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ABSTRACT 

The synthesis and evaluation of benzoyl isothiocyanate derivatives as potential HIV-1 

protease inhibitors is presented. The ligands were first designed to fit the protease active site 

using Autodock 4.2. The design was based on the deNOVO method of drug design in which 

the active site coordinates from the crystal structure of protease bound to ritonavir was used. 

An attempt to access the scaffolds designed initially led to the formation of 2,2,4-trimethyl 

2,3-dihydro-1H-1,5-benzodiazepin-5-ium isophthalate and 2-2-(3-methylphenyl-1H-

benzimidazole which could not be converted to the desired intermediate. A further attempt 

led to formation of amino acid and amino acid ester derivatives of benzoyl isothiocyanates 

which have been fully characterized and the reasons why the desired intermediates were not 

readily accessible explained. Scaffolds based on the benzoyl isothiocyanate derivatives of 

structurally diverse diamines were then screened. Sixty compounds have been synthesized 

and fully characterized using elemental analysis, spectroscopy, GC-MS and twenty-six 

crystal structures have been discussed. The DFT transition state studies of 11-phenyl-

1,8,10,12-tetraazatricyclo[7.4.0.02,7]trideca-2(7),3,5,9,11-pentaene-13-thione (20), N-(1H-

benzimidazol -2-yl)benzamide (21), 3-(1,3-benzothiazol-2-yl)-1-(benzoyl)thiourea (23), and 

N-[(9E)-8,10,17-triazatetracyclo[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-

9-ylidene] benzamide (39), have been carried out and their detailed density functional theory 

reaction mechanism have be computed. The Bernly algorithm was used in the determination 

of saddle points (transtions states), and the intrinsic reaction coordinates leading to the 

determination of intermediates were traced and optimized to a global minimum or in some 

cases a local minimum was obtained. 

 

The cell viability tests of diamine derivatives which was done by exposing white blood cells 

to the compounds (inhibitors) at 37 °C and a pH of 7.4 showed that 1-(4-bromobenzoyl)-3-[2-

({[(4-bromophenyl)formamido]methanethioyl}amino)phenyl]thiourea (46), 1-(3-chloro 

benzoyl)-3-[2-({[(3-chlorophenyl)formamido]methanethioyl}amino)phenyl]thiourea (48), 1-

(3-bromobenzoyl)-3-[2-({[(3-bromophenyl)formamido]methanethioyl}amino)phenyl] 

thiourea (49) and 3-benzoyl-1-(4-{[(phenylformamido)methanethioyl]amino}butyl)thiourea 

(54), in that group of compounds were cytotoxic with EC50 values of 17.04 ± 9.75 μM, 69.20 

± 38.16 μM, 35.90 ± 20.55 μM and 68.37 ± 26.45 μM, respectively. 4-Bromo-N-[(9E)-

8,10,17-triazatetracyclo[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-

ylidene] benzamide (32), 4-methoxy-N-[(9E)-8,10,17-triazatetracyclo[8.7.0.02,7.011,16] 
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heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene]benzamide (33) and 3-chloro-N-[(9E)-

8,10,17-triazatetracyclo[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-

ylidene] benzamide (37) were also cytotoxic giving EC50 values of 45.47 ± 21.92, 45.09 ± 

13.79 and 74.94 ± 13.17 μM, respectively. 3-(1,3-Benzothiazol-2-yl)-1-(3-bromo 

benzoyl)thiourea (31) and 3-(1,3-benzothiazoyl-2-yl)-1-(4-nitrobenzoyl)thiourea (30) 

derivatives were also found to be cytotoxic with EC50 values of 1.207 ± 0.58 and 24.08 ± 

13.14 nM, respectively. 11-(4-Chlorophenyl-1,8,10, 12-tetraazatricyclo[7.4.0.02,7]trideca-

2(7),3,5,9,11-pentaene-13-thione (12), 11-(4-methoxyphenyl)-1,8,10,12-tetraazatricyclo 

[7.4.0.02,7]trideca-2(7),3,9,1-pentaene-13-thione (14), and 11-phenyl-1,8,10,12-

tetraazatricyclo[7.4.0.02,7]trideca-2(7),3,5,9,11-pentaene-13-thione (20), were found to be 

cytotoxic giving EC50 values of 0.152 ± 0.051, 37.96 ± 21.87 and 5.28 ± 2.95 μM, 

respectively. In the enzyme inhibition studies compound 49 gave a percentage inhibition of 

97.03 ± 10.61% at 100 μM, but the fact that it is cytoxic might make it less useful, whilst 

compounds 19 and 16 had a percentage inhibition of 59.57 ± 13.59% (4-nitro derivative) and 

79.97 ± 11.97% (3-nitro derivative) respectively at 100 μM of inhibitor and 20 μM of enzyme 

(HIV-1 protease). The results suggests that the presence of the nitro group at position 3 (16) 

and 4 (19) leads to an increase in activity against HIV-1 protease.  

 

 

 

 

Keywords: benzoyl isothiocyanate derivatives, transition states, global minimum, cell 

viability test, HIV-1 protease assay, enzyme inhibition. 
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APPENDICES 

APPENDIX A 

CHARACTERIZATION DATA FOR SOME AMINO ACID DERIVATIVES OF 

BENZOYL ISOTHIOCYANATE 

Figure A3.1 1H NMR spectrum of 2-[(benzoylcarbamothioyl)amino]-4-(methylsulfanyl) 

butanoic acid (7). 

Figure A3.2 13C NMR spectrum of 2-[(benzoylcarbamothioyl)amino]-4-(methylsulfanyl) 

butanoic acid (7). 

Figure A3.3 DEPT spectrum of 2-[(benzoylcarbamothioyl)amino]-4-(methylsulfanyl) 

butanoic acid (7). 

Figure A3.4 IR spectrum of 2-[(benzoylcarbamothioyl)amino]-4-(methylsulfanyl)butanoic 

acid (7). 

Figure A3.5 1H NMR spectrum of 2-[(benzoylcarbamothioyl)amino]propanoic acid (8).  

Figure A3.6 13C NMR spectrum of 2-[(benzoylcarbamothioyl)amino]propanoic acid (8).  

Figure A3.7 IR spectrum of 2-[(benzoylcarbamothioyl)amino]propanoic acid (8).  

Figure A3.8 1H NMR spectrum of 2-phenyl-1H-benzimidazole (9). 

Figure A3.9 13C NMR spectrum of 2-phenyl-1H-benzimidazole (9). 

Figure A3.10 IR spectrum of 2-phenyl-1H-benzimidazole (9).  

 

APPENDIX B 

CHARACTERIZATION DATA FOR SOME TETRAAZATRICYCLIC 

DERIVATIVES 

Figure A4.1 IR spectrum of 11-(4-chlorophenyl-1,8,10,12-tetraazatricyclo[7.4.0.02,7] 

trideca-2(7),3,5,9,11-pentaene-13-thione (12). 

Figure A4.2 1H NMR spectrum of 11-(4-chlorophenyl-1,8,10,12-tetraazatricyclo[7.4.0.02,7] 

trideca-2(7),3,5,9,11-pentaene-13-thione (12). 

Figure A4.3 1H-1H COSY spectrum of 11-(4-chlorophenyl-1,8,10,12-

tetraazatricyclo[7.4.0.02,7] trideca-2(7),3,5,9,11-pentaene-13-thione (12). 

Figure A4.4 13C NMR spectrum of 11-(4-chlorophenyl-1,8,10,12-

tetraazatricyclo[7.4.0.02,7]trideca-2(7),3,5,9,11-pentaene-13-thione (12). 

Figure A4.5 IR spectrum of 11-(4-bromophenyl)-,8,10,2-tetraazatricyclo[7.4.0.02,7]trideca-

2(7),3,5,9,11-pentaene-13-thione (13). 
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Figure A4.6 1H NMR spectrum of 11-(4-bromophenyl)-,8,10,2-tetraazatricyclo [7.4.0.02,7] 

trideca-2(7),3,5,9,11-pentaene-13-thione (13). 

Figure A4.7 1H 1H COSY  spectrum of 11-(4-bromophenyl)-,8,10,2-tetraazatricyclo 

[7.4.0.02,7]trideca-2(7),3,5,9,11-pentaene-13-thione (13). 

Figure A4.8 13C NMR spectrum of 11-(4-bromophenyl)-,8,10,2-tetraazatricyclo 

[7.4.0.02,7]trideca-2(7),3,5,9,11-pentaene-13-thione (13). 

Figure A4.9 IR spectrum of 11-(4-methoxyphenyl)-1,8,10,12-tetraazatricyclo[7.4.0.02,7] 

trideca-2(7),3,9,1-pentaene-13-thione (14). 

Figure A4.10 1H NMR spectrum of 11-(4-methoxyphenyl)-1,8,10,12-tetraazatricyclo 

[7.4.0.02,7] trideca-2(7),3,9,1-pentaene-13-thione (14). 

Figure A4.11 1H 1H COSY spectrum of 11-(4-methoxyphenyl)-1,8,10,12-tetraazatricyclo 

[7.4.0.02,7] trideca-2(7),3,9,1-pentaene-13-thione (14). 

Figure A4.12 13C NMR spectrum of 11-(4-methoxyphenyl)-1,8,10,12-tetraazatricyclo 

[7.4.0.02,7]trideca-2(7),3,9,1-pentaene-13-thione (14). 

Figure A4.13 IR spectrum of 11-(3-methoxyphenyl)-1,8,10,12-tetraazatricyclo [7.4.0.02,7] 

trideca-2(7),3,5,9,11-pentaene-13-thione (15). 

Figure A4.14 1H NMR spectrum of 11-(3-methoxyphenyl)-1,8,10,12-tetraazatricyclo 

[7.4.0.02,7]trideca-2(7),3,5,9,11-pentaene-13-thione (15). 

Figure A4.15 1H H COSY spectrum of 11-(3-methoxyphenyl)-1,8,10,12-tetraazatricyclo 

[7.4.0.02,7]trideca-2(7),3,5,9,11-pentaene-13-thione (15). 

Figure A4.16 13C NMR spectrum of 11-(3-methoxyphenyl)-1,8,10,12-tetraazatricyclo 

[7.4.0.02,7] trideca-2(7),3,5,9,11-pentaene-13-thione (15). 

Figure A4.17 IR spectrum of 11-(3-chlorophenyl)-1,8,10,12-tetraazatricyclo[7.4.0.02,7] 

trideca-2(7),3,5,9,11-pentaene-13-thione (17). 

Figure A4.18  1H NMR spectrum of 11-(3-chlorophenyl)-1,8,10,12-tetraazatricyclo 

[7.4.0.02,7] trideca-2(7),3,5,9,11-pentaene-13-thione (17). 

Figure A4.19 1H H COSY spectrum of 11-(3-chlorophenyl)-1,8,10,12-tetraazatricyclo 

7.4.0.02,7] trideca-2(7),3,5,9,11-pentaene-13-thione (17). 

Figure A4.20 13C NMR spectrum of 11-(3-chlorophenyl)-1,8,10,12-tetraazatricyclo 

[7.4.0.02,7]trideca-2(7),3,5,9,11-pentaene-13-thione (17). 

Figure A4.21 13C NMR spectrum of 11-(3-bromophenyl)-1,8,10,12-tetraazatricyclo 

[7.4.0.02,7]trideca-2(7),3,5,9,11-pentaene-13-thione (18). 

Figure A4.22 1H NMR spectrum of 11-(3-bromophenyl)-1,8,10,12-tetraazatricyclo 

[7.4.0.02,7]trideca-2(7),3,5,9,11-pentaene-13-thione (18). 
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Figure A4.23 1H 1H COSY spectrum of 11-(3-bromophenyl)-1,8,10,12-tetraazatricyclo 

[7.4.0.02,7]trideca-2(7),3,5,9,11-pentaene-13-thione (18). 

Figure A4.24 13C NMR spectrum of 11-(3-bromophenyl)-1,8,10,12-tetraazatricyclo 

[7.4.0.02,7]trideca-2(7),3,5,9,11-pentaene-13-thione (18). 

Figure A4.25 IR spectrum of 11-(4-nitrophenyl)-1,8,10,12-tetraazatricyclic [7.4.0.02,7] 

trideca-2(7),3,5,9,11-pentaene-13-thione (19). 

Figure A4.26 1H NMR spectrum of 11-(4-nitrophenyl)-1,8,10,12-tetraazatricyclic [7.4.0.02,7] 

trideca-2(7),3,5,9,11-pentaene-13-thione (19). 

Figure A4.27 1H H COSY spectrum of 11-(4-nitrophenyl)-1,8,10,12-tetraazatricyclic 

[7.4.0.02,7] trideca-2(7),3,5,9,11-pentaene-13-thione (19). 

Figure A4.28 13C NMR spectrum of 11-(4-nitrophenyl)-1,8,10,12-tetraazatricyclic 

[7.4.0.02,7] trideca-2(7),3,5,9,11-pentaene-13-thione (19). 

Figure A4.29 IR spectrum of 11-phenyl-1,8,10,12-tetraazatricyclo[7.4.0.02,7]trideca-

2(7),3,5,9,11-pentaene-13-thione (20). 

Figure A4.30 1H NMR spectrum of 11-phenyl-1,8,10,12-tetraazatricyclo[7.4.0.02,7]trideca-

2(7),3,5,9,11-pentaene-13-thione (20). 

Figure A4.31 1H-1H COSY spectrum of 11-phenyl-1,8,10,12-tetraazatricyclo[7.4.0.02,7] 

trideca-2(7),3,5,9,11-pentaene-13-thione (20). 

