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A Stable Isotope Biomarker of Marine Food
Intake Captures Associations between n–3
Fatty Acid Intake and Chronic Disease Risk
in a Yup�ik Study Population, and Detects
New Associations with Blood Pressure and
Adiponectin1,2

Diane M. O�Brien,3,4* Alan R. Kristal,5 Sarah H. Nash,3,4,8 Scarlett E. Hopkins,3 Bret R. Luick,3

Kimber L. Stanhope,6,7 Peter J. Havel,6,7 and Bert B. Boyer3

3Center for Alaska Native Health Research, Institute of Arctic Biology, and 4Department of Biology and Wildlife, University of Alaska

Fairbanks, Fairbanks, AK; 5Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA; and 6Department

of Molecular Biosciences, School of Veterinary Medicine, and 7Department of Nutrition, University of California, Davis, Davis, CA

Abstract

The nitrogen isotope ratio (d15N) of RBCs has been proposed as a biomarker of marine food intake in Yup�ik people based

on strong associations with RBC eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). However, EPA and DHA

derive from marine fats, whereas elevated d15N derives from marine protein, and these dietary components may have

different biologic effects. Whether d15N is similarly associated with chronic disease risk factors compared with RBC EPA

and DHA is not known.We used covariate-adjusted linear models to describe biomarker associations with chronic disease

risk factors in Yup�ik people, first in a smaller (n = 363) cross-sectional study population using RBC EPA, DHA, and d15N,

and then in a larger (n = 772) cross-sectional study population using d15N only. In the smaller sample, associations of RBC

EPA, DHA, and d15N with obesity and chronic disease risk factors were similar in direction and significance: d15N was

positively associated with total, HDL, and LDL cholesterol, apolipoprotein A-I, and insulin-like growth factor binding

protein-3 (IGFBP-3), and inversely associated with triglycerides. Based on comparisons between covariate-adjusted

b-coefficients, EPAwasmore strongly associatedwith circulating lipids and lipoproteins, whereas d15Nwasmore strongly

associated with adipokines, the inflammatory marker interleukin-6, and IGFBP-3. In the larger sample there were new

findings for this population: d15N was inversely associated with blood pressure and there was a significant association

(with inverse linear and positive quadratic terms) with adiponectin. In conclusion, d15N is a valid measure for evaluating

associations between EPA and DHA intake and chronic disease risk in Yup�ik people and may be used in larger studies. By

measuring d15N, we report beneficial associations of marine food intake with blood pressure and adiponectin, which may

contribute to a lower incidence of some chronic diseases in Yup�ik people. J. Nutr. 144: 706–713, 2014.

Introduction

Objective biomarkers of diet have the potential to reduce bias
and error relative to self-reported measures, and thus better

detect associations between specific dietary factors and health

(1,2). Our group has been developing objective biomarkers of

dietary intake based on stable isotope ratios for use in ongoing

research to improve the health of the Yup�ik people in southwest

Alaska (3–6). We have shown that RBCs and hair nitrogen

isotope ratios (15N/14N, expressed as d15N, as defined in

Participants and Methods) are strongly correlated (>0.8) with

the RBC long-chain n–3 PUFAs EPA and DHA because all 3

measures are elevated in fish and marine mammals, a large

component of the traditional Yup�ik diet (5–7). Intakes of EPA

and DHA are high and quite variable in Yup�ik people (6);

therefore, associations with health are of particular interest for

further study (8–11). Because d15N is relatively simple and
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inexpensive to assay, several recent studies have used d15N as a
surrogate measure of n–3 PUFA intake (10,12,13). However,
EPA and DHA derive from marine fats, whereas elevated d15N
derives from marine protein, and these components are some-
times rendered and eaten separately (e.g., as seal oil and seal
meat). The nutrients in the fat and lean components of the
marine diet may also have different biologic effects, and thus
may exhibit different associations with chronic disease risk. For
these reasons, the validity of using d15N to assess associations
between n–3 PUFA intake and chronic disease risk needs to
be tested.

This study had 2 objectives. The first was to further extend
our evaluation of the use of d15N to assess EPA and DHA intake
in a Yup�ik population by comparing associations with chronic
disease risk factors among RBC EPA, DHA, and d15N. These
risk factors include measures of blood pressure, blood lipids,
blood sugar homeostasis, growth factors, inflammatory bio-
markers, and adipokines, which were previously described in a
Yup�ik population by our group (8,9). To these, we added 3
measures of obesity (BMI, waist circumference, and percentage
of body fat) (14), glycosylated hemoglobin A1c (HbA1c)9 (15),
and grehlin (16), as is detailed in the Participants and Methods
section. Previously, we showed that RBC EPA and DHA are
associated with reduced triglyceride and C-reactive protein
(CRP) concentrations and increased HDL cholesterol in this
population (9). Replication of findings based on RBC FAs is an
important criterion when considering using d15N as a biomarker
of EPA and DHA intake (17). Because both percentage of RBC
EPA and d15N increase linearly with marine food intake,
whereas percentage of RBC DHA approaches an upper bound-
ary at higher intakes (6,18), we expected associations with
chronic disease risk factors to be strongest for EPA and d15N,
and weaker for DHA. Our second objective was to use d15N to
examine associations between marine food intake and both
obesity and risk factors for chronic disease in a larger population
sample, from which only d15N measures were available.

