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Chapter 8

Optimized Negative-Staining Protocol for Lipid–Protein
Interactions Investigated by Electron Microscopy

Jianfang Liu, Hao Wu, Changyu Huang, Dongsheng Lei, Meng Zhang,
Wei Xie, Jinping Li, and Gang Ren

Abstract

A large number of proteins are capable of inserting themselves into lipids, and interacting with membranes,
such as transmembrane proteins and apolipoproteins. Insights into the lipid-protein interactions are
important in understanding biological processes, and the structure of proteins at the lipid binding stage
can help identify their roles and critical functions. Previously, such structural determination was challenging
to obtain because the traditional methods, such as X-ray crystallography, are unable to capture the
conformational and compositional heterogeneity of protein–lipid complexes. Electron microscopy
(EM) is an alternative approach to determining protein structures and visualizing lipid–protein interactions
directly, and negative-staining (OpNS), a subset of EM techniques, is a rapid, frequently used qualitative
approach. The concern, however, is that current NS protocols often generate artifacts with lipid-related
proteins, such as rouleaux formation from lipoproteins. To overcome this artifact formation, Ren and his
colleagues have refined early NS protocols, and developed an optimized NS protocol that validated by
comparing images of lipoproteins from cryo-electron microscopy (cryo-EM). This optimized NS protocol
produces “near native-state” particle images and high contrast images of the protein in its native lipid-
binding state, which can be used to create higher-quality three-dimensional (3D) reconstruction by single-
particle analysis and electron tomography (e.g. IPET). This optimized protocol is thus a promising hands-
on approach for examining the structure of proteins at their lipid-binding status.

Key words Lipoprotein structure, Lipoprotein morphology, Electron microscopy, Optimized
negative-staining protocol, Negative-staining electron microscopy

1 Introduction

Lipid-protein interactions can be found between the membrane
proteins and/or apolipoproteins and lipids, which can function as
pumps, transporters, cell-to-cell communication messengers [1], or
lipid transfer vehicles for lipid metabolism [2]. To understand the
function of these biological complexes, studying the structure of a
protein at the lipid-binding stage is crucial. Due to the differences
in size, shape, and the lipid components, determining its structure
is extremly tedious. However, the dynamic nature of lipoproteins
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plays a vital role for cholesteryl transport in cardiovascular disease
(CVD).

Structural determination of proteins at the lipid-binding stage
is difficult to achieve by X-ray crystallography because of the com-
positional heterogeneity and conformational alterations of the pro-
teins. Electron Microscopy (EM) is an alternative approach that has
been used more frequently to determine protein structure. Among
various EM techniques, cryo-crystallography has been successfully
applied in determining the “native-state” structure of proteins in
the lipid-bound form under frozen conditions [3]. However,
this technique is quite difficult to perform because it requires
advanced level of equipment, expertise, and most importantly,
two-dimensional (2D) crystallization of the proteins, which is still
considered a piece of art rather than a native structure.

Single-particle cryo-EM is another alternative approach that
has become a popular method used to study protein structure at
near atomic resolution [4, 5]. It is used as the only technology
capable of directly visualizing proteins at the native state. Due to
the radiation damage, cryo-EM imaging is performed under a
low-illumination dose and low-temperature conditions. As a result,
images contain a relatively low signal-to-noise ratio [6]. By using
single-particle cryo-EM, the images of hundreds to thousands of
particles embedded in vitreous ice were obtained, and are then
grouped and averaged to reduce the noise and increase image
contrast before being reconstructed into an averaged 3D map
[7, 8]. Usually, this averaging process improves the image contrast
[9, 10], while at times it is not an useful approach to obtain high
quality images on certain different types of proteins with heteroge-
neous features [11], such as high-density lipoprotein (HDL), anti-
bodies, and DNA.