Figure A4.32 13C NMR spectrum of 11-phenyl-1,8,10,12-tetraazatricyclo[7.4.0.02,7]trideca-

2(7),3,5,9,11-pentaene-13-thione (20). 

 

APPENDIX C 

CHARACTERIZATION DATA FOR SOME 3-(1,3-BENZOTHIAZOL-2-YL)-1-

(BENZOYL) THIOUREA DERIVATIVES 

Figure A5.1 IR spectrum 3-(1,3-benzothiazol-2-yl)-1-(benzoyl)thiourea (23). 

Figure A5.2 1H NMR spectrum 3-(1,3-benzothiazol-2-yl)-1-(benzoyl)thiourea (23). 

Figure A5.3 1H–1H COSY spectrum 3-(1,3-benzothiazol-2-yl)-1-(benzoyl)thiourea (23). 

Figure A5.4 13C NMR spectrum 3-(1,3-benzothiazol-2-yl)-1-(benzoyl)thiourea (23). 

Figure A5.5 IR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(4-chlorobenzoyl)thiourea (24). 

Figure A5.6 1H NMR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(4-chlorobenzoyl)thiourea 

(24). 

Figure A5.7 1H–1H COSY spectrum of 3-(1,3-benzothiazol-2-yl)-1-(4-

chlorobenzoyl)thiourea (24). 
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Figure A5.8 13C NMR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(4-chlorobenzoyl)thiourea 

(24). 

Figure A5.9 IR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(4-bromobenzoyl)thiourea (25). 

Figure A5.10 1H NMR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(4-bromobenzoyl)thiourea

   (25). 

Figure A5.11 1H 1H COSY spectrum of 3-(1,3-benzothiazol-2-yl)-1-(4-bromobenzoyl) 

thiourea (25). 

Figure A5.12 13C NMR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(4-bromobenzoyl)thiourea 

(25). 

Figure A5.13 IR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(4-methoxybenzoyl)thiourea (26). 

Figure A5.14 1H NMR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(4-methoxybenzoyl)thiourea 

(26). 

Figure A5.15 1H H COSY spectrum of 3-(1,3-benzothiazol-2-yl)-1-(4-methoxybenzoyl) 

thiourea (26). 

Figure A5.16 13C NMR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(4-methoxybenzoyl) 

thiourea (26). 

Figure A5.17 IR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(3-nitrobenzoyl)thiourea (28). 

Figure A5.18 1H NMR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(3-nitrobenzoyl)thiourea 

(28). 

Figure A5.19 1H–1H COSY spectrum of 3-(1,3-benzothiazol-2-yl)-1-(3-nitrobenzoyl) 

thiourea (28). 

Figure A5.20 13C NMR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(3-nitrobenzoyl)thiourea 

(28).  

Figure A5.21 IR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(3-chlorobenzoyl)thiourea (29). 

Figure A5.22 1H NMR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(3-chlorobenzoyl)thiourea 

(29). 

Figure A5.23 1H–1H COSY spectrum of 3-(1,3-benzothiazol-2-yl)-1-(3-chlorobenzoyl) 

thiourea (29). 

Figure A5.24 13C NMR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(3-chlorobenzoyl)thiourea 

(29). 

Figure A5.25 IR spectrum of 3-(1,3-benzothiazoyl-2-yl)-1-(4-nitrobenzoyl)thiourea (30). 

Figure A5.26 1H NMR spectrum of 3-(1,3-benzothiazoyl-2-yl)-1-(4-nitrobenzoyl)thiourea 

(30). 
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Figure A5.27 1H–1H COSY spectrum of 3-(1,3-benzothiazoyl-2-yl)-1-(4-nitrobenzoyl) 

thiourea (30). 

Figure A5.28  13C NMR spectrum of 3-(1,3-benzothiazoyl-2-yl)-1-(4-nitrobenzoyl)thiourea 

(30). 

 

APPENDIX D 

CHARACTERIZATION DATA FOR SOME TRIAZATETRACYCLIC 

DERIVATIVES 

Figure A6.1 IR spectrum of 4-bromo-N-[(9E)-8,10,17-triazatetracyclo [8.7.0.02,7.011,16] 

heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene]benzamide (32). 

Figure A6.2 1H NMR spectrum of 4-bromo-N-[(9E)-8,10,17-triazatetracyclo 

[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 

benzamide (32). 

Figure A6.3 1H–1H COSY spectrum of 4-bromo-N-[(9E)-8,10,17-triazatetracyclo 

8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 

benzamide (32). 

Figure A6.4 13C NMR spectrum of 4-bromo-N-[(9E)-8,10,17-triazatetracyclo 

[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 

benzamide (32). 

Figure A6.5 IR spectrum of 4-methoxy-N-[(9E)-8,10,17-triazatetracyclo[8.7.0.02,7.011,16] 

heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene]benzamide (33). 

Figure A6.6 1H NMR spectrum of 4-methoxy-N-[(9E)-8,10,17-triazatetracyclo 

[8.7.0.02,7.011,16] heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 

benzamide (33). 

Figure A6.7 1H–1H COSY spectrum of 4-methoxy-N-[(9E)-8,10,17-triazatetracyclo 

[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 

benzamide (33). 

Figure A6.8 13C NMR spectrum of 4-methoxy-N-[(9E)-8,10,17-triazatetracyclo 

[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 

benzamide (33). 

Figure A6.9 IR spectrum of 4-chloro-N-[(9E)-8,10,17-triazatetracyclo [8.7.0.02,7.011,16] 

heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] benzamide (35). 
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Figure A6.10 1H NMR spectrum of 4-chloro-N-[(9E)-8,10,17-triazatetracyclo 

[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 

benzamide (35). 

Figure A6.11 1H H COSY spectrum of 4-chloro-N-[(9E)-8,10,17-triazatetracyclo 

[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 

benzamide (35). 

Figure A6.12 13C NMR spectrum of 4-chloro-N-[(9E)-8,10,17-triazatetracyclo 

[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview of HIV 

The Human Immuno-deficiency Virus (HIV) is one of the most challenging epidermics of the 

21st century.1 Its devasting consequences have been evident over decades. The disease was 

first reported in young homosexual men in whom a rare disease, Pneumocystis carinii, and 

other unusual infections had developed. They had abnormal ratios of lymphocyte subgroups 

which was actively shedding cytomegalovirus.2 The major cause of acquired immune 

deficiency syndrome (AIDS) is the human immunodeficiency virus type 1 (HIV-1). 

Evolutionary comparisons have been used to trace the origin(s) of HIV-1 and AIDS The 

closest relatives of HIV-1 are simian immunodeficiency viruses (SIVs) infecting wild-living 

chimpanzees (Pan troglodytes troglodytes) and gorillas (Gorilla gorilla gorilla) in west 

central Africa. Phylogenetic analyses have revealed that, chimpanzees were the original hosts 

of this clade of viruses; four lineages of HIV-1 have arisen by independent cross-species 

transmissions to humans and one or two of those transmissions may have been via gorillas.  

 

However, SIVs are primarily monkey viruses and more than 40 species of African monkeys 

are infected with their own species-specific SIV and in some host species, the infection seems 

non-pathogenic. Chimpanzees have acquired, from monkeys, two distinct forms of SIVs that 

recombined to produce a virus with a unique genome structure. SIV infection has been found 

to cause CD4+ T-cell depletion and increased mortality in wild chimpanzees. Tracing the 

genetic changes that occurred as monkey viruses adapted to infect first chimpanzees and then 

humans may provide insights into the causes of the pathogenicity of these viruses.3 Cross-

species transmissions of simian immunodeficiency virus (SIVcpzPtt) gave rise to pandemic 

(group M) and non-pandemic (groups N and O) clades of HIV-1. To identify host-specific 

adaptations in HIV-1, the inferred ancestral sequences of HIV-1 groups M, N and O to 12 full 

length genome sequences of SIVcpzPtt have been compared with four of the outlying but 

closely related SIVcpzPts (from P. t. schweinfurthii).4  

 

Low-to-middle income countries bear the overwhelming burden of the (HIV-1) epidemic in 

terms of the numbers of their citizens living with HIV/AIDS, the high degrees of viral 
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diversity often involving multiple HIV-1 clades circulating within their populations, and the 

social and economic factors that compromise current control measures. Distinct epidemics 

have emerged in different geographical areas. These epidemics differ in their severity, the 

population groups they affect, their associated risk behaviors, and the viral strains that drive 

them. In addition to inflicting great human cost, the high burden of HIV infection has a major 

impact on the social and economic development of many low- to middle-income countries. 

Furthermore, the high degrees of viral diversity associated with multiclade HIV epidemics 

impacts viral diagnosis and pathogenicity and treatment which poses daunting challenges for 

effective vaccine development.5 

 

The human immunodeficiency virus 1 (HIV-1) synthesizes its genomic DNA in the 

cytoplasm as soon as it enters the cell. The newly synthesized DNA remains associated with 

viral/cellular proteins as a high molecular weight pre-integration complex (PIC) which 

precludes passive diffusion across the intact nuclear membrane. However, HIV-1 

successfully overcomes the nuclear membrane barrier by actively delivering its DNA into the 

nucleus with the help of host nuclear import machinery. Such ability allows HIV-1 to 

productively infect non-dividing cells as well as dividing cells at interphase. HIV-1 nuclear 

import is also found to be important for the proper integration of viral DNA. Thus, nuclear 

import plays a crucial role in the establishment of infection and disease progression. While 

several viral components, including matrix, viral protein R, integrase, capsid, and central 

DNA flap are implicated in HIV-1 nuclear import and their molecular mechanism remains 

poorly understood.6 

 

 

1.1.1 Morphology of the mature virion  

HIV is a member of the lentivirus genus, which includes retroviruses that possess complex 

genomes and exhibit cone-shaped capsid core particles. HIV's genome is encoded by RNA, 

which is reverse-transcribed to viral DNA by the viral reverse transcriptase (RT) upon 

entering a new host cell. The general features of the mature HIV virion and ribbon drawings 

of the structurally characterized viral proteins are shown in Figure 1.1. All lentiviruses are 

enveloped by a lipid bilayer (yellow) that is derived from the membrane of the host cell. 

Exposed surface glycoproteins (SU, gp120; cyan) are anchored to the virus via interactions 

with the transmembrane protein (TM, gp41; violet).7 The lipid bilayer also contains several 
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cellular membrane proteins derived from the host cell, including major histocompatibility 

antigens, actin and ubiquitin.8 

 

A matrix shell comprising approximately 2000 copies of the matrix protein (MA, p17; green) 

lines the inner surface of the viral membrane, and a conical capsid core particle comprising 

ca. 2000 copies of the capsid protein (CA, p24; red) is located in the center of the virus. The 

capsid particle encapsidates two copies of the unspliced viral genome, which is stabilized as a 

ribonucleoprotein complex with ca 2000 copies of the nucleocapsid protein (NC, p7; blue), 

and also contains three essential virally encoded enzymes: protease (PR; pink), reverse 

transcriptase (RT; purple) and integrase (IN; olive). Virus particles also package the 

accessory proteins, Nef (orange), Vif and Vpr (not shown). Three additional accessory 

proteins that function in the host cell, Rev, Tat and Vpu, do not appear to be packaged.9 

 

 

 

Figure 1.1 Drawing of the mature HIV virion surrounded by ribbon representations of the 

structurally characterized viral proteins and protein fragments. Reproduced 

with the permission of publisher (Elsevier).7 License number 3746560471809. 
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1.1.2 The HIV-1 replication cycle 

Figure 1.2 gives the general features of the HIV replication cycle. The early phase starts with 

the recognition of the target cell by the mature virion and involves all processes leading to 

and including integration of the genomic DNA into the chromosome of the host cell. The late 

phase begins with the regulated expression of the integrated proviral genome, and involves all 

processes up to and including virus budding and maturation.  

 

 

 

Figure 1.2 General features of the HIV-1 replication cycle Reproduced with the 

permision of publisher (Elsevier).7 License number 3746560471809. 
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1.1.2.1 Early phase 

HIV–1 particles bind specifically to cells bearing CD4 (Figure 1.2), which is a protein that 

normally functions in immune recognition. Binding occurs by specific interactions between 

the viral envelope glycoprotein SU (gp120) and the amino-terminal immunoglobulin domain 

of CD4. These interactions are sufficient for binding but not for infection. Unlike other 

retroviruses, the primate lentiviruses require additional cell-surface proteins to promote 

fusion of the viral and cellular membranes. For HIV-1, membrane fusion can be triggered by 

one of several chemokine receptors, including CXCR4 and CCR5.10–12 Membrane fusion is 

followed by a poorly understood uncoating event that affords an intracellular reverse 

transcription complex. Reverse transcription is catalyzed in the cytosol by reverse 

transcriptase (RT). The accessory protein Vif appears to be important during one or more of 

these early events, perhaps by facilitating the initial stages of reverse transcription. RT-

dependent DNA synthesis is also dependent on the viral NC proteins, and is initiated by the 

binding of a cellular tRNALys primer. Although the process of reverse transcription is 

complex, the mechanism of RT dependent DNA synthesis has emerged from extensive in 

vitro and in vivo studies.13–16 

 

Once synthesized, the viral DNA is transported to the nucleus as part of a pre-integration 

complex that appears to include the IN, MA, RT, and Vpr proteins, as well as the cellular 

host protein HMG-I(Y).17 The HIV CA proteins do not appear to be part of the pre-

integration complex, although they contribute to the structure of other retroviral pre-

integration complexes.18 Nuclear localization of the pre-integration complex is directed by 

the accessory protein Vpr,19–21 which does not contain a nuclear localization signal but 

appears to function by connecting the pre-integration complex to the cellular nuclear import 

machinery, including importin-α and the nucleoporins.22–24 Vpr also interferes with normal 

cell cycle control by arresting the growth of infected cells in the G2 phase.25–27 Nuclear 

localization may be facilitated by the MA proteins.28–29 After active transport to the nucleus, 

the viral DNA is covalently integrated into the host genome by the catalytic activity of 

integrase.  
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1.1.2.2 Late phase 

The late phase of the virus life cycle begins with the synthesis of unspliced and spliced 

mRNA transcripts, which are transported out of the nucleus for translation. Short spliced 

RNA species that encode the regulatory proteins Tat, Rev and Nef are initially synthesized. 