Participants and Methods

Participant recruitment and procedures. Data are from the Center
for Alaska Native Health Research (CANHR) study, a cross-sectional,

community-based participatory research study of biologic, genetic,

nutritional, and psychosocial risk factors for obesity and related disease
in Yup�ik people. The CANHR study was approved by the University of

Alaska Institutional Review Board, the National and Area Indian Health

Service Institutional Review Boards, and the Yukon-Kuskokwim Health

Corporation Human Studies Committee. Between 2003 and 2006, 1003
men and women aged 14 and older were recruited from 10 communities

in southwest Alaska, as described in detail elsewhere (19,20). At entry

into the study, participants completed extensive interviewer-administered

interviews covering demographic characteristics, economic status, eth-
nicity, and medical history. Anthropometric measurements were taken,

and blood samples were collected from participants after an overnight

fast. Blood was collected and processed locally into serum, lymphocyte,
and RBC fractions using a portable centrifuge, and stored at 215�C in a

portable freezer. Within 6 d, samples were shipped to the University of

Alaska Fairbanks and stored at 280�C.

Study sample. Both d15N and RBC FA measurements were available

for 496 participants from the CANHR study. The selection of these

participants was described in detail elsewhere (6,9). We used this sample

to compare associations of obesity and chronic disease risk factors with

EPA, DHA, and d15N, and excluded 105 participants aged #18 y, 26
participants with CRP concentrations of >1 mg/dL (indicating acute

infection), and 2 participants with missing body BMI measurements,

which left 363 participants. Hereafter, we will refer to this sample as the

‘‘validation sample.’’
Stable isotope (d15N) measurements were available for all 1003

participants in the first phase of the CANHR study (CANHR 1).We used

this larger sample to investigate associations between marine food intake

(using d15N), obesity, and chronic disease risk, and excluded 178
participants aged #18 y, 51 participants with CRP concentrations of >1

mg/dL, and 2 participants with missing BMI measurements, leaving 772

participants. Hereafter, we will refer to this sample as the ‘‘complete
CANHR sample.’’

Anthropometric and risk factor measurements. Anthropometric

measurements, including height, weight, waist circumference, percent-

age of body fat, and blood pressure, were measured by trained staff using
protocols from the NHANES III Anthropometric Procedures Manual

(21), as described by Boyer et al. (22). Biochemical risk factors for

chronic disease were assayed in serum as previously described (9,22).

These risk factors include blood lipids and lipoproteins (TGs, total
cholesterol, HDL and LDL cholesterol, and apo A-I), measures of blood

sugar homeostasis (glucose, HbA1c, insulin, and insulin resistance),

hormones related to adiposity, insulin sensitivity, and appetite (leptin,

adiponectin, and ghrelin), inflammatory cytokines and related markers
[CRP, IL-6, and soluble tumor necrosis factor receptor type 2

(sTNFR2)], and factors influencing cellular growth and division

[insulin-like growth factor-1 (IGF-1) and insulin-like growth factor
binding protein-3 (IGFBP-3)]. Insulin resistance was assessed using the

HOMA-IR index: [fasting insulin (mU/mL) 3 fasting glucose (mg/dL)]/405

(23). Measurements of IL-6, sTNFR2, IGF-1, and IGFBP-3 were only

available for participants in the validation sample.

Dietary biomarker measurements. The RBC FAs EPA and DHAwere

analyzed at the Fred Hutchinson Cancer Research Center in Seattle, WA,

as previously described (6). RBC d15N was analyzed at the Alaska Stable
Isotope Facility at the University of Alaska Fairbanks, as previously

described (4,6,24). Natural abundance stable isotope ratios are conven-

tionally expressed in per mil (&) abundance of 15N relative to an

international standard:

d15N ¼ ½ð15N=14Nsample2
15NÞ=14Nstandard=ð15N=14NstandardÞ� � 1000&;

where the standard is atmospheric nitrogen (15N/14N = 0.003677).

Statistical analyses. In the validation sample, we examined the

associations of EPA, DHA, and d15N with each of the following

measures of obesity: BMI, percentage of body fat, and waist circumfer-

ence, and each of the following risk factors for chronic disease: systolic
blood pressure (SBP), diastolic blood pressure (DBP), TGs, total

cholesterol, HDL and LDL cholesterol, apo A-I, glucose, HbA1c,

insulin, HOMA-IR, IGF-1, IGFBP-3, CRP, IL-6, sTNFR2, leptin,
adiponectin, and ghrelin. TGs, insulin, HOMA-IR, CRP, IL-6, sTNFR2,

and leptin were log transformed for analysis, and results were back

transformed for ease of interpretation. We also examined associations

of d15N with each of these variables in the complete CANHR sample,
with the exception of IGF-1, IGFBP-3, IL-6, and sTNFR2, which were

only available for the validation sample.

