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On Path-Lifting Mechanisms and Unwinding in
Quaternion-based Attitude Control∗

Christopher G. Mayhew♯, Ricardo G. Sanfelice♭, and Andrew R. Teel†

Abstract—The unit quaternion is a pervasive representation of
rigid-body attitude used for the design and analysis of feedback
control laws. Because the space of unit quaternions constitutes
a double cover of the rigid-body attitude space, quaternion-
based control laws are often—by design—inconsistent, i.e., they
do not have a unique value for each rigid-body attitude. In-
consistent quaternion-based control laws require an additional
mechanism that uniquely convert an attitude estimate into its
quaternion representation; however, conversion mechanisms that
are memoryless—e.g., selecting the quaternion having positive
scalar component—have a limited domain where they remain
injective and, when used globally, introduce discontinuities into
the closed-loop system. We show—through an explicit con-
struction and Lyapunov analysis—that such discontinuities can
be hijacked by arbitrarily small measurement disturbances to
stabilize attitudes far from the desired attitude. To remedy
this limitation, we propose a hybrid-dynamic algorithm for
smoothly lifting an attitude path to the unit-quaternion space.
We show that this hybrid-dynamic mechanism allows us to di-
rectly translate quaternion-based controllers and their asymptotic
stability properties (obtained in the unit-quaternion space) to
the actual rigid-body-attitude space. We also show that when
quaternion-based controllers are not designed to account for
the double covering of the rigid-body-attitude space by a unit-
quaternion parameterization, they can give rise to the unwinding
phenomenon, which we characterize in terms of the projection of
asymptotically stable sets. Finally, we employ the main results to
show that certain hybrid feedbacks can globally asymptotically
stabilize the attitude of a rigid body.

I. I NTRODUCTION

Controlling the attitude of a rigid body is one of the
canonical nonlinear control problems, with applications in
aerospace and publications spanning many decades [1]–[5].
A fundamental characteristic of attitude control that imparts
a fascinating difficulty is the topological complexity of the
underlying state space of rotation matrices,SO(3): a bound-
aryless compact manifold that is not diffeomorphic to any
vector space. This property ofSO(3) precludes the existence
of a continuous time-invariant state-feedback control lawthat
globally asymptotically stabilizes a particular attitude[6], [7].
For the same reason, no periodic or discontinuous feedback
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can robustly globally asymptotically stabilize a particular
attitude [8].

Often, unit quaternions are used to parametrizeSO(3).
While this parametrization yields the minimal globally non-
singular1 parametrization of rigid-body attitude [9], its state
space,S3 (the set of unit-magnitude vectors inR4) is a
double cover ofSO(3). That is, there are two (antipodal)
unit quaternions corresponding to every rigid-body attitude.
This creates the need to stabilize a disconnected set in the
covering space [5], which has its own topological obstruc-
tions [10]. As discussed in [6], these topological subtleties
can cause confusion and sometimes, lead to dubious claims
regarding the globality of asymptotic stability (see e.g. [1],
[11]). Nevertheless, unit quaternions are still used by many
authors (including the authors of this paper) today to design
feedback control algorithms for attitude control.

A feedback controller designed using a quaternion repre-
sentation of attitude may not beconsistentwith a control law
defined onSO(3). That is, for every rigid-body attitude, the
quaternion-based feedback may take on one of two possible
values. When this is the case, analysis for quaternion-based
feedback is often carried out inS3 with a lifted dynamic
equation. However, such analyses are not directly related to
a feedback system defined onSO(3). This obviously begs the
following questions. How is a unit quaternion representation
obtained from available measurements? On what state-space
is an inconsistent quaternion-based feedback defined? How
is stability analysis done in the covering space related to a
stability result for the actual system?

Given an estimated attitude, it is a fairly simple operation
to compute the corresponding set of unit quaternions (see e.g.
[12], [13]); however, the process of selecting which quaternion
to use for feedback is a less obvious operation. As noted
in [4], it is often the case that the quaternion with positive
“scalar” component is used for feedback. This operation is
non-global and discontinuous. As we show in this work, the
act of paring such a discontinuous quaternion-selection scheme
with a widely used inconsistent quaternion-based feedback
opens the door for an undesirable chattering effect. In fact,
we construct an explicit disturbance—defined onSO(3)—
that exploits the discontinuity to stabilize a region aboutthe
manifold of 180◦ rotations with zero angular velocity.

To remedy this behavior, we propose a hybrid-dynamic
algorithm for smoothly lifting path fromSO(3) onto S

3.
Our approach allows us to make an equivalence between any

1The term “globally nonsingular” here means that the covering map from
S3 to SO(3) is everywhere a local diffeomorphism.



asymptotic (in)stability result for a closed-loop system in the
covering space and a corresponding (in)stability result for the
actual plant. This justifies carrying out stability analysis in
a unit-quaternion setting; however, when a quaternion-based
feedback does not respect the two-to-one covering ofSO(3),
this translated stability result may not be desirable.

Often, quaternion-based feedbacks are designed to stabilize
only one of two quaternions corresponding to the desired
attitude. When these inconsistent feedbacks are paired with
a path-lifting algorithm, they cause the so-called “unwinding
phenomenon,” where the feedback can unnecessarily rotate the
rigid body through a full rotation. This behavior was discussed
at length in [6] in terms of lifts of paths and vector fields
from SO(3) to S

3. In this paper, we characterize unwinding in
terms of asymptotically stable sets in an extended state space
projected onto the plant state space.

In practice, an explicit measurement of attitude is not
available. Instead, the attitude must be reconstructed from
measurements of known inertial-frame vectors expressed in
body-frame coordinates [14]. With measurements of at least
two such linearly independent vectors, the attitude can be
algebraically reconstructed by in various ways, such as solving
a least-squares problem (often called “Wahba’s problem” [15])
[16], [17]. When using only a static attitude-reconstruction
algorithm, a path-lifting mechanism (like the one herein pro-
posed) is necessary to choose the quaternion consistently if an
inconsistent feedback is used. Alternatively, dynamical filters
can be used to estimate the attitude from vector observations
(or IMU measurements) or from the results of static attitude
attitude-reconstruction algorithms [18], [19]. Regardless of
the process that ultimately forms an estimate of attitude,
the message of this work is clear: when an inconsistent
quaternion-based feedback is used, a dynamic mechanism is
needed to resolve the ambiguity in which quaternion is used
for feedback. Furthermore, regardless of the mechanism that
fills this role (e.g. the hybrid algorithm proposed herein or
a dynamic filter as in [18], [19]), the additional state(s) of
the mechanism should be considered to correctly assess the
stability properties of the closed-loop system and to rule out
any possibility of unwinding.

This paper is organized as follows. Section II provides
the background material for attitude control and hybrid sys-
tems used in this paper. Section III reconstructs the “select-
the-quaternion-with-positive-scalar-component” mechanism in
terms of a static map that selects a quaternion according to a
metric. In Section IV we show by Lyapunov analysis that,
when composed with a widely used inconsistent feedback,
the aforementioned quaternion-selection scheme makes the
closed-loop system susceptible to arbitrarily small measure-
ment disturbances that can act to stabilize attitudes far from
the desired attitude. Section V constructs a hybrid-dynamic
system that smoothly lifts paths fromSO(3) to S

3. We couple
this system with a quaternion-based feedback in Section VI
and establish an equivalence of stability between two closed
systems: one is defined in the unit-quaternion space and the
other one is defined in the rigid-body-attitude space extended
by a unit-quaternion memory state. Section VII discusses
the unwinding phenomenon in terms of the projection of

asymptotically stable sets and suggests how to avoid the
behavior. Finally, we present conclusions in Section VIII.

II. PRELIMINARIES

A. Notation

In this paper,R (R≥0) denotes the (nonnegative) real num-
bers,Rn denotesn-dimensional Euclidean space, andR

m×n

denotes the vector space ofm×n real matrices. Given vectors
x, y ∈ R

n and matricesA,B ∈ R
m×n, their inner products are

defined as〈x, y〉 := x⊤y and〈A,B〉 := trace(A⊤B), respec-
tively. The 2-norm of a vectory ∈ R

n is |y| =
√

〈y, y〉 and the
Frobenius norm of a matrixA ∈ R

n×m is ‖A‖F =
√

〈A,A〉.
Then-dimensional unit sphere embedded inR

n+1 is denoted
as S

n = {x ∈ R
n+1 : |x| = 1}, the closed unit ball inRn is

B = {x ∈ R
n : |x| ≤ 1}, and the closed unit ball inRm×n is

B = {A ∈ R
m×n : ‖A‖F ≤ 1}. A set-valued map is denoted

as ⇉. That is,F : X ⇉ Y indicates that for eachx ∈ X ,
F (x) ⊂ Y .

Given differentiable functionsh : R
n → R, and k :

R
m×n → R, we denote their gradients as∇h : R

n → R
n

and∇k : R
m×n → R

m×n. That is,

∇h(x) =









∂h(x)

∂x1
...

∂h(x)

∂xn









∇k(x) =









∂k(x)

∂x11
· · ·

∂k(x)

∂x1n
...

. . .
...

∂k(x)

∂xm1
· · ·

∂k(x)

∂xmn









.

(1)
Let y : R → R

n and z : R → R
m×n be differentiable

functions and defineα = h◦y andβ = k◦z. Then, the matrix
calculus by vectorization [20] yields the consistent notation

α̇(t) = ∇h(y(t))⊤ẏ(t) = 〈∇h(y(t)), ẏ(t)〉

β̇(t) = trace(∇k(z(t))⊤ż(t)) = 〈∇k(z(t)), ż(t)〉 .