Tat is an essential transcriptional activator that binds to a stem loop element of the nascent 

RNA transcript (TAR, for trans-activating response element) and recruits the cellular proteins 

cyclin T and cyclin-dependent protein kinase-9. Recent studies indicate that cyclin T binds 

directly to Tat, enhancing its affinity and altering its specificity for the TAR RNA 30. Cdk9 

then phosphorylates the RNA polymerase II transcription complex, stimulating transcription 

elongation 31–32. Unspliced cellular mRNAs are mostly retained in the nucleus where they can 

be further processed or degraded.  

 

However, full length and singly spliced HIV mRNA transcripts that contain functional 

introns are needed in the cytoplasm for Gag and Gag-Pol synthesis and packaging and their 

export is mediated by the essential HIV accessory protein Rev. Rev binds as an oligomer to 

the rev response element (RRE) of nascent unspliced mRNAs and recruits the cellular nuclear 

shuttling protein exportin-1,33 and the nuclear export factor Ran guanosine triphosphatase (in 

its GTP-bound form). This complex is then transported through the nuclear pore to the 

cytosol where GTP is hydrolyzed to GDP, the complex dissociates, and the amino-terminal 

nuclear localization signal (NLS) of Rev directs its import back into the nucleus.34 In this 

manner, Rev functions as a switch between the early synthesis of highly spliced mRNAs 

(encoding Tat, Rev and Nef) and the later synthesis of unspliced (encoding the Gag and Gag-

Pol proteins) and singly spliced (encoding Env, Vpu, Vif and Vpr) mRNAs. The Env 

precursor polyprotein (gp160) is synthesized in the endoplasmic reticulum (ER) using the 

spliced env mRNA gene as the message. The protein appears to oligomerize to a trimeric 

structure in the ER, and is heavily glycosylated.35–38 Env is post translationally modified in 

the ER and Golgi apparatus and is cleaved to produce the non-covalently associated (TM-

SU)3 trimeric glycoprotein complex. The heterogeneously glycosylated TM-SU trimer is then 

transported to the cell membrane for virus assembly. Env and CD4 molecules are both 

synthesized in the ER, and the premature binding of CD4 to Env in the ER can inhibit 

translocation of Env to the cell membrane or the formation of a fully functional TM-SU 

complex.39 Thus, CD4 is targeted for removal from the ER by the viral accessory protein 
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Vpu, which binds CD4 molecules and signals their degradation via the ubiquitin-proteasome 

pathway.40–42 Similarly, cell-surface CD4 molecules are targeted for endosomal degradation 

by the binding of the accessory protein Nef, which also binds to the AP-2 adapter complex 

and stimulates the formation of clathrin-coated pits.43  

 

 

1.1.3 HIV integrase enzyme  

HIV-1 integrase represents a protein with the molecular mass of 32 kDa, which is built of 288 

amino acid residues. It is assigned to the family of polynucleotide transferases, which 

includes retroviral integrases, transposases, recombination proteins RuvC and RuvX and 

some other proteins 44. Enzymes of this family catalyse the processes that lead to the transfer 

of DNA or its fragments within a genome or between genomes. These processes occur 

without invoking any additional energy sources and ultimately, entail no changes in the 

number of phosphodiester bonds. Enzymes of this family are characterised by the formation 

of stable complexes with the DNA-substrate, however the reactions that they catalyse do not 

involve the formation of a covalent protein DNA bond.45 To mediate integration, integrase 

should bind two DNA molecules at once, namely, a viral DNA (designated DNA-substrate) 

and a host cell DNA (DNA-target). The binding of the viral DNA is sequence-specific. 

Integrase recognises the end sequences of U5 and U3 segments in long terminal repeats 

(LTR) in the viral DNA, whereas the binding of the host cell DNA is independent of its 

nucleotide sequence. Integration includes several steps and begins in the cytoplasm of HIV-

infected cells.46-47 The integrase protein of the HIV mediates a key step in the life cycle of the 

virus, namely the integration of a DNA copy of the viral genome into a host chromosome.48 

HIV-1 integrase is composed of three functional domains,49-52 a small N-terminal domain that 

contains a His2Cys2 zinc binding motif, a central catalytic domain whose crystal structure has 

recently been solved and a C-terminal DNA binding domain. While the catalytic core domain 

can carry out a simple polynucleotidyl transfer termed disintegration,53 all three domains are 

required for the 3’ processing and DNA strand transfer activities that accomplish integration 

of the viral genome.51-55 Consequently, the N- and C-terminal domains provide additional 

potentially useful targets for rational drug design aimed at inhibiting HIV integration into the 

host genome. The function of the N-terminal domain is at present unknown, and in the case 

of the related Rous Sarcoma virus integrase at least, its integrity appears not to be essential 
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for in vitro integration activity as it can be replaced by unrelated fusion peptides comprising 

polyhistidine sequences.56 

 

The C-terminal domain, on the other hand, displays the same DNA binding characteristics 

and affinity for both viral and nonspecific double stranded DNA as the intact integrase,57 The 

minimal DNA binding domain has recently been shown to comprise residues 220–270.58 

Retroviruses integrate a DNA copy of the viral genome into host DNA as an obligatory step 

in their replication cycle. DNA integration occurs by a specialized recombination reaction 

mediated by the viral integrase protein.59–62 In the first step 3’-end processing, two 

nucleotides are cleaved from each of the viral DNA to form the DNA substrate for 

integration. In the next step, DNA strand transfer, the 3’ hydroxyls at the ends of the viral 

DNA attack a pair phophodiester bonds in the target DNA. The sites of attack on the two 

target DNA strands are separated by five nucleotides in the case of human immunodeficiency 

virus type-1 (HIV-1) integrase. To complete the integration process, the two unpaired 

nucleotides at the 5’ends of the viral and target DNA are filled and the 3’ 3ends of the viral 

DNA are ligated to the 5’ends of the target DNA. These latter steps are likely to be 

accomplished by cellular enzymes. Integrase is sufficient to carry out both 3’ processing and 

DNA strand transfer in vitro in the presence of a divalent metal ion that can be either Mg2+ or 

Mn2+. Stereochemical experiments have established that both of these reactions occur by a 

one-step trans-esterification mechanism.63 Integrase is composed of three domains based on 

partial proteolysis and functional and structural studies.  

 

The central core domain contains a triad of acidic residues, the D,D-35-E motif, that is 

conserved in integrase proteins encoded by retroviruses and retrotransposons and transposase 

proteins of many DNA transposons. Mutation of any of these residues abolishes or severely 

diminishes all catalytic activities of the protein, demonstrating their key role in catalysis.64 By 

analogy with DNA polymerases, these acidic residues were proposed to coordinate a divalent 

metal ion.65 The role of these acidic residues in binding a divalent metal ion has been 

demonstrated directly in the structures of the catalytic domain of HIV-1, simian 

immunodeficiency virus (SIV) and Rous sarcoma virus (RSV) integrases, which have been 

determined by X-ray crystallography either as a single domain 66–68 or together with the C- 

terminal domain.69–71 The arrangement of the C-terminal domain relative to the catalytic core, 

however, differs among these structures, indicating considerable flexibility in the linkage 

between the catalytic and C-terminal domains. For instance, the C-terminal domain, as in the 
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case of RSV integrase, or as an independent monomeric domain, as in the case of HIV-1 

integrase. These variations make definitive modelling of the complete integrase structure 

from three separated domains difficult. To process and integrate the two viral DNA ends into 

the host genome, two active sites theoretically are required. In the domain structures of HIV-

1, SIV and RSV integrase, each catalytic core resembles a hemisphere that dimerizes via the 

extended flat surface to form a nearly spherical structure. The active sites are located on the 

opposite faces of the sphere and are separated by >50 Å, an arrangement that is incompatible 

with the 5 bp spacing between the sites of integration on the two target DNA strands. 

Rearrangement of this catalytic core dimer is unlikely because the dimer interface is very 

hydrophobic and conserved in all five independently determined retroviral integrase 

structures. Studies of the Mu transpose, which is functionally and structurally homologous to 

HIV-1 integrase,72 have revealed that only two of the four active sites present in a Mu 

transposase tetramer actually participate in the chemical reactions. It is thus proposed that a 

tetramer of integrase ( dimer-of-dimers) is required for the integration reaction and within 

this tetramer, only one of the two active sites in each dimer is actually involved in the 

chemical reactions.73-76  

 

 

1.1.4 HIV reverse transcriptase enzyme 

HIV-1 RT is a heterodimer composed of two subunits known as p66 (560 amino acids) and 

p51 (440 amino acids). The DNA polymerase active site residues (Asp110, Asp185 and 

Asp186) are located in the palm subdomain of p66. In p66, the palm and connection 

subdomains consist of five stranded β sheets with two α helices on one side, while the thumb 

subdomain is composed of a bundle of four helices.77 The fingers subdomain contains a 

mixed β sheet and three α helices. The RNase H domain consists of five β sheets flanked by 

four α helices. The p66 and p51 subunits have similar folds but p51 is more tightly packaged. 

Fingers, palm, thumb and connection subdomains fold similarly in both subunits, but their 

spatial organization changes due to the different positioning of the fingers, thumb and palm 

subdomains. Both HIV-1 RT subunits form a large cleft, where the thumb subdomain of p51 

and the connection subdomains of p66 and p51 form the “floor”, and fingers, palm and thumb 

subdomains of p66 provide lateral and apical interactions with the nucleic acid substrate. 

Active site residues in p66 are exposed to the cleft, but they are buried in the 51-kDa subunit. 

The structure of the binary complex of HIV-1 RT and double-stranded DNA showed that the 
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nucleic acid binding cleft can accommodate 17 nucleotides between the active sites of the 

DNA polymerase and the RNase H.78 The comparison of crystal structures of binary 

complexes with those obtained with unliganded RTs showed conformational changes 

involving the movement of the p66 thumb subdomain away from the fingers subdomain. 

In addition, the bound DNA adopts an A-type conformation in the vicinity of the DNA 

polymerase active site, but a B-like conformation near the RNase H domain. These changes 

in orientation involve a 40º bend of the DNA/DNA complex, near α -helix H in the thumb 

subdomain of p66. The crystal structure of a binary complex of HIV-1 RT and an RNA/DNA 

hybrid revealed only small differences in comparison with the HIV-1 RT/double-stranded 

DNA complex.79 Thus, the distance between the DNA polymerase and RNase H active sites 

is slightly larger (18 nucleotides) in the RNA/DNA complex, with most of the contacts 

between RT and template-primer being maintained. However, the RNA/DNA hybrid makes 

more contacts with the p66 subunit of the RT at α-helix I (thumb subdomain), β-sheet 5 

(palm subdomain) and with residues of the RNase H domain.80-81 Also, a number of contacts 

between the p51 subunit and the RNA template were not detected in the structure having the 

DNA/DNA substrate. Nucleic acids have similar A-like/B-like conformations in complexes 

containing DNA/DNA or RNA/DNA. However, the transition from the A- to the B-forms 

generates a wider minor groove in the RNA/DNA complex, which together with additional 

contacts between the RNase H primer grip and the RNA template seem to be determinant for 

the RNase H catalytic activity.  

 

An important milestone towards understanding the mechanisms and nucleotide specificity in 

DNA polymerization by retroviral RTs was the determination of the crystal structure of a 

ternary complex of HIV-1 RT bound to double-stranded DNA and an incoming dNTP 82. 

Nucleotide binding facilitates transition from an “open” conformation of the fingers 

subdomain in p66 (as observed in the structure of RT/DNA binary complexes) to a “closed” 

conformation where the β3-β4 hairpin loop in the fingers subdomain moves towards the p66 

palm subdomain. This movement in the fingers subdomain is known to be the rate-limiting 

step in the polymerization reaction, and brings amino acid residues Lys65 and Arg72 into 

close proximity with the incoming nucleotide. Apart from these two residues, other important 

interactions in the nucleotide binding site are those established between the incoming dNTP 

and RT residues Asp113-Ala114-Tyr115-Phe116 and Gln151, as well as with the two 

divalent cations (probably Mg2+); and between RT residues Tyr183 and Met184 and the DNA 

primer terminus. Binding of the incoming dNTP also produces a movement of the YMDD 



P a g e  | 11 

 

F. Odame  Nelson Mandela Metropolitan Univeristy 

motif (including catalytic residues Asp185 and Asp186) that allows proper coordination of 

the catalytic aspartates with the metal cofactors, and triggers the nucleophilic attack of the 

3´OH of the primer terminus on the α phosphorous of the incoming kdNTP. This 

polymerization event renders an elongated DNA primer and a pyrophosphate molecule that is 

released in the reaction. Structural data suggest that the YMDD motif acts as a “springboard” 

supplying some of the energy required for translocation.83 

 

The rapid replication of HIV-1 and the errors made during viral replication, cause the virus to 

evolve rapidly in patients, making the problems of vaccine development and drug therapy 

particularly challenging. In the absence of an effective vaccine, drugs are the only useful 

treatment. Anti-HIV drugs work; so far drug therapy has saved more than three million years 

of life. Unfortunately, HIV-1 develops resistance to all of the available drugs. Although a 

number of useful anti-HIV drugs have been approved for use in patients, the problems 

associated with drug toxicity and the development of resistance means that the search for new 

drugs is an ongoing process. The three viral enzymes, reverse transcriptase (RT), integrase 

(IN), and protease (PR) are all good drug targets. Two distinct types of RT inhibitors, both of 

which block the polymerase activity of RT, have been approved to treat HIV-1 infections, 

nucleoside analogs (NRTIs) and non-nucleosides (NNRTIs), and there are promising leads 

for compounds that either block the RNase H activity or block the polymerase in other ways. 

