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Anal. Chern. 1996, 68, 763-770

Geoffrey Jones,t Monika Wortberg,* Sabine B. Kreissig,§ Bruce D. Hammock,* and David M. Rocke*,t

Graduate School of Management and Depaltments of Entomology and Environmental Toxicology, University of Califomia,
Davis. California 95616, and Depaltment of Experimental Therapy (0425), German Cancer Research Center,
1m Neuenheimer Feld 280, 69120 Heidelberg, Germany

In calibration experiments, a number of samples of known
concentration are used to establish the relationship
between a measured response and sample concentration;
this relationship is then used to estimate the unknown
concentration of further samples from their measured
responses. In addition to the estimates themselves, it is
useful to have available some measure of their precision,
usually given in the form of confidence limits. The
standard method of inverting prediction limits is found
to work well in simple situations, but in nonlinear mul-
tivariate cah'bration it becomes intractable. The bootstrap
offers an alternative methodology, but in the cah'bration
framework its application is not obvious. We describe
some considerations in bootstrapping calibration data and
compare our methods with a ~revious attempt and with
the standard method in linear, nonlinear, and multivariate
situations. The bootstrap is found to be a useful tool in
those situations where the ~dard method is difficuh
to implement. ~-- ~~ ---

y = f(9,x) (3)

where iJ is the regression estimate of the parameters. If we now
have the response Yo from an additional sample with unknown
concentration .to, we can invert the calibrntion eq 3 to get an
estimate to for.to. In the case of the simple linear model (eq 2).
we get

.to = (Yo -a)/b (4)

Here we consider an assay method that delivers a response Y
dependent upon the sample concentration x. Experimental error
implies that Yis random, but we assume that its relationship to x
has the form

Y=/(9,x) + E (1)

where lis a function, assumed known, descn"bing dte relationship,

(J is a vector of unknown parameters, and ~ is an error temI, which

might be assumed to follow some known distribution. For

example, in the simple linear case we might have

Y=a+bx+~ (2)

where a and b are the unknown intercept and slope parameters
and E follows a nonna! distribution with constant variance and
zero mean.

In calibration, we first take n observations (xi,¥;), where the Xi
are known "standard" concentrations prechosen to cover the
required range of the assay. These standards are used to produce
a calibration curve by estimating the parameter () in eq 1, using
some fonn of regression technique. Thus, the equation of the
calibration curve is

In practice, it is usual to have a small number of replicates of the

unknov.11, }ielding responses YOI...Yo., where rdenotes the number
of replica.tes. In this case, an appropriate mean value can be used.

The standard method of producing a confidence interval is

attributed to Fieller.l The regression procedure that produces

the calibration curve can also be used to calculate sO<aIled

~ction limits"; for any concentration .1', we get an interval
YLYU Sti"cli iliat, ifi'mtl1re response Y is meaS\ired on a sample

with concentration.1', the probability that Y will be in this interval

has a specified value (usually ~ or 95%). In a cahoration setting,

the prediction limits can be inverted to give a confidence

inteJVal: given the reponse JrJ. the ~ confidence interval is those

values of.r whose ~ prediction interval contains Yo- The situation

is illustrated graphically in Figure la.

Bonate2 investigated the use of the bootstrap for producing

confidence intervals in linear cahoration. He found that his

bootstrap intervals failed to achieve the desired coverage, par-

ticularly for smaIl numbers of replicates, so that intervals which

should have contained the true concentration ~ of the time only

did so in fact about 40% of the time. By improving his method,

we obtain bootstrap confidence intervals with much better cover-

age, even for small numbers of replicates. The methodology can

be applied fairly easily, even in complex nonlinear and multivariate.

situations, where the standard method becomes extremely difficult

to work with. Examples of such systems include nonlinear

receptors and bioassays as well as irnmunoassays. We are

especially interested in applying this method to irnmunoassays,

particularly in multivariate analysis.

The bootstrap examines the variability of an estimate by using

the existing data, together with some assumptions about how it

was generated, to produce new, but plausible, "pseudo data sets".

Estimates can be obtained for each of the pseudo data sets and

the resulting values examined to derive approximations to the

(1) Fiener. E. C.J. R. Stat. Soc., SeT B 1954.16.175-185.
(2) Bonate. P. L.AIIDI. C/lem. 1993.65.1367-1372.

