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On Path-Lifting Mechanisms and Unwinding in
Quaternion-based Attitude Control

Christopher G. Mayhely Ricardo G. Sanfelice and Andrew R. Teél

Abstract—The unit quaternion is a pervasive representation of
rigid-body attitude used for the design and analysis of feellack
control laws. Because the space of unit quaternions congties
a double cover of the rigid-body attitude space, quaternion
based control laws are often—by design—inconsistent, i,ethey
do not have a unique value for each rigid-body attitude. In-
consistent quaternion-based control laws require an addibnal
mechanism that uniquely convert an attitude estimate into tis
guaternion representation; however, conversion mechaniss that
are memoryless—e.g., selecting the quaternion having ptise
scalar component—have a limited domain where they remain
injective and, when used globally, introduce discontinuiies into
the closed-loop system. We show—through an explicit con-
struction and Lyapunov analysis—that such discontinuities can
be hijacked by arbitrarily small measurement disturbancesto
stabilize attitudes far from the desired attitude. To remed/
this limitation, we propose a hybrid-dynamic algorithm for
smoothly lifting an attitude path to the unit-quaternion space.
We show that this hybrid-dynamic mechanism allows us to di-
rectly translate quaternion-based controllers and their asymptotic
stability properties (obtained in the unit-quaternion space) to
the actual rigid-body-attitude space. We also show that whe
quaternion-based controllers are not designed to accountof
the double covering of the rigid-body-attitude space by a uit-
guaternion parameterization, they can give rise to the unwiding
phenomenon, which we characterize in terms of the projectio of
asymptotically stable sets. Finally, we employ the main rests to
show that certain hybrid feedbacks can globally asymptotially
stabilize the attitude of a rigid body.

I. INTRODUCTION

can robustly globally asymptotically stabilize a particular
attitude [8].

Often, unit quaternions are used to parameti$£&(3).
While this parametrization yields the minimal globally ron
singulat parametrization of rigid-body attitude [9], its state
space,S? (the set of unit-magnitude vectors R?) is a
double cover ofSO(3). That is, there are two (antipodal)
unit quaternions corresponding to every rigid-body aditu
This creates the need to stabilize a disconnected set in the
covering space [5], which has its own topological obstruc-
tions [10]. As discussed in [6], these topological subtieti
can cause confusion and sometimes, lead to dubious claims
regarding the globality of asymptotic stability (see e.g], [
[11]). Nevertheless, unit quaternions are still used by ynan
authors (including the authors of this paper) today to desig
feedback control algorithms for attitude control.

A feedback controller designed using a quaternion repre-
sentation of attitude may not lm®nsistentwith a control law
defined onSO(3). That is, for every rigid-body attitude, the
guaternion-based feedback may take on one of two possible
values. When this is the case, analysis for quaternionebase
feedback is often carried out i with a lifted dynamic
equation. However, such analyses are not directly relaied t
a feedback system defined 60(3). This obviously begs the
following questions. How is a unit quaternion representati
obtained from available measurements? On what state-space
is an inconsistent quaternion-based feedback defined? How

Controlling the attitude of a rigid body is one of thdS stability analysis done in the covering space related to a

canonical nonlinear control problems, with applicatioms i
aerospace and publications spanning many decades [1]—{5]@

A fundamental characteristic of attitude control that impa
a fascinating difficulty is the topological complexity ofeth

stability result for the actual system?

iven an estimated attitude, it is a fairly simple operation
0 compute the corresponding set of unit quaternions (gge e.
[12], [13]); however, the process of selecting which quaitar

underlying state space of rotation matric6€)(3): a bound- 0 use for feedback is a less obvious operation. As noted
aryless compact manifold that is not diffeomorphic to an¥’ [4], it is often the case that the quaternion with positive
vector space. This property 60(3) precludes the existence Scalar’ component is used for feedback. This operation is
of a continuous time-invariant state-feedback control faat NOn-global and discontinuous. As we show in this work, the

globally asymptotically stabilizes a particular attitu@é, [7].

act of paring such a discontinuous quaternion-selectibarse

For the same reason, no periodic or discontinuous feedb¥éfh @ widely used inconsistent quaternion-based feedback
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opens the door for an undesirable chattering effect. In, fact
we construct an explicit disturbance—defined $6(3)—
that exploits the discontinuity to stabilize a region abthé
manifold of 180° rotations with zero angular velocity.

To remedy this behavior, we propose a hybrid-dynamic
algorithm for smoothly lifting path fromSO(3) onto S3.
Our approach allows us to make an equivalence between any

1The term “globally nonsingular” here means that the cogprimap from
S3 to SO(3) is everywhere a local diffeomorphism.



asymptotic (in)stability result for a closed-loop systamthe asymptotically stable sets and suggests how to avoid the
covering space and a corresponding (in)stability resultiie behavior. Finally, we present conclusions in Section VIII.
actual plant. This justifies carrying out stability anagysn
a unit-quaternion setting; however, when a quaternioredas Il. PRELIMINARIES
feedback does not respect the two-to-one coverin§@(3), )
this translated stability result may not be desirable. A. Notation

Often, quaternion-based feedbacks are designed to g&bili In this paperR (R>o) denotes the (nonnegative) real num-
only one of two quaternions corresponding to the desiréers,R” denotesn-dimensional Euclidean space, aRé"*"
attitude. When these inconsistent feedbacks are pairdd wienotes the vector spaceafx n real matrices. Given vectors
a path-lifting algorithm, they cause the so-called “unvitiigd =z, y € R™ and matricesi, B € R™*"™, their inner products are
phenomenon,” where the feedback can unnecessarily rbeatedefined asz,y) := "y and (A, B) := trace(A' B), respec-
rigid body through a full rotation. This behavior was disses tively. The 2-norm of a vectay € R" is |y| = 1/(y, ) and the
at length in [6] in terms of lifts of paths and vector fieldrobenius norm of a matrid € R™*™ is ||A||r = /(4, A).
from SO(3) to S®. In this paper, we characterize unwinding imrhe n-dimensional unit sphere embeddedHfi* is denoted
terms of asymptotically stable sets in an extended stateespasS™ = {z € R"*! : |z| = 1}, the closed unit ball irR" is
projected onto the plant state space. B = {z € R": |z| < 1}, and the closed unit ball iRR™*" is

In practice, an explicit measurement of attitude is n@ = {A € R™*" : |A||r < 1}. A set-valued map is denoted
available. Instead, the attitude must be reconstructeth frais =. That is, F : X = Y indicates that for each € X,
measurements of known inertial-frame vectors expressed fiiz) C Y.
body-frame coordinates [14]. With measurements of at leastGiven differentiable functionsh : R* — R, and k :
two such linearly independent vectors, the attitude can "™ — R, we denote their gradients &h : R* — R”
algebraically reconstructed by in various ways, such asrspl andVk : R™*" — R™*" That is,
a least-squares problem (often called “Wahba's probler])[1

[16], [17]. When using only a static attitude-reconstrooti Oh(z) Ok (z) Ok(z)
algorithm, a path-lifting mechanism (like the one herein-pr Oz drn 9z 1n
posed) is necessary to choose the quaternion consisteatly i VA(z) = | Vk(z) = | " :
inconsistent feedback is used. Alternatively, dynamidedr Oh(x) Ok(x) Ok(x)
can be used to estimate the attitude from vector obsengtion 0Tn OTm1  OTmm

(or IMU measurements) or from the results of static attitude 1)

attitude-reconstruction algorithms [18], [19]. Regassleof L€ty : R — R" andz : R — R™*" be differentiable
the process that ultimately forms an estimate of attitudginctions and definer = hoy and = koz. Then, the matrix
the message of this work is clear: when an inconsistefftlculus by vectorization [20] yields the consistent riotat
guaternion-based feedback is used, a dynamic mechanismis . .\ _ T .

needed to resolve the ambiguity in which quaternion is used O.é(t) = VAly®) §0) T_.Wh(y(t))’y(t» )

for feedback. Furthermore, regardless of the mechanistn tha B(t) = trace(VE(z(t)) " 2(1)) = (VE(z(1)), £(1)) -

fills this role (e.g. the hybrid algorithm proposed herein or

a dynamic filter as in [18], [19]), the additional state(s) oB. Attitude kinematics, dynamics, and representation by un
the mechanism should be considered to correctly assess dbaternions

stability properties of the closed-loop system and to rule o

any possibility of unwinding. of a body-fixed frame to an inertial frame and is represented