We excluded participants from certain analyses based on medication

use (n = validation sample exclusions; complete CANHR sample
exclusions). We excluded participants taking blood pressure medication

from analyses of SBP and DBP (n = 62; 105), participants taking diabetes

medication from analyses of glucose, HbA1c, insulin, and HOMA-IR
(n = 7; 11), and participants taking cholesterol medication from analyses

of TGs, total cholesterol, and HDL and LDL cholesterol (n = 18; 30).

Values of chronic disease risk factors that were >4 SD above the

mean were judged to be physiologically unreasonable and excluded as
outliers. We excluded values for the following chronic disease risk

9 Abbreviations used: CANHR, Center for Alaska Native Health Research; CRP,

C-reactive protein; DBP, diastolic blood pressure; HbA1c, glycosylated hemo-

globin A1c; IGF-1, insulin-like growth factor-1; IGFBP-3, insulin-like growth factor

binding protein-3; SBP, systolic blood pressure; sTNFR2, soluble tumor necrosis

factor receptor type 2.
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factors (n = validation sample exclusions; complete CANHR sample

exclusions): waist circumference (n = 0; 1), SBP (n = 2; 4), DBP (n = 1;

1), TGs (n = 1; 4), total cholesterol (n = 0; 1), HDL (n = 1; 0), apo A-I
(n = 2; 0), glucose (n = 2; 4), HbA1c (n = 3; 5), insulin (n = 0; 6),

HOMA-IR (n = 0; 8), IL-6 (n = 0; 3), sTNFR2 (n = 2; 2), leptin (n = 0; 1),

adiponectin (n = 1; 3), and ghrelin (n = 1; 3). For IL-6, values below the

limit of detection (n = 91) were replaced by the limit of detection divided
by the square root of 2 (25).

We used multiple regression models to model associations of each

biomarker (EPA, DHA, and d15N) with each measure of obesity or

chronic disease risk factor. Models of obesity measures (BMI, percentage
of body fat, and waist circumference) were adjusted for age (continuous),

sex, and regular smoking (yes/no). All other models were additionally

adjusted for BMI. A smaller number of the participants in the complete
CANHR sample had physical activity data [counts per day: n = 249

(26)]. In these participants, physical activity was not associated with

d15N when adjusted for age, sex, BMI, and smoking (data not shown),

nor was physical activity associated with any of the biochemical risk
factors when adjusted for age, sex, BMI, smoking, and d15N. Physical

activity was significantly inversely associated with BMI, percentage of

body fat, and waist circumference when adjusted for age, sex, smoking,

and d15N; however, including it as a covariate in these models did not
affect associations with d15N. Finally, we tested differences in the leptin:

adiponectin ratio among quartiles of d15N using ANCOVA, with Tukey�s
honestly significant difference test for pairwise comparisons, adjusted for
sex, age, BMI, and smoking. The leptin:adiponectin ratio was log

transformed for analysis.

Both linear and quadratic terms were assessed to determine nonlin-

earity (8,9,24). We used a conservative criterion (P < 0.01) for reporting
quadratic associations because of the likelihood that multiple contrasts

would lead to chance associations. For all tests, we give the unadjusted

P value using a significance level of 0.05, and indicate in the text and

tables whether P values remain significant after adjustment for multiple
testing with the Bonferroni-Holm procedure (27). Because Bonferroni-

Holm adjusts the significance threshold (a) in a stepwise manner, a

differs among tests within a family of hypotheses based on rank order.

All statistical analyses were performed using JMP version 8 (SAS
Institute).

Results

The demographic characteristics of the validation sample (n =
363) and the complete CANHR sample (n = 772) are given in
Table 1. Distributions of sex, BMI, and smoking were similar
between the 2 samples; however, older participants ($55 y) were
over-represented in the validation sample (28%) relative to the
complete CANHR sample (21%). Younger participants (18–29 y)
were under-represented (18% vs. 25% in the validation and
complete CANHR samples, respectively).

The mean values of chronic disease risk factors for each study
sample are shown in Table 2. Means were generally similar
between the 2 study samples, with the validation sample mean
within 10% of the complete CANHR sample mean for most risk
factors. Exceptions included insulin, HOMA-IR, and leptin, for
which validation sample means exceeded those of the complete
CANHR sample mean by 15%, 15%, and 17%, respectively,
and CRP, for which the validation sample mean exceeded that of
the complete CANHR sample by 88%.

TABLE 1 Demographic and health-related characteristics of Yup�ik participants in the validation sample and complete CANHR sample,
by sex1

Validation sample Complete CANHR sample

Total Men Women Total Men Women

Participants,2 n (%) 363 (100) 147 (40) 216 (60) 772 (100) 347 (45) 425 (55)

Age, y 45 6 15 46 6 15 44 6 15 42 6 15 41 6 15 42 6 15

18–29 65 (18) 25 (17) 40 (19) 194 (25) 98 (28) 96 (23)

30–54 197 (54) 77 (52) 120 (56) 415 (54) 179 (52) 236 (56)

$55 101 (28) 45 (31) 56 (26) 163 (21) 70 (20) 93 (22)

BMI, kg/m2 28.8 6 6.1 26.9 6 4.4 30.0 6 6.8 28.4 6 5.9 26.8 6 4.6 29.7 6 6.5

,25 105 (29) 53 (36) 52 (24) 248 (32) 143 (41) 105 (25)