B. Attitude kinematics, dynamics, and representation by unit
quaternions

The attitude of a rigid body is defined as the relative rotation
of a body-fixed frame to an inertial frame and is represented
by a 3 × 3 orthogonal matrix with unitary determinant: an
element of the special orthogonal group of order three,

SO(3) =
{
R ∈ R

3×3 : R⊤R = I, detR = 1
}
.

The kinematic and dynamic equations of a rigid body are

Ṙ = R [ω]× (2a)

Jω̇ = [Jω]× ω + τ, (2b)

respectively, whereR ∈ SO(3) is the attitude,ω ∈ R
3 is

the the angular velocity given in the body-fixed frame,J =
J⊤ > 0 is the inertia matrix,τ ∈ R

3 is an external torque,
and the cross product between vectorsy, z ∈ R

3, is defined
by a matrix multiplication:y × z = [y]× z, where

[y]× =





0 −y3 y2
y3 0 −y1
−y2 y1 0



 .
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Members ofSO(3) are often parametrized in terms of a
rotation θ ∈ R about a fixed axisu ∈ S

2 by the so-called
Rodrigues formula: the mapU : R × S

2 → SO(3) defined as

U(θ, u) = I + sin(θ) [u]× + (1 − cos(θ)) [u]
2
× . (3)

The unit-quaternion parametrization ofSO(3) associates
every element ofSO(3) with two elements ofS3. In the sense
of (3), a unit quaternionq is defined as

q =
[
η ǫ⊤

]⊤
= ±

[
cos(θ/2) sin(θ/2)u⊤

]⊤
∈ S

3 (4)

and represents an element ofSO(3) through the mapR : S
3 →

SO(3) defined as

R(q) = I + 2η [ǫ]× + 2 [ǫ]
2
× . (5)

Note the important property that forq1 6= q2 ∈ S
3, R(q1) =

R(q2) if and only if q1 = −q2. We denote the double-valued
inverse mapQ : SO(3) ⇉ S

3 as

Q(R) = {q ∈ S
3 : R(q) = R}. (6)

Conveniently, we will often write a quaternion as a pairq =
(η, ǫ), rather than as a vector.

With the identity elementi = (1, 0) ∈ S
3, each unit

quaternionq ∈ S
3 has an inverseq−1 = (η,−ǫ) under the

quaternion multiplication rule

q1 ⊙ q2 =
[

η1η2 − ǫ⊤1 ǫ2
(
η1ǫ2 + η2ǫ1 + [ǫ1]× ǫ2

)⊤
]⊤

,

whereqi = (ηi, ǫi) ∈ R
4 and i ∈ {1, 2}. Then, the mapR is

a group homomorphism satisfying

R(q1)R(q2) = R(q1 ⊙ q2). (7)

The manifoldS
3 is a covering spacefor SO(3) and R :

S
3 → SO(3) is the covering map. Precisely, for everyR ∈

SO(3), there exists an open neighborhoodU ⊂ SO(3) of R
such thatQ(U) = O1 ∪ O2, whereO1,O2 ⊂ S

3 are open,
O1 ∩ O2 = ∅, and for eachk ∈ {1, 2}, the restriction ofR
to Ok is a diffeomorphism. In particular,R is everywhere a
local diffeomorphism.

A fundamental property of a covering space is that a
continuous path in the base space can be uniquely “lifted”
to a continuous path in the covering space once a base point
is specified. In terms ofSO(3) and S

3, for every continuous
pathR : [0, 1] → SO(3) and for everyp ∈ Q(R(0)), there
exists a unique continuous pathqp : [0, 1] → S

3 satisfying
qp(0) = p and R(qp(t)) = R(t) for every t ∈ [0, 1] [21,
Theorem 54.1]. We call any such pathqp a lift of R overR.
We refer the reader to see [21], [22] for general information
about covering spaces.

In addition to paths, vector fields defined onSO(3) can be
lifted ontoS

3 as well [6]. In this direction, given a Lebesgue-
measurable functionω : [0, 1] → R

3 and an absolutely
continuous pathR : [0, 1] → SO(3) satisfying (2a) for almost
all t ∈ [0, 1], any q : [0, 1] → S

3 that is a lift of R over R
satisfies thequaternion kinematic equation

q̇ =

[
η̇
ǫ̇

]

=
1

2
q ⊙ ν(ω) =

1

2
Λ(q)ω, (8)

for almost all t ∈ [0, 1], where the mapsν : R
3 → R

4 and
Λ : S

3 → R
4×3 are defined as

ν(ω) =

[
0
ω

]

Λ(q) =

[
−ǫ⊤

ηI + [ǫ]×

]

.

C. Hybrid systems framework

In this work, we appeal to the hybrid systems framework
[23], [24]. This is in part due to the fact that the authors have
developed quaternion-based hybrid feedback controllers that
achieve global asymptotic stabilization of rigid-body attitude
in [5], [25], [26] and also because the path-lifting algorithm
presented here is hybrid. A hybrid system allows for both
continuous and discrete evolution of the state. A hybrid system
H with statex ∈ R

n is defined by four objects: aflow map,
F : R

n
⇉ R

n, governing continuous evolution of the state by
a differential inclusion, ajump map, G : R

n
⇉ R

n, governing
discrete evolution of the state by a difference inclusion, aflow
set, C ⊂ R

n, dictating where continuous state evolution is
allowed, and ajump set, D ⊂ R

n, dictating where discrete
state evolution is allowed. We write a hybrid system in the
compact form,

H

{

ẋ ∈ F (x) x ∈ C

x+ ∈ G(x) x ∈ D.

Often, we will refer to a hybrid system by its data asH =
(F,G,C,D).

Solutions to hybrid systems are defined onhybrid time
domainsand are parametrized byt, the amount of time spent
flowing and j, the number of jumps that have occurred. A
compact hybrid time domainis a setE ⊂ R≥0 × Z≥0 of the
form

E =

J⋃

j=0

([tj , tj+1], j), (9)

whereJ is a nonnegative integer,0 = t0 ≤ t1 ≤ · · · ≤ tJ+1.
We say thatE is ahybrid time domainif, for each(T, J) ∈ E,
the setE ∩ ([0, T ] × {0, 1, . . . , J}) is a compact hybrid time
domain. On every hybrid time domain, points are naturally
ordered as(t, j) � (s′, k′) if t+ j ≤ s+ k and(t, j) ≺ (s, k)
if t+ j < s+ k.

A hybrid arc is a function x : domx → R
n, where

domx is a hybrid time domain and, for each fixedj, the map
t→ x(t, j) is a locally absolutely continuous function on the
interval

Ij = {t : (t, j) ∈ domx}. (10)

When a hybrid arc has several components, we adopt the
economical notation

(x1(t, j), . . . , xk(t, j)) = (x1, . . . , xk)|(t,j).

A hybrid arc x is a solution to the hybrid systemH =
(F,G,C,D) if x(0, 0) ∈ C ∪D and

1) for eachj ∈ Z≥0 such thatIj has nonempty interior,
ẋ(t, j) ∈ F (x(t, j)) for almost allt ∈ Ij andx(t, j) ∈
C for all t ∈ [min Ij , sup Ij),

2) for each(t, j) ∈ domx such that(t, j + 1) ∈ domx,
x(t, j + 1) ∈ G(x(t, j)) andx(t, j) ∈ D.
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Solutions are not unique ifG is multi-valued for somex ∈ D,
there is more than one flowing solution from somex ∈ C, or
it is possible to flow from some pointx ∈ C ∩D.

A solution x to H is maximal if it is not a truncation of
another solution and it iscompleteif domx is unbounded.
Given a hybrid arcx, let T̄ (x) = sup{t : ∃j ∈ Z≥0 (t, j) ∈
domx} and let J̄(t) = max{j : (t, j) ∈ domx}. Then, the
time projectionof x is the functionx↓t : [0, T̄ (x)) → R

n

defined as
x↓t (t) = x(t, J̄(t)). (11)

In this work, we assume that the hybrid systemH satisfies
the hybrid basic conditions:

1) C andD are closed sets inRn.
2) F : R

n
⇉ R

n is an outer semicontinuous2 set-valued
mapping, locally bounded onC, and such thatF (x) is
nonempty and convex for eachx ∈ C.

3) G : R
n

⇉ R
n is an outer semicontinuous set-valued

mapping, locally bounded onD, and such thatG(x) is
nonempty for eachx ∈ D.

These properties ensure, among other things, that asymptotic
stability is nominally robust [24].

A compact setA ⊂ R
n is stable for H if for each open

setUǫ ⊃ A, there exists an open setUδ ⊃ A such that for
each solutionx : domx → R

n to H satisfyingx(0, 0) ∈ Uδ,
it follows thatx(t, j) ∈ Uǫ for all (t, j) ∈ domx. A compact
setA is unstableif it is not stable. A setA is attractive from
a setB if each solution with initial condition inB converges
to A, i.e., for each solutionx : domx→ R

n with x(0, 0) ∈ B
and each open setUǫ ⊃ A, there existsT > 0 such that
x(t, j) ∈ Uǫ for all (t, j) ∈ domx satisfyingt + j ≥ T . The
set of points inR

n from which each solution is complete,
bounded, and converges toA is called thebasin of attraction
of A. Note that each point inRn \ (C ∪ D) belongs to the
basin of attraction of any setA, since no solutions exist from
these points. A compact setA is asymptotically stableif it is
stable and attractive from an open neighborhood ofA and is
globally asymptotically stableif its basin of attraction isRn.

Finally, we remark that while the above definitions are
written in terms of R

n, they equally apply to manifolds
embedded inRn. In particular, they apply to the state spaces
that we will be using in this paper:S3, SO(3), and discrete
sets of logic variables.