This paper is orgamzed as .fOHOWS' Section I prpwdegy a 3 x 3 orthogonal matrix with unitary determinant: an
the background material for attitude control and hybrld-sy%Iement of the special orthogonal group of order three,

tems used in this paper. Section Il reconstructs the “selec
the-quaternion-with-positive-scalar-component” metiia in SO(3) = {R eR¥>3:RTR=1, detR = 1} )
terms of a static map that selects a quaternion accordingto a ) . . o
metric. In Section IV we show by Lyapunov analysis thatl he kinematic and dynamic equations of a rigid body are
when composed with a widely used inconsistent feedback, B R|

. . . = R w] (2a)
the aforementioned quaternion-selection scheme makes the x
closed-loop system susceptible to arbitrarily small measu
ment disturbances that can act to stabilize attitudes an fr

The attitude of a rigid body is defined as the relative rotatio

Jw = [Jw], w+T, (2b)

respectively, whereR € SO(3) is the attitudew € R3 is

_ L Mhe the angular velocity given in the body-fixed frame=
system that smoothly lifts paths froB0O(3) to S*. We couple JT > 0 is the inertia matrix; € R? is an external torque,

this system with a quaternion-based feedback in Section ¥4 he cross product between vectgrs € R?, is defined
and establish an equivalence of stability between two dlossy a matrix multiplicationy x z = [y].. » where;
: = [y, =,

systems: one is defined in the unit-quaternion space and the

other one is defined in the rigid-body-attitude space exdnd 0 -y 1y
by a unit-quaternion memory state. Section VIl discusses Wyl = | u3 0 —-wn
the unwinding phenomenon in terms of the projection of —Yy2 Y1 0



Members ofSO(3) are often parametrized in terms of dor almost allt € [0,1], where the maps : R® — R* and
rotation# € R about a fixed axisu € S? by the so-called A :S?* — R**3 are defined as
Rodrigues formula: the malg : R x S — SO(3) defined as {O} @ { T }
q) = .

UB,u) =T +sin(0) [u], + (1 —cos(d)) [u]>. (3 nl + e,
The unit-quaternion parametrization 60(3) associates . Hybrid systems framework
every element 080(3) with two elements of3. In the sense

of (3), a unit quaternion is defined as In this work, we appeal to the hybrid systems framework

[23], [24]. This is in part due to the fact that the authorsénav
q=[n ET}T — + [cos(6/2) sin(9/2)uT}T es® (4) developed quaternion-based hybrid feedback controlteas t
achieve global asymptotic stabilization of rigid-bodyitatie
and represents an elementsd(3) through the mafR : S* — in [5], [25], [26] and also because the path-lifting alghnit
SO(3) defined as presented here is hybrid. A hybrid system allows for both
B 9 continuous and discrete evolution of the state. A hybridesys
Rlq) =1+ 2nlel; +2[d - ) 3¢ with statex € R" is defined by four objects: #low map
Note the important property that faf # g, € S3, R(q1) = F:R" =R", gove_rning continuous evolution of the state by
R(qz) if and only if ¢; = —¢2. We denote the double-valued@ differential inclusion, gump map G : R" = R", governing

inverse mapQ : SO(3) = S? as discrete evolution of the state by a difference inclusiofipa
set C C R", dictating where continuous state evolution is
Q(R) ={q€S*:R(q) = R}. (6) allowed, and gump set D c R", dictating where discrete

state evolution is allowed. We write a hybrid system in the

Conveniently, we will often write a quaternion as a pgie
compact form,

(n, ¢), rather than as a vector.
With the identity elementi = (1,0) € S% each unit teF(xr) zeC
quaterniong € S® has an inversg ! = (1, —¢) under the st €Gx) zeD.
guaternion multiplication rule
T Often, we will refer to a hybrid system by its data Hs=
41 ©g2 = [7]1772 - 6;62 (77162 + €1 + [e1] 62)—1 ) (F,G,C,D).
Solutions to hybrid systems are defined bybrid time
whereq; = (n;,¢;) € R* andi € {1,2}. Then, the magR is domainsand are parametrized y the amount of time spent

a group homomorphism satisfying flowing and j, the number of jumps that have occurred. A
compact hybrid time domaiis a setF C R>g x Z>q of the
R(q1)R(g2) = Rlq1 © q2)- M torm =0T
J
The manifoldS? is a covering spacdor SO(3) and R : E = U([t”t'ﬂ]’j)’ 9)
S* — SO(3) is the covering map Precisely, for everyR ¢ 20 7

SO(3), there exists an open neighborhodc SO(3) of R
such thatQ(U) = O; U Oy, where0;,0, C S? are open,
01N Oy =, and for eachk € {1,2}, the restriction ofR

where J is a nonnegative integed, = tg <t; < --- < tj41.

We say thatF is ahybrid time domairif, for each(7’, J) € E,

to Oy, is a diffeomorphism. In particulafR is everywhere a the se_tE N ([0, 7] > {0, 1_’ o J}) is a_compgct hybrid time
domain. On every hybrid time domain, points are naturally

local diffeomorphism. , PR ) .
A fundamental property of a covering space is that &rdered agt,j) < (s, k) if t+j < s+kand(t,j) < (s,k)

continuous path in the base space can be uniquely “lifte nt+J <.S+k' . . n
to a continuous path in the covering space once a base poirf%‘ hyb”d arcis a funct|o_n z i domw = R , where
is specified. In terms 080(3) andS?, for every continuous dom is a _hybnd time domain and, fo_r each flxgdt_he map
path R : [0, 1] — SO(3) and for everyp € Q(R(0)), there t— x(t,7) is a locally absolutely continuous function on the
exists a unique continuous path : [0,1] — S* satisfying interval .
4,(0) = p and R(q,(t)) = R(t) for everyt € [0,1] [21, Zj = {t: (t,j) € domu}. (10)
Theorem 54.1]. We call any such path a lift of R overR. \When a hybrid arc has several components, we adopt the
We refer the reader to see [21], [22] for general informatiogconomical notation
about covering spaces.

In addition to paths, vector fields defined 80(3) can be (@1(t,5),- - @e(t, ) = (@1, 2| 2,)-
lifted ontoS® as well [6]. In this direction, given a Lebesgue- A hybrid arc = is a solution to the hybrid systeri{ —
measurable functionv : [0,1] — R3? and an absolutely (F,G,C, D) if 2(0,0) € CUD and
continuous pathR : [0,1] — SO(3) satisfying (2a) for almost =~ ., ', ’
all t € [0,1], anyq : [0,1] — S? that is a lift of R over R
satisfies thequaternion kinematic equation

1) for eachj € Z>o such thatZ; has nonempty interior,
#(t,j) € F(xz(t,j)) for almost allt € Z; andz(t, j) €
C for all t € [min7Z;,supZ;),

. [n] 1 1 2) for each(t,j) € domz such that(¢,j + 1) € domz,

q= H = 590vw) = 5Mgw, (8) 2(t,j +1) € Ga(t, §)) anda(t, j) € D.



Solutions are not unique & is multi-valued for some: € D,
there is more than one flowing solution from some C, or
it is possible to flow from some point € C' N D.

A solution x to H is maximalif it is not a truncation of
another solution and it isompleteif dom z is unbounded.
Given a hybrid arcr, let T(z) = sup{t : 3j € Z>¢ (t,j) €
domz} and letJ(¢t) = max{j : (t,j) € domx}. Then, the
time projectionof z is the functionz|, : [0,7(z)) — R"
defined as

]y (1) = (t, J(t)).

In this work, we assume that the hybrid systéfrsatisfies
the hybrid basic conditions

1) C and D are closed sets iR".

2) F: R®™ = R" is an outer semicontinuotiset-valued
mapping, locally bounded o€’, and such thaf’(x) is
nonempty and convex for eaahe C.