Negative staining (NS) is a well-established approach fre-
quently used in many research laboratories. NS-EM can be used
to directly visualize individual particles, such as proteins, viruses,
and even very thin cell slice specimens. It also facilitates the study of
morphology and structure of these particles, along with lipid-
binding forms of apolipoprotein [11–15]. NS is more resistant to
radiation compared to cryo-EM [12] and has a much higher con-
trast [13, 14]. A disadvantage of NS is that, however, the protocols
are differ from one another, such as using different staining
reagents, different dilution buffer and procedures to prepare the
specimens. Usually, it can generate the artifacts such as rouleaux in
lipid-related samples [16–19]. For example, phosphotungstic acid
(PTA) is used in conventional NS at high salt concentrations in
buffer, but NS experiments with the apoE4-palmitoyl-oleoylpho-
sphatidylcholine (POPC) phospholipid particle and liposome vesi-
cles showed that the particles were stacked together by PTA
connected by lipid surfaces of neighboring particles [11]. As a
result, Ren and his colleagues refined the NS protocols and devel-
oped an optimized NS (PoNS) protocol that minimizes rouleaux
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formation usually seen in the conventional NS-EM studies. Fur-
thermore, this method was utilized to report the structure and
morphology of apoE4-POPC [11], reconstituted HDL (rHDL)
apoA-I 7.8-nm [12], 8.4-nm [12], 9.6-nm discoidal rHDL
[12, 20–25], 9.3-nm spherical rHDL [12], human plasma HDL
[26–30], low-density lipoprotein (LDL) [26, 30–32],
intermediate-density lipoprotein (IDL) [12, 28, 29], very
low-density lipoprotein (VLDL) [12], a hydrophobic glycoprotein
such as, 53 kDa cholesteryl ester transfer protein (CETP) [26–30,
33–35], DNA complexes [36–38], RNA complexes [39], neuron
proteins [40–44], and the antibody IgG [20, 32, 34, 45–51]
(Fig. 1). In comparing to conventional NS protocol, OpNS specifi-
cally used following procedures, (1) 1% (w/v) uranyl formate
(UF) as negative staining reagent, (2) 0.02 μm filtered the staining
reagent right before using it, (3) Dulbecco’s phosphate-buffered
saline (DPBS) as dilution buffer, which specifically removed the
Mg2+ and Ca2+, (4) water washing step included, (5) staining
process being conducted in dark to avoid the precipitation of UF
under light, (6) drying the sample under N2 gas to avoid potential
sample deformation. As a result, the OpNS protocol allows the
study of morphology and structure of individual particles by mini-
mizing the rouleaux formation and increasing image resolution in
2D structures, which is highly cooperative for subsequential 3D
reconstruction models.

The following OpNS protocol is refined from the conventional
NS [13], which eliminates rouleaux artifacts of lipoprotein parti-
cles, and has been statistically validated as a method to determine
lipoprotein particle shapes and sizes [11, 12, 28]. It is performed by
placing a drop of the lipoprotein solution on a glow-discharged
carbon-coated copper grid and then removing the excess solution
by blotting with filter paper (Fig. 2). Immediately after three
washes with deionized water, the EM carbon-coated grid (Fig. 2)
is stained with uranyl formate (UF) three times (Fig. 2). Following
the staining, the grid is blotted again with filter paper, and then
air-dried. Since the UF solution is light sensitive and unstable, this
step of operation should be performed in the dark [11, 12]. Finally,
the prepared grid is stored at room temperature before being used
for EM imaging [11, 12] (Fig. 2).

2 Materials

1. Uranyl formate: UO2(CHO2)2∙H2O.

2. 1 NORM-JECT 1 mL Tuberculin: Syringe, Luer.

3. Sterile syringe filter: pore size of 0.02 μm (Anotop 10).

4. Protein sample, 2.5 μL (~0.005 mg/mL, protein).

5. Dulbecco’s Phosphate Buffered Saline.
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Fig. 1 Morphology of macromolecules by optimized negative-staining EM.
Micrographs of apoE4-POPC (A), α-HDL from plasma (B), VLDL (C),
Calsyntenin-3 (D), Glycyl-tRNA Synthetase (hGlyRS) (E), the IgG antibody (F),
Cholesteryl ester transfer protein (CETP, 53 kDa) (G), DNA origami (H) and