$25–,30 127 (35) 62 (42) 65 (30) 267 (35) 131 (38) 136 (32)

$30–,35 74 (20) 23 (16) 51 (24) 152 (20) 55 (16) 97 (23)

$35 57 (16) 9 (6) 48 (22) 105 (14) 18 (5) 87 (20)

Body fat, % 31.7 6 10.2 23.4 6 6.7 37.3 6 8.1 30.4 6 10.5 22.8 6 7.3 36.7 6 8.4

Current smokers, n (%) 95 (26) 54 (37) 41 (19) 197 (26) 138 (40) 59 (14)

RBC d15N, & 9.0 6 1.4 8.8 6 1.4 9.2 6 1.4 9.2 6 1.5 9.0 6 1.5 9.4 6 1.5

,8.0 104 (29) 52 (35) 52 (24) 192 (25) 105 (30) 87 (20)

$8.0–,9.0 94 (26) 38 (26) 56 (26) 195 (25) 88 (25) 107 (25)

$9.0–,10.0 82 (23) 29 (20) 55 (25) 174 (23) 74 (21) 100 (24)

$10.0 83 (23) 28 (19) 55 (25) 211 (27) 80 (23) 131 (31)

RBC EPA, % of total FAs

,1.0 71 (20) 37 (25) 34 (16) — — —

$1.0–,3.0 145 (40) 61 (41) 84 (39) — — —

$3.0–,5.0 96 (26) 29 (20) 67 (31) — — —

$5.0 51 (14) 20 (14) 31 (14) — — —

RBC DHA, % of total FAs

,5.0 66 (18) 37 (25) 29 (13) — — —

$5.0–,7.0 86 (24) 47 (32) 39 (18) — — —

$7–,9.0 193 (53) 58 (39) 135 (63) — — —

$9.0 18 (5) 5 (3) 13 (6) — — —

1 Values are n (%) or means 6 SDs. CANHR, Center for Alaska Native Health Research.
2 Percentages may not sum to 100 because of rounding.
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In the validation sample, associations of d15N with most
chronic disease risk factors were similar to those with EPA and
DHA (Table 3). Like EPA and DHA, d15N showed positive
associations with total cholesterol, HDL and LDL cholesterol,
apo A-I, and IGFBP-3, and an inverse association with TGs. All
3 measures had weak inverse associations with CRP, although
only associations with EPA and DHA were significant (P =
0.027, 0.015, and 0.065 for EPA, DHA, and d15N, respectively).
None of the measures were associated with BMI, body fat, waist
circumference, SBP, DBP, blood glucose, insulin, HOMA-IR,
IGF-1, and sTNFR2. The associations of d15N with total
cholesterol and apo A-I became nonsignificant after adjustment
for multiple testing, as did associations of EPA with HbA1c,
IGFBP-3, and CRP, and associations of DHA with TGs, HDL
cholesterol, IGFBP-3, and CRP. As expected, EPA exhibited
more associations with chronic disease risk factors than DHA
because DHA reaches an upper limit at high intakes. Therefore,
we focused subsequent comparisons on EPA and d15N.

Despite these similarities, there were also differences between
EPA and d15N in their associations with different types of risk
factors. For example, associations with blood lipids and
lipoproteins were always stronger for EPA than d15N, and EPA
captured an inverse quadratic component to associations with
total cholesterol and LDL cholesterol that d15N did not.
However, d15N had stronger associations with hormones relating

to body mass and appetite (leptin, adiponectin, and ghrelin,
although associations with ghrelin and adiponectin were mar-
ginally nonsignificant: P = 0.0014, 0.070, and 0.06, respectively).
d15N was associated with IL-6, unlike EPA, and the association
of d15N with IGFBP-3 was 4-fold stronger than that of EPA.
Finally, there was an unexpected positive association of HbA1c
with EPA but not d15N; however, the association of EPA with
HbA1c became nonsignificant after adjustment for multiple
testing.

Associations between d15N, measures of obesity, and chronic
disease risk factors in the complete CANHR sample are
presented in Table 4. d15N had a weak positive association
with BMI, which subsequent analyses revealed to be in women
only [b (95% CI) = 0.61 (0.12, 1.1), P = 0.014]. Many of the re-
lations of chronic disease risk factors with d15N in the complete
CANHR sample were similar to those found in the validation
sample: positive associations with total cholesterol, HDL and
LDL cholesterol, and apo A-I; inverse associations with TGs and
leptin; and no association with glucose, HbA1c, insulin,
HOMA-IR, and CRP. However, in the larger complete CANHR
sample, d15N also captured inverse quadratic components to
associations with total cholesterol and HDL and LDL choles-
terol, similarly to EPA in the validation sample. We also detected
new associations with d15N in this larger sample; in particular,
inverse associations with blood pressure (SBP and DBP) and a
positive quadratic association with adiponectin, notable for a
large increase in adiponectin between quartiles 3 and 4 of d15N.
Because the association of d15N with leptin was inverse, the
leptin:adiponectin ratio was significantly lower in quartile 4 of
d15N (Fig. 1). The associations of d15N with BMI and SBP
became nonsignificant after multiple test correction, as did the
linear component of the association with adiponectin.