(11)

3) G : R® = R™ is an outer semicontinuous set-valued

mapping, locally bounded oP, and such thatz(x) is
nonempty for each: € D.

These properties ensure, among other things, that asyimpt
stability is nominally robust [24].

A compact setd C R" is stablefor H if for each open
setU. D A, there exists an open s&f O A such that for
each solutionr : domz — R to H satisfyingz(0,0) € Us,
it follows thatx(t, j) € U, for all (¢,5) € domz. A compact
set.A is unstableif it is not stable. A setA is attractive from
a setB if each solution with initial condition in3 converges
to A, i.e., for each solution: : dom x — R™ with z(0,0) € B
and each open séf. O A, there existsT" > 0 such that
x(t,j) € U for all (¢,7) € domx satisfyingt + j > T. The
set of points inR™ from which each solution is complete,
bounded, and converges tbis called thebasin of attraction
of A. Note that each point iR \ (C U D) belongs to the
basin of attraction of any sed, since no solutions exist from
these points. A compact set is asymptotically stabléf it is
stable and attractive from an open neighborhooddadind is
globally asymptotically stablé its basin of attraction iSR".

Finally, we remark that while the above definitions ar
written in terms of R™, they equally apply to manifolds

we say thatx is consistent Smooth and consistent feedback

control algorithms are investigated in [27] for adaptivitatie

control without angular velocity measurements and regent!

[28] for attitude synchronization of a formation of spaadtr

In such cases, there is little need for a quaternion reptasen

tion for analysis, as could be defined in terms @t € SO(3).
When a quaternion-based feedbaclknisonsistentthat is,

H(qvw) 7é K(_Qaw)a (13)

the resulting feedbackoes not define a unique vector field
on SO(3) x R? because forR € SO(3) satisfying Q(R) =
{—q,q}, the feedbacks(Q(R),w) is a two-element set [6].
At this point, the control designer must, for everye Rx,
choose whichg(t) € Q(R(t)) to use for feedback. In this
direction, we provide a quote from the seminal paper [4]:

“In many quaternion extraction algorithms, the sign
of [the ‘scalar’ part of the quaternion] is arbitrarily
chosen positive. This approach is not used here, in-
stead, the sign ambiguity is resolved by choosing the
one that satisfies the associated kinematic differential
equation. In implementation, this would probably
imply keeping some immediate past values of the
guaternion.”

There is much to be gleaned from this quotation. In par-
ticular, it suggests that inconsistent quaternion-basedrol
laws require an extra memory state to lift a trajectory from
SO(3) to a trajectory inS?. In what follows, we reconstruct
the discontinuous quaternion “extraction” algorithm nienéd
in the quotation above in terms of a metric and use the ensuing
discussion to motivate a hybrid algorithm for on-line figi of
an attitude trajectory fror8O(3) to S3.

We define a metria : S* x S* — [0,2] and an associated
distance function frony € S? to a setQ c S® as

d(q,p) =1—¢q'p, dist(q,Q) = inf{d(q,p):p € Q}-(

J(q,w) € S* x R?

ot

14)
From a geometric viewpointj(q,p) is the height ofp € S3
“above” the plane orthogonal to the vecipe S? at g. When
the set() in (14) takes the form 0@ (R) for someR € SO(3),
the distance function also takes a special form. In pasdigul

embedded irR™. In particular, they apply to the state spacelet Q(R) = {p, —p}. Then,dist(q, Q(R)) =1 — |¢"p|.

that we will be using in this pape&?, SO(3), and discrete
sets of logic variables.

I11. | NCONSISTENTQUATERNION-BASED FEEDBACK AND

MEMORYLESSPATH LIFTING

It is quite commonplace to design an attitude control law

based upon a quaternion representation. That is, the ¢on
designer creates a continuous functien S3 x R3 — R3
and closes a feedback loop around (2) by settitit) =

k(q(t),w(t)), whereg(t) is selected to satisfR(q(t)) = R(t),
for eacht € R>o. When the feedback satisfies
K(g,w) = K(—qw)  VY(gw) €S’ xR’ (12)

2A set-valued magF : X =Y is outer semicontinuous if the sgfz, y) €
X XY :y € F(x)} is closed. Itis locally bounded off if for each compact
K, F(K) is bounded.

One possible method to lift a path frof0O(3) to S? is to
simply pick the quaternion representation®fthat is closest
to a specific quaternion in terms of the metdicin particular,
let us define the mag : S* x SO(3) = S* as

®(q, R) = argmind(q, p) = argmaxq ' p.

pEQ(R) PEQ(R) (15)

The map® has some useful properties, which we summarize
in the following lemmas.

Lemma 1. Let g € S® and R € SO(3). The following are
equivalent:
1) ®(q, R) is single-valued ang ' ®(q, R) > 0
2) 0 < dist(q, Q(R)) < 1
3) ¢'p#0forall pe Q(R)
4) R # U(m,u)R(q) for anyu € S?, where the magp/ :
R x S* — SO(3) was defined in(3).



Proof: For the remainder of this proof, we |&(R)
{p, —p}. By the definition of® in (15), we see thab(q, R) is
single-valued if and only ifi(¢,p) # d(q,—p) & 1 —q'p #
I4+¢'peq'p# —q¢'peq'p#0s 0 <dist(q, Q(R)) <

wherev : R>9p — R>( is a strictly increasing continuous
function satisfyingy(0) = 0.

Elq) =Eme)=Ag)Ti=¢ (19)

1. This provides an equivalence between 1), 2), and 3), aboy@d consider the inconsistent feedback

Now, let 8 € R and u € S? be such thatR =
U, u)R(q). Since R = R(£p), the fact thatR satisfies

(7) provides the following equivalent series of expressionwhere c

R(p) = U0, u)R(q) < R(P)R(¢)~" = U0, u) & R(p ©
g ') =U(0,u).

Now, sincep®g~! = (p'q, ), the form of R : S* — SO(3)
in (5) guarantees thaR (p© ¢~ ') =R(p© ¢ )T # I if and
only if pTq = 0. ButU(6,u) = U(O,u)" # I if and only if
sinf = 0 andcosf = —1, which is satisfied fop = . [ ]

Lemma 2. For everyg € S?, every continuous? : [0,1] —
SO(3), and every continuoug : [0,1] — S* satisfying
d(¢,q(0)) < 1 and for all ¢t € [0,1] R(q(¢t)) = R(¢t) and
dist(¢, Q(R(t))) < 1, it follows that®(g, R(t)) = ¢(t) for all
t € 0,1].

K (Q7w) = _cg(Q) - \Ij(w)a (20)

> 0. While this control law makes the set
{(i,0), (—1,0)} globally attractive for the lifted closed-loop
system defined by (8), (2b), and setting= k*(q,w), it
renders(i, 0) stable and(—i, 0) unstable equilibrium. When
composed withd®;, one might expect that the resulting feed-
back globally asymptotically stabilizes the identity el of
SO(3); however, we show that any such expected global attrac-
tivity property is not robust to arbitrarily small distunbees.
Define the functiorv : R — {—1,0,1} as

o(s) = {S”S' 570 1)

0 s=0.

Proof: Under the assumptions of the lemma, suppo§éhen, for0 < § < , consider the functiop : SO(3) x R? —

further that for some’ € [0,1], (¢, R(t')) = —q(t'). This
implies thatd(g, —q(t')) < d(¢, q(t')) and thatd(g, ¢(t')) > 1.
But sinceq(t) is continuous andi(g, ¢(0)) < 1, it follows

that d(g, q(t)) is continuous and from the intermediate value

theorem, there existg* € [0,¢] such thatd(q,q(t*)) =
d(g,—q(t*)) = dist(¢, Q(R(t*))) = 1. This is a contradiction.
]

Lemma 3. For all § € S* and R € SO(3) satisfying
dist(g, Q(R)) < 1, it follows that

(®(¢, R), R) = ®(¢, R). (16)

Proof: Without loss of generality, leQ(R) = {q¢, —q}
anddist(g, q) < 1. Then,
®(®(¢, R), R) = argmin dist(q,q) = g,
7' €{a,—q}
so that®(®(g, R), R) = ®(4, R). [ |
Since a goal of attitude control is to regulageto I (or, in
general, an error attitude 19, one might chooseas a point of
reference (sinc& (i) = I) and use the mag; : SO(3) = S3

defined as
®;(R) =®(i,R) VR € SO(3). a7

Now, following 3) from Lemma 1 we see that ®;(R) > 0,

that is, ®; always chooses the quaternion with positive scalar

U(5,S?) defined implicitly in terms of the Rodrigues formula
as, for everyR € SO(3) and every(d,u) € R x S? satisfying
U,u) =R,

U(—b0(wTu),u) cosf < cos(m + 6)
uU(O,u)w) = {I otherwise
(22)
For any(R,w) € SO(3) x R3, the rotation matrixu(R,w)R
constitutes an angular perturbation Bfabout the eigenaxis
u € S%. The parametef controls the size of the disturbance.