6. Parafilm: 400 � 400.

7. Ice.

8. Cu-300 CN: Thin carbon-coated 300 mesh copper grids
(Pacific Grid-Tech, San Francisco CA).

9. Dumont Style#5 Medical Tweezers with Clamping ring.

10. Ultrapure water: Obtained from Millipore Synthesis unit.

11. Filter Papers: Qualitative circles, 90 mm (Whatman).

�

Fig. 1 (continued) DNA-nanogold (I) obtained by EM using the optimized
negative-staining protocol. Micrographs by EM for all specimens (A–I) men-
tioned above are shown by survey view (left), selected individual particles
(middle) and zoom-in particles (right). Bar ¼ 20 nm (left), 5 nm (middle), 2 nm
(right), except h, in which bars are 40 nm (left), 20 nm (middle), and 10 nm
(right). Adapted from refs. 11, 12, 30, 36, 37, 41, 48 and 50

Fig. 2 Diagram of the OpNS protocol procedure. EM grid manipulations with staining reagent, filter paper, and
water contacts in chronological order (top cartoon), grid in ice box incubation at 4 �C (left bottom), rapidly
contact with stain or water from Parafilm in flat icebox chamber (middle top), three drops of water are
added followed by three drops of staining reagent being added on Paraffin film in flat icebox chamber with EM
grid lying on top of the last UF staining drop (middle bottom). Notably, the operation must be performed under
low-illumination condition. Adapted from refs. 12 and 28
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12. Aluminum foil.

13. Petri dishes.

14. EMS 100: Glow discharge unit.

15. Icebox: 400 � 500, with lid, insulated.

16. Flat Ice Chamber: Leveled, insulated, uniformly flat, large
enough to hold the 400 � 400 Parafilm, and contains a lid.

3 Methods

1. Prepare 100 mL of a 1% (w/v) solution of UF powder in
deionized water and stir it overnight in a dark room at room
temperature, and then store the stock solution in a bottle
covered with aluminum foil.

2. Filter 5 mL of the 1% solution with the NORM-JECT syringe
and the filter of 0.02 μm, and aliquot it into 2 mL vials,
wrapped in aluminum foil to keep the solution in the dark.
Immediately after aliquoting the 1%UF solution, place the vials
into liquid nitrogen by using a long handle forceps (seeNotes 1
and 2). Store the 2mL vials of the 1%UF solution in an�80 �C
freezer until the usage.

3. Before use, thaw a vial in a 4 �C water bath, and make sure it
remains wrapped (cover it) in aluminum foil to keep the vial in
the dark.

4. Once the UF solution is thawed and in liquid form, filter the
UF solution again, using a 1 mLNORM-JECT syringe and the
Anotop filter of 0.02 μm pore size, then cover the vial contain-
ing filtered solution with aluminum foil and store it on ice or at
4 �C (see Note 2).

5. Place a piece of Paraffin film on ice in a uniformly leveled
manner into the flat ice chamber, and cover it with
aluminum foil.

6. Designate three rows of six small circular regions in a piece
of Paraffin film and then place ~35 μL drops of deionized water
in the left three circle regions in each row. Subsequently place
~35 μL drops of the filtered UF in the right three small circle
regions in each row (see Note 3).

7. Fill the icebox with ice, cover the icebox, and let it standing for
~10 min.

8. Obtain carbon-coated grids with Dumont™ #5 medical
tweezers with clamping ring, perform glow discharge with an
EMS 100, and place the grids on a clean filter paper in a petri
dish and cover the grids (see Note 4).

9. Open the icebox and hold the grid with tweezers at a 45� angle
at one inch above the surface; place ~3 μL of the lipoprotein
sample on the grid and incubate for 1 minute (see Note 5).
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10. Since the UF solutions are light sensitive and unstable, the
following steps 11–14 of operation must be performed in
the dark.

11. After ~1 min, remove the excess amount of solution by gently
touching the edge of the grid with filter paper. Wash the grid by
briefly by placing the surface of the grid with a drop (~35 μL)
of deionized water on Parafilm and then blot the grid with filter
paper to remove the excessive amount of the solution. The
touching and blotting steps are performed three times quickly,
and each step is washed with a clean drop of deionized water.

