patch boundary curve. Regarding
Case 3), we chonse the three interior patch boundary
curves to be the line segments m; m, . m_m, . and
m, which leads to a planar triangular patch "in
thi center.”

REmaRk 5.1. A boundary curve degenerates to a straight

line whenever t, or §; has the same direction as (v;— ).

Remamnk 5.2, It is also possible to use degrer-elevaled conics,

i, rational cubic curves, as boundary curves of the
triangular patches. The concept allows to handle non-
convex boundary curves more easily, see [15]. We do
not use this concept here since
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Fig, 11, Avoiding undesired "overshooting” of {a) corvex: curve nd (b} nanconwex curve, using spilling.

1) the number of control points per patch would in-
crease from gix to 10 and

2) the computation of the center Bézier point by of
each triangular patch would cause additional
problams,

REMARK 5.3. The construction of the interior patch curves
resulting from subdivision and emanating from (or
ending at) one of the break points m;, my;, or my; en-
sures that patch subdivision terminates. Interior patch
curves are are either convex curves or line segments
that do not require further splitting,

REMark 5.4. When applying the patch subdivision process,
one obtains convex boundary curves (including line
segrments) only, being the shared boundary curves of
the resulting subpatches. Thus, the process terminates
after one level of subdivision.

Case 8—Horizonfal tengemfs. If both end tangent vectors t
and ¢, are {positive) multiples of (v;— v;), the boundary
curve becomes a straight line segment with control
points v, -_‘Hvl +1r|,]| cand v,

Case 9—Avoiding “overshooting”™ boundary curves. Following
the boundary curve construction as described abowve
can lead to curves that highly “overshoot” for certain
tangent conditions at the end peints, for convex and
non-convex boundary curves. Por example, whenever
the two vectors § and t; are nearly perpendicular to
(v; = v—but not parallel to each other—the resulting
conic section(s) will deviate very much from the line
segment v,v,.

The degres of “overshooting” can be controlled by
restricting the locus of a boundary curve by forcing
it to lie inside the square region R with the four
COTmer puint!- € =¥, —J:-hr;rr.q =W = -i-h-;lj,du =
?f—-éh:'“,. and d; = v, -—-é-h'::j, where [= | [v=wl ]
and ""'E,i is a unit vector that is normal to (v, — w;). Usu-
afly, one would like to avodd

1) overshooting convex patch boundary curves;
2) overshooting nonconvex patch boundary curves; and
¥) overshooting interior patch curves resulting from
94 Aveiding Cvershooting Convex Patch Boundary
Curpes
Whenever the default construction of a convex
boundary curve leads to a conic section partially lying
outside the region R, the curve will be represented by
two curve segments that both lie inside K. To test
whether a conic section lies outside R we simply test
whether its shoulder point lies outside, see [10].
Denoting the control points of a conic section that
partially lies outside R by by by, and b, we compule
the intersection points i; between the line segment
b,b, and the boundary of R and i, between the line
segment b,b, and the boundary of R. We define the
Bézier control points of the first segment as by, i, and
1(i, +i,) and the ones of the second segment as

$i, +1,), iz, and by. The weights of the middle Bézier
points of a segment are chosen such that the curva-
tures at end points that are also comers of the patch
are interpolated. Fig. 11a illustrates this scheme.

98 Apoiding Overshooting Noncomvex Patch
Boundary Curves

We describe a construction for a nonconvex boundary

curve that will be represented by two conic segments

which both lie entirely inside R. Using a tuple nota-

tion to indicate the ordered vertices of a polygon, we

uge the intersection of the polygon (c;.5{c, +d;)

1{c, +d,).¢)) and the tangent passing through v; as
middle Bézier point of the first segment. We construct
the middle Bézier point of the second segment analo-
gously, We use the intersection of the line passing
through v; and v; and the line passing through the
two middle Bézier points as break point of the two
segments, Fig, 11b illustrates this case.
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9C Aveiding Overshooting Interior Patch Curves

We assume that one needs to interpolate a tangent
vector at only one of the two end paints. Furthermore,
we assume that the tangent vector to be interpolated
is t;, associated with the end point v; (3 vertex in the
initial, triangular contour approximation), and that
the other end point is m;. We represent the interior
patch curve by one conic segment. Its Bézier points
are by = v; and by = myy, and the construction of b, is
the same as the one described under b).

In the implementation, Cases 1-8 must be dealt with.
Case 9 can be used as an option. We recommend to al-
ways use the methods described under Case 9 to avoid
“overshooting™ boundary curves and patches. Furthermaore,
one must take numerical instabilities into account in order
to identify any of these cases,

6 REMARKS REGARDING AN EXACT
REPRESENTATION

More research is needed for the determination of boundary
planes for conics which are generated inside a cube. In or-
der for a rational quadratic trangular patch to be a quadric,
the patch must pass through the intersection of the three
boundary planes, see [2]. Thus, it might be useful to ar-
range the boundary planes (which are currently formed as
averages) in a fashion such that the quadric condition is
met, An alternative would be to elevate the degree of all
patches to four, since those allow for the represen-
tation of quadrics with arbitrary boundary curves.