A better understanding of the structure and function(s) of RT and of the mechanism(s) of 

inhibition can be used to generate better drugs; in particular drugs that are effective against 

the current drug-resistant strains of HIV-1.84  

 

Alanine-scanning mutants of the primer grip region of human immunodeficiency virus type 1 

reverse transcriptase were tested for their ability to extend RNA and DNA versions of the 

polypurine tract primer, and an oligonucleotide representing the 18-nucleotide sequence at 

the 3* end of tRNALys3. A majority of the mutant enzymes were either completely or 

severely deficient in RNA priming activity, but with only one exception, were able to 

efficiently extend DNA versions of the same primers. The mutant enzymes were able to bind 

to RNA primers, indicating that the defect in RNA priming was not simply a loss of binding 

activity. Mutations at positions 229, 233, and 235 dramatically reduced the amount of 

specific RNase H cleavage at the 3* terminus of the polypurine tract, which is required for 

primer removal. An alanine substitution at position 232 led to loss of cleavage specificity, 

although total activity was close to the wild-type level. Taken together, these results 
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demonstrate for the first time that there are residues in human immunodeficiency virus type 1 

reverse transcriptase which are specifically involved in protein nucleic acid interactions with 

RNA primers.85 Reverse transcriptase (RT)-associated ribonuclease H (RNase H) can cleave 

both the RNA template of DNA/ RNA hybrids as well as double-stranded (ds) RNA. This 

report shows that HIV-RT can also cleave the template strand of ds DNA when Mg2+  is 

replaced by Fe2+  in the RNase H active site of HIV-RT. The cleavage mechanisms as well as 

the positions of the cut vary depending on whether RNA or DNA is used. While DNA is 

cleaved at 17 base positions upstream of the primer 3*-end, RNA is cleaved 18 base positions 

upstream. Competition experiments show that Fe2+  replaces the catalytically active Mg2+ of 

RT-associated RNase H. The bound Fe2+ is the source of locally generated OH-radicals that 

cleave the most proximate base in the DNA. Electrophoretic mobility studies of the cleaved 

fragments suggest that DNA is cleaved by an oxidative mechanism, while RNA is cleaved by 

an enzymatic mechanism which is indistinguishable from the Mg2+-dependent cleavage. 

 

The Fe2+-dependent cuts can be used to trace the active site of RT-associated RNase H on 

dsDNA as well as on dsRNA and DNA/RNA hybrids. The observed 1 base difference in the 

cleavage positions on DNA and RNA templates can be attributed to conformational 

differences of the bound nucleic acids. We suggest that the lower pitch of dsRNA and 

DNA/RNA hybrids compared with dsDNA permits accommodation of an additional base pair 

in the region between the primer 3*-end and the Fe2+-dependent cleavage position at the 

RNase H active site.86 HIV-1 drug resistance mutations are often inversely correlated with 

viral fitness, which remains poorly described at the molecular level. Some resistance 

mutations can also suppress resistance caused by other resistance mutations. Deval and co-

worker reported the molecular mechanisms by which a virus resistant to lamivudine with the 

M184V reverse transcriptase mutation shows increased susceptibility to tenofovir and can 

suppress the effects of the tenofovir resistance mutation K65R. Additionally, how the 

decreased viral replication capacity of resistant viruses has been reported to be directly linked 

to their decreased ability to use natural nucleotide substrates and that combination of the 

K65R and M184V resistance mutations leads to greater decreases in viral replication 

capacity. All together, these results define at the molecular level how nucleoside-resistant 

viruses can be driven to reduced viral fitness.87 
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1.2 Structure of HIV-1 protease enzyme 

HIV-1 protease (HIV PR) is an aspartic protease that is essential for the life cycle of HIV, the 

retrovirus that causes AIDS.88–89 HIV PR cleaves newly synthesized polyproteins to be taken 

up by the immature HIV virion. Without effective HIV PR, HIV virions remain 

uninfectious.90 Mutation of HIV PR’s active site or inhibition of its activity disrupts HIV’s 

ability to replicate and infect additional cells. This has made HIV PR inhibition the subject of 

much pharmaceutical research.91 

 

 

1.2.1 Structural features 

HIV-1 Protease is a homodimer (chain A, chain B). Each monomer contains 99 amino acids 

and is identical in conformation. The position of each monomer in the active protease forms 

an axis of symmetry. The secondary structure of each monomer includes, one alpha –helix 

and two anti-parallel beta sheets. The two Asp25 residues (one from each chain) act as the 

catalytic residues. A mechanism for the cleavage of HIV PR in which, water acts as a 

nucleophile, in concert with a well-placed aspartic acid to hydrolyze the scissile peptide bond 

has been proposed. Additionally, HIV PR has two molecular “flaps” which move a distance 

of up to 7 Å when the enzyme becomes associated with a substrate.92  

 

 

1.2.2 HIV-1 protease active site 

HIV-1 protease consists of two protein chains. The chains are identical to one another, and 

each contains 99 amino acids. When the two chains assemble, a long tunnel is formed. 

Protein “flaps” cover the tunnel and open up to allow the enzyme to attach to a protein chain. 

After attachment, the flaps then close around the protein chain, thereby holding it in the 

tunnel and allowing the chain to be degraded.93 

 

The structures and activities of HIV protease and its drug-resistant variants and their 

interactions with inhibitors have been studied for nearly 20 years in order to combat the 

challenges of AIDS antiviral therapy and the evolution of HIV drug resistance.94 About 25 

different antiretroviral drugs (ARV) are currently used in the combat against HIV and AIDS. 

ARVs are divided into five different classes depending on their viral target. Currently 
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recommended AIDS therapy employs a mixture of drugs from different classes in HAART. 

Nine of these drugs target HIV protease and belong to the class of protease inhibitors (PIs). In 

most ARV formulations protease inhibitors are used together with reverse transcriptase 

inhibitors. The inclusion of PIs in antiviral therapy has resulted in major clinical benefits 

including prolonged viral suppression, control, reduced morbidity and mortality for HIV 

infected people.95–96 Encouraged by the potency and efficacy of the antiviral PIs, more efforts 

are underway to come up with the next generation of inhibitors.97–98  

 

NH

O

NH

O

O

NH2
OH

N

O NH

CH3

CH3CH3

H

H

Saquinavir

N

S
NCH3

CH3

CH3

NH

CH3

O

NH

O
CH3

OH

NH O

O

S

N

Ritonavir 

O

O N

O
N

S

O O

NH2

OH

CH3

CH3
H

Amprenavir

O

NH

OH

CH3

OH

S

N
H

H

O NH

CH3

CH3CH3

Nelfinavir

NH2

S
N

O

O

N

H

C

O

O

O OH
O

P

OH
O

HO

fosamprenavir

N

HO

C
OO

O
O

H

H

N
S

O

O

N
H

H

darunavir

O
N

O

H

HO

N
H

C
O

N

HN

O

Lopinavir

N

OH

H C
O

HO

N

N

N

O N

H

Indinavir

NF

F

F

S

O

O

NH

O
HO

O

Tipronavir

 

 

Figure 1.3 Current HIV-1 protease inhibitors approved by the FDA.  
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However, the emergence of drug resistance to PIs has compromised the effectiveness of 

treatment of HIV infections.99–101 Newer HIV infections that transmit drug resistant virus into 

drug naive patients limit antiviral options and thus complicate the management of HIV 

infection.102–104 More mutations are selected by PIs than any other class of ARV, partly due 

to their use for over a decade. The drug resistance to a particular PI also leads to cross 

resistance to other drugs within the PI class. The degree of cross-resistance depends on the 

number of mutations and the type of mutation selected by a PI.105 With the availability of 9 PI 

drugs it is still possible to salvage a response from a different PI following failure of 

treatment with the first PI. Ritonavir is now solely used as a pharmocokinetic booster and 

ritonavir-boosted lopinavir, atazanavir, fosamprenavir and saquinavir are used as first line 

therapy against HIV infection.106–107 

 

 

1.2.3 HIV protease and structure guided design of PIs 

HIV protease plays a critical role in viral maturation for producing infectious virus particles. 

The protease cleaves the precursor Gag and Gag-Pol polyproteins at a minimum of 9 distinct 

sites. The cleavages release the structural proteins matrix, capsid, and nucleocapsid, spacer 

peptides p1, p2, and p6, and functional enzymes reverse transcriptase, protease and integrase. 

Alteration of protease activity leads to defective viral particles and reduced infectivity.108–109 

Inactivation of HIV protease resulting in the lack of infectious virus has made protease an 

attractive drug target for HIV and AIDS.110–111 Structure-guided inhibitor design has proved 

to be a powerful technique for discovering drug candidates with successful development of 

HIV protease inhibitors for AIDS therapy,112 protein kinase inhibitors for cancer therapy 113, 

and neuraminidase inhibitors for treatment of influenza virus infection 114. Proteases are 

valuable targets for structure-based drug designs with therapeutic success for inhibiting 

aspartic proteases like renin as well as HIV protease.115  

 

Knowledge of the crystal structure of HIV-1 protease and its recognition of substrate analog 

inhibitors was critical for the design of antiviral PIs. The HIV protease is an aspartic protease 

and the catalytic site has the characteristic Asp-Thr-Gly sequence common to all aspartic 

proteases. It functions as a symmetric homodimer consisting of 99 amino acids per monomer. 

The structure of protease is predominantly a sheet with the two aspartic acids Asp-25 from 

the two monomers forming the central active site. The three important regions in the protease 



P a g e  | 16 

 

F. Odame  Nelson Mandela Metropolitan Univeristy 

structure are the active site cavity, the flexible flaps, and the dimer interface. PIs are 

competitive inhibitors that bind at the active site of the protease with the flaps folded into a 

closed conformation over the active site. The dynamics of the flap region is important for the 

activity of the enzyme. The flaps were observed in closed and open conformation in the 

crystal structures of inhibitor bound and free protease.116–120 The protease active site cavity 

comprises residues Arg8, Leu23, Asp25, Gly27, Ala28, Asp29, Asp30, Val32, Lys45, Ile47, 

Met46, Gly48, Gly49, Ile50, Phe53, Leu76, Thr80, Pro81, Val82, Ile84. The majority of the 

residues forming the substrate binding site are hydrophobic; the exceptions are the catalytic 

Asp25 and Asp29, which form hydrogen bonds with peptide main chain groups, and Arg8, 

Asp30 and Lys45 which can interact with polar side chains or distal main chain groups in 

longer peptides.121–122 Knowledge of substrate recognition has benefited greatly from 

comparative analysis of other retroviral proteases.123  

 

Information on protease recognition of substrates has been incorporated into the design of 

antiviral inhibitors, which contain polar groups that form hydrogen bonds with the protease 

main chain and large hydrophobic groups replacing the P1 and P1’ peptide side chains. The 

clinical PIs incorporate the common features deduced from the crystal structures of HIV 

protease with peptidic inhibitors. Saquinavir was the first drug approved for HIV protease; 

indinavir and ritonavir were introduced soon afterward. The PIs were designed to bind tightly 

to the wild type enzyme by mimicking the transition state of substrates.124 The binding 

affinity of the PIs varies from nanomolar to picomolar. In the current stage, as exemplified by 

the recently developed drugs tipranavir and darunavir, the strategy was to target drug resistant 

variants of the HIV-1 protease. The PIs are generally shorter than the peptide substrates and 

contain hydrophobic groups that bind within the hydrophobic pockets at the S2–S2’ subsites 

of protease. The early PIs were designed with polar groups resembling those of the substrate 

peptide main chain, and include a central hydroxyl that interacts with the catalytic aspartates 

and mimics the hydroxyl of a tetrahedral reaction intermediate. The later inhibitors 

amprenavir, tipranavir and darunavir were designed with less peptidic backbone features but 

retaining the central hydroxyl group.125–126  

 

 

 

 



P a g e  | 17 

 

F. Odame  Nelson Mandela Metropolitan Univeristy 

1.2.4 Evolution of drug resistance to PIs 

Introduction of the first PI, saquinavir, in 1995 marked an important advance in the treatment 

of HIV infection. Then, it was possible for more effective therapy using a cocktail of drugs to 

target the protease as well as the reverse transcriptase. However, resistance to the PI quickly 

emerged.127 Resistance is seen for all the drugs currently used in HAART, however, PIs 

appear to select more mutations than other classes of drugs. Drug resistant mutations of the 

protease have emerged against all the clinically available PIs. Though HAART is successful 

in suppressing the viral replication it cannot completely eliminate the integrated viral DNA. 