III. I NCONSISTENTQUATERNION-BASED FEEDBACK AND

MEMORYLESSPATH L IFTING

It is quite commonplace to design an attitude control law
based upon a quaternion representation. That is, the control
designer creates a continuous functionκ : S

3 × R
3 → R

3

and closes a feedback loop around (2) by settingτ(t) =
κ(q(t), ω(t)), whereq(t) is selected to satisfyR(q(t)) = R(t),
for eacht ∈ R≥0. When the feedbackκ satisfies

κ(q, ω) = κ(−q, ω) ∀(q, ω) ∈ S
3 × R

3, (12)

2A set-valued mapF : X ⇉ Y is outer semicontinuous if the set{(x, y) ∈
X×Y : y ∈ F (x)} is closed. It is locally bounded onC if for each compact
K, F (K) is bounded.

we say thatκ is consistent. Smooth and consistent feedback
control algorithms are investigated in [27] for adaptive attitude
control without angular velocity measurements and recently in
[28] for attitude synchronization of a formation of spacecraft.
In such cases, there is little need for a quaternion representa-
tion for analysis, asκ could be defined in terms ofR ∈ SO(3).

When a quaternion-based feedback isinconsistent, that is,

∃(q, ω) ∈ S
3 × R

3 κ(q, ω) 6= κ(−q, ω), (13)

the resulting feedbackdoes not define a unique vector field
on SO(3) × R

3 because forR ∈ SO(3) satisfyingQ(R) =
{−q, q}, the feedbackκ(Q(R), ω) is a two-element set [6].
At this point, the control designer must, for everyt ∈ R≥0,
choose whichq(t) ∈ Q(R(t)) to use for feedback. In this
direction, we provide a quote from the seminal paper [4]:

“In many quaternion extraction algorithms, the sign
of [the ‘scalar’ part of the quaternion] is arbitrarily
chosen positive. This approach is not used here, in-
stead, the sign ambiguity is resolved by choosing the
one that satisfies the associated kinematic differential
equation. In implementation, this would probably
imply keeping some immediate past values of the
quaternion.”

There is much to be gleaned from this quotation. In par-
ticular, it suggests that inconsistent quaternion-based control
laws require an extra memory state to lift a trajectory from
SO(3) to a trajectory inS

3. In what follows, we reconstruct
the discontinuous quaternion “extraction” algorithm mentioned
in the quotation above in terms of a metric and use the ensuing
discussion to motivate a hybrid algorithm for on-line lifting of
an attitude trajectory fromSO(3) to S

3.
We define a metricd : S

3 × S
3 → [0, 2] and an associated

distance function fromq ∈ S
3 to a setQ ⊂ S

3 as

d(q, p) = 1 − q⊤p, dist(q,Q) = inf{d(q, p) : p ∈ Q}.
(14)

From a geometric viewpoint,d(q, p) is the height ofp ∈ S
3

“above” the plane orthogonal to the vectorq ∈ S
3 at q. When

the setQ in (14) takes the form ofQ(R) for someR ∈ SO(3),
the distance function also takes a special form. In particular,
let Q(R) = {p,−p}. Then,dist(q,Q(R)) = 1 − |q⊤p|.

One possible method to lift a path fromSO(3) to S
3 is to

simply pick the quaternion representation ofR that is closest
to a specific quaternion in terms of the metricd. In particular,
let us define the mapΦ : S

3 × SO(3) ⇉ S
3 as

Φ(q,R) = argmin
p∈Q(R)

d(q, p) = argmax
p∈Q(R)

q⊤p. (15)

The mapΦ has some useful properties, which we summarize
in the following lemmas.

Lemma 1. Let q ∈ S
3 and R ∈ SO(3). The following are

equivalent:

1) Φ(q,R) is single-valued andq⊤Φ(q,R) > 0
2) 0 ≤ dist(q,Q(R)) < 1
3) q⊤p 6= 0 for all p ∈ Q(R)
4) R 6= U(π, u)R(q) for any u ∈ S

2, where the mapU :
R × S

3 → SO(3) was defined in(3).

4



Proof: For the remainder of this proof, we letQ(R) =
{p,−p}. By the definition ofΦ in (15), we see thatΦ(q,R) is
single-valued if and only ifd(q, p) 6= d(q,−p) ⇔ 1 − q⊤p 6=
1+q⊤p⇔ q⊤p 6= −q⊤p⇔ q⊤p 6= 0 ⇔ 0 ≤ dist(q,Q(R)) <
1. This provides an equivalence between 1), 2), and 3), above.

Now, let θ ∈ R and u ∈ S
2 be such thatR =

U(θ, u)R(q). SinceR = R(±p), the fact thatR satisfies
(7) provides the following equivalent series of expressions:
R(p) = U(θ, u)R(q) ⇔ R(p)R(q)−1 = U(θ, u) ⇔ R(p ⊙
q−1) = U(θ, u).

Now, sincep⊙q−1 = (p⊤q, ∗), the form ofR : S
3 → SO(3)

in (5) guarantees thatR(p⊙ q−1) = R(p⊙ q−1)⊤ 6= I if and
only if p⊤q = 0. But U(θ, u) = U(θ, u)⊤ 6= I if and only if
sin θ = 0 andcos θ = −1, which is satisfied forθ = π.

Lemma 2. For every q̂ ∈ S
3, every continuousR : [0, 1] →

SO(3), and every continuousq : [0, 1] → S
3 satisfying

d(q̂, q(0)) < 1 and for all t ∈ [0, 1] R(q(t)) = R(t) and
dist(q̂,Q(R(t))) < 1, it follows thatΦ(q̂, R(t)) = q(t) for all
t ∈ [0, 1].

Proof: Under the assumptions of the lemma, suppose
further that for somet′ ∈ [0, 1], Φ(q̂, R(t′)) = −q(t′). This
implies thatd(q̂,−q(t′)) < d(q̂, q(t′)) and thatd(q̂, q(t′)) > 1.
But sinceq(t) is continuous andd(q̂, q(0)) < 1, it follows
that d(q̂, q(t)) is continuous and from the intermediate value
theorem, there existst∗ ∈ [0, t′] such thatd(q̂, q(t∗)) =
d(q̂,−q(t∗)) = dist(q̂,Q(R(t∗))) = 1. This is a contradiction.

Lemma 3. For all q̂ ∈ S
3 and R ∈ SO(3) satisfying

dist(q̂,Q(R)) < 1, it follows that

Φ(Φ(q̂, R), R) = Φ(q̂, R). (16)

Proof: Without loss of generality, letQ(R) = {q,−q}
anddist(q̂, q) < 1. Then,

Φ(Φ(q̂, R), R) = argmin
q′∈{q,−q}

dist(q, q′) = q,

so thatΦ(Φ(q̂, R), R) = Φ(q̂, R).
Since a goal of attitude control is to regulateR to I (or, in

general, an error attitude toI), one might choosei as a point of
reference (sinceR(i) = I) and use the mapΦi : SO(3) ⇉ S

3

defined as

Φi(R) = Φ(i, R) ∀R ∈ SO(3). (17)

Now, following 3) from Lemma 1 we see thati⊤Φi(R) > 0,
that is,Φi always chooses the quaternion with positive scalar
component, so long as it is single-valued. Further, Lemma 2
allows one to lift curves withΦi so long asR does not
cross the manifold of180◦ rotations whereΦi is multi-
valued, or elseΦi will produce a quaternion trajectory that is
discontinuous. As we now show, this leads to an undesirable
chattering effect whenΦi is composed with an inconsistent
feedback.

IV. N ON-ROBUSTNESS

Let c > 0 and letΨ : R
3 → R

3 be a continuous function
satisfying

γ(|ω|) ≤ ω⊤Ψ(ω), (18)

where γ : R≥0 → R≥0 is a strictly increasing continuous
function satisfyingγ(0) = 0.

E(q) = E(η, ǫ) = Λ(q)⊤i = ǫ (19)

and consider the inconsistent feedback

κ∗(q, ω) = −cE(q) − Ψ(ω), (20)

where c > 0. While this control law makes the set
{(i, 0), (−i, 0)} globally attractive for the lifted closed-loop
system defined by (8), (2b), and settingτ = κ∗(q, ω), it
renders(i, 0) stable and(−i, 0) unstable equilibrium. When
composed withΦi, one might expect that the resulting feed-
back globally asymptotically stabilizes the identity element of
SO(3); however, we show that any such expected global attrac-
tivity property is not robust to arbitrarily small disturbances.

Define the functionσ : R → {−1, 0, 1} as

σ(s) =

{

s/|s| s 6= 0

0 s = 0.
(21)

Then, for0 ≤ δ < π, consider the functionµ : SO(3)×R
3 →

U(δ, S2) defined implicitly in terms of the Rodrigues formula
as, for everyR ∈ SO(3) and every(θ, u) ∈ R× S

2 satisfying
U(θ, u) = R,

µ(U(θ, u), ω) =

{

U(−δσ(ω⊤u), u) cos θ < cos(π + δ)

I otherwise.
(22)

For any(R,ω) ∈ SO(3) × R
3, the rotation matrixµ(R,ω)R

constitutes an angular perturbation ofR about the eigenaxis
u ∈ S

2. The parameterδ controls the size of the disturbance.
We note that (22) is well defined onSO(3).

Lemma 4. For everyδ ∈ [0, π) and (R,ω) ∈ SO(3) × R
3,

µ(R,ω) is uniquely defined.

Proof: Suppose thatR = U(θ, u) for someθ ∈ R and
u ∈ S

2. Clearly,µ(R,ω) is uniquely defined whenω = 0 or
cos θ ≥ cos(π± δ), since it does not depend onR or ω in this
case.

Suppose thatcos θ < cos(π ± δ) andω 6= 0. This implies
that R 6= I, since 0 < δ < π. Then, it follows from the
Rodrigues formula that for anyv ∈ S

2 andφ such thatR =
U(φ, v), it must be the case thatu = v or u = −v (only when
R 6= I). Moreover, sinceU(−θ,−u) = U(θ, u), it follows that

µ(U(φ, v), ω) = U(−δσ(ω⊤v), v) = U(−δσ(ω⊤u), u).