We note that (22) is well defined &0(3).

Lemma 4. For everyd € [0,7) and (R,w) € SO(3) x R3,
w(R,w) is uniquely defined.

Proof: Suppose thaR = U/(0,u) for somef € R and
u € S?. Clearly, u(R,w) is uniquely defined whew = 0 or
cosf > cos(m+4), since it does not depend ddor w in this
case.

Suppose thatos < cos(m + §) andw # 0. This implies
that R # I, since0 < § < «. Then, it follows from the
Rodrigues formula that for any € S? and ¢ such thatk =
U(p,v), it must be the case that= v or u = —v (only when
R # I). Moreover, sincé{(—0, —u) = U(0, u), it follows that

nU(p,v),w)

U(—bo(wv),v) =U(=b0(w " u),u).

component, so long as it is single-valued. Further, LemmaThen, we have shown that the valueiois independent of the

allows one to lift curves with®; so long asR does not
cross the manifold ofl80° rotations where®; is multi-

angle-axis representation @i, hence, it is uniquely defined
on SO(3) x R3. [ ]

valued, or elseb; will produce a quaternion trajectory that is Let ¢; : SO(3) — S® be any single-valued selection @,
discontinuous. As we now show, this leads to an undesiralteat is, ¢;(R) = ®;(R) for all R # U(w,u) and ¢;(R) € ®;
chattering effect wherp; is composed with an inconsistentotherwise. Now, we apply the disturbangeo measurements

feedback.

IV. NON-ROBUSTNESS

of attitude before being converted to a quaternion for use
with the inconsistent feedback (20) and analyze the regulti
closed-loop system. That is, we replac&vith ¢;(u(R,w)R)

Let ¢ > 0 and let¥ : R?> — R3 be a continuous function in the control lawx* defined in (20).

satisfying

Y(w|) < w ¥(w), (18)

Becausep; and . are discontinuous, we use the notion of
Krasovskii solutions for discontinuous systems [29]. Wéeno



that the following definition is equally valid for productagpes point for choosing the closest quaternion with respectl.to
such asR™*™ x RP, onceR™*" is isometrically identified This memory state usually remains constant, but is updated
with R™" by vectorization. when necessary to ensure thlst(G, O(R)) < 1. The basic

Definition 5. Let f : R" — R™. TheKrasovskii regularization logic behind the algorithm is pictured in Fig. 1 as a flow chart

of f is the set-valued mapping

K f(z) = m convf(x + eB) (23)
€>0 ConvertR
where convB denotes the closed convex hull of the set to Q(R)
B C R™. Then, given a functiorf : R — R", a KrasovskKii
solutionto # = f(x) on an intervalZ C R is an absolutely -
. . e = Updateqg >
continuous function satisfying Is g far
to closest
. yes from Q(R)?
z(t) €e K f(z(t)) (24) q € Q(R)

g

Output
We now state the main result of this section: the discon- g€ QR) ——
tinuity created by pairing an inconsistent quaternioneblas closest tog
feedback with a discontinuous quaternion selection scheme
makes the closed-loop system susceptiblartmtrarily small  Fig. 1. Flow chart for dynamic path lifting frorBO(3) to S3.
measurement disturbances that can exploit how feedbatk ter
cE(¢i(R)) opposes itself about the discontinuity of. Given a distance threshold € (0,1), we define the sets
Ce,Dy C S3 x SO(3)>< as

Ce = {(¢,R) € S* x SO(3) : dist(¢, Q(R)) < a}

for almost allt € 7.

Theorem 6. Leta > 0, ¢ > 0, and§ > 0 satisfy

1 2 27a
0<d<3 <_% Hy(5) 8) @5  Di=1{(0,R) €5 x SO() : dist(d, Q(R) > a}.
_ Then, we propose the hybrid path-lifting algorithm as the
and define system
B = {(UO,u),w) : cosf+ (1/a)w Jw < cos(r + 5)}. Hy— { §=0 (4.R) € C; 27b)
={ ] A !
Then, the se{id(r,S?)} x {0} is stable and% is invariant q" € ®(4,R) (¢ R) € Dy,
for the closed-loop system with continuous inputk : R>, — SO(3) and output
R=R X 5
t= Rl . (26) = 2GR @R)eC, 270
Jw = [Jw], w+ & (di(u(R,w)R),w) 0 otherwise
Proof: See Appendix A. ]

We analyze the properties of the hybrid path-lifting algo-
hm by analyzing the solutions of an autonomous systern tha
enerates a wide class of useful trajectorieS@(3) as input

The various failures ofb; have led several authors (e.grit
[30]) to derive sufficient conditions on the initial conditis
of (2) to ensure that thed&0° attitudes are never approache
thus obviating the use of a globally nonsingular repregemta
of attitude like unit quaternions. However, the issues withheorem 7. Leta € (0,1) and M > 0. The hybrid system
using®; as a path-lifting algorithm are not a problem with the s t .
guaternion representation—they arise becabsées a memo- f] =0 ¢ € (¢ R)
ryless map fron50O(3) to S®. In particular,®; always chooses R e R[MBJ, R*=R
the closest quaternion ficand in general, when one compares N .

Q(R) with ¢ for someR € SO(3) andq € S?, ®(p, R) is (¢, ) € Ce (¢, R) € D
multi-valued on the 2-D manifoldp € S® : p'q = 0}. and its outpuy defined in(27c)have the following properties:

However, when the reference point for choosing the closesty) closed loop syster28) satisfies the hybrid basic con-
quaternion is allowed to change, it is then possible to ereat  jtions.

a dynamic algorithm for smoothly lifting a trajectory from 2y For each (¢, R) € S* x SO(3) > D, and eachp €
SO(3) to S®. We now explore such an algorithm thatigbrid ®(4, R), it follows that(p, R) € Cy \ Dy.
in nature. 3) The flow se(, is invariant.

4) For any solution(g, R) to (28),

t,j) : dist(G(t,7), Q(R(t,5))) > a} C {(0,0)}.
In this section, we present a simple dynamic algorithm for {(6,9) : dist(q(t, ), Q(R(E 7)) > a} < {(0,0)}

lifting a path from SO(3) to S*. The main feature of the 5) All maximal solutions are complete.

algorithm is a memory stat¢ € S? that provides a reference 6) The time between jumps is bounded belov2by/.

(28)

V. AHYBRID ALGORITHM FORDYNAMIC PATH LIFTING



7) The functiong|, : [0,00) — S? is continuous and ¢* € G.(®(4, R),w, &) (the other states do not change). This
satisfiesR(ql, (t)) = R, (). is necessary to ensure that the closed-loop system satlsfies

Proof: See Appendix B. hybrid basic conditions.

From Theorem 7 and its proof, one could append dynamic%{NOW’ we define the feedback interconnection of the lifted
equations for the output(t, j) = B(q(t. ). R(t. /) to (28) as attitude system and the hybrid controlfif.. This yields the

. 3 3 .
i %q@u(w) andg™ — g, wherew € MB and R — R [u],. reduced systerfi(s with state(q,w, ) € S® x R? x X defined

In practice, one should choogec (0,1) such that for each

(4, Q(R)) € C; and each expected measurement disturbance 4 = 30O v(w) " =q
Ry € SO(3), it follows that dist(¢, Q(R4R)) < 1. That is, Jo =[Jw], w+k(g,w,§) wh=w (31)
« should be selected so that no measurement disturbance can 5 € F.(qw,£) £t € Golq,w, &)

make the choice of quaternion ambiguous.