Thus, long term use of drugs is essential. Adherence to therapy greatly influences emergence 

of drug resistance.128–130 Drug side effects and toxicity are major reasons for loss of patient 

compliance and viral failure.131–132 Also, rapid mutation due to high rate of viral replication 

and lack of nucleoside proof reading in HIV assists emergence of drug resistance. Also, the 

number of primary infections involving transmission of PI drug resistant strains is on the rise 

further hindering the treatment process.133 Although PIs select for specific mutations, the 

resistant mutation pattern for each PI is complex and difficult to predict 134–135. Almost 50 

different residues are mutated even in the absence of an inhibitor forming a large background 

of neutral mutations in the relatively small protease.136 

 

According to the International Aids Society-US panel for ARV resistance, mutations in 37 of 

99 residues in HIV protease have clinical relevance to drug resistance among the current 

PIs.137 These mutations are classified into major and minor mutations depending on their 

effect in antiviral therapy. Seventeen mutation sites are considered major mutations that 

render high levels of drug resistance to one or more PIs. Major resistance mutations are 

selected early and are much more inhibitor specific. Most of the minor mutations are 

considered to act as accessory mutations and compensate for the replication impairment due 

to the major drug resistance mutations. Furthermore, resistance mutations in protease can be 

accompanied by mutations in the viral polyprotein cleavage sites. Mutations in the Gag 

precursor cleavage sites, NC/p1 and p1/p6, are strongly associated with resistance to protease 

inhibitors.138 Also protease drug resistance can emerge due to mutations in the Gag substrate 

alone, rather than in the enzyme.139 In addition, recent reports indicate a role for amino acid 

insertions in the drug resistance of HIV protease.140–141 
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1.3 Benzimidazole-based compounds 

The benzimidazole ring is a useful scaffold in medicinal chemistry and is a part of many 

biologically active compounds. A mild and efficient approach for the synthesis of the 

benzimidazole ring through oxidative cyclization of o-phenylenediamine and different 

aldehydes using dioxane dibromide has been reported (Scheme 1.1).142  
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Scheme 1.1 Synthesis of benzimidazoles using dioxane dibromide.142  

 

Solid heteropoly acid supported on silica gel (Cu3/2PMo12O40/SiO2) has been used as a 

heterogonous, reusable and efficient catalyst for synthesis of 2-arylbenzimidazoles and 2-

arylbenzothiazoles by reaction of o-phenylenediamine and o-aminothiophenol with different 

aldehydes under various conditions (in solvent, under solvent-free conditions, microwave and 

ultrasonic wave irradiation). The catalyst can be reused several times but it will be less active 

(Scheme 1.2).143  
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Scheme 1.2 Synthesis of benzimidazole using solid heteropoly supported on silica gel.143 

 

A series of benzimidazol-2-yl or benzimidazol-2-ylthiomethyl benzoylguanidines which have 

been found to inhibit NHE1-mediated platelet swelling in a concentration-dependent manner 

and to have significant cardioprotective effect against myocardial ischemic-reperfusion injury 

in vivo and in vitro tests have been designed and synthesized as Na+/H+exchanger inhibitors 

Cyanobenzoic acids obtained by oxidation of corresponding cyanotoluene, were treated with 

SOCl2 to offer benzoylchlorides which were then cyclocondensed with 4- or 1N-substituted 
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1,2-diaminobenzene to give benzimidazolyl phenylnitriles. This is a rare result as an amide 

would have been the expected product (Scheme 1.3).144  
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Scheme 1.3 Synthesis of benzimidazoles from acid chloride in the presence of anhydrous 

acetone.144  

 

A library of benzimidazoles, benzoxazoles and benzothiazoles have been efficiently 

synthesized by condensation of o-phenylenediamine, o-aminophenol and o-aminothiophenol 

respectively with aromatic aldehydes in the presence of catalytic amounts of Animal Bone 

Meal (ABM) and Lewis acids doped ABMs. The products were attained by reflux of the 

reactants in air. This method has a high yield, short reaction times, and cleaner reaction 

profiles, straight forward procedure and reduced catalyst toxicity.145  

 

Catalytic condensation of o-phenylenediamine and aldehydes has been accomplished using 

rare earth(III)perfluorooctane sulfonates (RE(OPf)3), RE = Sc, Y, La, Lu) as catalysts in 

fluorous solvents. Ytterbium perfluorooctanesulfonates (Yb(OPf)3) catalyzes the high-

efficient synthesis of benzimidazole derivatives in fluorous solvents. The fluorous phase 

containing only catalyst can be reused after simple separation (Scheme 1.4).146  
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Scheme 1.4 Synthesis of benzimidazoles using Ytterbium perfluorooctanesulfonates.146  
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Methyl cis-deisopropyldehydroabietate has been selectively nitrated at the 12-position by 

reaction with `claycop', a montmorillonite clay impregnated with copper(II) nitrate. The 12-

nitro compound was reduced to the corresponding amine and subjected to a combined 

acylation and ortho nitration. The compounds so produced were further converted into 

octahydro-1H-phenanthro [2,3-d]imidazoles by reductive cyclization. The same acylation-

ortho nitration methodology was shown to provide a short synthesis of 2-substituted 

benzimidazoles from aniline.147  

 

One-pot reduction-triggered heterocyclizations from 2-nitroanilines or 1,2-dinitroarenes to 

benzimidazoles has been reported. In the presence of indium/AcOH in ethyl acetate at reflux, 

reaction of 2-nitroanilines or 1,2-dinitroarenes with RC(OMe)3 (R=Me, Ph) produced 

excellent yields of the corresponding benzimidazoles within 30 min to 6 h depending on the 

substituents of the starting materials. Indium-mediated heterocyclization of 2-nitroanilines to 

benzimidazole was faster and had better yields than 1,2-dinitroarenes to benzimidazole under 

similar reaction conditions (Scheme 1.5).148 
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Scheme 1.5 Indium catalyzed synthesis of benzimidazoles 148 

 

Direct one-step synthesis of various benzimidazoles from o-phenylenediamines and 

aldehydes has been reported using air as the oxidant. The salient features of this method 

include a simple procedure, mild conditions, no coupling agents or commercial 

oxidants/additives used, no waste produced (only by-product being water), easy purification, 

and high generality (Scheme 1.6).149  
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Scheme 1.6 Synthesis of benzimidazoles using air as catalyst.149 

 

A wide variety of 2-substituted benzimidazoles and bis-benzimidazoles have been 

synthesized in high yields by PEG-mediated catalyst-free synthesis under solvent-free 

conditions.150  

 

The synthesis of benzimidazoles through the coupling of aldehydes with o-phenylenediamine 

by using highly acidic nanoporous aluminosilicate with 3D structure and cage-type pores as 

the catalyst has been achieved. The catalyst resulted in excellent yields in short reaction times 

presumably due to its high acidity, large pore diameter, high surface area, and cage-type 3D 

porous structure (Scheme 1.7).151  
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Scheme 1.7 AIKIT-5 catalyzed synthesis of benzimidazoles.151 

 

An efficient route for the synthesis of benzimidazo [2,1-a]isoquinolines and its condensed 

analogues has been developed via the palladium-catalyzed cyclization/C–H activation of N-

allyl and N-methallyl derivatives of benzimidazoles (Scheme 1.8).152  
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Scheme 1.8 CAN and hydrogen peroxide catalyzed sythesis of benzimidazoles.152 

 

Zinc chloride-exchanged K10- montmorillonite (clayzic) has been employed as a Lewis acid 

catalyst in aqueous media at room temperature for the synthesis of various benzimidazoles 

and quinoxalines from carbonyl compounds and o-phenylenediamine.153 The laccase-

catalyzed diamino reaction of o-phenylenediamine and benzaldehydes with aerial oxygen as 

the oxidant exclusively yields 2-aryl-1H-benzimidazoles in good yields.154 The regiospecific 

synthesis of a range of anti-tumour 2-arylbenzothiazoles substituted in the benzothiazole ring 

has been achieved. A bromine atom situated ortho to the anilido nitrogen is used to direct a 

regiospecific cyclisation.155  

 

A series of benzimidazole derivatives have been  synthesized expeditiously in good yields by 

condensation of 1,2-diaminobenzene and aromatic aldehydes in the presence of modified 

scolecite catalyst.156 Benzimidazole-naphthalimide derivatives have been synthesized and its 

photophysical properties have been determined. The compounds showed highly selective and 

sensitive colorimetric and ratiometric sensing ability for fluoride anion.157  

Ammonium metavanadate (10 mol%) has been used as a catalyst for the synthesis of 2-

substituted aryl benzimidazoles from o-phenylenediamine and different substituted aryl 
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aldehydes at room temperature in ethanol.158 Various 2-arylbenzimidazoles have been 

obtained from o-phenylenediamine and aldehydes via one-step process with DMP (Dess–

Martin-periodinane) reagent as an oxidant.159 Vanadyl acetylacetonate, VO(acac)2, has been 

found to be very a effective catalyst for the synthesis of a variety of benzimidazoles under 

solvent-free condition. o-Phenylenediamine and selected aromatic carboxylic acids/aldehydes 

have been irradiated by microwave radiation to access the products.160  

 

One-pot condensation of o-aminothiophenol or o-phenylenediamine with different aldehydes 

have been catalyzed by hexamethylenetetramine–bromine (HMTA-Bromine).161 

Regioselective one-pot synthesis of 2-aryl benzimidazoles, benzoxazoles and benzothiazoles 

have been achieved in excellent isolated yields under ambient conditions using the ionic 

liquids, 1-butylimidazolium tetraflouroborate ([Hbim]BF4) and 1,3-di-n-butylimidazolium 

tetrafluoroborate ([bbim]BF4) as reaction media and promoters.162 2-Substituted 

benzimidazoles have been synthesized in excellent yields in a single pot under solvent-free 

conditions from o-phenylenediamine and aldehydes in the presence of a catalytic amount of 

In(OTf)3 at room temperature.163 Synthesis of benzimidazoles from the condensation of o-

phenylenediamine and acyl chlorides in the presence of a catalytic amount of various 

heteropolyacids (HPAs) have been repoerted.164 10 mol% of Dowex 50W in water has been 

used as an efficient catalyst for the synthesis of a wide variety of 2-substituted 

benzimidazoles (Scheme 1.9).165  
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Scheme 1.9 Dowex 50 W catalyzed synthesis of benzimidazoles in water. 165 

 

The synthesis of 2-arylbenzimidazoles through a one-pot condensation of o-

phenylenediamines with aryl aldehydes in water have been reported.166  
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2-Substituted benzimidazoles have been synthesized from benzo[c][1,2,5]thiadiazole-4,5-

diamine and aromatic aldehydes in the presence of catalytic amount of CuPy2Cl2, at room 

temperature.167  

 

Benzimidazole derivatives have been synthesized using catalytic amount of Fe(ClO4)3/SiO2 at 

room temperature under solvent-free conditions.168 The reaction of o-phenylenediamine 

derivatives and substituted benzaldehydes have been carried out in 1M glucose solution as 

reaction medium and catalyst at 60 °C.169 A set of benzothiazoles and benzimidazoles have 

been prepared from aromatic ortho-diamines or ortho-aminothiophenol and aldehydes by 

ultrasonic irradiation using chlorotrimethylsilane in dimethylformamide as promoter and 

water scavenger.170  A mild and efficient procedure for synthesis of benzimidazole derivatives 

in the presence of a catalytic amount of mechanochemically synthesized zinc oxide 

nanoparticles under solvent-free condition has been achieved.171 An efficient method for the 

synthesis of 1,2-disubstitued benzimidazoles and 2-substitued benzothiazoles under solvent-

free and ultrasonic irradiation conditions, employing rare-earth metal chlorides as catalysts 

have been reported.172 The synthesis of 2,4,6-triphenyl-1H-imidazoles using benzil, aromatic 

aldehyde and NH4OAc have been carried out with ZnO as catalyst at room temperature.173 

The cyclization of 2,3-diaminobenzoic acid and aromatic aldehydes to give 2-aryl-1H-

benzimidazole-4-carboxylic acids have been reported.174  

 

N,N-Dimethylchlorosulfitemethaniminium chloride (SOCl2-DMF) has been used to access 

benzimidazoles and benzoxazoles by condensation of carboxylic acids with o-

phenylenediamine or o-aminophenol (Scheme 1.10).175  
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Scheme 1.10 Synthesis of benzimidazoles from carboxylic acids in SOCl2-DMF.175  

 

Benzimidazoles have been readily prepared from o-phenylenediamine and aldehydes using 

air and catalytic amount of N-hydroxyphthalimide/Co(OAc)2.
176 o-Phenylenediamines have 
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been reacted with carbonyl compounds, β-ketoesters, and 1,2-diketones in presence of 

ammonium salts to give benzimidazoles and quinoxalines.177 A simple and efficient method 

for the convenient synthesis of 2-arylbenzimidazole has been achieved by reacting o-

phenylenediamine and various aromatic aldehydes using cobalt(II) chloride hexahydrate as a 

catalyst.178 KI has been used as catalyst to synthesize benzimidazoles from aromatic 

aldehydes and o-phenylenediamine in air by microwave irradiation.179 FeCl3–doped 

polyaniline nanoparticles has been used to catalyze the synthesis of 2-substituted 

benzimidazoles by the reaction of aldehydes with o-phenylenediamine.180 Benzimidazole 

derivatives have been synthesized using a catalytic amount of lead peroxide (PbO2) at room 

temperature.181  

 