It is clear from (1) and (2) that a contour of the trilinear
interpolant is a cubic surface due to the existence of the cu-
bic term xyz. In the previous sections, we have described an
approximation of a contour in terms of trfangular rational-
quadratic Bézier patches. Without adaptive subdivision, the
errors In this approximation can become very large. Con-
sider the contours ryz = ¢, and let ¢ take on small values,
The implicit cubic comes arbitrarily close to the origin,
while our approximating rational-quadratic patches will
approach the paint p = {-}.-},-HT as the closest point to the
origin. This is illustrated in Fig, 12: The Bézier control poly-
hedron (broken lines), the patch boundary curves (solid
curves), and the point p are shown. Thus, in this case, the
Enuriﬁﬂnmrﬂhelmﬂlm-}ﬁrmﬂ it can only be low-
ered using subdivision.

One can obtain the exact implicit representation of a
boundary curve of a trangular patch by inserting the
parametric plane equation of a plane P containing the
boundary curve into (1) or (2). Representing a point x in P
as x(u, v) = x5 + ud; + pdy, where x; is a point in P and d,
and d; are two basis vectors in P, and inserting x({u, ©) into
{1) or (2}, one obtains an implicit cubic boundary curve
representation. The ten cubic terms appearing in this
representation are wv, i, j 2 0, § + | £ 3. Thus, one can
compute the exact implicit tations of the three
boundary curves of a triangular patch. Furthermore, one
can use well-known implicit Bézier tations for
these cubic curves by constructing stencils of 10 Bézier or-
dinates in each boundary curve plana, see [1], [8]. and [25].

Fiig. 12. Conbour approximetion of xyz=c; & v e [, 1], o= 0001,

The values of the Bézier ordinates in this representation
are defined by the gradient and the Hessian (see Appendix)
of the known trilinear interpolant at the endpoints of each
cubic curve.

Thus, one could construct an implicit representation of
all triangular patches. Each triangular patch would be the
contour of a cubic polynomial in Bernstein-Bézier form de-
fined over a tetrahedron, using baryeentric coordinates. It is
beyond the scope of this paper to explore such a construc-
tion in detail.

7 APPLYING THE METHOD TO A RECTILINEAR GRID

Considering a rectilinear grid consisting of multiple cells,
one could naively apply the construction described in the
previous sections to each cell, Unfortunately, the union of
all resulting triangular patches would be a discontinuous
surface. The reason for this is the fact that the piecewise
trilinear approximation of the given function values F,; is
only " continuous, which means that gradients and Hes-
sians are discontinuous on cell faces. In order to generate a
contour approximation that i an overall C-confinuous
surface, we must have unique gradient and Hessian values
for each vertex v in the initial, rangular contour approxi-
mation resulting from the marching cubes method. We ob-
tain unigue gradient and Hessian values for a particular
point p by averaging the different gradients and Hessians
associated with the cells sharing the edge containing p.

B8 EXAMPLES

The examples shown in Figs. 13-18 were obtained by ap-
plying the contour approximation technique to analytically
defined functions and computerized axial tomography
{CAT) data. The analytical functions used for the genera-
tion of Figs. 13-15 were evaluated on a uniform rectilinear
grid using the same number of x, y, and z values in all three
coordinate directions. The CAT data used for the genera-
tion of Figs. 16-18 were provided as stacks of slices, each
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Fig. 13, Triangular approximation, ratonal-guadmiic appraximation
and exacl contour al Irinear functon defined by the hnction values
hap=0 has=0 bao=t hap=05 fhor="1 5o =086 b=
0, and fy 4 y = 0; conlow value: 0.3333; resolution: 2 = 2 x 2 grid points

Fig 14. Tdangular approximation, ralicnal-quadrelic spprocematan,
pnd axact condour of trlirear funclion defined by 1he funclion values
.'i:"..d' 02 -r'._IJj - D.B. r:_|-|r| = il |l|_||: = 0.0, I;:u } - 0.8, |I|_|:._| = 1.2
b g = 01, and k& 4 ¢ = 0.9; contour vale; § 4804; resolilion: 2 = d = &
grid points

alice I-"'-"-”:'_-'| discretized |_1!.' a uniform rectilinear grid and the
spacing in axial direction being uniform.