Then, we have shown that the value ofµ is independent of the
angle-axis representation ofR, hence, it is uniquely defined
on SO(3) × R

3.
Let φi : SO(3) → S

3 be any single-valued selection ofΦi,
that is,φi(R) = Φi(R) for all R 6= U(π, u) andφi(R) ∈ Φi

otherwise. Now, we apply the disturbanceµ to measurements
of attitude before being converted to a quaternion for use
with the inconsistent feedback (20) and analyze the resulting
closed-loop system. That is, we replaceq with φi(µ(R,ω)R)
in the control lawκ∗ defined in (20).

Becauseφi andµ are discontinuous, we use the notion of
Krasovskii solutions for discontinuous systems [29]. We note
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that the following definition is equally valid for product spaces
such asRm×n × R

p, onceR
m×n is isometrically identified

with R
mn by vectorization.

Definition 5. Let f : R
n → R

n. TheKrasovskii regularization
of f is the set-valued mapping

K f(x) =
⋂

ǫ>0

convf(x+ ǫB) (23)

where convB denotes the closed convex hull of the set
B ⊂ R

n. Then, given a functionf : R
n → R

n, a Krasovskii
solutionto ẋ = f(x) on an intervalI ⊂ R≥0 is an absolutely
continuous function satisfying

ẋ(t) ∈ K f(x(t)) (24)

for almost all t ∈ I.

We now state the main result of this section: the discon-
tinuity created by pairing an inconsistent quaternion-based
feedback with a discontinuous quaternion selection scheme
makes the closed-loop system susceptible toarbitrarily small
measurement disturbances that can exploit how feedback term
cE(φi(R)) opposes itself about the discontinuity ofφi.

Theorem 6. Let a > 0, c > 0, and δ > 0 satisfy

0 < δ <
1

2

(

−
a

c
+

√
(a

c

)2

+ 8

)

(25)

and define

B = {(U(θ, u), ω) : cos θ + (1/a)ω⊤Jω ≤ cos(π + δ)}.

Then, the set{U(π, S2)} × {0} is stable andB is invariant
for the closed-loop system

Ṙ = R [ω]×
Jω̇ = [Jω]× ω + κ∗(φi(µ(R,ω)R), ω)

(26)

Proof: See Appendix A.
The various failures ofΦi have led several authors (e.g.

[30]) to derive sufficient conditions on the initial conditions
of (2) to ensure that these180◦ attitudes are never approached,
thus obviating the use of a globally nonsingular representation
of attitude like unit quaternions. However, the issues with
usingΦi as a path-lifting algorithm are not a problem with the
quaternion representation—they arise becauseΦi is a memo-
ryless map fromSO(3) to S

3. In particular,Φi always chooses
the closest quaternion toi and in general, when one compares
Q(R) with q for someR ∈ SO(3) and q ∈ S

3, Φ(p,R) is
multi-valued on the 2-D manifold{p ∈ S

3 : p⊤q = 0}.
However, when the reference point for choosing the closest
quaternion is allowed to change, it is then possible to create
a dynamic algorithm for smoothly lifting a trajectory from
SO(3) to S

3. We now explore such an algorithm that ishybrid
in nature.

V. A H YBRID ALGORITHM FOR DYNAMIC PATH L IFTING

In this section, we present a simple dynamic algorithm for
lifting a path from SO(3) to S

3. The main feature of the
algorithm is a memory statêq ∈ S

3 that provides a reference

point for choosing the closest quaternion with respect tod.
This memory state usually remains constant, but is updated
when necessary to ensure thatdist(q̂,Q(R)) < 1. The basic
logic behind the algorithm is pictured in Fig. 1 as a flow chart.

MeasureRInitialize q̂ ∈ S
3

ConvertR
to Q(R)

Is q̂ far
from Q(R)?

Output
q ∈ Q(R)

closest toq̂

Updateq̂

to closest
q ∈ Q(R)

no

yes

Fig. 1. Flow chart for dynamic path lifting fromSO(3) to S3.

Given a distance thresholdα ∈ (0, 1), we define the sets
Cℓ, Dℓ ⊂ S

3 × SO(3)× as

Cℓ = {(q̂, R) ∈ S
3 × SO(3) : dist(q̂,Q(R)) ≤ α}

Dℓ = {(q̂, R) ∈ S
3 × SO(3) : dist(q̂,Q(R)) ≥ α}.

(27a)

Then, we propose the hybrid path-lifting algorithm as the
system

Hℓ =

{
˙̂q = 0 (q̂, R) ∈ Cℓ

q̂+ ∈ Φ(q̂, R) (q̂, R) ∈ Dℓ,
(27b)

with continuous inputR : R≥0 → SO(3) and output

q =

{

Φ(q̂, R) (q̂, R) ∈ Cℓ

∅ otherwise.
(27c)

We analyze the properties of the hybrid path-lifting algo-
rithm by analyzing the solutions of an autonomous system that
generates a wide class of useful trajectories inSO(3) as input
to Hℓ.

Theorem 7. Let α ∈ (0, 1) andM > 0. The hybrid system

˙̂q = 0

Ṙ ∈ R [MB]×
︸ ︷︷ ︸

(q̂, R) ∈ Cℓ

q̂+ ∈ Φ(q̂, R)

R+ = R
︸ ︷︷ ︸

(q̂, R) ∈ Dℓ

(28)

and its outputq defined in(27c)have the following properties:

1) Closed loop system(28) satisfies the hybrid basic con-
ditions.

2) For each (q̂, R) ∈ S
3 × SO(3) ⊃ Dℓ and eachp ∈

Φ(q̂, R), it follows that(p,R) ∈ Cℓ \Dℓ.
3) The flow setCℓ is invariant.
4) For any solution(q̂, R) to (28),

{(t, j) : dist(q̂(t, j),Q(R(t, j))) > α} ⊂ {(0, 0)}.

5) All maximal solutions are complete.
6) The time between jumps is bounded below by2α/M .
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7) The function q↓t : [0,∞) → S
3 is continuous and

satisfiesR(q↓t (t)) = R↓t (t).

Proof: See Appendix B.
From Theorem 7 and its proof, one could append dynamical

equations for the outputq(t, j) = Φ(q̂(t, j), R(t, j)) to (28) as
q̇ = 1

2q⊙ ν(ω) andq+ = q, whereω ∈MB andṘ = R [ω]×.
In practice, one should chooseα ∈ (0, 1) such that for each
(q̂,Q(R)) ∈ Cℓ and each expected measurement disturbance
Rd ∈ SO(3), it follows that dist(q̂,Q(RdR)) < 1. That is,
α should be selected so that no measurement disturbance can
make the choice of quaternion ambiguous.

VI. QUATERNION FEEDBACK WITH DYNAMIC L IFTING

With a hybrid algorithm for path lifting in place, we
consider the feedback interconnection of (2) with the hybrid
path-lifting system and the quaternion-based hybrid controller
Hc, that takes a measurementy ∈ S

3 × R
3 as input, has a

stateξ ∈ X ⊂ R
n, has dynamics

Hc

{

ξ̇ ∈ Fc(y, ξ) (y, ξ) ∈ Cc

ξ+ ∈ Gc(y, ξ) (y, ξ) ∈ Dc,
(29)

and produces a continuous torqueκ : S
3 × R

3 ×X → R
3.

Often, quaternion-based controllers are analyzed using the
lifted attitude dynamics, defined by equations (8) and (2b),
thus neglecting any auxiliary lifting system. The next theorem
essentially justifies this approach by relating solutions of the
whole closed-loop system (including the hybrid path-lifting
system) to a reduced system that has the quaternion-based
hybrid controller in feedback with the lifted system defined
by (8) and (2b).

Before stating the theorem, we define two closed-loop
systems. The first closed-loop system is the feedback in-
terconnection of (2) with the series interconnection ofHℓ

andHc. This yields the systemH1 with state(R,ω, q̂, ξ) ∈
SO(3) × R

3 × S
3 ×X defined as

Ṙ = R [ω]×
Jω̇ = [Jω]× ω + κ(Φ(q̂, R), ω, ξ)

˙̂q = 0

ξ̇ ∈ Fc(Φ(q̂, R), ω, ξ)
︸ ︷︷ ︸

(q̂, R) ∈ Cℓ, (Φ(q̂, R), ω, ξ) ∈ Cc

R+ = R

ω+ = ω

q̂+ ∈ Φ(q̂, R)

ξ+ = ξ
︸ ︷︷ ︸

(q̂, R) ∈ Dℓ,

R+ = R

ω+ = ω

q̂+ = q̂

ξ+ ∈ Gc(Φ(q̂, R), ω, ξ)
︸ ︷︷ ︸

(q̂, R) ∈ Cℓ, (Φ(q̂, R), ω, ξ) ∈ Dc.

(30)

In (30), we mean that flows can occur when flows can occur
for boththe controller and lifting subsystems. Jumps can occur
when either the controller or lifting subsystems can jump. It
may be possible that both(q̂, R) ∈ Dℓ and (Φ(q̂, R), ω, ξ) ∈
Dc are satisfied at the same “time,” i.e.,Dℓ∩Dc 6= ∅, in which
case,either jump is possible. That is, either̂q+ ∈ Φ(q̂, R) or

ξ+ ∈ Gc(Φ(q̂, R), ω, ξ) (the other states do not change). This
is necessary to ensure that the closed-loop system satisfiesthe
hybrid basic conditions.