.Gr3duate School of Management, University of California.
, Departments of Entomology and Environmental Toxicology, University of

California.
~ Gem1an Cancer Rese~h Center.
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replication and lack-{)f-fit may also arise, and these too are
discussed and illustrated in the simulations and examples.

FIrSt, we follow Bonate in examining the linear model with
constant coefficient of variation. We compare our intervals with
Bonate's and with the standard method using simulation, extend-
ing Bonate's framework to include nonnormal errors in the
reponse. We then look at an example of nonlinear calibration,
using both simulation and real data. Fmally, we consider, using
a real data set, a difficult nonlinear multivariate problem where
the standard method becomes intractable.

~

x

(b) Y LINEAR CALIBRATION
Following Bonate, we simulate from the model in eq 2, with

errors E having constant mean and standard deviation proportional

to the expected value of 1'; so that the coefficient of variation (cv)

is constant; the calibration line is estimated using weighted least.

squares regression with weights Wi = 1/x,2. Six calibration

standards were used comprising triplicates of a low and a high

concentration, e.g., 10, 10, 10, 1<XX>, l<XX>, 11XK>, and the parameters

a and b were chosen as desaibed by Bonate.

The prediction limits are then

Yo / ",.,~"

~,,:
-~- ! ! !

~~ i i i
X

Figure 1. Two methods of producing a confidence interval given a
response Yo: (a) using the prediction limits from regression (dashed
lines) and (b) using the bootstrap to simulate variability in Yo and the
calibration line.

a + bx :i: ts I~ + -1- + (% -%..)2.y r T ~ T-- -s:sr::- (6)

where iw is the weighted mean and SS2:., the weighted sum of

squares of the standard concentrations, t is a percentage point of

the appropriate t-distnoution, and s is an estimate of the standard

deviation of the errors. If s is taken as the square root of the

mean square error from the cahoration curve estimation, it has n

-2 degrees of freedom; a better approadl is to combine estimates .
from this and from the r replicates of the unknown, giving .+ r "

-3 degrees of freedom. Then, for a 90% prediction interval, t is

the 95th percentile of the f.+r-3 distribution. The standard

confidence interval for an unknown with mean response y is

calculated by finding the values of x that make either prediction

limit equal to y. On rearranging, this gives quadratic equations

for the lower and upper Iimits that are easily solved.

To illustrate our approach to the bootstrap, we work through

an example shown in Figure 2. Given the responses for the

st3ndards, an appropriate regression Otere weighted 1east-squares)

gives estimates of the parameters and n unweighted residuals Ri
= ~ -a -bxJ/Xi. These are adjusted as described above and

placed in a residual pooL Further residuals are obtained from

the responses for the unknown sample by subtracting their mean.

Since our analysis uses weights dependent on x, and .to is

unavailable for the unknown sample, the estimate .to is used

instead, so that the residuals are

statistical characteristics of the original estimate. More back-
ground infonnation and references are given in Bonate.2 A useful
introduction to the theory and implementation of the bootstrap is
given by Efron and libshirani.3

In the case of cah"bration data, Bonate's bootstrap resamples
the residuals from the cah"bration curve to create new cah"bration
data Ctf,}7') and then uses the resulting bootstrap cahoration curve
and the observed response Yo from the unknown sample to
calculate bootstrap estimates Jr.*. This is repeated a large number
of times (1000) and the distribution ofJr.* values used to produce
a confidence interval. This ignores, however, the variability
inherent in the Yo value, as shown in figure lb. We propose
creating bootstrap Yt values by further resampling from the
residuals; thus in our bootstrap data sets, all the responses Y for
both standards and unknowns are replaced by new values Y'. This
simple expedient gives a coverage probability much closer to the
required leveL

We also suggest adjusting the residuals as descnDed by Efron
and 1ibshirani.3 The residual variation around a sample mean
or fitted curve is too small, by a known factor, to accurately reflect
the variation in responses. Multiplying by the appropriate factor,

../n/(n -p) (5) R; = (Yo; -VO>/.to (7)

An exception must be made when there is only one replicate of
the unknown: here. only the s~dards would contribute to the
residual pool, although the unknown would still receive from the
pool as described below. The residual from an unreplicated
unknown would be zero, and the adjustment factor infinite, so its
inclusion would not be possible.

where n is the number of points and p the number of parameters,

adjusts the residuals to allow for this.