Discussion

This study compared associations with risk factors for chronic
disease among 3 biomarkers of marine food intake measured in
the RBCs of a Yup�ik population: EPA, DHA, and d15N. Among
these measures, EPA exhibited the most associations with
chronic disease risk, followed by d15N, and finally DHA.
Generally EPA and d15N had similar associations with chronic
disease risk factors; however, associations with blood lipids
and lipoproteins were stronger for EPA, whereas associations
with d15N were stronger for adipokines (leptin and adiponec-
tin), IL-6, and IGFBP-3. In the complete CANHR sample,
d15N detected inverse associations with blood pressure and a
positive quadratic association with adiponectin that were not
previously detected in this population. d15N also revealed a
weak positive association between traditional marine food
intake and BMI in women. This study highlights the value of
d15N as a practical measure for studying the associations
between traditional marine food intake and chronic disease
risk in Yup�ik people, and improves our understanding of
those relations.

The systematic differences in chronic disease risk factor
associations between d15N and EPA are interesting given the
strong association (r > 0.8) between these measures in the Yup�ik
population (5,6). EPA, DHA, and high d15N values derive from
traditional marine foods in this population; however, FAs (EPA,
DHA) derive from the lipid portion of those foods, whereas
marine protein (the source of elevated d15N) derives from the
lean portion of those foods. We found that EPA was a more
sensitive index related to associations of marine food intake with

TABLE 2 Risk factors for chronic disease for Yup�ik participants
in the validation sample and the complete CANHR sample1

Validation sample Complete CANHR sample

n2 Mean n2 Mean

BMI, kg/m2 363 29 6 6 772 28 6 6

Body fat, % 361 32 6 10 768 30 6 11

Waist circumference, cm 359 94 6 14 765 93 6 14

SBP,3 mm Hg 298 122 6 14 656 119 6 14

DBP,3 mm Hg 299 73 6 10 656 72 6 10

TGs,4 mg/dL 344 82 (78, 86) 723 77 (75, 79)

Total cholesterol,3 mg/dL 345 223 6 46 731 224 6 45

HDL cholesterol,3 mg/dL 344 62 6 17 731 63 6 17

LDL cholesterol,3 mg/dL 345 143 6 40 730 144 6 38

apo A-I, mg/dL 361 173 6 23 760 169 6 27

Glucose,3 mg/dL 354 95 6 11 749 93 6 10

HbA1c,3 % 353 5.5 6 0.4 750 5.5 6 0.4

Insulin,3,4 mU/mL 355 14.2 (13.5, 14.9) 740 12.3 (11.9, 12.8)

HOMA-IR3,4 355 3.3 (3.1, 3.5) 735 2.8 (2.7, 2.9)

IGF-1, mg/L 362 259 6 100 — —

IGFBP-3, mg/mL 362 4.4 6 1.0 — —

CRP,4 mg/dL 363 0.17 (0.15, 0.18) 754 0.09 (0.08, 0.10)

IL-6,4 pg/mL 359 0.08 (0.07, 0.09) — —

sTNFR2,4 mg/L 360 2.0 (1.9, 2.1) — —

Leptin,4 mg/L 363 8.2 (7.4, 9.1) 761 7.0 (6.5, 7.6)

Adiponectin, mg/mL 362 9 6 4 760 10 6 5

Ghrelin, pg/mL 361 434 6 174 760 415 6 153

1 Values are means 6 SDs or geometric means (95% CIs) for log-transformed

variables. CANHR, Center for Alaska Native Health Research; CRP, C-reactive protein;

DBP, diastolic blood pressure; HbA1c, glycosylated hemoglobin A1c; IGF-1, insulin-like

growth factor-1; IGFBP-3, insulin-like growth factor binding protein-3; SBP, systolic

blood pressure; sTNFR2, soluble tumor necrosis factor receptor type 2.
2 Sample sizes vary because of outliers, exclusions, and missing data.
3 Participants who reported taking blood pressure, cholesterol, or diabetes medication

were excluded from calculations of means of blood pressure, blood lipid, and glucose

homeostasis variables, respectively.
4 Variables were log transformed for analyses.
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blood lipid markers (e.g., HDL and LDL cholesterol, total
cholesterol, TGs, and apo A-I), most likely because EPA has
direct regulatory links to pathways involved in lipid metabo-
lism (28). However, there were other associations of chronic
disease risk factors with marine food intake to which d15N was
more sensitive, including hormones relating to adiposity, insulin
sensitivity and energy balance (leptin, adiponectin, and ghrelin),
IGFBP-3, and the inflammatory cytokine IL-6. This finding
raises the possibility that nutrients deriving from the lean
portion of the marine diet are more directly associated with these
specific chronic disease risk factors. This suggestion is supported
by a recent study showing that fish intake was more strongly
associated with adiponectin than equivalent long-chain n–3
PUFA intake as fish oil (29). These findings highlight the
likelihood that multiple nutrients from traditional marine foods
(fish and marine mammals) may be involved in chronic disease
risk or protection, not simply EPA and DHA (30).