One-pot synthesis of benzimidazole compounds from o-phenylenediamine and a variety of 

aldehydes has been achieved in the presence of samarium triflate (10 mol%) in acetonitrile at 

room temperature.182 A library of benzimidazole derivatives have been prepared through the 

reaction of o-phenylenediamine and aldehydes in the presence of catalytic amount of silica 

supported sodium hydrogen sulfate (NaHSO4-SiO2) by refluxing in ethanol.183 A microwave-

assisted method for the synthesis of 2-substituted benzimidazoles in the presence of alumina-

methanesulfonic acid (AMA) has been reported.184 

 

 Silica functionalized Mn(acac)3 has been prepared and employed for the one-pot synthesis of 

2-arylbenzimidazoles, 2-arylbenzothiazoles; and oxidation of benzoins to benzils under air 

and in water.185 A series of 2-(hetero)arylbenzimidazoles has been synthesized by the 

catalytic condensation of (hetero)aryl aldehydes with o-phenylenediamine derivatives at 

room temperature in air with copper nanoparticles on charcoal as catalyst.186 Libraries of 2-

substituted-benzimidazoles, benzoxazoles, benzothiazoles as well as quinazolin-4 (3H)-ones 

have been synthesized via potassium persulfate–CuSO4-mediated oxidative coupling of 

aldehydes with o-phenylenediamines, o-aminophenols, o-aminothiophenols, and 

anthranilamide, respectively, in aqueous micelles.187 The FeCl3-catalyzed aerobic oxidation 

process for the synthesis of benzoxazoles, benzothiazole and benzimidazole has been 

reported.188 

 

Ceric ammonium nitrate (CAN) has been reported to efficiently catalyze the synthesis of 

benzimidazole derivatives from o-phenylene diamine and aldehydes in PEG.189 The synthesis 

of o-phenylbenzimidazole from o-phenylene diamine and benzoic acid have been achieved in 
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water at high temperatures.190 A new enzymatic synthesis has been reported for the synthesis 

of 2-alkyl-benzimidazoles which involved a supported enzyme (Lipozymes), the reaction has 

been carried out in very mild conditions in hydrocarbon solvents.191 A solid phase strategy 

for the synthesis of substituted 2-arylbenzimidazoles over silica gel have been achieved using 

o-phenylene diamines and aromatic aldehydes.192  

 

A practical and convenient synthetic method has been developed for the facile synthesis of 

1,2-disubstituted benzimidazoles, 2-substituted benzimidazoles and 2-substituted 

benzothiazoles with high chemoselectivity.193 Diversity oriented synthesis of benzimidazole 

and benzoxa/(thia)zole libraries have been achieved through polymer-supported hypervalent 

iodine reagent by a reaction between, o-phenylene diamine, o-aminophenol and o-

aminothiophenol and aldehydes.194 Benzimidazole has been synthesized by a reaction 

between anthranillic acid and o-phenylene diamine. The acetylated product of benzimidazole 

undergoes Claisen-Schimdt condensation with aryl aldehyde to produce corresponding 

chalcones.195  

 

A series of 4'-(6-methoxy-2-substituted-benzimidazole-1-ylmethyl)-biphenyl-2-carboxylic 

acid has been synthesized expeditiously in 4-methoxy-1, o-phenylenediamine and different 

substituted carboxylic acids in the presence of BF3·OEt2 as a catalyst.196 A series of 

benzimidazole derivatives have been synthesized by the reaction of o-phenylenediamine and 

different aromatic aldehydes in the presence of sodium hexafluroaluminate, Na3AlF6, as an 

efficient catalyst at 50 °C.197 Solid silica supported ferric chloride (SiO2-FeCl3) catalyzed 

one-step synthesis of various benzimidazoles from o-phenylenediamine and aldehydes using 

H2O2 has been reported.198 The synthesis of substituted benzimidazoles, 2-

aminobenzimidazoles, 2-aminobenzothiazoles, and benzoxazoles have been achieved via 

intramolecular cyclization of o-bromoaryl derivatives using copper(II) oxide nanoparticles in 

DMSO under.199 Benzimidazoles synthesized by the copper-catalyzed, one-pot, three-

component reaction of 2-haloanilines, aldehydes, and NaN3 have been reported.200  

 

A new convenient method for the syntheses of 2-substituted benzimidazole and benzothiazole 

have been reported.201 Synthesis of 5-benzoxadiazepines from the condensation of o-

phenylenediamine and acyl chlorides has been achieved in the presence of a catalytic amount 

of various heteropolyacids (HPAs).202 A one-pot synthesis of 2-arylbenzothiazoles via the 

reaction of 2-aminothiophenols and aromatic aldehydes in glycerol at ambient temperature 
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have been reported.203 Synthesis of N-1- and C-2-substituted benzimidazole via reductive 

cyclization of o-nitroarylamine using Na2S2O4 has been reported.204 o-Phenylene diamine 

derivatives have been reported to react with benzoyl chloride derivatives in the presence of 

MCM-41 as catalyst to yield 2-substituted benzimidazoles.205 Synthesis of 2-substituted 

benzimidazoles using polyphosphoric acid (PPA) as a catalyst from organic acid and o-

phenylene diamine via microwave irradiation has been achieved.206 Microwave irradiated 

synthesis of 2-substituted benzimidazoles via the Na2S2O4 reduction of o-nitroanilines in the 

presence of aldehydes have been reported.207  

 

The antiviral activity of a series of benzimidazole derivatives and substituted benzimidazole 

have been reported.208 2-Phenylbenzimidazole derivatives have been synthesized and 

evaluated in cell-based assays for cytotoxicity and antiviral activity against a panel of 10 

RNA and DNA viruses, poxviruses, pestiviruses and even HCV, which are important human 

and veterinary pathogens.209 In an effort to identify a new class of HIV-1 protease inhibitors, 

four different stereopure β-hydroxy γ-lactam containing inhibitors have been synthesized, 

biologically evaluated, and cocrystallized. The impact of the tether length of the central 

spacer (two or three carbons) was also investigated. A compound with a shorter tether and 

(3R,4S) absolute configuration exhibited high activity with a Ki of 2.1 nM and an EC50 of 

0.64 μM. Further optimization by decoration of the P1′ side chain furnished an even more 

potent HIV-1 protease inhibitor (Ki = 0.8 nM, EC50 = 0.04 μM). According to X-ray 

analysis, the new class of inhibitors did not fully succeed in forming two symmetric hydrogen 

bonds to the catalytic aspartates. The crystal structures of the complexes further explain the 

difference in potency between the shorter inhibitors (two carbon spacer) and the longer 

inhibitors (three-carbon spacer).210 

 

Three new peptidomimetics have been developed with highly stable and conformationally 

constrained macrocyclic components that replace tripeptide segments of protease substrates. 

Each compound inhibits both HIV-1 protease and viral replication (HIV-1, HIV-2) at 

nanomolar concentrations without cytotoxicity to uninfected cells below 10 μM. Their 

activities against HIV-1 protease (Ki 1.7 nM (1), 0.6 nM (2), 0.3 nM (3)) are 1-2 orders of 

magnitude greater than their antiviral potencies against HIV-1-infected primary peripheral 

blood mononuclear cells (IC50 45 nM (1), 56 nM (2), 95 nM (3)) or HIV-1-infected MT2 

cells (IC50 90 nM (1), 60 nM (2)), suggesting suboptimal cellular uptake.211  
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The emergence of resistance to existing classes of antiretroviral drugs necessitates finding 

new HIV-1 targets for drug discovery.The viral capsid (CA) protein represents one such 

potential new target. CA is sufficient to form mature HIV-1 capsids in vitro, and extensive 

structure-function and mutational analyses of CA have shown that the proper assembly, 

morphology, and stability of the mature capsid core are essential for the infectivity of HIV-1 

virions. The development of an in vitro capsid assembly assay based on the association of 

CA-NC subunits on immobilized oligonucleotides. This assay has been used to screen a 

compound library, yielding several different families of compounds that inhibited capsid 

assembly. Optimization of two chemical series, the benzodiazepines (BD) and the 

benzimidazoles (BM), resulted in compounds with potent antiviral activity against wild-type 

and drug-resistant HIV-1. Nuclear magnetic resonance (NMR) spectroscopic and X-ray 

crystallographic analyses showed that both series of inhibitors bound to the N-terminal 

domain of CA. These inhibitors induced the formation of a pocket that overlaps with the 

binding site for the previously reported CAP inhibitors but is expanded significantly by these 

new, more potent CA inhibitors. Virus release and electron microscopic (EM) studies showed 

that the BD compounds prevented virion release, whereas the BM compounds inhibited the 

formation of the mature capsid. Passage of virus in the presence of the inhibitors selected for 

resistance mutations that mapped to highly conserved residues surrounding the inhibitor 

binding pocket, but also to the C-terminal domain of CA.  

 

The resistance mutations selected by the two series differed, consistent with differences in 

their interactions within the pocket, and most also impaired virus replicative capacity. 

Resistance mutations had two modes of action, either directly impacting inhibitor binding 

affinity or apparently increasing the overall stability of the viral capsid without affecting 

inhibitor binding. These studies demonstrate that CA is a viable antiviral target and 

demonstrate that inhibitors that bind within the same site on CA can have distinct binding 

modes and mechanisms of action.212 Table 1.1 gives the chemical structures of some 

potential HIV-1 protease inhibitors. 
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Table 1.1 Chemical structures of some potential HIV-1 inhibitors under development  
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1.4 Benzoyl isothiocyanates based compounds  

The regiospecific synthesis of 5-bromothiophenethyl thioureas has been accomplished in four 

steps with an overall yield of 40 – 60%. The requisite regioselectivity for bromination of the 

thiophene ring was achieved using bromine in acetic acid at low temperatures.213 Isocyanates 

and isothiocyanates that are not activated by an electron withdrawing group react with 

azanorbornenes in benzene at reflux to afford ureas and thioureas through the corresponding 

1,3-diaza-Claisen rearrangements (Scheme 1.11).214 
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Scheme 1.11 1,3-Diaza Claisen rearrangement reactions of thiourea derivatives.214 

 

The enantioselective N-heterocyclic carbene-catalyzed formal [2 + 2] and [2 + 2 + 2] 

cycloaddition of ketenes and isothiocyanates have been reported.215 Alkyl-(aryl) isocyanides 

have been reported to react with benzoyl isothiocyanate in the presence of 

dialkylacetylenedicarboxylates or dibenzoylacetylene in one-pot to afford highly substituted 

4,7-bis[alkyl(aryl)imino]-2-phenyl-3-oxa-6-thia-1-azaspiro[4.4]nona-1,8-dienes, with double 

insertion of the isocyanide (Scheme 1.12).216  
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Scheme 1.12 Double insertion reactions of benzoyl isothiocyanates.216 

 

An efficient synthesis of N-acyl-NI-substituted guanidines by condensation reaction of 

thiourea and (Me3Si)2NH in the presence of EDCI have been achieved (Scheme 1.13).217  
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Scheme 1.13 Substitution reactions of thiones.217 

 

Benzoyl isothiocyanate has been reported to react with dialkyl acetylenedicarboxylates in the 

presence of triphenylphosphine in a mechanistically novel reaction to afford highly 

substituted dialkyl 2-(benzoylimino)-5-phenyl-4H-[1,3]dithiolo[4,5-b]pyrrole-4,6-

dicarboxylates (Scheme 1.14).218 
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Scheme 1.14 Triphenylphosphine catalyzed cyclizations of benzoyl isothiocyanate 

derivatives.218 

 

An efficient synthesis of ethyl 2-(4-acetyl-5-benzoylamino-3-methyl-2-thienyl)-2-oxoacetates 

have been achieved via a reaction between benzoyl isothiocyanates and ethyl bromopyruvate 

in the presence of enaminones (Scheme 1.15).219  
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Scheme 1.15 Double insertion reactions of benzoyl isothiocyanates.219 

 

Sodium bis(trimethylsilyl)amide has been used as a desulfurizing agent for the conversion of 

isothiocyanates to cyanamides.220 A novel and efficient procedure for the synthesis of 

thiosemicarbazones has been achieved via a reaction of phenyl or p-chlorophenyl 

isothiocyanate, hydrazine, and aldehydes or ketones (Scheme 1.16).221  

 

R3

O

N

S

O

R2

R1

N

H

H

H2N

R3

O

N

S

N

H

N

HR2

R1

MeOH, reflux

R2 = H, CH3

R1 =  PhCH2, 2-OH-PhCH2,

 2-OMe-PhCH2,  4-OMe-PhCH2, 4-NO2-

PhCH2, 4-(N(CH3))-PhCH2,4-OH,3-OMe-

PhCH2, 2-OH, 4-OMe-PhCH2

 

 

Scheme 1.16 Synthesis of thiosemicarbazones via a reaction of phenyl or p-chlorophenyl 

isothiocyanate, hydrazine, and aldehydes or ketones.221 
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2-Aminothiazoles from bromocarbonyl compounds and amines (aromatic and aliphatic) using 

trimethylsilyl isothiocyanate have been reported (Scheme 1.17).222  
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Scheme 1.17 Synthesis of 2-aminothiazoles from bromocarbonyl compounds and amines.222  

 

The synthesis of 2-aminothiazoles from isothiocyanates, amidines/guanidines and various 

halomethylenes has been achieved.223 
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Scheme 1.18 Synthesis of 2-aminothiazoles from isothiocyanates, amidines/guanidines and 

various halomethylenes.223 

 