The general approach of using residuals from both standards

and unknowns is shown diagTammatically in Figure 2, the details

of which are explained in the exan1ples below. We also explore

the use ofbootstrapot intervals.3.4 Other considerations concerning

(3) Efron. B.; libshirani. R ]. All Introdl/cticn to the Bootstrap; Chapman and
Hall: New York, 1993.

(4) Hall, P. The Bootstrap and Edgeworth Expansion: Springer-Verlag: New York.
1992.
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MODEL:
STANDARDS -

x y
10 46.88
10 47.43
10 49.13

1000 4419.73

1000 4966.26

1000 4828.84

Y = 0 + 5x + £ cv = 0.05

UNKNOWN;
XO Yo !

30 156.83
30 146.15

30 142.75

~=31.27

xrs-J~ xf3
J3'":-:;

RESIDUAL ADJUSTMENT

,...
RESIDUAL POOL

-0.1141 0.3237

-0.0476 -0.0946

0.1617 -0.2291

-0.3901

0.2792
0.1109

"
><;=31.10

Figure 2. Example of the formation of a residual pool to produce bootstrap estimates .>co. Figures are rounded from the computer output, so
some calculations appear inexact.

Bootstrap data sets are now fonned by sampling with replace-
ment from the residual pool. The bootstrap responses are given

by

bootstrap estimate ~ 1000 such values are then used to calculate

the confidence interval by sorting and finding the 5th and 95th

percentage points.
Flg1lre 3 shows the resulting histogram for one of the simulated

data sets when there is only one replicate of the unlmown: the

distribution can be bimodal. This occurs when there is an

apparent gap in the residuals, so that the bootstrap responses Y

fall into two distinct groups. This then translates into bimodality

in the distribution of X$. For larger r, the problem disappears

and the distribution becomes more symmetrical; it could be
remedied for r = 1 by smoothing the empirical distribution of

the residuals or sampling from a normal approximation. Bonate

Y* 

= a + b.r +xR* (8)

for the standards and

Yt= Yo +XoR* (9)

for the unknown, where R* represents a random dra\'-ing from
the residual pool. Each bootstrap data set is used to calculate a

Analytical Chemistry, Vol. 68, No.5. March 1, 1996 765



0
0.-

bootstrap given above, and each yields a bootstrap-t value t*
calculated by replacing Xoby..to and Xo by Xtin eq 10. Similarly,

se(ko*) is found from eq 11...to, S, and b being replaced by their

bootstrap values. The 5th and 95th percentage points (t*O.05,t*OSS>

are found and the confidence interval (XL.X"u) calculated as

XL =.to -tt9sse(.to>, Xu =.to -ttosse(j(o> (12)
0
It)

Theory suggests3.4 that these intervals should achieve greater

coverage accuracy than the ordinary percentile bootstrap. Efron

and 1ibshirani3 recommend the accelerated bias<orrected boot-

strap, but it is difficult to see how to implement this with cahoration

data. Bonate also considers an alternative nonbootstrap method,

derived from a naive use of the standard error given above. This

seems to have little to recommend it, and Bonate's simulations

suggest that its behavior is erratic. We do not consider it further.

We now compare the performance of the standard confidence

interval (S), the percentile bootstrap (PB), and the bootstrap-t (B1)

using the linear model as described above. Bonate's method (B)

is also included for comparison. Since S is designed specifically

for the case of normally distributed errors, it might be expected

to fail when this assumption is incorrect; the bootstrap methods,

however, use the observed errors, and so II:light be expected to

work even when the errors are nonnonnal. To test this hypoth-

esis, we employed three other error struCtures: a lognonnal

distribution, a t-distribution with four degrees of freedom, and a

mixture of nonnals in which one in 10 observations is an outlier.

Results for 100) simulations are given in Table 2 for one and three
replicates of the unknown sample, using %0 = 90. Other concen-

trations for the unknown were tried at various points on the

cahoration line: all gave substantially similar results.

Our results for B agree with Bonate's findings: the coverage

ismuch too low. Using PR, the coverage improves to about 8O'K.

but is s1ill short of the target ~ BT, however, ~ to achieve

approximately the right coverage, as does S. There is little to

choose between these two in terms of coverage and average

length. The performance of each method changes little for two

of the departures from normality tested; only in the case of

t-distributed errors are the coverage probabilities seriously af-

fected, and even here S outperforms the other methods. In short,

there is no apparent advantage to using the bootstrap in this case

because the standard method works adequately and is easier to

calculate. Improving robustness to distributional assumptions

would require changing the method of estimation,6 not just the

method of assessing precision. Use of a robust estimation method

in conjunction with the bootstrap could be a viable approach to

this problem, but this is beyond the scope of this paper.