Now, we define the feedback interconnection of the lifted
attitude system and the hybrid controllerHc. This yields the
reduced systemH2 with state(q, ω, ξ) ∈ S

3×R
3×X defined

as

q̇ = 1
2q ⊙ ν(ω)

Jω̇ = [Jω]× ω + κ(q, ω, ξ)

ξ̇ ∈ Fc(q, ω, ξ)
︸ ︷︷ ︸

(q, ω, ξ) ∈ Cc

q+ = q

ω+ = ω

ξ+ ∈ Gc(q, ω, ξ)
︸ ︷︷ ︸

(q, ω, ξ) ∈ Dc.

(31)

Lemma 8. For every solution (R1, ω1, q̂1, ξ1) : E1 →
SO(3) × R

3 × S
3 × X to H1 of (30) such that

dist(q̂1,Q(R1))|(0,0) < 1, there exists a solution(q2, ω2, ξ2) :
E2 → S

3 × R
3 × X to H2 of (31) such that for every

(t, j) ∈ E1, there existsj′ ≤ j such that(t, j′) ∈ E2 and

(R1,Φ(q̂1, R1), ω1, ξ1)|(t,j) = (R(q2), q2, ω2, ξ2)|(t,j′). (32)

Conversely, for every solution(q2, ω2, ξ2) : E2 → S
3 ×

R
3×X to (31), there exists a solution(R1, ω1, q̂1, ξ1) : E1 →

SO(3)×R
3 ×S

3 ×X to (30) such that for every(t, j′) ∈ E2,
there existsj ≥ j′ such that(t, j) ∈ E1 and (32) is satisfied.

Proof: See Appendix C.
Now, we state one of our main results. The following

theorem is a “separation principle” that allows one to design
a feedback for the lifted system defined by (8), (2b) and then
expect the results to translate directly to the actual system
when the hybrid-dynamic path-lifting systemHℓ is used to
lift the trajectory inSO(3) to S

3.

Theorem 9. Letα ∈ (0, 1). A compact setAℓ ⊂ S
3×R

3×X
is stable (unstable) for the systemH2 of (31) if and only if
the compact set

A = {(R,ω, q̂, ξ) : (Φ(q̂, R), ω, ξ) ∈ Aℓ, dist(q̂,Q(R)) ≤ α}
(33)

is stable (unstable) for the systemH1 of (30). Moreover,Aℓ

is attractive fromBℓ ⊂ S
3 × R

3 ×X for the systemH2 (31)
if and only ifA is attractive from

B = {(R,ω, q̂, ξ) : (Φ(q̂, R), ω, ξ) ∈ Bℓ, dist(q̂,Q(R)) < 1}
(34)

for the systemH1 of (30).

Proof: See Appendix D.
Interestingly, the result of Theorem 9 is not always desired!

When the setA above is not designed correctly, the resulting
closed-loop system can exhibit the symptom ofunwinding.

VII. T HE UNWINDING PHENOMENON

In Theorem 6, we showed how a particular class of inconsis-
tent control laws (20) can be hijacked by small measurement
disturbances whenΦi defined in (17) is used to lift paths from
SO(3) to S

3. In light of Section V and Theorem 9, one might
ask how the control law (20) behaves in feedback with the
hybrid path lifting systemHℓ. The answer is that it induces
“unwinding.”
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S
3 × R

3 ×X SO(3) × R
3 × S

3 ×X

S
3 × R

3 SO(3) × R
3

Θ

Proj
S3×R3

P

Proj
SO(3)×R3

Fig. 2. Commutative diagram of set projections.

Though the behavior has been documented for decades (see
e.g. [3]), the term unwinding was perhaps first coined by
[6] to describe a symptom of controllers that are designed
for systems evolving on topologically complex manifolds
using local coordinates in a covering space. In particular,the
ambiguity arising from the quaternion representation can cause
inconsistent quaternion-based controllers to unnecessarily ro-
tate the rigid body through a full rotation. This behavior can be
induced by inconsistent control laws like (20) that are designed
to stabilize asingle point in S

3 while leaving the antipodal
point unstable, despite the fact that they both correspond to
the same physical orientation. This behavior was elegantly
described in [6] in terms of the lifts of paths and vector fields.
We now provide a characterization in terms of projections of
asymptotically stable sets onto the plant state space.

Recall that for some setZ ⊂ X ×Y , its projection ontoX
is defined as

Proj
X

Z = {x ∈ X : ∃y ∈ Y (x, y) ∈ Z}. (35)

Now, we characterize how a set of interest in the covering
space (including extra dynamic states of the controller) appears
when projected to the actual plant state spaceSO(3) × R

3.
In this direction, we define the operatorΘ : S

3×R
3×X ⇉

SO(3) × R
3 × S

3 ×X as

Θ(q, ω, ξ) = {(R,ω, q̂, ξ) : q = Φ(q̂, R), dist(q̂,Q(R)) ≤ α}.
(36)

Further, we define the covering projectionP : S
3 × R

3 →
SO(3) × R

3 as

P(q, ω) = (R(q), ω). (37)

Lemma 10. The mapsP and Θ satisfy

P ◦ Proj
S3×R3

= Proj
SO(3)×R3

◦ Θ, (38)

that is, the diagram Fig. 2 commutes.

Proof: Let (q, ω, ξ) ∈ S
3 × R

3 × X and let R =
R(q). It is easy to see thatP

(
ProjS3×R3(q, ω, ξ)

)
=

P(q, ω) = (R(q), ω) = (R,ω). Similarly, for every
(R,ω, q̂, ξ) ∈ Θ(q, ω, ξ), it follows that R = R(q). Thus,
ProjSO(3)×R3 Θ(q, ω, ξ) = (R,ω), and so, (38) is satisfied.

Let
Π = P ◦ Proj

S3×R3

= Proj
SO(3)×R3

◦ Θ. (39)

Lemma 10 clarifies the purpose of controllers designed in
the covering space. Suppose it is desired to asymptotically

stabilize some setAp ⊂ SO(3)×R
3 (in the sense thatAp is the

projection of an asymptotically stable set in the extended state
space including controller states). If the dynamic controller
(29) is designed to stabilizeAℓ ⊂ S

3×R
3×X in the extended

covering state space (as in Lemma 10), one would obviously
desire thatΠ(Aℓ) = Ap, but this should not be the only
requirement. In fact, one should designAℓ to satisfy

Proj
S3×R3

Aℓ = P
−1(Π(Aℓ)), (40)

in which case, we say thatAℓ is consistent. That is, the
controller should stabilizeall points in the lifted state space
whose projections underP map to a point inAp. As the
following lemma states, when (40) is not satisfied, there may
be points in the plant state space whose stability relies on
the controller’s quaternion representation of attitude, which is
hardly a desired quality.

Lemma 11. LetAℓ ⊂ S
3×R

3×X . If Aℓ is not consistent, that
is, it does not satisfy(40), then there exists(R,ω) ∈ Π(Aℓ)
and q ∈ Q(R) such that for everŷq ∈ S

3 satisfyingd(q, q̂) ≤
α and everyξ ∈ X , (R,ω, q̂, ξ) /∈ Θ(Aℓ).

Proof: If Aℓ does not satisfy (40), then, clearly, there
exists(R,ω) ∈ SO(3)×R

3 andq ∈ Q(R) such that(q, ω) /∈
Proj

S3×R3 Aℓ. Then, by definition of theProj operator, for
every ξ ∈ X , (q, ω, ξ) /∈ Aℓ. Finally, Lemma 1 asserts that
Φ(q̂, R) = q wheneverdist(q̂, q) ≤ 1 and by definition ofΘ,
it follows that for everyq̂ ∈ S

3 satisfyingd(q̂, q) ≤ α < 1,
that (R,ω, q̂, ξ) /∈ Θ(Aℓ).

Unfortunately, many designs proposed in the literature (see,
e.g., [1], [3], [4], [11], [27], [28], [30]–[36]) do not satisfy
(40). Instead, many designs, like the inconsistent feedback
(20) (havingX = ∅), render the point(i, 0) ∈ S

3 × R
3 a

stable equilibrium, while rendering(−i, 0) ∈ S
3 an unstable

equilibrium. In this situation,Π((i, 0)) = Π((−i, 0)) = (I, 0).
When seen through the mapΘ, this creates two distinct,
disconnected equilibrium sets in the extended state space,
SO(3) × R

3 × S
3 with one set asymptotically stable and

the other, unstable. However, both equilibrium sets project to
(I, 0). As the next result shows, the desired attitude can be
stable, or unstable, depending on the controller’s knowledge
of the quaternion representation of the attitude.

Corollary 12. Let α ∈ (0, 1). Then,(i, 0) is asymptotically
stable and(−i, 0) is unstable for the system

q̇ =
1

2
q ⊙ ν(ω)

Jω̇ = [Jω]× ω + κ∗(q, ω)






(q, ω) ∈ S

3 × R
3, (41)

whereκ∗ was defined in(20). Similarly, the compact setAs =
{(I, 0, q̂) : 1 − q̂⊤i ≤ α} is asymptotically stable and the
compact setAu = {(I, 0, q̂) : 1 + q̂⊤i ≤ α} is unstable for
the hybrid system

Ṙ = R [ω]×
Jω̇ = [Jω]× ω + κ∗(Φ(q̂, R), ω)

˙̂q = 0
︸ ︷︷ ︸

(q̂, R) ∈ Cℓ

R+ = R

ω+ = ω

q̂+ ∈ Φ(q̂, R)
︸ ︷︷ ︸

(q̂, R) ∈ Dℓ.