Figs. 13-15 show the initial trlangular approximations
|_|_|||]'u_-|:'-]|_'-|:|: parts, wire frame renderings, and lI'FI.EIl.'r'I'IF.]'I“
paris, flat-shaded ]‘l.‘l'li‘ll.'r1r'-|_‘,'~1:l_ Eha plecewise rational-
gquadratic approximations (lower-left parts, flat-shaded
renderings), and the exact contours (lower-right parts

Fig. 15. Triengular approcimation, rafional-guadratic appraxETaia,
ard exacl contour of Kx, v, 2 = 001 {(8-0.5) - (¥ - 05] +{z-05]

contouwt value: 0.2; resalution; § = & = & grd points

thiz
flat-shaded
renderings) and the plecewise rational-quadratic approxi-
mations (right parts, Gouraud-shaded renderings). For
F'P"' 13-17, the initial tr..:.":l._"l_ll.lr aApproximations were o
T;|i-|1|_-|_|_ 'I:}- |,'.;||:'|;'|_|_*\-|_|_|:l_|1|:I r\-r-';rl.h- on Bhe Contours .I|-:l|.'.|.‘. the ed BES
of the grid cells, connecting these points, and triangulating
tHhie -r.-u||||;||;-.i;-_ closed F\u_':!'., EOnS [he initial trangular ap-
proximation of the skull shown in Fig. 18 consists of

Gouraud-shaded renderings) 16-18 only show

Figs

initial tmangular approXimations {left parts

|||1|'_;' B.277 lriangles that were obtaimed by -I'r'F'|"-'-'|'I|-‘I the
data reduction scheme described in | I=| tes thie initial trian-
gular approximation of the skull shown in Fig- 17

[he piecewise rational-quadratic approximations were
obtained by applying the approximation scheme described
in this paper to the initial trangular approximations. Each
|'i|ti'|."|."||1|.-l.'El.I|'|I,‘|ril|I| |:'h|l|.]'| was discretized by 1I'i-'l1'l;|.',|l'.*h. which
were flatshaded, The rl.'r'.nil.':'.l'u'r‘;- of the exact conbbirs.
shown in Figs. 13-15 only, were obtained by using a high-
resolution uniform rectilinear grid for the discrebizahons ouf
thie L|.|1-._‘||:r|1_.'||'||;, knoawn functions f[x, w. =), X W, = @ i'.l. ||.
,||,'|-F|]'.;i|1_._= the MC method described in [21], and LIS,
Gouraud-shading for rendering,

9 CONCLUSIONS

We have described a method for the approximation of a
contour of the brlinear i|'||1||‘.l'.|'-"-| by I-'.\r1!_'_|||.|| rational-
quadratic Bézier patches. Each patch i= a rational-quadratic
surface thal |I‘-t.'.l|.|:.' approximaltes the confour

Future research will address the reduction of Ehe num-
ber of I;q'i.'l.rll;lij'l.sr '|I.J||.||.1.':"\- resulting from this method and
using the h’li\r'.FllI..ﬂ 51..1|.|.||-r.':- for interactve modeling ..'||.'l|.'l||-
cations, inchuding |"-:l|.L'I'I.|.i..'| degres raising and subdivision
schemes for defining approximations with higher-order
continuity, Another interesting aspect to be investigated is
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Fig. 18 Triangular aporoximation and rational-quadrabe approximation of hip; friangular approomation consisting al 25,258 tianglas

Fig. 17. Triangular epproximation and rational-quadralic approximaiion of skoull; trinngular approcdmation conslsiing of 52,731 imangas

Fig. 16. Reduced inangular approximation of skull &nd mSional-quadratio approximation; rangular approssmation conssting of 5,277 nangles

the automatic movement of the Bézier control points of the
trianzular mtional-quadratic patches in order to decrease
tamgent plane discontinuities along patch boundaries

APPENDIX

The normal carvature at a poinl x =[x, ¥, =) onoa combour of
the trilinear interpolant 1s computed basged on a lemma in

6], [7]

LEnpds, Lot Ax] = __I'-!'L'. ¥, I) = T be w cowbouer, 0§ 18 0 wned lan-
gent pechor of the comtour at x, then the normun] euroadure

af the covetonr i He aerechon of 1S

' Ht

—a (15)
%Al

kit

uiere



Vf = [%%%] (16)

is the gradient of fat x, [Vf]| is the gradient's length, and
A
4 S
TR
ts the Hessian matrix of fat x.

PROOE. See [6], [7]. o

Computing the Hessian of the trilinear interpolant (1)
yields

(17)

0 ﬁ]"'u +.|'f'l"2 ﬁi.‘ﬂ.i + ‘!,.-ELM!,

H = ﬂt'l.l.l} +a|.1alz &nalli +|ﬂ.LL1-I p {IB:I
d.l'u'l +ﬂ|.|"':'1'!||' .ﬂ.{"j'l +‘1!I,I.I.x o

This lemma and Meusnier's Theorem, see [10], are used
to compute the exact curvatures at v; and v; of the patch
boundary curve that passes through these points and lies
on the associated contour of the trilinear interpolant and
in the plane P. In general, the plane P, used for the con-
struction of patch boundary curves in the interior of a cell,
does not define normal sections at v; and v; since P does
not necessarily contain the gradients of the trilinear inter-
polant at these two points. According to Meusnier’s Theorem,
the curvatures of planar sections at these two points are the
same as long as the tangent directions considered are the
same. Thus, the plane P does not have to define a normal
section.

For our purposes, we compute the exact curvatures.at v,
in the direction of t; and at v; in the direction of t;. The di-
rections are defined by the plfane P. We refer the interested
reader to the differential geometry literature for more detail
on the geometrical principles we are utilizing in our con-
gtructions.
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