(q,W,g) € C. (‘vaf) € D..
VI. QUATERNION FEEDBACK WITH DYNAMIC LIFTING Lemma 8. For every solution(Ry,wy,d1,&1) @ By —

With a hybrid algorithm for path lifting in place, we SO(3) x R?® x §* x X to H; of (30) such that
consider the feedback interconnection of (2) with the hybrilist(di, Q(21))[(0,0) < 1, there exists a solutiofya, w, &) :
path-lifting system and the quaternion-based hybrid coletr E2 — S* x R® x X to H, of (31) such that for every
H., that takes a measuremente S? x R?® as input, has a (t,J) € E1, there existg’ < j such that(t, j') € E» and

state¢ € X C R", has dynamics (Ry, ®(d1, R1), w1, 6|0y = (R(q2), @2, w2, &)1y (32)
{ Eer(y.8) (1,8 €C: (209) _ Conversely, for every solutiofy, ws, &) : Fz — S3 x
et eGey, ©) (y,6) € D, R3 x X to (31), there exists a solutiofRy, w1, 41,&1) : By —
_ SO(3) x R3 x S3 x X to (30) such that for everyt, j') € Es,
and produces a continuous torgue §* x R? x X — R?. there existsj > j’ such that(t, j) € E; and (32) is satisfied.
Often, quaternion-based controllers are analyzed usiag th ]
lifted attitude dynamics, defined by equations (8) and (2b), Proof: See Appendix C. u

thus neglecting any auxiliary lifting system. The next tren ~ Now, we s"fate one of Qur_ma’\’in results. The following
essentially justifies this approach by relating solutiohshe theorem is a “separation principle” that allows one to desig
whole closed-loop system (including the hybrid pathsigti & feedback for the lifted system dgflned by (8), (2b) and then
system) to a reduced system that has the quaternion-ba@¥RECt the results to translate directly to the actual syste
hybrid controller in feedback with the lifted system define¢nen the hybrid-dynamic path-lifting syste, is used to
by (8) and (2b). lift the trajectory inSO(3) to S3.

Before stating the theorem, we define two closed-loofheorem 9. Leta € (0,1). A compact setd, C S x R? x X

systems. The first closed-loop system is the feedback ig-stable (unstable) for the systeh, of (31) if and only if
terconnection of (2) with the series interconnection7éf the compact set

and H.. This yields the systerfi{; with state(R,w, §,¢) €

SO(3) x R? x S? x X defined as A={(R,w,q,£) : (2(q,R),w,§) € Ay, dist(q, Q(R)) S(Of})
) 33
R = Rw], is stable (unstable) for the systeh of (30). Moreover, A,
Jo = [Jw], w+ k(®(4, R),w,§) is attractive from%, C S* x R® x X for the systent, (31)

i=0 if and only if A is attractive from
§ € F.(®(§, R),w,€) B ={(R,w,4,¢) : (B(4, R),w,&) € By, dist(§, Q(R)) < 1}
(34)

(@, R) € Cu, (2(4,R),w,§) € Cc 0 for the systent{; of (30).

Rt =R RY—R (30) Proof: See Appendix D. [ ]

4 . Interestingly, the result of Theorem 9 is not always desired
wo=w wo=w When the setd above is not designed correctly, the resulting
q* € ®(¢, R) gt =g closed-loop system can exhibit the symptomuefvinding
£r=¢ ¢ € Ge(2(4, R), w,€)

— - VIl. THE UNWINDING PHENOMENON
(¢, R) € Dp, (¢ R) € G, (B(g, R),w,£) € De. In Theorem 6, we showed how a particular class of inconsis-

In (30), we mean that flows can occur when flows can occtent control laws (20) can be hijacked by small measurement
for boththe controller and lifting subsystems. Jumps can occdisturbances whe; defined in (17) is used to lift paths from
when either the controller or lifting subsystems can jump. ISO(3) to S2. In light of Section V and Theorem 9, one might
may be possible that botfi, R) € D, and (®(4, R),w, &) € ask how the control law (20) behaves in feedback with the
D, are satisfied at the same “time,” i.&,N D, # 0, in which hybrid path lifting systenf{,. The answer is that it induces
case,either jump is possible. That is, eithgr™ € ®(g, R) or “unwinding.”



S X R® x & © SO(3) x ’? x §% x X stabilize some setl,, C SO(3)xR? (in the sense that,, is the
projection of an asymptotically stable set in the extendatks
Proj Proj space including controller states). If the dynamic coterol
8 RS SO(3) xR (29) is designed to stabilizd, ¢ S? x R x X' in the extended
covering state space (as in Lemma 10), one would obviously
3 « R3 &z SO(3) x R3 desire thatll(A,) = A,, but this should not be the only
requirement. In fact, one should desigh to satisfy
Fig. 2. Commutative diagram of set projections. Proj A, = 9_1(H(Ag)), (40)

S8 xR3

. in which case, we say thatl, is consistent That is, the
Though the behavior h_as_been documented _for dec_ades d:sgr?troller should stabilizeall points in the lifted state space
e.g. [3]), the term unwinding was perhaps first coined

6 q i ‘ Y h desi ose projections unde#” map to a point inA,. As the
[6] to describe a gymptom 0 cor_wtro ers that are esigng llowing lemma states, when (40) is not satisfied, there may
for systems evolving on topologically complex manifold

: . . . ) be points in the plant state space whose stability relies on
using local coordinates in a covering space. In particukbar

2 e : . ' the controller’s quaternion representation of attitudbicl is
ambiguity arising from the quaternion representation Garse hardly a desired quality.

inconsistent quaternion-based controllers to unnec@ssar

tate the rigid body through a full rotation. This behaviontee Lemma 11. Let A, C S*xR?*x X. If A, is not consistent, that
induced by inconsistent control laws like (20) that are giesd  is, it does not satisfy40), then there exist$R, w) € II(A)

to stabilize asingle point in S* while leaving the antipodal andq € Q(R) such that for everyj € S* satisfyingd(q, §) <
point unstable despite the fact that they both correspond te and everyé € X, (R,w, q,&) ¢ O(As).

the same physical orientation. This behavior was elegantly 5« |c A, does not satisfy (40), then, clearly, there

described in [_6] in terms of th_e Iifts o_f paths and ve<_:tor_fsiae|d exists(R, w) € SO(3) x R andq € O(R) such that(g, w) ¢
We now prowde a characterization in terms of projections %ﬁOjS3XR3 A,. Then, by definition of theProj operator, for
asymptotically stable sets onto the pl_ant stgte space. every¢ € X, (¢,w,6) ¢ Aq. Finally, Lemma 1 asserts that
_ Re(_:all that for some sét C X x Y, its projection ontaX ®(3, R) = ¢ wheneverdist(q, q) < 1 and by definition of,
is defined as it follows that for everyg € S? satisfyingd(4,q) < a < 1,
ProjZ={zeX:IyeY (x,y) € Z}. (35) that(R,w,q,§) ¢ O(Ae). u
X Unfortunately, many designs proposed in the literature,(se
Now, we characterize how a set of interest in the coveriryg., [1], [3], [4], [11], [27], [28], [30]-[36]) do not saify
space (including extra dynamic states of the controllepeaps (40). Instead, many designs, like the inconsistent feddbac
when projected to the actual plant state spgo¢3) x R3. (20) (havingX = 0), render the pointi,0) € S* x R? a
In this direction, we define the operat®r: S* xR?* x X =  stable equilibrium, while rendering-i,0) € S* an unstable
SO(3) x R3 x S x X as equilibrium. In this situationII((i, 0)) = II((—i,0)) = (I, 0).
) R o When seen through the map, this creates two distinct,
O(q,w, &) ={(R,w,q,€) : ¢ = ®(¢, R), dist(q, Q(R)) < a}.  gisconnected equilibrium sets in the extended state space,
. . o 5 3(36) SO(3) x R3 x S* with one set asymptotically stable and
Further, W? define the covering projectiaht : §° x R® — 4,0 other, unstable. However, both equilibrium sets pidjec
S0(3) xR” as (1,0). As the next result shows, the desired attitude can be