(42)
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Proof: We note that the stability and instability of(i, 0)
for (41) is easily obtained by a simple Lyapunov analysis using
the proper and positive definite functionV : S

3 × R
3 → R

defined asV (q, ω) = 2c(1 − η) + ω⊤Jω. Instability of
(−i, 0) can be shown in numerous ways. To show thatAs

is asymptotically stable for the hybrid system (42), we ap-
ply Theorem 9. From (33) and (34), we obtain thatBs =
{(R,ω, q̂) : (Φ(q̂, R), ω) = (i, 0), dist(q̂,Q(R)) ≤ α} is
asymptotically stable for (42). By the properties of the mapsΦ,
Q, R, anddist, it follows thatBs = As. Theorem 9 implies,
in a similar fashion, thatAu is unstable for (42).

Finally, we note that in recent works, the authors have
presented a hybrid strategy for achieving a global result that
is robust to measurement disturbances in [5]. The results in
[5] satisfy (40) and can be applied to 6-DOF rigid bodies
[25] and synchronization of a network of rigid bodies [26].
Several works also suggest the use of a memoryless (i.e.,
X = ∅) discontinuous quaternion-based feedback using the
term −σ(η)ǫ. Such methods have been suggested in [3],
[31], [37]–[40] and indeed avoid the unwinding phenomenon;
however, these control laws are susceptible to measurement
disturbances like the result in Theorem 6.

Corollary 13. Let α, δ ∈ (0, 1), S = S
3 × R

3 × {−1, 1} and
defineCc ⊂ S, andDc ⊂ S as

Cc = {(q, ω, ξ) : ηξ ≥ −δ} Dc = {(q, ω, ξ) : ηξ ≤ −δ}

Then, Aℓ = {(q, 0, ξ) : q = ±i, ξ = ±1} is globally
asymptotically stable for

q̇ =
1

2
q ⊙ ν(ω)

Jω̇ = [Jω]× ω + κ∗(ξq, ω)

ξ̇ = 0
︸ ︷︷ ︸

(q, ω, ξ) ∈ Cc

q+ = q

ω+ = ω

ξ+ = −ξ
︸ ︷︷ ︸

(q, ω, ξ) ∈ Dc.

(43)

Similarly, the compact setA = {(I, 0, q̂, ξ) : 1 − |q̂⊤i| <
α, ξ = ±1} is globally asymptotically stable for

Ṙ = R [ω]×
Jω̇ = [Jω]× ω + κ∗(ξΦ(q̂, R), ω)

˙̂q = 0

ξ̇ = 0
︸ ︷︷ ︸

(q̂, R) ∈ Cℓ, (Φ(q̂, R), ω, ξ) ∈ Cc

R+ = R

ω+ = ω

q̂+ ∈ Φ(q̂, R)

ξ+ = ξ
︸ ︷︷ ︸

(q̂, R) ∈ Dℓ,

R+ = R

ω+ = ω

q̂+ = q̂

ξ+ = −ξ
︸ ︷︷ ︸

(q̂, R) ∈ Cℓ, (Φ(q̂, R), ω, ξ) ∈ Dc.

(44)

Proof: Global asymptotic stability ofAℓ for (43) is
obtained by using Lyapunov and invariance analysis [41] with
the functionV : S

3 × R
3 → R defined asV (q, ω, ξ) =

2c(1 − ξη) + ω⊤Jω. See [5], for example. To show thatA
is asymptotically stable for the hybrid system (44), we note

that Theorem 7 implies that{(R,ω, q̂, ξ) : (q̂, R) ∈ Cℓ} is
globally attractive and then we apply Theorem 9.

VIII. C ONCLUSION

Obtaining global asymptotic stability of rigid-body attitude
is a fundamentally difficult task. Often, feedback controllers
are designed and analyzed on a state space that is topologically
simpler thanSO(3); however, it is not always clear how the
analysis of such algorithms can be translated toSO(3). When
unit quaternions are used to parametrize rigid-body attitude
and design feedback control laws, their actual implementation
relies on an algorithm to translate measurements fromSO(3)
to S

3. When a memoryless map is used for this task, the
resulting quaternion trajectory may be discontinuous, creating
an extreme measurement-disturbance sensitivity for a widely
used class of quaternion-based feedback control laws. An
alternative is to dynamically lift the paths using a hybrid
mechanism. Such a hybrid algorithm allows one to translate
stability results obtained in the covering space directly to the
actual plant; however, such a feedback system can induce an
undesirable unwinding response when the quaternion-based
feedback is not designed to stabilizeall quaternion repre-
sentations of the desired attitude. Finally, when hybrid path-
lifting mechanisms are used in conjunction with the hybrid
quaternion-based feedbacks proposed in [5], [25], [26], the
result is global asymptotic stabilization of the identity element
of SO(3).

APPENDIX A
PROOF OFTHEOREM 6

In what follows, we denotex = (R,ω) ∈ SO(3) × R
3

and define, for pairs(A1, a1), (A2, a2) ∈ R
m×n × R

p,
〈(A1, a1), (A2, a2)〉 = 〈A1, A2〉 + 〈a1, a2〉. Finally, in accor-
dance with (1), for some functionV : R

m×n × R
p → R,

we denote∇V (x) = (∇RV (x),∇ωV (x)) ∈ R
m×n × R

p,
where∇RV (x) denotes the matrix of partial derivativesV
with respect toR ∈ R

m×n and∇ωV (x) denotes the vector
of partial derivatives ofV with respect toω ∈ R

p.
Define the functionfω : R

3×3 × R
3 → R

3 and the vector
field F : R

3×3 × R
3 → R

3×3 × R
3 as

fω(R,ω) = J−1
(
[Jω]× ω − cE(φi(µ(R,ω)R)) − Ψ(ω)

)

F (R,ω) =
(
R [ω]× , fω(R,ω)

)
.

(45)
By some abuse of notation, the Krasovskii regularization of
F is KF , where the arguments ofF are perturbed as in (23)
with respect to the norms defined on each space. That is,

KF (R,ω) =
⋂

ǫ>0

convF (R + ǫB, ω + ǫB). (46)

Let W(R,ω) = φi(µ(R,ω)R). From the definition (23), one
can show that

K fω(R,ω) =
{
J−1

(
[Jω]× ω − cE(q) − Ψ(ω)

)
:

q ∈ KW(R,ω)}

KF (R,ω) =
{
(R [ω]× , τ) : τ ∈ K fω(R,ω)

}
.

(47)

Since we are studying Krasovskii solutions to (26), we
might normally need to evaluateKW ; however, the analysis

9



in this proof obviates the need for calculating the Krasovskii
regularization for regions where the calculation is nontrivial.
By definition of µ and φi, the mapW is continuous on the
set O = {(U(θ, u), ω) : cos θ < cos(π + δ), ω 6= 0}, so
KW(x) = W(x) for all x ∈ O.

Consider the Lyapunov function

V (R,ω) = a(1 − trace(I −R)/4) +
1

2
ω⊤Jω. (48)

Expressed in terms of rotation angle, we have equivalently,

V (U(θ, u), ω) =
a

2
(1 + cos θ) +

1

2
ω⊤Jω.

Since trace(I − U(θ, u)) = 2(1 − cos θ), it follows that
V (R,ω) ≥ 0 for all (R,ω) ∈ SO(3) × R

3 andV (R,ω) = 0
if and only if R = U(π, v) andω = 0. Furthermore, the sub-
level sets ofV are compact.

Define the functionψ : R
3×3 → R

3 as

ψ(A) =
1

2

[
A32 −A23 A13 −A31 A21 −A12

]⊤
. (49)

Then, ψ satisfies trace(A [ω]×) = −2ω⊤ψ(A) and
ψ(U(θ, u)) = u sin θ. Employing (47), we calculate

max
z∈KF (x)

〈∇V (U(θ, u), ω), z〉 =

− ω⊤Ψ(ω) −
a

2
ω⊤ψ(R) − min

y∈KW(x)
cω⊤E(y), (50)

where we have used the fact thatω⊤ [Jω]× ω = 0. Note that
maxz∈KW(x) 〈∇V (R, 0), z〉 = 0 no matter what values the
Krasovskii regularization may take.

Now, we let R = U(θ, u) and henceforth constrain our
analysis to the case wherecos θ < cos(π + δ) and ω 6= 0,
so thatµ(R,ω)R = U(θ − δσ(ω⊤u), u) and φi(µ(R,ω)R)
is single-valued. Also, in this region, the Krasovskii regular-
ization of (26) is identical to (26). Recalling thatφi selects
the quaternion with positive scalar component and noting that
U(φ, u)U(θ, u) = U(θ + φ, u), we can now write

φi(µ(R,ω)R) =

σ
(
cos
(
(θ − δσ(ω⊤u))/2

))
[

cos
(
(θ − δσ(ω⊤u))/2

)

sin
(
(θ − δσ(ω⊤u))/2

)
u

]

,

and in particular,

E(φi(µ(R,ω)R)) =

σ
(
cos
(
(θ − δσ(ω⊤u))/2

))
sin
(
(θ − δσ(ω⊤u))/2

)
u. (51)

Applying (51) and (18) to (50),

max
z∈KF (x)

〈∇V (U(θ, u), ω), z〉 ≤ −γ(‖ω‖2) − ω⊤u
a

2
sin θ

− ω⊤u
(
cσ
(
cos
(
(θ − δσ(ω⊤u))/2

))

∗ sin
(
(θ − δσ(ω⊤u))/2

))
. (52)

Note that when ω⊤u = 0, it follows that
maxz∈KF (x) 〈∇V (x), z〉 ≤ 0, so we further constrain
our analysis from this point to the case whenω⊤u 6= 0. Now,

without loss of generality, we assume thatπ− δ < θ < π+ δ,
where

σ
(
cos
(
(θ − δσ(ω⊤u))/2

))
= σ

(
π − (θ − δσ(ω⊤u))

)
.
(53)