Fmally in this section, we repeat the experiment with a larger
number of standards. 11 = 15 instead of n = 6. The results in

Table 3 show that now PB improves and is comparable with BT

and S. This is in line with theoretical predictions: the bootstrap-t

converges more quickly to the target coverage, but for larger

samples both are approximately correct

0

25 30 35 40 45 50
Bootstrap Estimate

Figure 3. Histogram of 1000 bootstrap estimates with only one
replicate of the unknown, showing that the distribution is sometimes
bimodal.

Table 1. Effect of Bias Correction, Varying Yo and
Residual Adjustment on the Coverage Probability
(Nominally 90%) of Bootstrap Confidence Intervals (n
= 10 000 Simulations~

bootstrap method

B

0.382
0.379
0.383
0.382
0.380
0.378

BYR

0.792
0.807
0.799
0.812
0.791
0.800

cv

0.05 bc
nbc
bc
nbc
bc
nbc

0.10

020

a Figures give the proportion of intervals containing the true
concentration. bc, with bias correction; nbc, without Methods: B,
Bonate's method; BY, B + variation in Yo; BR, B + residual adjustment;
BYR, Bonate's method + variation with Yo + residual adjustment

uses bias correction to counteract asymmetiy. Our fu"st simulation
investigates the effect of this and our proposed improvements in
the case r = 1 when the true concentration %0 = 30.

The results are given in Table 1. It can be seen that bias
correction plays an insignificant role in achieving the proper
coverage. The most important correction is to allow for variability
in the measured response of the unknown (although this will
decline as replication increases). Adjustment of the residuals is
also a significant factor. The results are not affected by the cv
used, so in future simulations we keep cv = 0.05.

As an alternative, we also consider the bootstrap-to Here we
use instead of..to the "pivotal" statistic

t = <Ko -XJ/se(.to> (10)

which is analogous to the usual t-statistic in nonnal theory
statistics. Here se<Xo) is the standard en-or, which can be
approximated using the delta methods by

~~+~+~2 A -2
A S Xo 1 <Xo-xw)

se(Xo> ~ ~ -+ -+ (11)
b r LWj SSxw

A NONLINEAR EXAMPLE
If the calibration curve (i.e., the function f(.) of eq 1) is

intrinsically nonlinear,7 exact prediction limits cannot usually be
Bootstrap data sets are generated as for the ordinary percentile

(5) Stuart, A; Ord. J. K Kendall's AdvGllced Theory o!Statistics. 5th ed.; Oxford
University Press: Oxford, 1987; pp 323-329.

(6) Tiede, J. J.; Pagano, M. B~trics 1979.35,567-74.
(7) Seber. G. A F.; Wild. C.]. .'¥o"li"ear Regressio": Wiley: New York. 1989;

pp 4-7.
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mixture

SD
3.52
9.22

13.07
12.84
3.38
4.84
5.84
6.23

SD
3.13
8.23

11.93
11.51
3.27
5.62
7.54
8.40

SD
2.22
5.82
7.72
7.86
2.09
2.96
3.72
3.75

SD2.16

5.67
7.38
7.64
2.29
3.25
4.05
4.10

P

0.456
0.809
0.877
0.891
0.574
0.804
0.889
0.894

method

B
PB
BT
S
B
PB
BT
S

P

0.428
0.807
0.877
0.893
0.568
0.802
0.901
0.905

P

0.255
0.607
0.701
0.717
0.413
0.721
0.864
0.871

m

5.54
14.54
18.88
1925
5.59

1220
16.47
17.04

P

0.460
0.829
0.885
0.905
0.582
0.817
0.911
0.911

m

5.86
15.37
19.60
20.37
5.88

10.05
12.85
12.95

r

1

m

6.13
16.03
20.48
21.30
6.00

10.20
13.04
13.12

3

a r, number of replicates of unknown; p, achieved coverage; m mean length of interval; SD, standard deviation of intervailength. Methods: B,
Bonate's method; PB, percentile bootstrap; BT, bootstrap-t; S, st4ndard method.