Although the results of this study indicate differences
between d15N and EPA in risk factor associations, these
differences do not invalidate the use of d15N to evaluate
associations between marine n–3 PUFA intake and chronic
disease risk in Yup�ik people. In the validation sample, d15N
detected the same associations with blood lipids that EPA did,
with the exception of the quadratic component of associations

with total cholesterol and LDL cholesterol. However, in the
larger, complete CANHR sample, d15N did detect quadratic
associations with total cholesterol and HDL and LDL cholesterol,
suggesting that d15N will duplicate associations between EPA and
blood lipids when there is sufficient statistical power. Thus, this
study provides strong support for the use of d15N as a biomarker
of marine n–3 PUFA intake in studies of Yup�ik people.

The associations of marine food intake with HDL cholesterol
(+) and TGs (2) have been previously described for this pop-
ulation (9); however, by using d15N to assess relations with
chronic disease risk factors in a larger sample, we also found
new associations. d15Nwas negatively associated with both DBP
and SBP, consistent with findings from other populations based
on intake of fish oils (31). d15N exhibited a strong positive
quadratic association with adiponectin with an 18% increase
between quartiles 3 and 4, suggesting that very high marine food
intakes may be insulin-sensitizing and anti-inflammatory in this
population (32–36). Because d15N was also inversely associated
with leptin, there was a marked decrease in the leptin:adiponectin
ratio in the highest quartile of d15N. A low leptin:adiponectin
ratio is associated with improved insulin sensitivity and endo-
thelial function (32), and is characteristic of lower risk of
metabolic syndrome, independent of obesity (37,38). Thus, the
association of high marine food intakes with adipokines may

TABLE 3 Regression coefficients for associations of chronic disease risk factors with 3 biomarkers of marine food intake: EPA, DHA,
and d15N in Yup�ik participants in the validation sample (n = 298–363)1

n

EPA (20:5n3) DHA (22:6n3) d15N

b 6 SE bs
2 P b 6 SE bs

2 P b 6 SE bs
2 P

BMI (kg/m2) 363 20.1 6 0.2 20.04 0.54 20.4 6 0.2 20.11 0.08 0.4 6 0.3 0.09 0.13

Body fat (%) 361 20.1 6 0.3 20.01 0.82 20.4 6 0.3 20.06 0.18 0.3 6 0.3 0.04 0.35

Waist circumference (cm) 359 20.5 6 0.5 20.07 0.28 20.9 6 0.5 20.11 0.075 0.4 6 0.6 0.04 0.46

SBP3 (mm Hg) 298 20.4 6 0.6 20.05 0.49 20.1 6 0.6 20.01 0.89 20.6 6 0.7 20.05 0.41

DBP3 (mm Hg) 299 20.5 6 0.4 20.08 0.19 0.1 6 0.4 0.01 0.87 20.9 6 0.4 20.12 0.058

TGs3,4 (mg/dL) 344 28.5 (211.0, 26.0) 20.36 ,0.00015 24.0 (26.7, 21.2) 20.16 0.0061 26.7 (29.8, 23.4) 20.23 ,0.00015

Total cholesterol3 (mg/dL) 345 9.0 6 1.7 0.35 ,0.00015 7.6 6 1.5 0.29 ,0.00015 5.1 6 1.9 0.16 0.0066

Quadratic 21.7 6 0.5 20.18 0.00165

HDL cholesterol3 (mg/dL) 344 2.5 6 0.5 0.26 ,0.00015 1.6 6 0.5 0.17 0.0041 1.9 6 0.6 0.17 0.00255

LDL cholesterol3 (mg/dL) 345 8.8 6 1.5 0.39 ,0.00015 7.8 6 1.3 0.34 ,0.00015 5.2 6 1.6 0.18 0.00165

Quadratic 21.6 6 0.5 20.19 0.00075

apo A-I (mg/dL) 361 3.1 6 0.7 0.24 ,0.00015 2.3 6 0.7 0.18 0.00225 2.4 6 0.9 0.15 0.0069

Glucose3 (mg/dL) 354 0.4 6 0.4 0.06 0.30 0.5 6 0.4 0.07 0.21 0.5 6 0.4 0.06 0.24

HbA1c3 (%) 353 0.03 6 0.01 0.14 0.0098 0.05 6 0.01 0.20 0.00035 0.02 6 0.02 0.07 0.22

Insulin3,4 (mU/mL) 355 0.4 (22.4, 3.3) 0.01 0.80 0.9 (22.0, 3.8) 0.03 0.54 1.7 (21.7, 5.2) 0.05 0.33

HOMA-IR3,4 355 0.7 (22.4, 3.9) 0.02 0.65 1.3 (21.8, 4.6) 0.05 0.40 2.2 (21.5, 6.0) 0.06 0.24

IGF-1 (mg/L) 362 21.4 6 3.1 20.02 0.66 20.2 6 3.1 20.003 0.95 26.1 6 3.6 20.09 0.092

IGFBP-3 (mg/mL) 362 0.26 6 0.09 0.45 0.0042 0.07 6 0.03 0.13 0.036 1.3 6 0.3 1.92 ,0.00015

Quadratic 20.04 6 0.01 20.55 0.00035 20.07 6 0.02 22.04 ,0.00015

CRP4 (mg/dL) 363 21.3 (22.3, 212.9) 20.13 0.027 21.4 (22.5, 0.3) 20.14 0.015 21.2 (22.5, 0.1) 20.10 0.065