Now, sinceσ(ω⊤u)2 = 1 and sσ(s) = |s|, we factor this
term to arrive at

V̇ (U(θ, u), ω) ≤ −γ(‖ω‖2) − |ω⊤u|
a

2
σ(ω⊤u) sin θ

− |ω⊤u|cσ(ω⊤u)σ
(
π − (θ − δσ(ω⊤u))

)

∗ sin
(
(θ − δσ(ω⊤u))/2

)
. (54)

Moreover, for anyr, s ∈ R, it follows that σ(s)σ(r) =
σ(rσ(s)). Applying this relation to (54), we have

max
z∈KF (x)

〈∇V (U(θ, u), ω), z〉 ≤

− γ(‖ω‖2) − |ω⊤u|
a

2
σ(ω⊤u) sin θ

− |ω⊤u|cσ
(
(π − θ)σ(ω⊤u) + δ)

)

∗ sin
(
(θ − δσ(ω⊤u))/2

)
. (55)

It follows that maxz∈KF (x) 〈∇V (x), z〉 < 0 whenever

cσ
(
(π − θ)σ(ω⊤u) + δ)

)
sin
(
(θ − δσ(ω⊤u))/2

)

+
a

2
σ(ω⊤u) sin θ > 0. (56)

Since we have assumed thatδ > |π − θ|, it follows that
σ
(
(θ − π)σ(ω⊤u) + δ

)
= 1. Moreover, since| sin θ| ≤ |θ−π|

and1− cos θ ≤ 1
2θ

2, we can use the properties ofsin andcos
to deduce thatsin(θ/2) ≥ 1 − 1

8 (θ − π)2. Hence, (56) holds
when

c

(

1 −
1

8

(
θ − π − δσ(ω⊤u)

)2
)

>
a

2
|θ − π|. (57)

Again employing the assumption thatδ > |π − θ|, we have
1− 1

8 (θ−π−δσ(ω⊤u))2 ≥ 1− 1
2δ

2 and that (56) holds when

c
(
1 − δ2/2

)
> aδ/2 ⇐⇒ 0 > δ2 + (a/c)δ − 2. (58)

Since δ ≥ 0, we have at least for smallδ that 0 >
δ2+aδ/c−2, so we can boundδ by the positive root ofλ(x) =
x2 + (a/c)x − 2 located atx = (−(a/c) ±

√

(a/c)2 + 8)/2.
Hence, we have thatmaxz∈KF (x) 〈∇V (x), z〉 ≤ 0 on the set
W = {(R,ω) : cos θ < cos(π+δ) or ω = 0} ⊃ {U(π, S2)}×

{0}, where 0 < δ <
(

−(a/c) +
√

(a/c)2 + 8
)

/2. This

implies that{U(π, S2)} × {0} is stable.
To estimate an invariant set usingV , we find a sub-level set

of V contained in the setW . In fact, the setB is a sub-level set
of V corresponding to the set{(U(θ, u), ω) : V (U(θ, u), ω) ≤
a
2 (1 + cos(π+ δ))}. Moreover,B ⊂W and so it is invariant.

APPENDIX B
PROOF OFTHEOREM 7

First, note that (28) satisfies the hybrid basic conditions.The
mapR 7→ R [MB]× is nonempty, locally bounded, outer semi-
continuous, and convex-valued. Moreover,(q̂, R) 7→ Φ(q̂, R)
is outer semicontinuous, locally bounded, and nonempty.
To see this, note thatΦ(q̂, R) is continuous on the set
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{(q̂, R) : dist(q̂,Q(R)) < 1} and thatΦ(q̂, R) = Q(R) when
dist(q̂,Q(R)) = 1.

Let (q̂, R) ∈ S
3 × SO(3). By definition of Φ in (15), it

follows that for all p ∈ Φ(q̂, R), dist(p,Q(R)) = 0. Thus,
(p,R) ∈ Cℓ \Dℓ. Now, let TxM denote the tangent space of
a manifoldM at x ∈ M . SinceR [ω]× ∈ TRSO(3) for all
(R,ω) ∈ SO(3) × R

3 and 0 ∈ TqS
3, the setS3 × SO(3) is

viable under the flow (i.e., there exists a nontrivial solution
from any initial condition inCℓ). This combined with the
previous fact that any jump maps the state toCℓ \Dℓ makes
Cℓ invariant and implies that for any solution(q̂, R) of (28),
{(t, j) ∈ dom q̂ : (q̂, R) ∈ Dℓ \ Cℓ} = {(0, 0)}. Finally,
sinceCℓ ∪ Dℓ = S

3 × SO(3) and SO(3) × S
3 is compact,

no finite escape of solutions is possible. It follows from [24,
Proposition 2.4] that every maximal solution is complete. This
proves 2)—5).

Now, we prove 6). Suppose thatIj × {j} ⊂ dom q̂ has a
nonempty interior. Then, for all(t, j) ∈ Ij × {j}, it follows
that (q̂(t, j), R(t, j)) ∈ Cℓ so thatdist(q̂(t, j),Q(R(t, j))) ≤
α < 1. This fact combined with Lemma 2 implies that
t 7→ q(t, j) is absolutely continuous onIj , R(q(t, j)) =
R(t, j), and q̇(t, j) = 1

2q(t, j) ⊗ ν(ω(t)) for some Lebesgue
measurableω : Ij → MB and for almost all(t, j) ∈ Ij ×{j}.

Recalling Lemma 1, we havedist(q̂(t, j),Q(R(t, j))) =
1 − q̂(t, j)⊤q(t, j), which implies d

dt
dist(q̂,Q(R)) =

d
dt

(
1 − q̂⊤q

)
= −q̂⊤q̇ ≤ ‖q̂‖2‖q̇‖2 = ‖q̇‖2. It follows that

d
dt

dist(q̂,Q(R)) ≤ ‖q̇‖2 = 1
2 |Λ(q)ω|2 = 1

2‖ω‖2 ≤ M/2.
Since dist(q̂(t, j),Q(R(t, j))) = 0 whenever(t, j − 1) ∈
dom q̂, the time between jumps must be at least2α/M .

To show 7), we recall our previous conclusion that for every
Ij × {j} ⊂ dom q̂, t 7→ q(t, j) is absolutely continuous
on Ij and satisfiesR(q(t, j)) = R(t, j). Recalling the def-
inition of the time projection, we now need only show that
the value ofq does not change over jumps (note also that
jumps occurring att = 0 are ignored). Now, suppose that
{(t, j), (t, j+1)} ⊂ dom q̂. Then,Φ(q̂(t, j+1), R(t, j+1)) =
Φ(q̂(t, j + 1), R(t, j)) = Φ(Φ(q̂(t, j), R(t, j)), R(t, j)), and
by Lemma 3, it follows thatΦ(q̂(t, j + 1), R(t, j + 1)) =
Φ(q̂(t, j), R(t, j)). By the definition ofq in (27c), it follows
that q(t, j) = q(t, j + 1) so thatR(q↓t (t)) = R↓t (t).

APPENDIX C
PROOF OFLEMMA 8

First, we assume the existence of a solution(R1, ω1, q̂1, ξ1) :
E1 → SO(3) × R

3 × S
3 ×X to systemH1 of (30) such that

dist(q̂1,Q(R1))|(0,0) < 1. Now, we will recursively define the
solution (q2, ω2, ξ2) and its associated hybrid time domain in
terms of(R1, ω1, q̂1, ξ1) andE1. In this direction, we define
E−1

2 = ∅, T 0 = 0, andJ0
1 = 0. Now, for eachk ∈ Z≥0 we

define

(T k+1, Jk+1
1 ) =

min
{
(t, j) ∈ E1 : (t, j − 1) ∈ E1, j > Jk

1

q̂(t, j) = q̂(t, j − 1),

ξ1(t, j) ∈ Gc(Φ(q̂1, R1), ω1, ξ1)|(t,j−1)

}
,

(59)

wheremin is taken with respect to the natural ordering onE1.
That is,(T k+1, Jk+1

1 ) ∈ E1 is the time immediately after the
first jump due to the controller afterj = Jk

1 .
There can be two cases. If(T k+1, Jk+1

1 ) 6= ∅, then a
controller jump occurs and we define

Ek+1
2 = Ek

2 ∪ ([T k, T k+1], k) (60)

and for everyt ∈ [T k, T k+1] and Jk
1 ≤ j ≤ Jk+1

1 − 1 such
that (t, j) ∈ E1, we define the solution

(q2, ω2, ξ2)|(t,k) = (Φ(q̂1, R1), ω1, ξ1)|(t,j) (61)

We now verify that this is indeed a solution to (31). First,
we ensure that the jump dynamics are satisfied. Note that
Φ(q̂1(t, j), R1(t, j)) is single-valued for every(t, j) ∈ E1,
since dist(q̂1(0, 0),Q(R1(0, 0))) < 1 by assumption and
then Theorem 7 provides thatdist(q̂1(t, j),Q(R1(t, j))) ≤
α < 1 for each(t, j) � (0, 0). When k 6= 0, we consider
the jump from (T k, k − 1) to (T k, k). By (61), we have
that (q2, ω2, ξ2)|(T k,k−1) = (Φ(q̂1, R1), ω1, ξ1)|(T k,Jk

1
−1) and

(q2, ω2, ξ2)|(T k,k) = (Φ(q̂1, R1), ω1, ξ1)|(T k,Jk

1
). From the

definition of (T k, Jk
1 ) in (59), it follows that

(R1, ω1, q̂1, ξ1)|(T k,Jk

1
) ∈

(R1, ω1, q̂1, Gc(Φ(q̂1, R1), ω1, ξ1))|(T k,Jk

1
−1),

which implies

(Φ(q̂1, R1), ω1, ξ1)|(T k,Jk

1
) ∈

(Φ(q̂1, R1), ω1, Gc(Φ(q̂1, R1), ω1, ξ1))|(T k,Jk

1
−1),

and so,(q2, ω2, ξ2)|(T k,k) ∈ (q2, ω2, Gc(q2, ω2, ξ2))|(T k,k−1).
Thus,(q2, ω2, ξ2) satisfies the jump dynamics of (31) for each
pair {(t, j), (t, j + 1)} ⊂ Ek

2 whenj + 1 ≤ k.
Now, we verify that (61) is a solution to (31) along flows for

all t ∈ [T k, T k+1]. First note that along solutions of (30), if
Jk

1 < Jk+1
1 − 1, there are jumps due to the lifting system.