Table 3. Comparison of Confidence Interval Methods with 15 Standards When Xo = go.

nonnal lognonnaJ t4 mixture
SD
1.43
7.14
7.54
6.05
1.37
3.11
3.25
3.27

SD
1.42
6.81
7.17
6.08
1.41
3.99
3.90
3.98

SD

0.81
3.37
3.52
3.37
0.79
1.76
1.88
1.87

SD

0.80
3.35
3.41
3.35
0.78
1.75
1.87
1.86

P

0.211
0.664
0.666
0.671
0.289
0.716
0.718
0.727

P

0.342
0.876
0.869
0.887
0.518
0.898
0.911
0.913

method

B
PB
BT
S
B
PB
BT
S

P

0.327
0.867
0.875
0.884
0.491
0.894
0.916
0.918

III

3.76
15.79
16.28
15.76
3.83

11.12
11.42
11.52

P

0.330
0.871
0.875
0.883
0.493
0.899
0.917
0.919

m

3.91
15.55
16.13
16.43
3.92
9.34
9.95

10.00

,
1

m

3.91
15.56
16.21
16.42
3.92
9.34
9.95

10.00

3

.T, number of replicates of unknown; p, achieved coverage; m, mean length of interval; SD, standard deviation of interval length. Methods: B,
Bonate's method; PB, percentile bootstrap; BT, bootstrap-t; S, standard method.

A common method of fitting a calibration curve to such data
is the four-parameter logistic model.s A detailed account of the
fitting, estimation of unknown concentrations and calculation of
the standard confidence interval is given by O'Connen~t a1. 9 Our

analysis differs slightly in that we assume a constant."Coefficient
of variation and use a log transformation of the reponses instead
of estimating a variance function.1O Thus, our model is

calculated. and we have to rely on a delta method approximation.
In such situations, the performance of the standard method of
confidence interval construction becomes uncertain. We take as
an example the determination of the herbicide atrazine in water~. -.samples by enzyme-linked immunoassay (EUSA). .

EUSA is one of several forms of immunoassay, itself a version
of a more general ligand-receptor interaction analysis. A dose-
response cwve is generated by the specific interaction of an
antibody and its antigen, referred to as the analyte (m our case,
atrazine). The antJ"body is usually immobilized on a solid surface,
e.g., a well of a micro titer plate. Since the antibody-antigen
binding cannot be observed directly, an enzyme-labeled analogue
(tracer) is introduced. This tracer is incubated in the antibody-
coated microtiter plate wells, together with the sample containing
analyte molecules. According to the law of mass action, both
anaiyte and tracer establish equih"brium binding to the limited
number of solid phase antJ"bodies, their ratio being governed by
their relative affinities to the antibody. This could also be viewed
as an equilibrium distribution of the two species between two
phases. After the unbound molecules are washed out, an enzyme
substrate is added, which is converted into a colored product The
color intensity is then measured photometrically as an optical
density. The higher the initial concentration of anaiyte in the
sample, the fewer tracer molecules are bound and the lower the
optical density reading. If no anaiyte is present in the sample,
the antibody binding sites are all occupied by a maximum number
of tracer molecules, thereby generating the highest possible
signal. There is usually a small amount of binding of the tracer,
even in the presence of very high anaiyte concentrations: this is
referred to as nonspecific binding. The typical dose-response
curve of optical density plotted against log concentration is thus

sigmoidal in shape.

( A-V )log Y = log B + V + E
1 + (%/C)

(13)

where Y is the assay response, l' the analyte concentration. A. B.
C. and D the model parameters, and f an error assumed to have

a normal distn"bution with zero mean and variance 02.
A specimen calibration curve with ~ prediction limits is

shown in FIgUre 4. The mean response Yo for an unknown sample

is used to give an estimated concentration Xo and a confidence
interval (XL-Xu) , as in the linear case. Bootstrapping can also be

canied out as for the linear model; one refinement not previously

considered is that we now have severa] unknown samples for each

calibration curve, so each makes a contribution to the residual

pool. Starting with 96 observations. comprising 24 call"bration
standards and 24 unknowns in triplicates, our residual pool will

contain 96 residuals, and these are resampled to constJ11ct 96

bootstrap observations; each bootstrap data set is used to calculate

(8) Rodbard. D. Mathematics and statistics of ligand assays: An illustrated guide.
In Ligalld Assay: Allaiysis of IntmlatWllai Developments 0" lsotopix and
Noxisotopic Immu..oa.ssay; Langan. J.. ClapP. J. J.. Eds.; Masson: New York.