P(q,w) = (R(q),w). (37) stable, or unstable, depending on the controller's knogéed
of the quaternion representation of the attitude.
Lemma 10. The maps? and © satisfy Corollary 12. Let o € (0,1). Then,(i,0) is asymptotically
P o Proj = Proj o0, (38) stable and(—1i, 0) is unstable for the system
S3xR3  SO(3)xR3 1
that is, the diagram Fig. 2 commutes. i=310vW) } (g,w) € S* xR3,  (41)
Proof: Let (¢q,w,&) € S* x R® x X and let R = Jo = [Jwlw+ 5" (gw)

R(g). It is easy to see that? (Projss,gs(q,w,§)) = wherex* was defined if20). Similarly, the compact set, =
P(q,w) = (R(¢),w) = (R,w). Similarly, for every {(I,0,4) : 1 —4'i < a} is asymptotically stable and the

(R,w,q,£) € O(q,w, &), it follows that R = R(q). Thus, compact setd, = {(1,0,4) : 1 + i < a} is unstable for
Projsos)xrs ©(¢,w,§) = (R,w), and so, (38) is satisfied. the hybrid system
]

Let R=Rw], Rt =R
II= %0 Proj = Proj o0O. (39) Jo =[Jw], w+ K (8¢ R),w) wh=w (42)
S8xR3  SO(3)xR3 (j -0 dJr c (I)((j, R)
Lemma 10 clarifies the purpose of controllers designed in - "
the covering space. Suppose it is desired to asymptotically (¢, R) € C (4, R) € De.



Proof: We note that the stability and instability ¢f,0) that Theorem 7 implies thaf(R,w,§,&) : (§,R) € Cy} is

for (41) is easily obtained by a simple Lyapunov analysiagsi globally attractive and then we apply Theorem 9. ]
the proper and positive definite functidn : S3 x R? — R
defined asV(q,w) = 2¢(1 — n) + w'Jw. Instability of VIIl. CONCLUSION

(—i,0) can be shown in numerous ways. To show tHat  Optaining global asymptotic stability of rigid-body attite

is asymptotically stable for the hybrid system (42), we ags a fundamentally difficult task. Often, feedback contl

ply Theorem 9. From (33) and (34), we obtain tH&f = are designed and analyzed on a state space that is topdipgica

{(R,w,q) : (24, R),w) = (i,0), dist(q, Q(R)) < a} IS simpler thanSO(3); however, it is not always clear how the

asymptotically stable for (42). By the properties of the 8&p analysis of such algorithms can be translate8@$3). When

Q, R, anddist, it follows thatB; = .A;. Theorem 9 implies, ynjt quaternions are used to parametrize rigid-body alttitu

in a similar fashion, that, is unstable for (42). B and design feedback control laws, their actual implemantat
Finally, we note that in recent works, the authors hav@jies on an algorithm to translate measurements f8@xs3)

presented a hybrid strategy for achieving a global resalt thg s3. \When a memoryless map is used for this task, the

is robust to measurement disturbances in [5]. The resultsr'@;umng guaternion trajectory may be discontinuousatine

[5] satisfy (40) and can be applied to 6-DOF rigid bodiegn extreme measurement-disturbance sensitivity for alyide

[25] and synchronization of a network of rigid bodies [26]ysed class of quaternion-based feedback control laws. An

Several works also suggest the use of a memoryless (igernative is to dynamically lift the paths using a hybrid

X = () discontinuous quaternion-based feedback using thgechanism. Such a hybrid algorithm allows one to translate

term —o(n)e. Such methods have been suggested in [3apility results obtained in the covering space direatlyhte

[31], [37]-{40] and indeed avoid the unwinding phenomenoRgtyal plant; however, such a feedback system can induce an

however, these control laws are susceptible to measuremghdiesirable unwinding response when the quaternion-based

disturbances like the result in Theorem 6. feedback is not designed to stabilizél quaternion repre-
Corollary 13. Leta,§ € (0,1), S = S? x R? x {—1,1} and sentations of the desired attitude. Finally, when hybrithpa
defineC. c S, andD. C S as lifting mechanisms are used in conjunction with the hybrid

guaternion-based feedbacks proposed in [5], [25], [26}, th
Ce={(q,w,&) :n§ > =0} D.={(q,w,§):n& < —6} result is global asymptotic stabilization of the identitgraent

Then, A, = {(¢,0,§) : ¢ = £i, £ = +1} is globally of SO(3).
asymptotically stable for APPENDIX A
j= %q & () t =q PROOF OFTHEOREM 6 .
. i} wt=w 43) In what follows, we denoter = (R,w) € SO(3) x R
Jo = [Ju], w+r7(Egw) N and define, for pairs(4i,a1),(Az2,a2) € R™*" x RP,
£=0 == ((A1,a1), (A2,2)) = (A1, Ag) + (a1, az). Finally, in accor-
(q,w, &) € D,. dance with (1), for some functioW” : R™*" x RP — R,
(¢,w,§) € Ce e ¢ we denoteVV(z) = (ViV(z),V,V(z)) € R™*" x RP,

where ViV (z) denotes the matrix of partial derivativés
with respect toR € R™*™ and V,V (x) denotes the vector
of partial derivatives of” with respect tav € R?.

Similarly, the compact sel = {(1,0,4,¢) : 1 —|G"i| <
a, £ = £1} is globally asymptotically stable for

R=R[w], Define the functionf,, : R3*3 x R?* — R? and the vector
Jo = [Jw], w+ K*(£D(4, R),w) field F : R3*3 x R? — R3*3 x R3 as
=0 foR,w) = J7H ([Jw], w — c€(¢i (1(R,w)R)) — ¥ (w))
: F(R,w) = (R [w] ,fw(R,w)) )
0 : (45)
(4, R) € Cy, (®(4,R),w,&) € C, By some abuse of notation, the Krasovskii regularization of
(44) F is K F, where the arguments df are perturbed as in (23)
RY=R Rt =R with respect to the norms defined on each space. That is,
wh=w wh=w K F(R,w) = (| comvF (R + B,w + B).  (46)
q" € ®(q,R) " =q >0
et =¢ £t =—¢ Let W(R,w) = ¢i(u(R,w)R). From the definition (23), one
m (R eC m ) eD can show that
) 6 3 ) 6 3 ) ?w? e 6 C- —
q ¢ 1 ¢ a K f,(Rw)= {J ! ([Jw]xw—cf(q)—\ll(w)) :
Proof: Global asymptotic stability of4, for (43) is g€ KW(R,w)} (47)

obtained by using Lyapunov and invariance analysis [41h wit .
the functionV : S x R? — R defined asV(q,w,&) = KF(R,w) = {(R[w],,7): 7 € K fu(R,w)}.

2¢(1 — €n) +w ' Jw. See [5], for example. To show that Since we are studying Krasovskii solutions to (26), we
is asymptotically stable for the hybrid system (44), we notmight normally need to evalual& VV; however, the analysis



in this proof obviates the need for calculating the Krasdavskwithout loss of generality, we assume that § < 6 < 7+ 9,

regularization for regions where the calculation is namti
By definition of x and ¢;, the mapW is continuous on the
setO = {({U(0,u),w) : cosf < cos(m + ), w # 0}, so
KW(z) = W(x) forall z € O.

Consider the Lyapunov function

V(R,w) = a(l — trace(I — R)/4) + %wTJw. (48)

Expressed in terms of rotation angle, we have equivalently

a

1
VU0, u),w) (14 cosf) + §wTJw.

[\)

Since trace(I — U(0,u)) = 2(1 — cosh), it follows that
V(R,w) >0 for all (R,w) € SO(3) x R* andV (R,w) = 0

if and only if R = U(w,v) andw = 0. Furthermore, the sub-
level sets ofl” are compact.

Define the functiony : R3*3 — R? as
1
Y(A) = 3 [Asy — Az Ayz— Ag1 Aoy — 1412]T (49)

Then, v satisfies trace(A[w], ) —2w'1p(A) and
Y(U(0,u)) = usinf. Employing (47), we calculate

VV(UO,u),w),z) =
Zerlga}g%m)< U, u),w),2)
~wTUW) - e HR) - min cwTEW). (50)

where we have used the fact that [Jw], w = 0. Note that
max.ek w(z) (VV(R,0),z) = 0 no matter what values the
Krasovskii regularization may take.