The photocyclization of substituted 1,2,4-triazole-3-thiones, under base-mediated conditions, 

afforded 1,2,4-triazolo[3,4-b]-1,3-(4H)-benzothiazines along with the desulfurization product 

has been reported.224  
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Scheme 1.19  Photocyclization of substituted 1,2,4-triazole-3-thiones, under base-mediated 

conditions.224 

 

One pot synthesis of N,N-disubstituted acylguanidines have been accessed from primary 

amides.225 The synthesis of di- and tri-substituted N-acyl ureas on solid support has been 

reported. Addition of carboxylic acids to a resin-bound carbimidoyl chloride gave an O-acyl 

isourea which subsequently rearranged to the corresponding N-acyl urea.226  

 

A polymer-supported carbodiimide has been used for the synthesis of 2-aminobenzimidazoles 

and related heterocycles.227 The use of a thiobenzophenone as a self-indicating linker in the 

polymer-supported synthesis of isothiocyanates has been reported. Isothiocyanates were 

furnished via 1,3-dipolar cycloaddition of nitrile oxides with the polymer-supported 

thiobenzophenone linker, followed by Lewis acid-assisted fragmentation of the resulting 

polymer-supported oxathiazole.228 Two novel glycocluster ligands with cyclam core bearing 

thiourea-linked D-glucose and 2-acetamido-2-deoxy-D-glucose at the periphery have been 

synthesized.229 While facile one-pot sequential three-component route to 2,4-

diaminothiazoles has been achieved.230 

 

 

1.5 Synthesis and biological activity of gold compounds 

A series of gold(1) coordination complexes including analogues of the antiarthritic agent 

auranofin have been evaluated for in vitro cytotoxic potency against both B16 melanoma 

cells and P388 leukemia cells and in vivo antitumor activity against P388 leukemia in mice. A 

number of the complexes showed potent cytotoxic activity in vitro and antitumor activity in 
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vivo, with the phosphine-coordinated gold(I) thiosugar complexes demonstrating the greatest 

in vitro and in vivo activity.231 Gold(III) compounds are emerging as a new class of metal 

complexes with outstanding cytotoxic properties and are presently being evaluated as 

potential antitumor agents. The solution, electrochemical properties, and the biological 

behavior of some gold(III) dithiocarbamate derivatives which have been recently proved to 

be 1 to 4 orders of magnitude more cytotoxic in vitro than cisplatin and to be able to 

overcome to a large extent both intrinsic and acquired resistance to cisplatin itself. Their 

solution properties have been monitored in order to study their stability under physiological 

conditions. They have been shown to undergo complete hydrolysis within 1 h, the metal 

center remaining in the +3 oxidation state. Their DNA binding properties and ability in 

hemolyzing red blood cells have also been evaluated. These gold(III) complexes showed high 

reactivity toward some biologically important isolated macromolecules, resulting in a 

dramatic inhibition of both DNA and RNA synthesis and inducing DNA lesions with faster 

kinetics than cisplatin. Nevertheless, they also induce a strong and fast hemolytic effect 

(compared to cisplatin), suggesting that intracellular DNA might not represent their primary 

or exclusive biological target.232 

A series of mono- and dimetallic Au(I) triphenylphosphine complexes derived from 1,2-, 1,4-

, and 1,8-dialkynyloxyanthraquinone have been prepared. The photophysical and cytotoxic 

behavior of the ligands and complexes have been explored, with all of the complexes 

showing both appreciable cytotoxicity against the MCF-7 carcinoma cell line and room-

temperature anthraquinone-based visible luminescence, which allowed their successful 

application as fluorophores in cell imaging microscopy.233 New Au(III) complexes of the 

type [(thione)2Au(diamine)]Cl3 have been reported, where thione = 1,3-imidazolidine- 2-

thione (Imt), 1,3-Diazinane-2-thione (Diaz) and diamine = diaminoethane (en), 1,3-

diaminopropane (pn) or 1,4-diaminobutane (bn).234 A facile and efficient synthetic route 

leading to catalytically relevant N-heterocyclic carbene (NHC) gold complexes have been 

achieved. In this imidazolium salts and [AuCl(tht)] have been used in the presence of 

K2CO3.
235 

 

The synthesis and characterization of three propynyloxycoumarins have been reported, 

together with the formation of three different series of gold(I) complexes. Neutral complexes 

are constituted by water soluble phosphines (PTA and DAPTA) which confer water solubility 

to them. The X-ray crystal structure of 7-(prop-2-in-1-yloxy)-1-benzopyran-2-one and its 
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corresponding dialkynyl complex. The formation of rectangular dimers for the gold 

derivative in the solid state can be observed. A detailed analysis of the absorption and 

emission spectra of both ligands and complexes showed that the luminescent behaviour was 

attributable to the coumarin organic ligand. Moreover, the presence of the gold(I) metal atom 

seems to be responsible for an increase of coumarin phosphorescence emission. The 

biological activity of the complexes showed that the anionic complexes triggered strong 

cytotoxic effects in two different cell lines whereas the neutral gold alkynyl complexes led to 

lower effects against tumor cell growth. Thioredoxin reductase (TrxR) inhibition was very 

strong in the case of the neutral complexes (IC50 values below 0.1 µM) but moderate for the 

anionic complexes.236  

 

A class of chiral gold amide complexes featuring amino acid derived ligands have been 

reported. They were all found to exhibit in vitro cytotoxicity against two slow growing breast 

cancer cell lines with limited toxicity towards normal epithelial cells.237 Gold and its 

complexes have long been known to display unique biological and medicinal properties. 

Extensive cell-based (in vitro) and animal (in vivo) studies have revealed the potent anti-

cancer activities of diverse classes of gold(I) and gold(III) complexes. Most of the reported 

anti-cancer active gold complexes are highly cytotoxic and unstable under physiological 

conditions, which hamper their development to be launched clinically. Several clinical 

reports showed that lipophilic organic cations are promising anti-cancer drug candidates 

targeting the mitochondria. Through metal–ligand coordination, gold(I) and gold(III) ions can 

form stable lipophilic cations containing organic ligands having tunable lipophilicity and 

diverse functionalities.238. 

 

Auranofin, a linear tetraacetylthioglucose gold(I) phosphine complex, increased the life span 

of mice inoculated with P388 leukaemia, inhibited DNA polymerases and was preferentially 

cytotoxic to cells with altered mitochondria. Triethylphosphine gold(I) chloride inhibited 

tumor colony formation in vitro, reacted with DNA, and inhibited oxidative phosphorylation, 

ATP production and the viability of isolated rat hepatocytes. Bis[1,2- 

bis(diphenylphosphino)ethane]gold(I) chloride ([Au(dppe)2]Cl) had reproducible and 

significant antitumor activity in a number of murine tumor models in vivo. [Au(dppe)2]Cl 

also inhibited tumor colony formation in vitro, formed DNA strand beaks, induced DNA-

protein cross links and had antimitochondrial effects on P388 leukemia cells and isolated 

hepatocytes. Tetrahedral Au(I) complexes of bidentate pyridyl phosphines have shown 
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promising in vitro and in vivo antitumor properties that were determined by their drug 

lipophilicity. Although the exact intracellular targets responsible for their antitumor activity 

are unclear, gold(I) phosphines are directly cytotoxic and many appear to have 

antimitochondrial activity. Optimization of their hydrophilic/lipophilic balance may be key to 

improving their selectivity for tumor mitochondria versus oxidative phosphorylation 

pathways of normal cells.239  

 

A series of both mono- and dinuclear gold(I) phosphine complexes containing monoanionic 

seleno and thiosemicarbazones as ligands have been prepared and fully characterized by 

spectroscopic methods and in some cases, by single crystal X-ray diffraction. The in vitro 

anti-malaria activity of some of these compounds was investigated in chloroquine sensitive 

strains of Plasmodium falciparum. The IC50 results showed that the sulfur containing 

compounds exhibit activity similar to that of chloroquine, whilst the selenium derivatives 

display only moderate anti-malaria activity.240 Binuclear gold compounds, 

[Au(R2PC(S)NR')]2, were characterized from the reactions of HAuCI4 or Ph~PAuCI with 

R2PC(S)N(H)R'. The complexes had bidentate bridging ligands that link two gold centres 

leading to eight-membered metallacycles and linear S-Au-P coordination geometries. In the 

case of [Au(Ph2PC(S)NPh)]2, crystal structure analysis showed the presence of two 

conformations in the one lattice, i.e. an extended chair and a twisted conformation.241  

 

Gold is emerging as a potential therapeutic agent in the treatment of arthritis, cancer and 

AIDS. The therapeutic mechanism of arthritic gold drugs and their modification in the 

presence of stomach hydrochloric acid, in the joints, and in the presence of mild and strong 

oxidizing agents is still unclear. It is believed that gold affects the entire immune response 

and reduces its potency and limits its oxidizing nature. DNA apparently is not the main target 

of gold in cancer treatment. Rheumatoid arthritis, cancer, heart diseases and HIV have all 

been targeted with gold nanoparticles therapy. The era of gold nanoparticles started with 

cancer imaging and treatment studies. Gold nanoparticles have emerged as smart drug 

vehicles.242 ([3,5-Me2bpzaH2][AuCl4]Cl, A) (Me2bpza = bis(3,5-dimethylpyrazolyl)acetic 

acid), has been prepared by reacting H[AuCl4] with 3,5-Me2bpza; and spectroscopically and 

structurally characterized. In the solid state structure of A, the pyrazolyl ligand was doubly 

protonated to form two strong charge assisted hydrogen bonds with the single chloride anion 

whilst the [AuCl4] anion remains discrete. The anti-HIV-1 activity of A was determined by a 

colorimetric direct enzyme reverse transcriptase (RT) assay and a fluorogenic protease (PR) 
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assay. Compound A significantly (p < 0.05) inhibited RT over a concentration range of 5–

250 μM and inhibited HIV-1 protease at 100 μM. Compound A inhibited two very important 

HIV-1 enzymes (RT and PR) in direct enzyme assays and therefore warrants further 

evaluation.243 The reaction of thiosemicarbazones (TSCs) with [Au(THT)Cl], THT = 

tetrahydrothiophene, has been investigated. The resulting gold(I) complexes were 

characterized by a range of spectroscopic techniques: NMR spectroscopy, mass spectrometry, 

microanalysis and infrared spectroscopy. The in vitro antimalarial data for gold(I) TSC 

complexes suggested that coordination of gold(I) to TSCs enhanced their efficacy against the 

malaria parasite Plasmodium falciparum and their inhibition of the parasite cysteine 

protease.244  The synthesis and structure of rare acyclic alkoxy- and aminocarbene complexes 

of gold(I) are reported, including a novel ferrocenophane dinuclear biscarbene complex. X-

Ray diffraction analyses and DFT calculations reveal that these complexes are stabilized by 

genuine aurophilic interactions.245  

 

Topoisomerase IB (Top1) is a key eukaryotic nuclear enzyme that regulates the topology of 

DNA during replication and gene transcription. Anticancer drugs that block Top1 are either 

well-characterized interfacial poisons or lesser known catalytic inhibitor compounds. A new 

class of cytotoxic redox-stable cationic Au3+ macrocycles has been accessed which through 

hierarchical cluster analysis of cytotoxicity data for the lead compound, 3, were identified as 

either poisons or inhibitors of Top1 ( Figure 1.4, Table 1.2). Two pivotal enzyme inhibition 

assays proved that the compounds were true catalytic inhibitors of Top1. Inhibition of human 

topoisomerase IIα (Top2α) by 3 was 2 orders of magnitude weaker than its inhibition of 

Top1, confirming that 3 is a type I-specific catalytic inhibitor. Importantly, Au3+ is essential 

for both DNA intercalation and enzyme inhibition. Macromolecular simulations show that 3 

intercalates directly at the 5′-TA-3′ dinucleotide sequence targeted by Top1 via crucial 

electrostatic interactions, which include π−π stacking and an Au···O contact involving a 

thymine carbonyl group, resolving the ambiguity of conventional (drug binds protein) vs 

unconventional (drug binds substrate) catalytic inhibition of the enzyme. Surface plasmon 

resonance studies confirm the molecular mechanism of action elucidated by the simulations 

(Figure 1.4).246 
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Figure 1.4 General Structure for topoisomerase 1 blockers 246 

 

1.6 Gold catalysed reactions 

The unique versatility and efficiency of gold complexes have been obtained including 

carbene ligated gold complexes. Due to the special linear coordination mode of gold(I) 

complex, Au catalyzed asymmetric reactions have become a huge challenge. Chiral carbene–

gold complexes also have been applied in asymmetric reactions.247 Methyl esters can be 

produced in high yields by oxidizing methanolic solutions of primary alcohols with dioxygen 

over a heterogeneous gold catalyst. The versatility of this new methodology is demonstrated 

 M X R Y Z 

1 Au CH2CH2CH2 H + PF6
- 

2a Au CH2C(CH3)2CH2  H + PF6
- 

2b Au CH2C(CH3)2CH2 H + CF3SO3
- 

3a Au CH2(CH2)2CH2 H + PF6
- 

4 Au CH2CHClCH2 H + PF6
- 

5 Au CH2(CH2)2CH2 H + PF6
- 

6 2H CH2CH2CH2 CH3 + O 

7 Ni CHCH2CH2 H O O 



P a g e  | 40 

 

F. Odame  Nelson Mandela Metropolitan Univeristy 

by the fact that alkylic, benzylic and allylic alcohols, as well as alcohols containing an amine 

functionality are oxidized in good to excellent yields.248 

 

Reactions of 1,6-enynes catalyzed by gold(I) complexes usually proceed stereospecifically 

through highly distorted cyclopropyl gold carbenes. Substrates with an alkoxy substituent at 

the propargylic position undergo stereoselective transformations through intermediates in 

which the OR group and the gold carbene are anti-oriented. Intramolecular attack of carbonyl 

groups to the cyclopropyl gold carbene is faster than the 1,5-migration of the OR groups, 

which itself is faster than the intramolecular cyclopropanation by a pendant alkenyl group. 