1981.
(9) O'Connell. M. A; Belanger. B. A; Haaland. P. D. CJlemom. l..te//. lAb. Syst.

1992.20.97-114.
(10) Rocke. D. M.; Jones. G. Submitted to Technometrics.
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Response (00)
0.6 I I

0.5
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j'.j. ~
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I I !.

i ! !', \\
i ii',
i ii',
I ii".i ! ,, \.

Table 5. Number of 90% Confidence Intervals
Containing the True Concentration from 96 Samples
(Expected Number Should Be 86.4r

confidence interval method

s PBF

87
82
79
69
66
5846

90
75.1%

PBR

85
82
74
65
63
57
44
90
72.~

PBI

90
90
81
83
72
70
53
91
82.1

PBR*

87
85
81
88
86
74
61
92

85.2%

BT
0.4

92
90
85
85
75
71
69
91
85:

0
0.1
0.3
1
3
10
100
10 000

total

*

75
75
66
60

0.3

0.2
.
~ ~~~:=~ .,.

" "~0.1
71.9%

0'
0.001 0.01 0.1 1 10 100 1,000

Concentration (ppb)

Figure 4. Typical dose-response curve for ELISA, with prediction
limits (dashed lines) and confidence interval.

a Methods: S. standard method; PBF. percentile bootstrap with
residuals from fitted model; PBR, percentile bootstrap with residuals
from within replicates; BT. bootstrap-to An asterisk denotes adjustment
to achieve compatibility with the standard method.

Table 4. Simulation Results (1000 Simulations) for
Single-Analyte ELISA with A = 0.5,. = 1.1, C = 0.86,
D = 0.02, and q = 0.06 for "Unknown" Concentration X-

x method p m SD

0.3 S 0.900 0.166 0.030
PB 0.894 0.159 0.019
BT 0.896 0.165 0.030

1.0 S 0.899 0.268 0.045
PB 0.893 0.257 0.027
BT 0.898 0.272 0.047
S 0.901 0.591 0.103
PB 0.896 0.566 0.001
BT 0.897 0.596 0.100

10.0 S 0.899 2.536 0.500
PB 0.890 2.421 0.338
BT 0.898 2.541 0.503

.p, achieved coverage; m, mean length of interval; SD, standard
deviation of intervallengtb. Methods: PB, percentile bootstrap; BT,
bootstrapot; S, standard method.

the bootstrap estimates Xo* for all the unknown samples simulta-

neously.
FIrSt we consider a simulation, based on a real data set to be

examined later, to compare s, PB, and BT. The parUleter values
A = 0.5, B = 1.1, C = 0.86, D = 0.02, and 0' = 0.06 were based on

the real data, as were the standard concentrations. The bootstrap.t
turns out to be problematic for very small and very large
concentrations, because of difficulties in approximating se<to>, so
these were avoided in the simulation. For each unknown
concentration, 24 triplicates were simulated per plate for 1000
plates, thus giving 1000 calibration curves but 24 000 estimates.
The results are given in Table 4. It can be seen that all three
methods achieve approximately the target coverage; S and BT
have very similar characteristics, but PB appears to have slightly
less coverage with slightly shorter, less variable intervals.

We now turn to a real data set and find a number of new
problems to be surmounted. The data were originally produced
to examine experimental variation in EliSA curves: a detailed
description is given by Jones et al.11 Four sets of standards,
comprising triplicates of 0, 0.1, 0.3, 1, 3, 10, 100, and 10000 ppb,
were placed on each of 32 microplates, with pairs of plates being

treated under different experimental conditions. Here we take

the first set of standards for our calibration curve estimate and

regard the others as .unknowns". There are 32 plates, thus 32

cahoration curves, and each gives three determinations each of

0,0.1,0.3,1,3,10, 100, and 10000 ppb. So we have 96 confidence

intervals at each concentration level, giving a total of 768 intervals

that mayor may not contain the true concentration they are

estimating. A valid procedure should produce confidence intervals

that contain the true concentration ~ of the time, so the expected

number of .successes" at each concentration should be 96 x 0.9
= 86.4.