Now, we let R = U(#,u) and henceforth constrain our
analysis to the case wheresf < cos(m + §) andw # 0,
so thatu(R,w)R = U(H — do(wu),u) and ¢;(u(R,w)R)

where

o (cos ((0 — do(wu))/2)) =0 (71— (0 — do(w"

(53)
Now, sinces(w'u)? = 1 andsa(s) = |s|, we factor this
term to arrive at

VU®,u),w) < =y([wl2)
— lw uleo(w u)o (7 — (0 — So(w u)))
*sin ((6 — so(w'u))/2). (54)

Moreover, for anyr,s € R, it follows that o(s)o(r)
o(ro(s)). Applying this relation to (54), we have

- |wTu|ga(wTu) sin @

(VV (U, u),w), z) <

max
z€K F(x)

= 7(lwll2) = o ul5o(w W) sing
— lw uleo (7 — O)o(w u) + 5))
*sin ((0 — so(w'u))/2). (55)

It follows that max.ck p(z) (VV(2), 2) < 0 whenever

co ((m—0)o(w ) +6)) sin ((0 — do(w'u))/2)
+ ga(wTu) sinf > 0. (56)

Since we have assumed that> |7 — 6], it follows that
o ((0 — m)o(w'u) + &) = 1. Moreover, sincésin 4| < [0 —|
and1l —cosf < %92, we can use the properties ©fi andcos
to deduce thasin(6/2) > 1 — (6 — )% Hence, (56) holds
when

c <1 - é (9—7T—§0(wTu))2) > g|6‘—7r|. (57)

is single-valued. Also, in this region, the Krasovskii risgu  Again employing the assumption that> |z — 6|, we have
ization of (26) is identical to (26). Recalling that selects 1—3(0—7—do(w'u))* > 1— 362 and that (56) holds when
the quaternion with positive scalar component and notiag th c (1 _ 52/2) > a6)2 0> 6%+ (a/c)5 —2. (58)

U(p, u)U(0,u) =U(O + ¢,u), we can now write —
Since § > 0, we have at least for smalf that 0 >

éi(p(R,w)R) = §24+ad/c—2, so we can bound by the positive root of\(z) =
cos ((0 — So(wTu)) /2 22 + (a/c)x — 2 located atr = (—(a/c) £ +/(a/c)? +8)/2.
o (cos (0 — do(wu))/2)) sin (gé _SolwTu g}é))u v Hence, we have thahax.ck p(z) (VV(2),z) <0 on the set
_ _ W = {(R,w) : cosf < cos(m+48) orw =0} D {U(m,S?)} x
and in particular, {0}, where0 < § < (—(a/c) + \/W) /2. This
] _ implies that{u/(m,S?)} x {0} is stable.
E(Gilu(R, w)R))T_ . - To estimate an invariant set usifg we find a sub-level set
o (cos (0 — do(w ' u))/2)) sin (0 — do(w ' u))/2) u.  (51) of v contained in the s@¥ . In fact, the setZ is a sub-level set

of V corresponding to the s¢ti/(6,u),w) : V(U(0,u),w) <

Applying (51) and (18) to (50), %(1+cos(m+6))}. Moreover,Z C W and so it is invariant.

< - —wTul
zGIIr{laF)%m) (VV®,u),w),2) < =1(lwllz) —w "3 sind APPENDIXB
—w T (co (cos (6 — do(wu))/2)) PROOF OFTHEOREM7
% sin (0 — do(ww)/2)). (52) First, note that (28) satisfies the hybrid basic conditidine
mapR — R [MB], is nonempty, locally bounded, outer semi-
Note that when w'u = 0, it follows that continuous, and convex-valued. Moreovgl, R) — ®(g, R)

max.ck p(z) (VV(2),2z) < 0, so we further constrainis outer semicontinuous, locally bounded, and nonempty.
our analysis from this point to the case whehu # 0. Now, To see this, note thatb(¢, R) is continuous on the set
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{(¢, R) : dist(¢, Q(R)) < 1} and that®(§, R) = Q(R) when wheremin is taken with respect to the natural orderingfen

dist(g, Q(R)) = 1. That is, (T**1, J¥1) € E, is the time immediately after the
Let (§,R) € S* x SO(3). By definition of ® in (15), it first jump due to the controller aftgr= JF.

follows that for allp € ®(4, R), dist(p, Q(R)) = 0. Thus,  There can be two cases. ({*+!, J7™) # 0, then a

(p, R) € Cy \ Dy. Now, let T, M denote the tangent space otontroller jump occurs and we define

a manifold M atz € M. SinceR[w], € TrSO(3) for all k1 ok k kel

(R,w) € SO(3) x R? and0 € T,S?, the setS? x SO(3) is Bz =By U(IT T k) (60)

viable under the flow (i.e., there exists a nontrivial saoti and for everyt € [T*, T*+1] and JF < j < JFT! — 1 such

from any initial condition inCy). This combined with the that (¢, j) € E;, we define the solution

previous fact that any jump maps the state’{o\ D, makes )

Cy invariant and implies that for any solutidg, R) of (28), (a2, w2, €2)l k) = (P(G1, Bu)s wr, &)l s, ) (61)

{(t,j) € domg : (¢, R) € D¢\ Ce} = {(0,0)}. Finally, We now verify that this is indeed a solution to (31). First,

since Cy U Dy = S x SO(3) and SO(3) x S* is compact, we ensure that the jump dynamics are satisfied. Note that

no finite escape of solutions is possible. It follows from,[24q>(g1(t,j),Rl(t,j)) is single-valued for everyt,j) € Ei,

Proposition 2.4] that every maximal solution is complethisT since dist(¢1(0,0), Q(R1(0,0))) < 1 by assumption and

proves 2)—b5). then Theorem 7 provides thalist (g1 (¢, j), Q(Ri(t, 7)) <
Now, we prove 6). Suppose th#} x {j} C domg has a « < 1 for each(t,j) = (0,0). Whenk # 0, we consider

nonempty interior. Then, for allt, j) € Z; x {j}, it follows the jump from (7% k — 1) to (T*, k). By (61), we have

that (¢(¢, 7). R(t,j)) € C¢ so thatdist(q(t, j), Q(R(t,j))) < that (g2, w2, &2) (1% k—1) = (®(d1, Ba), w1, 1)l (v, g 1) @nd

a < 1. Thi; fact combined yvith Lemma 2 implies that(gy,ws, &)|(7r ) = (41, R1), w1, &1)| (g, gv)- From the
t — q(t,j) is absolutely continuous off;, R(q(t.j)) = definition of (T*, J*) in (59), it follows that
R(t,j), and(t, j) = 3q(t,j) ® v(w(t)) for some Lebesgue
measurable : Z; — MB and for almost all¢, j) € Z; x {;}. (R1, w1, 41, &)l (zx g2y €

Recalling Lemma 1, we havdist(j(t, j), Q(R(t, 7)) = (Ry,w1,d1, Ge(®(G1, Br), w1, 1)) .
I = §(t,j) q(t,j), which implies 4 dist(q,Q(R)) = ey
4(1-4"q) = —G"¢ < |dll2ldll2 = [|dll2- It follows that Which implies