IL-64 (pg/mL) 359 2.4 (26.6, 12.2) 0.03 0.61 2.9 (26.1, 12.9) 0.04 0.54 21.4 (9.1, 35.0) 0.24 0.00045

sTNFR24 (mg/L) 360 20.002 (20.006, 0.003) 20.05 0.44 20.003 (20.007, 0.002) 20.08 0.20 0.003 (20.002, 0.009) 0.08 0.20

Leptin4 (mg/L) 363 23.0 (25.9, 0.04) 20.06 0.053 21.2 (24.3, 1.9) 20.03 0.43 25.7 (29.0, 22.3) 20.09 0.00145

Adiponectin (mg/mL) 362 0.2 6 0.1 0.07 0.23 20.1 6 0.1 20.03 0.65 0.3 6 0.2 0.10 0.070

Ghrelin (pg/mL) 361 29.2 6 6.1 20.09 0.13 22.0 6 6.1 20.02 0.75 213.5 6 7.1 20.11 0.058

1 Models were adjusted for age (continuous), sex, and smoking (yes/no). Models of blood pressure and biochemic risk factors were also adjusted for BMI (continuous). CRP,

C-reactive protein; DBP, diastolic blood pressure; HbA1c, glycosylated hemoglobin A1c; IGF-1, insulin-like growth factor-1; IGFBP-3, insulin-like growth factor binding protein-3; SBP,

systolic blood pressure; sTNFR2, soluble tumor necrosis factor receptor type 2.
2 Standardized bs.
3 Participants who reported taking blood pressure, cholesterol, or diabetes medication were excluded from analyses of blood pressure, blood lipid, and blood glucose/insulin variables,

respectively.
4 Variables were log transformed for analysis; estimates of b were back-transformed for ease of interpretation and were interpreted as percentage change in the chronic disease risk

factor for each percentage increase in n–3 FA or & increase in d15N.
5 Associations remained statistically significant after Bonferroni-Holm correction.
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contribute to the low prevalence of type 2 diabetes in this (20)
and other native Alaskan populations (39,40). Our data suggest
that d15N may be a particularly sensitive and practical marker
for these associations.

Aweak positive association of d15N with BMI suggests a link
between traditional marine food intake and obesity in women.
Traditional Yup�ik foods are high in fat and protein, and in
a subset of the CANHR population (n = 531), self-reported fat
intake increases from 32% to 44% of energy by quintile of
traditional food intake (41). A previous study found no relation
between traditional food intake and energy intake (41); how-
ever, self-reported energy intake is particularly prone to bias and
misreporting (42), which could obscure a modest association.
The mean BMI of women in the CANHR study is high (29.7
kg/m2) (20), and further investigation of the dietary factors
contributing to obesity in Yup�ik women is warranted.

This study has several key strengths and limitations. Intake of
marine foods varies widely in the study population, creating an
ideal scenario for testing associations of chronic disease risk
factors with candidate biomarkers of marine food intake.
However, biomarker-risk associations are likely to differ in
populations with lower intakes of marine foods, and validation
in a more representative population is required before applying
d15N as a measure of marine food intake more broadly. The
complete CANHR sample is large for a study using an objective

dietary biomarker to examine diet-health relations, which gave
us the power to detect new health benefits of traditional food
intake. However, because this study is cross-sectional, we cannot
determine causality or exclude the possibility of confounding
from other dietary components or lifestyle factors (e.g., physical
activity, which is known to influence HDL cholesterol) (43).
Traditional marine food intake is inversely associated with intake
of market foods, including sugars (44). A recent study from our
group found associations of sugar intake with circulating lipids,
blood pressure, adiponectin, and leptin that were the reverse of
those described here (24), and it is possible that covarying sugar
intake may contribute to associations with chronic disease risk.
However, associations of EPA and DHA intake with blood lipids
and adipokine expression have strong a priori support (45,46),
and the association of marine food intake with adiponectin has a
different shape and a significantly higher magnitude compared
with that of sugar intake with adiponectin (24). Thus, we feel it is
likely that marine food intake contributes significantly to these
associations, particularly those with blood lipids and adipokines,
but that further longitudinal studies will be needed to better
clarify the contribution of specific nutrients to disease risk.

In summary, d15N shows similar associations with most
chronic disease risk factors to RBC EPA and DHA. Associations
with blood lipids and lipoproteins tended to be strongerwith RBC
EPA, whereas associations with blood pressure, adipokines, and

TABLE 4 Associations of chronic disease risk factors with d15N, presented as least square means by quartile of d15N and regression
coefficients, in Yup�ik participants in the complete CANHR sample1

d15N, & Linear

n Quartile 1 (n = 193) Quartile 2 (n = 195) Quartile 3 (n = 193) Quartile 4 (n = 192) b P

BMI, kg/m2 772 28.5 6 0.5 27.8 6 0.4 28.0 6 0.4 29.0 6 0.5 0.3 6 0.2 0.037

Body fat, % 768 30.1 6 0.6 29.8 6 0.6 30.0 6 0.6 30.8 6 0.6 0.4 6 0.2 0.057

Waist circumference, cm 765 93.2 6 1.1 93.2 6 1.1 92.3 6 1.0 94.3 6 1.1 0.6 6 0.4 0.12