The results are shown in Table 5. Some adjustments were

made totheboo~ methodology. which we now~. First,
since all samples, both standards and unknowns, are replicated,

this allows the possibility of obtaining all the residuals using the

sample means, as opposed to using the fitted model to get

residuals for the standards. This is a more symmetrical arrange-

ment and means that the generation of the bootstrap data is model-

free: we only need to assume independent errors and constant

coefficient of variation. Thus we have two alternatives for the

percentile bootstrap: using residuals from the fitted model

(PBF-percentile bootstrap with fitted residuals) or using only

residuals from within replicates (PBR-percentile bootstrap with

replicate residuals). It can be seen from the table that the

performance of both is poor compared to that of the standard

method (S). To give a concrete example, one of the 1 pbb samples

gives a point estimate of 1.36 ppb; the standard confidence interval

is (0.94,1.86) which contains the true concentration, whereas the

PBF and PBR intervals of (1.10,1.63) and (1.10,1.65), respectively.

do not

One explanation for this is lack-of-fit of the assumed model.

It is unlikely that the true response-concentration relationship

follows exactly the functional form assumed in the model (even

for many supposedly "linear" relationships). This is obviously not

a problem in simulations, but for real data it is an important

concern. When the standards are replicated, it is possible to test

for lack-of-fit by partitioning the variation around the fitted curve

and comparing the lack-of-fit mean square (MSLF) to the pure

error mean square (MSPE);2 but even when this test is not

(11) Jones, G.; Wortberg, M.; Kreissig, S. B.; Gee, s. J.; Hammock, B. D.; Rocke.
D. M. Anal. OIim. Acta 1995,313.197-207.

(12) Seber, G. A. F.; Wild, C. J. Nonlinear Regression: Wiley: New York. 1989;
pp 30-32.
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statistically significant, lack-()f-fit may still exist and distort the
resuhs. The standard method as given by O'Connell et al. uses
an estimate of a that includes lack-()f-fit since it comes solely from
the cwve-fltting process; PBR implicitly uses pure replication error
excluding lack-()f-fit; PBF has an intermediate position. To make
a fairer comparison between the methods, we adjusted the
residuals to make them compatible with method S by multiplying
by the ratio of the estimated standard deviations (as! aPB): these
adjusted methods are denoted PBF* and PBR*. This can be seen
to account for most of the disparity among the methods. The
bootstrap.t (B1) could not be used for high and low concentra-
tions; this is not necessarily a serious disadvantage because these
concentrations were known to be beyond the limits of accurate
quantitation. However, BT also performed poorly throughout,
possibly because the delta method approximation to the standard
error is poor.

All methods showed nonuniformity of coverage across con-
centrations. with PBR* perhaps the most uniform. This nonuni-
formity might be indicative of lack-()f-fit, or it might be due to
spatial effects on the plates.13 One of the 100 ppb samples was
consistently missed. and it was located in one of the comers of
the plate. where measurements tend to be less reliable due to
possible edge effects.

0.0 0.5 1.0 1.5 2.0 2.5

Atrazine ppb

Figure 5. Bootstrap estimates from MELISA of 1 ppb atrazine with

1 ppb simazine. Dashed lines show the position of the true concentra-
tion. (a) Point estimate (0.81.1.16). (b) Point estimate (1.71,0.14).NONLINEAR MULTIVARIATE CALIBRATION

We use here as an example the analysis of mixtures of the
herbicides atrazine and siInmne using multianalyte EliSA (MEIr
ISA). MEUSA uses a panel of antl"bodies to detect and quantitate
mixtures of analytes which cross-react in single-antibody assays
by generalizing the four-parameter logistic model14 In the case
of binary mixtures. we use two suitably chosen antloodies. so that
the responses (Y},y~ from a mixture wid1 concentrations (xl'%~
are modeled by

1 ppb simazine by Wortberg et al. 15 demonstrated strong correla-

tion between the estimates, so that atrazine concentration might
be considerably overestimated V/ith simazine underestimated, or
vice versa.