< dist(q, Q(R Sq'gzlAquleggMQ. R
Since Elist(é(t,);'), Qleét,j)))2 |:(O) V\|/hene\2/£r(|t|,j - 1)/6 (©(G, Ba)wr, €0l ) €
dom ¢, the time between jumps must be at le2st/ ). (g1, B1), w1, Ge(@(qr, Ra), w1, &1)) | (1, g6 1)
To shpw 7), we r?call our preyio_us conclusion that _for everyng S0,(¢2, wa, &2)| (1t k) € (g2, w2, Go(d2, w2, €))7 —1)-
Zj x {j} € domg, t — q(t,j) is absolutely continuous thyg (4,, w,, &,) satisfies the jump dynamics of (31) for each
on 7; and satl_sﬂesiz(g(t,j_)) = R(t,j). Recalling the def- pair {(t,), (t,j + 1)} ¢ E5 whenj +1 < k.
inition of the time projection, we now_need only show that Now, we verify that (61) is a solution to (31) along flows for
Fhe value ofq does not change over jumps (note also thafj ; o [T*, T*+1]. First note that along solutions of (30), if
jumps occurring at = 0 are ignored). Now, suppose thatJf < JH 1, there are jumps due to the lifting system.
U, )), (t.5+1)} € domg. Then,&(q(t, j+1), B(t,7+1)) = That is, 4 (t,j + 1) € ®(Gi(t, ), Q(Ru(t. ) for some
@(q(t,j + 1), R(t, 7)) = ©(2(q(t, ), R(L, 1)), B(t, 7)), and y < (pk Th+1] and Jk < j < JF+1 while other states are
by Lemma 3, it follows thatd(q(t,j + 1), R(t,j + 1)) = ynchanged. Theorem 7 then implies that over any such jumps
(I)(q(t,]),.R(tJ)).'By the definition ofg in (27c), it follows ¢ the lifing system, ®(Gr, R1)|wje1) = ®(G1, B1)les)-
thatq(t,j) = q(t.j + 1) so thatR(ql, (t)) = R, (). Then, the definition ofgz, wa, &)| ;) is well-defined in the
sense that there is no ambiguity in the definition due to
possible jumps of the lifting system.
Furthermore, over the interval € [T% T*+1] and J} <
§ < JFTt — 1 such that(t, j) € E;, Theorem 7 provides that
First, we assume the existence of a solutifn, wy, 41, £1) -t — ®(d1, R1)l(,5) (wherej is taken implicitly from¢) is a
E; — SO(3) x R3 x S3 x X to systemH; of (30) such that continuous trajectory satisfyinB(®(qi1, R1)|(,5)) = Ri(t, )
dist (g1, Q(R1))|0,0) < 1. Now, we will recursively define the and so it also satisfies (8). Singe and¢, do not change over
solution (¢a, ws, &) and its associated hybrid time domain ifumps due to the lifting system and obey the same differentia
terms of (R1, w1, ¢1,&1) and Ey. In this direction, we define inclusions for (30) and (31), this implies that (61) is a sioin
E;' =0, T° =0, and.J? = 0. Now, for eachk € Z>, we 1o (31) onE} for all k such that(T*, Jf) # 0.

APPENDIXC
PROOF OFLEMMA 8

define We now handle the second case. If there is no suehZ>,
such that(T*, J&) = 0, we let
k
e e it 910
min{(t,j) € E1: (t,j — 1) € Ey, j > J} 2—k_0 : -

i(t,§) =d(t,j—1 59 . o .
a( ’j). q(tJ R ), (59) Then, (g2, we, &) is a solution to (31) orks. Moreover, since
&1(t,5) € Ge(P(G1, R1),w1,&)|4,j-1) } jumps from the lifting system are not counted in solutions to
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(31), we have that for everyt, j) € E; there existsj’ < j > j'suchthatt,j) € Ey and(Ry, ®(q1, R1),w1,81)| .5 =
j such that(t,j/) S EQ and (Rh(I)((jlaRl)awlyé.l”(t,j) = (U(QQ),q2,W2,€2)|(t,j/).

(R(q2), g2, w2, &) (1,51 Now, since (®(gi, R1),w1,q1,&1)l0,0) € UZ, this im-
Now suppose that for somie® € Zs, (T% 1, J8 1) =  plies that(gz, w2, &)l0,0) € U7 and s0,(go,ws, &2)|(rjr) €
(. That is, afterT*", there are no further jumps due to thd/; for all (t,j’) € FE,. But then, this implies that
controller. In this case, we let (®(G1, R1),w1,&1)|¢,5) € Ug for all (¢,7) € Ei. Finally,

by Theorem 7dist(¢1(0,0), Q(R1(0,0))) < 1 implies that
Ey = EX¥ U([T%,T),k*) = dist(G1 (¢, 7), Q(R1(t, 7)) < o, and s0,A is stable.
k-1 Proceeding, we suppose thdtis stable. Let
k k+1 k* *
<kUO([T,T ],k))u([T ,T), k"), U = {(R,w,3,€) :

(®(g, R),w, &) € Uy, dist(§, Q(R)) < o+ €}

be an open neighborhood gf, wheree + « < 1. Now, there
exists0 < § < € < 1—« and an open sdi® c U€ written as

where T = sup{t : 3j € Zxo(t,j) € E1} and we allow
T = oo when E; is unbounded in the direction. Then, for
all t € [T*", T), we define the solution

5 _ A .
(q2,w2,&2) (k) = ((I)(qu,Rl),wl,gl)lt (t). (62) U ={(R,w,§,§):

(®(¢, R),w, &) € U, dist(q, Q(R)) < a + 6}
Similar to previous arguments, Theorem 7 assures tha]% s . h th ; wuti
q’(dlle)lt (t) is a continuous trajectory satisfying\(NRerE 2]45 ) C. gﬁ ijc Sot(;;t " Oﬂr@ inySB Sz uglcon
R(®(q1, R1)) ], (t) = Ril, (t) for everyt € [0,T) and so satliéfyliﬁgh (IR o 15 ) o U it follows
also satisfies (8). Since the and ¢ solution-components of ¢ (R 11,015 01561 (070)U€ ¢ (e i
(30) do not exhibit changes over jumps due to the Iiftinga ( 1".‘”’?“51)'(@3 ) ER or all (t.j) € Ulg'
system and otherwise have identical dynamics to solutiéns » gqu“{a %”Oy’ (R(QE; 01)7W17§1)|(0,0) € P ¢
(31) when there are no controller jumps, it follows that thglr_] 1;:(%1( ’(I))lgg% 1(0,0))) < @ +U5 'm;j
hybrid arc defined in (61) and (62) is a solution to (31) Oﬁilsi?dl o g‘) Q(( R(lq(lo’ 0)1;) ffﬁ'ét%r " (te hep an
E2. ) 3 3 ) 3 3 3
In particular, it follows that(gs,ws, ;) is a solution to S Naovioliggﬁoig(%2371“))273§a2t)isf)}ingl€;2 w—; €QS)|(O>;)R€ XUff
. H -/ < 3 ) X s 0 .
(31)h0?1E2 agd forgvery(duj) E(I)E} there exists; —ﬁ Then, Lemma 8 guarantees the existence of a solution
suc t at(t,j ) S 2 an- (R17 (Q17R1)3W-1a€1)|(t,j) - (Rl,wl,q/\17§1) . El _ 50(3) % R?, % 83 % 51 SUCh that fOI‘
(R(q2), g2, w2, &2)|(x,;y- This concludes the first part of theevery(t V€ By, there exists’ < j such thallt, j) € E» and
lemma. A converse follows similarly by adding in jumps du?R1 q)((’jf R) ;’1 s — (_R](qg) Do 5,2]”@ .)2 A
ipy- ) ) 9 9 5] - ’ ’ ) NIOR
to the lifting system. then, such a solution would satisf (41, R1),w1,&1)(0,0) €
U} and dist(¢1(0,0), Q(R1(0,0))) < « + &, which
APPENDIXD implies that (®(¢1, R1),w1,&)|w;) €  Ug and
PROOF OFTHEOREM9 dist(1(0,0), Q(R1(0,0))) < « + € for all (t,5) € FEi.
First, we note that sinc® : S — SO(3) is a covering Finally, this implies that(gz, w2, &)l € Up for all
map and in particular, is everywhere a local diffeomorphisr¥, j) € E2 and thatA, is stable. _ N
we can easily write open neighborhoodstn terms of open ~ From the arguments above, the proofs of instability fol-
neighborhoods of4,. In particular, an open neighborhoodoWw similarly. While we do not prove attractivity here, we

U¢ > A can be written as emphasize that the proofs are largely the same in character

U = [(Row. i €) : and ultimately rely on comparing solutions of (31) with (30)

={(Bw,4,8):. through Lemma 8.
(®(¢, R),w, &) € Uy, dist(q, Q(R)) < a + €},
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