SBP,2 mm Hg 656 121.5 6 1.1 119.8 6 1.0 117.0 6 1.0 117.2 6 1.1 21.0 6 0.4 0.022

DBP,2 mm Hg 656 73.6 6 0.8 72.0 6 0.8 71.3 6 0.9 69.4 6 0.9 20.9 6 0.3 0.00174

TGs,2,3 mg/dL 723 79.3 (74.6, 84.4) 82.5 (77.8, 87.5) 76.2 (72.1, 80.1) 68.7 (64.7, 73.0) 25.1 (26.8,22.6) ,0.00014

Total cholesterol,2 mg/dL 731 212.3 6 3.4 223.0 6 3.2 235.6 6 3.1 230.9 6 3.2 56.1 6 9.6 ,0.00014

Quadratic 22.7 6 0.5 ,0.00014

HDL cholesterol,2 mg/dL 731 59.2 6 1.2 59.5 6 1.2 64.4 6 1.2 65.9 6 1.3 42.4 6 8.4 ,0.00014

Quadratic 22.0 6 0.4 ,0.00014

LDL cholesterol,2 mg/dL 730 133.8 6 2.9 145.5 6 2.8 153.7 6 2.7 151.3 6 2.9 13.6 6 3.6 0.0004

Quadratic 20.6 6 0.2 0.00084

apo A-I, mg/dL 760 163.5 6 2.0 164.7 6 1.9 172.7 6 1.9 172.7 6 2.0 19.2 6 5.8 0.0014

Quadratic 20.9 6 0.3 0.00294

Glucose,2 mg/dL 749 93.1 6 0.8 92.3 6 0.8 94.2 6 0.7 94.4 6 0.7 0.3 6 0.3 0.23

HbA1c,2 % 750 5.5 6 0.02 5.5 6 0.03 5.5 6 0.03 5.5 6 0.02 0.0 6 0.01 0.70

Insulin,2,3 mU/mL 740 12.4 (11.5, 13.3) 12.2 (11.4, 13.0) 12.0 (11.3, 12.7) 11.8 (11.1, 12.7) 21.7 (24.2, 0.4) 0.17

HOMA-IR2,3 735 2.8 (2.6, 3.0) 2.7 (2.6, 2.9) 2.8 (2.6, 2.9) 2.7 (2.5, 2.9) 21.7 (4.4, 0.6) 0.21

CRP,3 mg/dL 754 0.10 (0.08, 0.12) 0.11 (0.09, 0.13) 0.09 (0.07, 0.10) 0.08 (0.07, 0.10) 24.3 (29.8, 1.5) 0.14

Leptin,3 mg/L 761 7.2 (6.6, 7.8) 7.0 (6.5, 7.6) 6.8 (6.3, 7.4) 6.2 (5.7, 6.7) 25.1 (27.7, 22.4) 0.00024

Adiponectin, mg/mL 760 9.3 6 0.4 8.5 6 0.4 9.4 6 0.4 11.0 6 0.4 22.7 6 1.1 0.017

Quadratic 0.2 6 0.1 0.00274

Ghrelin, pg/mL 760 419.2 6 12.2 407.3 6 11.6 408.1 6 11.0 399.0 6 11.8 26.2 6 4.1 0.13

1 Models were adjusted for age (continuous), sex, smoking (yes/no), and BMI (continuous), with the exception of models for BMI, body fat, and waist circumference, which were

not BMI-adjusted. Means of chronic disease risk biomarkers by d15N are least square means (6SEs), adjusted for age (continuous), sex, BMI (continuous), and smoking (yes/no).

Geometric means (95% CIs) are given for log-transformed variables. Slope of the regression model (b) is given as b 6 SE, or b (95% CI), where dependent variables were log

transformed. CANHR, Center for Alaska Native Health Research; CRP, C-reactive protein; DBP, diastolic blood pressure; HbA1c, glycosylated hemoglobin A1c; SBP, systolic blood

pressure.
2 Participants who reported taking blood pressure, cholesterol, or diabetes medication were excluded from analyses of blood pressure, blood lipid, and blood glucose/insulin

variables, respectively.
3 Variables were log transformed for analysis; estimates of b were back transformed for ease of interpretation and were interpreted as percentage change in the chronic disease

risk factor for each percentage increase in n–3 FA or & increase in d15N.
4 Associations remained statistically significant after Bonferroni-Holm correction.
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growth factors were stronger with d15N. These differences
notwithstanding, the associations were similar enough for d15N
to be used as a valid proxy measure of EPA and DHA intake in
studies of chronic disease risk. Because measurement of d15N is
relatively simple and has high throughput, it is much more
feasible to apply to larger studies than measurement of RBC FAs.
Whenwe used d15N to assay marine food intake in a larger Yup�ik
study population, we found new associations with blood pressure
and adiponectin that were not previously detected. The finding
with adiponectin is particularly significant because it may help to
explain the low prevalence of type 2 diabetes in Yup�ik people
despite a high prevalence of obesity.
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