We now show that the bootstrap can provide the same
infonnation for single unknown samples without the need for large
numbers of replicates. Figure 5ab shows the results of 1000
bootstrap estimates for two of the samples assayed in Wortberg
et al.; the correlation and uncertainty in the estimates can be
clearly seen. In Figure Sa, the point estimate was (0.81,1.16),
which is quite close to the true concentration (1.0.1.0). In Figure
5b, the point estimate is (1.71,0.14), so atrazine is overestimated
at the expense of simazine, and many of the bootstrap samples
indicate only atrazine. It seems that the total concentration 2 ppb
is quite well-estimated. but the assay does not give precise
estimation of the relative amounts. Bootstrapping thus gives an
easily interpreted account of the information provided by the assay
for each unknown sample.

i = 1,2 (14)

DISCUSSION
Our examples illustrate the difficulties involved in applying

statistical methods to real calibration data. In practice, errors may
not be nonnally distributed, or even independent The postulated
model may not be quite correct, or there may be temporal or
spatial effects that distort the relationship in going from standards
to unknowns. The result is that theoretical "9()% confidence
intervals" may not contain the true concentrations 9()% of the time.
The analyst wants narrow intervals to be assured of the precision
and accuracy of the assay. but if these intervals do not have
adequate coverage probability, this assurance is false.

In particular, we have tried to adjust our procedure for lack-
of-fit of the model Our adjustment, however, was done to make

where A;, Bv. C;;. and Dj are the parameters of the cah"bration curve

for analyte j with antibody i, and Btis the geometric mean of Bil

and B,". Two microtiter plates are needed for the assay, each

treated with a different antI"body. Two single-analyte calibration

cwves are run on each plate, together with unknown samples.

We assume that parameters A and D are common to both cwves

on the same plate. Estimates of the unknowns %1 and %2 for each

sample are calculated by solving the system of eq 14 using the

measured responses (YJ,Yz). Because of this complexity, the

standard method of producing confidence intervals for the

estimates becomes intractable; implementation of the percentile

bootstrap as described above is, however, straightforward: we

generate new bootstrap data for each plate separately and then

calculate the bootstrap estimates (.tl,tz).
It is known that mixtures of atrazine and simazine are hard to

quantitate accurately by MEUSA, since they have similar patterns

of cross-reactivity: analysis of 110 samples of 1 ppb atrazine with

(15) Wortberg. M.; Kreissig, S. B.; Jones. G.: Rocke, D. M.; Hammock, B. D.
Axal. C1Iim. Acto 1995. 304. 339-352.

(13) Shekarchi, I. C.; Sever, j. L; Lee. Y. J.: Castellano. G.; Madden. D. L f.
ChI!. Microbiol. 1984. 19.89-96.

(14) Jones. G.; Wortberg. M.; Kreissig, S. B.; Bunch, D. 5.; Gee, S.j.: Hammock,
B. D.; Rocke, D. M.f. j""""JIOL Meth. 1994,177.1-7.
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Furthennore, the analysis applies to the actual number of samples
being assayed at the actual estimated concentrations obtained,
and not to some theoretical infinite series of unknown samples at
unknown places on the curve.

CONCLUSION
In simple calibration situations where prediction limits for the

reponse are easily derived. the standard method of inverting these

to get confidence intervals works well even under slight departures

from normality. Bootstrapping can also work adequately but is

more computationally intensive. In more complex situations

where the standard method is difficult or intractable. the bootstrap

is a useful tooL In applying the bootstrap to calibration data, it is

important to allow the reponses to vary for both standards and

unknowns and to appropriately adjust the residuals.

the bootstrap comparable with the standard method and was in a

sense arbitrary, since it depends on the standards used to generate

the calibration curve: having four concentrations each replicated

five times would give a mean SQuare error with a smaller lack-

of-fit component than for 10 concentrations each replicated twice.

With given standards and a given decomposition of the mean

square error, different combinations of MSLF and MSPE could

be used, but there is no obvious defensible choice. Lack-of-fit by

its very nature depends on the sample concentration, so perhaps

averaging it out across the curve is not appropriate: the resulting

confidence intervals might have the correct coverage on average,

but the actual coverage would vary for different sample concentra-

tions. Nonparametric estimation of the calibration curvel6 might

be the answer in some cases. Our bootstrap methodology could

still be applied here without adaptation.

Some theoretical approachesl7 have tried to allow for multiple

uses of the same curve. The issue here is that all calI"brated values

taken from a single estimated calibration curve are correlated: if

that curve happens to be "bad", all the readings taken from it will

be affected. These theoretical approaches tend to be complicated

and consemtive, producing statements such as: "at least 90% of

the curves will produce confidence intervals which in the long

run will contain the true concentration at least 90% of the time",

It can be noted that the bootstrap methodology advocated here

will reproduce, in the bootstrap estimates, the correlation between

all the sample estimates taken from a single curve; this correlation

can then be examined by anyone interested in doing so.
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