That is, q̂1(t, j + 1) ∈ Φ(q̂1(t, j),Q(R1(t, j))) for some
t ∈ [T k, T k+1] and Jk

1 ≤ j < Jk+1
1 , while other states are

unchanged. Theorem 7 then implies that over any such jumps
of the lifting system,Φ(q̂1, R1)|(t,j+1) = Φ(q̂1, R1)|(t,j).
Then, the definition of(q2, ω2, ξ2)|(t,k) is well-defined in the
sense that there is no ambiguity in the definition due to
possible jumps of the lifting system.

Furthermore, over the intervalt ∈ [T k, T k+1] and Jk
1 ≤

j ≤ Jk+1
1 − 1 such that(t, j) ∈ E1, Theorem 7 provides that

t 7→ Φ(q̂1, R1)|(t,j) (wherej is taken implicitly fromt) is a
continuous trajectory satisfyingR(Φ(q̂1, R1)|(t,j)) = R1(t, j)
and so it also satisfies (8). Sinceω1 andξ1 do not change over
jumps due to the lifting system and obey the same differential
inclusions for (30) and (31), this implies that (61) is a solution
to (31) onEk

2 for all k such that(T k, Jk
1 ) 6= ∅.

We now handle the second case. If there is no suchk ∈ Z≥0

such that(T k, Jk
1 ) = ∅, we let

E2 =

∞⋃

k=0

([T k, T k+1], k).

Then,(q2, ω2, ξ2) is a solution to (31) onE2. Moreover, since
jumps from the lifting system are not counted in solutions to
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(31), we have that for every(t, j) ∈ E1 there existsj′ ≤
j such that(t, j′) ∈ E2 and (R1,Φ(q̂1, R1), ω1, ξ1)|(t,j) =
(R(q2), q2, ω2, ξ2)|(t,j′).

Now suppose that for somek∗ ∈ Z≥0, (T k∗+1, Jk∗+1
1 ) =

∅. That is, afterT k∗

, there are no further jumps due to the
controller. In this case, we let

E2 = Ek∗

2 ∪ ([T k∗

, T̄ ), k∗) =
(

k∗−1⋃

k=0

([T k, T k+1], k)

)

∪ ([T k∗

, T̄ ), k∗),

where T̄ = sup{t : ∃j ∈ Z≥0(t, j) ∈ E1} and we allow
T̄ = ∞ whenE1 is unbounded in thet direction. Then, for
all t ∈ [T k∗

, T̄ ), we define the solution

(q2, ω2, ξ2)|(t,k∗) = (Φ(q̂1, R1), ω1, ξ1)

y

t
(t). (62)

Similar to previous arguments, Theorem 7 assures that
Φ(q̂1, R1)


y

t
(t) is a continuous trajectory satisfying

R(Φ(q̂1, R1))

y

t
(t) = R1↓t (t) for every t ∈ [0, T̄ ) and so

also satisfies (8). Since theω and ξ solution-components of
(30) do not exhibit changes over jumps due to the lifting
system and otherwise have identical dynamics to solutions of
(31) when there are no controller jumps, it follows that the
hybrid arc defined in (61) and (62) is a solution to (31) on
E2.

In particular, it follows that(q2, ω2, ξ2) is a solution to
(31) on E2 and for every(t, j) ∈ E1 there existsj′ ≤ j
such that(t, j′) ∈ E2 and (R1,Φ(q̂1, R1), ω1, ξ1)|(t,j) =
(R(q2), q2, ω2, ξ2)|(t,j′). This concludes the first part of the
lemma. A converse follows similarly by adding in jumps due
to the lifting system.

APPENDIX D
PROOF OFTHEOREM 9

First, we note that sinceR : S
3 → SO(3) is a covering

map and in particular, is everywhere a local diffeomorphism,
we can easily write open neighborhoods ofA in terms of open
neighborhoods ofAℓ. In particular, an open neighborhood
U ǫ ⊃ A can be written as

U ǫ = {(R,ω, q̂, ξ) : .

(Φ(q̂, R), ω, ξ) ∈ U ǫ
ℓ , dist(q̂,Q(R)) < α+ ǫ},

where U ǫ
ℓ is an open neighborhood ofAℓ, when every

(R,ω, q̂, ξ) ∈ U ǫ satisfiesdist(q̂,Q(R)) < 1. Sinceα < 1,
this holds true for small open neighborhoods ofA, where
ǫ < 1 − α.

Suppose thatAℓ is stable for (31). LetU ǫ
ℓ be an open neigh-

borhood ofAℓ. then, there exists an open setU δ
ℓ ⊂ U ǫ

ℓ such
that for any solution(q2, ω2, ξ2) : E2 → S

3×R
3×X satisfying

(q2, ω2, ξ2)|(0,0) ∈ U δ
ℓ , it follows that (q2, ω2, ξ2)|(t,j) ∈ U ǫ

ℓ

for all (t, j) ∈ E2. Without loss of generality, suppose that
(R1, ω1, q̂1, ξ1) : E1 → SO(3) × R

3 × S
3 × X is a solution

to (31) satisfyingdist(q̂1(0, 0),Q(R1(0, 0))) < α+ ǫ < 1 for
someǫ > 0 and (Φ(q̂, R1), ω1, ξ1)|(0,0) ∈ U δ

ℓ . Then, Lemma
8 guarantees the existence of a solution(q2, ω2, ξ2) : E2 →
S

3 × R
3 × X such that for every(t, j′) ∈ E2, there exists

j ≥ j′ such that(t, j) ∈ E1 and(R1,Φ(q̂1, R1), ω1, ξ1)|(t,j) =
(U(q2), q2, ω2, ξ2)|(t,j′).

Now, since (Φ(q̂1, R1), ω1, q̂1, ξ1)|(0,0) ∈ U δ
ℓ , this im-

plies that(q2, ω2, ξ2)|(0,0) ∈ U δ
ℓ and so,(q2, ω2, ξ2)|(t,j′) ∈

U ǫ
ℓ for all (t, j′) ∈ E2. But then, this implies that

(Φ(q̂1, R1), ω1, ξ1)|(t,j) ∈ U ǫ
ℓ for all (t, j) ∈ E1. Finally,

by Theorem 7,dist(q̂1(0, 0),Q(R1(0, 0))) < 1 implies that
dist(q̂1(t, j),Q(R1(t, j))) ≤ α, and so,A is stable.

Proceeding, we suppose thatA is stable. Let

U ǫ = {(R,ω, q̂, ξ) :

(Φ(q̂, R), ω, ξ) ∈ U ǫ
ℓ , dist(q̂,Q(R)) < α+ ǫ}

be an open neighborhood ofA, whereǫ+ α < 1. Now, there
exists0 < δ < ǫ < 1−α and an open setU δ ⊂ U ǫ written as

U δ = {(R,ω, q̂, ξ) :

(Φ(q̂, R), ω, ξ) ∈ U δ
ℓ , dist(q̂,Q(R)) < α+ δ}

where U δ
ℓ ⊂ U ǫ

ℓ such that for any solution
(R1, ω1, q̂1, ξ1) : E1 → SO(3) × R

3 × S
3 × X

satisfying (R1, ω1, q̂1, ξ1)|(0,0) ∈ U δ, it follows
that (R1, ω1, q̂1, ξ1)|(t,j) ∈ U ǫ for all (t, j) ∈ E1.
Or, equivalently, (Φ(q̂1, R1), ω1, ξ1)|(0,0) ∈ U δ

ℓ

and dist(q̂1(0, 0),Q(R1(0, 0))) < α + δ im-
plies that (Φ(q̂1, R1), ω1, ξ1)|(t,j) ∈ U ǫ

ℓ and
dist(q̂1(0, 0),Q(R1(0, 0))) < α+ ǫ for all (t, j) ∈ E1.

Now, suppose(q2, ω2, ξ2) : E2 → S
3 × R

3 × X
is a solution to (31) satisfying(q2, ω2, ξ2)|(0,0) ∈ U δ

ℓ .
Then, Lemma 8 guarantees the existence of a solution
(R1, ω1, q̂1, ξ1) : E1 → SO(3) × R

3 × S
3 × ξ1 such that for

every(t, j) ∈ E1, there existsj′ ≤ j such that(t, j) ∈ E2 and
(R1,Φ(q̂1, R1), ω1, ξ1)|(t,j) = (R(q2), q2, ω2, ξ2)|(t,j′). But
then, such a solution would satisfy(Φ(q̂1, R1), ω1, ξ1)|(0,0) ∈
U δ

ℓ and dist(q̂1(0, 0),Q(R1(0, 0))) < α + δ, which
implies that (Φ(q̂1, R1), ω1, ξ1)|(t,j) ∈ U ǫ

ℓ and
dist(q̂1(0, 0),Q(R1(0, 0))) < α + ǫ for all (t, j) ∈ E1.
Finally, this implies that (q2, ω2, ξ2)|(t,j) ∈ U ǫ

ℓ for all
(t, j) ∈ E2 and thatAℓ is stable.

From the arguments above, the proofs of instability fol-
low similarly. While we do not prove attractivity here, we
emphasize that the proofs are largely the same in character
and ultimately rely on comparing solutions of (31) with (30)
through Lemma 8.
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