12. Perform the same touching and blotting steps with three suc-
cessive drops (~35 μL) of 1% UF solution applied on Parafilm,
and incubate for 10 s, then remove the excess amount of solu-
tion by blotting with water. Gently dip the grid with the last UF
drop with the sample side of the grid facing down for 1–3min in
the dark (close the lid of the flat ice chamber) before removing
the excess amount of staining reagent by blotting again with the
entire backside parallel to the grid (noncarbon side) with filter
paper. Subsequently, air-dry the sample by a low-flow of nitro-
gen gas at room temperature (see Fig. 2, Note 6).

13. Store the grid on filter paper in a petri dish and partially cover
it for ~30 min.

14. Send the grid to EM or store it in a grid storage box (see
Note 7).

4 Notes

1. UF is sensitive to light, so this step of procedure should be
performed in the dark. UF is also radioactive and should be
handled accordingly under the safety guidance at the Institute.
The waste of the UF should be placed in an appropriate waste
container in compliance with the appropriate waste manage-
ment system guidelines of the lab.

2. During filtration, filter the solution very slowly, and ensure that
the UF is covered by aluminum foil. Be careful to use the correct
side of the filter when it is attached to the syringe. Discard the
filter and the syringe as radioactive waste components.

3. Ensure that the Parafilm is leveled when placing it into the flat
ice chamber. Use paperweights as necessary to hold the Paraf-
ilm down onto the ice. Make circles/wells with care and do not
place them too close to each other. Rows of circles should be
made according to the number of samples, while having a few
extra ones is always best practice in case of any. Divide circles
into two sections of three, one is for water, and the other one is
for UF. Again, UF is light sensitive, so close the lid whenever
possible.
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4. Before handling carbon-coated grids, clean the tweezers by
lightly wiping them on unused filter paper. Handle grids with
tweezers so that the tweezers grip the metal edge of the grid.
Do not bend grids, and ensure carbon-coated sides of grids are
always faced up. Refer to your instrument manual to perform
the glow discharge appropriately with the EMS 100. Alternate
glow dischargers or plasma cleaners may be used. Be careful not
to clamp down too hard on grids, as they bend easily.

5. Ensure the sample (protein portion) concentration is
~0.005–0.01 mg/mL, and use Dulbecco’s phosphate buffered
saline to dilute if necessary. When placing a sample on the grid,
be careful to approach the grid at an angle and close lid when
possible in an icebox to slow down any reactivity of the grid
with air (hence the low temperature placement of the grid at
~4 �C or less). Multiple grids can be held at a time in an icebox
if desired, but contacting with ice must be avoided at all times.

6. Prepare filter papers beforehand, and cut them into small sec-
tions to avoid confusion, and designate one paper for water,
and one for UF. Properly discard UF-contaminated paper
according to lab guidelines. Be extremely careful to blot the
grid by touching the side of grid with filter paper, and ensure
the carbon side of the grid is contacting deionized water, and
UF stain. Above operations must be performed in the dark
since the UF solutions are light sensitive and unstable. It is
important to note that the thickness of the stain of the carbon-
coated grid is not even. In some areas, the stain is thicker than
in other areas. However, the best images of proteins have
generally been obtained from areas of thicker staining
(Fig. 3). An area of thicker stain looks like a “cloud” on the
grid at low magnification (<400�).

7. For storage of the grids, excess heat, dryness, and high humid-
ity conditions must be avoided.

Fig. 3 The best EM imaging area. The best imaging areas of the protein are generally the ones
containing thick staining. Micrographs showing cloudy areas are likely the locations to obtain EM images
for lipoproteins. Cloud areas designating lipoprotein’s locations are highlighted in a box at 80� magnifica-
tion (left), same designated area is further magnified at 4K� (the second from the left), and 80K� (middle),
it is zoomed in at 80K� (the second from the right) and further zoomed in to a single particle scale (right).
Adapted from refs. 11, 12, 28 and 29
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