The intramolecular attack of carbonyl groups is the key transformation in the [2+2+2] gold-

catalyzed cycloaddition, which has been applied in the total synthesis of (+)-orientalol F 249. 

 

 

1.7 Activity of gold compounds against HIV 

The synthesis and characterization of some imidazole-based gold-selenolates have been 

carried out which indicated that the selenolate plays an important role in ligand exchange 

reactions in gold(I) selenolates. Furthermore, the reactivity of imidazole-based gold(I) 

selenolates toward nucleophiles such as selenols and phosphines is strikingly different from 

that of the N,N-dimethylaminobenzylamine-based gold(I) complexes. The presence of Se·N 

non-bonded interactions in N,N-dimethylaminobenzylamine-based gold(I) complexes is 

known to modulate the reactivity of Au(I) centre towards incoming nucleophiles. 250  

 

Rheumatoid arthritis is currently treated with gold-based drugs and there is increasing interest 

in the application of gold complexes as potential anticancer agents. Gold based compounds 

have been developed as anti-parasitic agents and used in the treatment of major tropical 

diseases such as malaria, leishmaniasis, trypanosomiasis and schistosomiasis. 251  

 

Four analogues of the gold(III) complex [AuCl2(damp)] (1) (damp)2-[(dimethylamino) 

methyl]-phenyl) have been evaluated for antitumor activity. The compounds have structural 

features in common with cisplatin which was included as a comparison in the study. In vitro, 

against a panel of cell lines established from tumors of different tissue types, the gold 

complexes showed broadly similar growth inhibitory properties with some selectivity to the 

HT1376 bladder cell line. In a panel of human ovarian carcinoma cell lines, non-cross-
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resistance to cisplatin was observed, for the complexes, in an acquired cisplatin-resistant line. 

In vivo, using subcutaneously implanted xenografts derived from the HT1376 bladder and 

CH1 ovarian cell lines, [Au-(acetato)2(damp)] (3) and [Au(malonato)(damp)] (5) 

(administered intraperitoneally) gave significant tumor inhibition. Mechanistic studies 

performed with compound 3 showed marked differences to cisplatin.252  

 

Intermittent infusions of interleukin-2 a cytokine that regulates the proliferation and 

differentiation of lymphocytes led to increases in CD4 counts in patients with HIV infection 

and more than 200 CD4 cells per cubic millimeter. A controlled study to evaluate the long-

term effects of such therapy on both CD4 counts and the viral burden has been carried out. In 

patients with HIV infection and base-line CD4 counts above 200 cells per cubic millimeter, 

intermittent infusions of interleukin-2 produced substantial and sustained increases in CD4 

counts with no associated increase in plasma HIV RNA levels. 253  

 

 

1.8 Dual action of gold 

The use of HAART has resulted in decreased mortality and morbidity from AIDS caused by 

HIV. Drug resistance and toxicity of HAART has led to the search for novel inhibitors of 

HIV infection. Gold-based compounds have shown promising activity against a wide range 

of clinical conditions and microorganism infections including HIV-1. A typical example is 

auranofin which resulted in an elevated CD4+ T-cell count in an HIV patient being treated for 

psoriatic arthritis. 254  

The increasing incidence of HIV infection and the associated AIDS mortality rates as well as 

the sometimes severe side effects of HAART warrants the continuous search for new, less 

toxic drug candidates. The anti-HIV activity (inhibition of reverse transcriptase-RT and 

protease-PR in direct enzyme assays) of eleven gold(I) phosphine compounds have been 

reported. Uptake of the compounds by peripheral blood mononuclear cells (PBMCs) has been 

demonstrated by inductively coupled plasma atomic emission spectroscopy (ICP-AES) while 

the effect of the compounds on cell viability was assessed using flow cytometry with annexin 

V and propidium iodide (PI). Of the 11 gold compounds tested, 7 significantly (p ˂ 0.05) 

inhibited RT activity at concentrations of 25 and 250 mM while 3 compounds significantly 

inhibited its activity at 6.25 mM. In the anti-protease assay, 4 of the compounds significantly 
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inhibited the enzyme (p ˂ 0.05) at 100 mM. All of the compounds were taken up by PBMCs 

(demonstrated by ICP-AES) and were non toxic to these cells at clinically tolerable 

concentrations. The potential of these novel gold(I) phosphine compounds as anti-HIV agents 

is therefore promising and worthy of further investigation.255  

 

Gold(I) complexes, containing cyanide and some other ligand (L), {LAuCN} though stable in 

the solid state dissociate to form ionic species. The X-ray and IR studies showed that some 

cyanogold(I) complexes exist as non-ionic complexes (LAuCN) and some as the ionic 

species {[Au(L2)]
+[Au(CN)2]

−} in the solid state. In solution, the LAuCN complexes undergo 

ligand scrambling reactions exhibiting the equilibrium (Scheme 1.20). 

 

2[L-Au-CN] [AuL2]+
[Au(CN)2]

-
 

 

Scheme 1.20 Equilibrium for gold ligand scrambling  reactions.  

 

Equilibrium constants (Keq) for the scrambling equilibria were determined by integration of 

the 13C and 31P NMR spectra. The equilibrium constant was found to be dependent on factors 

such as the initial concentration of the complex, ionic strength of the solution, temperature 

and polarity of the solvent, with polarity of the solvent showing major influence on Keq. The 

order of ability of different L–Au–CN complexes undergoing disproportionation was: 

[(C=Se)Au(CN)] > [(R3PSe)Au(CN)] > [(C=S)Au(CN)] > [(R3P)Au(CN)] ≥ 

[(R3PS)Au(CN)]. The reactions of gold drugs and their metabolites, with cyanide led to the 

formation of intermediates, [(RS)Au(CN)]− and [(Et3P)Au(CN)], which undergo 

disproportionation generating [Au(CN)2]
– which is readily taken up by red blood cells. The 

formation of aurocyanide is dependent on thiocyanate and occurs both by the peroxidase 

dependent oxidation of thiocyanate and by a secondary reaction of hypochlorous acid with 

thiocyanate. [Au(CN)2]
− is a common metabolite of the gold drugs in the blood and urine of 

chrysotherapy patients. The oxidation of [Au(CN)2]
− by OCl− could lead to the formation of 

gold(III) metabolites.256  

 

Aurothioglucose and aurothiomalate have anti-HIV-1 in vitro and antiviral activity requires 

the formation of reactive intermediate with a molar equivalent amount of a thiol ligand. This 

activates gold(I) ligand exchange between the reactive species bis(thiolato)gold(I) and acidic 
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thiols groups exposed on the surface of proteins. Bis(thioglucose)gold(I) (bisAuTG) which is 

formed by the reaction of molar equivalent amounts of aurothioglucose and 1-thio-β-D-

glucose completely protected MT-4 and CEM cells against HIV-1NL4-3 induced 

cytopathogenicity. Although bisAuTG is an inhibitor of HIV-1 reverse transcriptase in a cell 

free assay, its antivirial effect is due to modification of surface component of the virion. The 

HIV-1 strain NL4-3 is 200-fold more sensitive to inhibition of infectivity by bisAuTG than 

are the strainsMN, RF and SF-2. HIV-1NL4-3 has a unique cysteine residue close to the amino 

terminus of its gp41 envelope glycoprotein (residue 532 of gp160) which has been 

hypothesized as the target of bisAuTG binding. Mutation of that residue alters HIV-1NL4-3 

infectivity and dominantly suppresses virus assembly when coexpressed with the wild-type 

NL4-3 genome. It has been shown that bisAuTG treatment releases gp 120 from the surface 

of cells expressing wild-type HIV-1NL4-3 envelope glycoprotein, but it does not release gp120 

if Cys532 is mutationally altered to Ala. Thus, the antiviral effect of bisAuTG on HIV-1NL4-3 is 

due to an effect on the association of gp41.257 

 

Gold(I) has a much higher affinity for thiolate S compared to thioether S, and a much lower 

affinity for N and O ligands. Therefore, Au(1) binds to DNA very weakly and is not usually 

carcinogenic or mutagenic. Thiolate exchange reactions on Au(I) are facile and therefore the 

administered drugs are probably not the pharmacologically-active species.258 Auranofin 

2,3,4,6-tetra-0-acetyl-l-thio-ß-D-glucopyranosato-S)-(triethylphosphine)gold], a new gold 

compound for treating rheumatoid arthritis (RA), is unique in that it produces its therapeutic 

benefit when administered by the oral route. Currently used gold preparations (sodium 

aurothiomalate, aurothioglucose) must be given by injection to be effective. Auranofin has 

been used in the treatment of rheumatoid arthritis (RA) patients in clinical trials, and is 

comparable in efficacy to presently used injectable agents. Side effects with auranofin are 

mild in, nature and result in fewer withdrawals from therapy than do injectable gold 

preparations.259  It has been reported that dicyanogold(I), [Au(CN)2] is a common metabolite 

found in blood and urine samples of patients treated with different gold based drugs. Some 

patients have high levels of gold within their red blood cells (RBCs). Size exclusion and 

reversed phase chromatography show that the majority of the gold in RBC lysates is bound to 

protein, but small molecules such as dicyanogold(I) and gold-glutathione complexes are also 

present. Dicyanogold incubation with red blood cells in vitro leads to a rapid and complete 

uptake of gold. This uptake is unaffected by DIDS, an inhibitor of the anion channel, but is 

blocked by the addition of external cyanide. Dicyanogold is also readily taken up by H9 cells, 
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a continuous CD4 cell line. This uptake is significantly inhibited by N-ethylmaleimide, 

suggesting a requirement for sulfhydryl groups. Dicyanogold inhibits the replication of the 

AIDS virus, HIV, in a cell culture model.260   

 

The reactions of serum albumin, a blood carrier of gold(I), with the auranofin analogue 

triisopropylphosphine-(2,3,4,6-tetra-Q-acetyl-1-thio-glucopyranosato-S)gold(I)(i-Pr3P 

AuSATg) and free triisopropylphosphine have been studied in buffered aqueous solution 

using (lH)3lP NMR and chromatographic methods. Triisopropylphosphine (i-Pr3P) is oxidized 

to i-Pr3PS via an albuminothiolatotriisopropylphosphonium ion, i-Pr3P+SCHz(HSCHz)Alb, 

which is formed by attack on a protein disulfide bond. This species is the key intermediate in 

the albumin-driven conversion of a phosphine ligand (e.g., from auranofin or an analogue) 

into phosphine oxide or phosphine sulfide. i-Pr3PSCHz- (HSCHZ)Alb, which is characterized 

by a 31P(1H) NMR chemical shift of 75.4 ppm, forms quickly and then reacts slowly to form 

i-Pr3PS and a small quantity of i-Pr3PO. The auranofin analogues i-Pr3PAuSATg and i-

Pr3PAuC1, react with serum albumin and cysteine-34 to form AlbSAuPi-Pr3 via displacement 

of the anions. i-Pr3PAuC1 reacts further at weak binding sites analogous to the histidine 

binding sites of auranofin. In contrast to the displacement of Et3P from AlbSAuPEt, by thiols, 

cyanide is required to displace i-Pr3P from AlbSAuPi-Pr3. The liberated i-Pr3P also reacts via 

the albuminphosphonium intermediate to form i-PpPS and traces of i-PoPO. In order to 

interpret the protein studies, a variety of potential reaction products (i-Pr3PAuX, X = CN, 

ATgS, C1; i-Pr3PY, Y = O, S) have been prepared and characterized by 31P NMR 

spectroscopy. Model reactions of i-Pr3PAuX (X = C1, ATgS) with cyanide have also been 

reported.261  

 

Gold distribution and binding sites in blood and red blood cells (RBCs) have been 

determined. RBCs were separated from plasma and lysed. The cytosol was separated from 

membranes which were then solubilized via detergents. Total gold in each fraction was 

measured via flow injection analysis (FIA) with (ICP-MS) detection. Various high-

performance liquid chromatography (HPLC) techniques such as ion-pairing, reversed-phase 

and size exclusion chromatography have been applied to RBC samples prepared by 

incubation with specific compounds and to RBCs from rheumatoid arthritis (RA) patients. 

Preliminary studies of RA patients' samples indicate very different gold uptake into RBCs 

depending on the particular patient. Size-exclusion chromatography indicates that gold in the 

lysate is not bound principally to haemoglobin, but rather to a significantly higher molecular 
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weight species (about 330 000 Da). Low molecular weight species in the ultrafiltered RBC 

lysate include the dicyanogold(I) anion and possibly the bis(glutathione)gold(I) complex. 

Incubation experiments have been designed to measure dicyanogold(I) and gold drug uptake 

by RBCs. Experiments with DIDS, an anion channel blocker, indicate that dicyanogold(I) 

enters the cell by some path other than the anion channel. The inhibition of gold uptake on 

addition of free cyanide suggests that the loss of cyanide from dicyanogold(I) is important in 

dicyanogold(I) uptake by RBCs. Given the rapid uptake of dicyanogold(I) and its apparently 

high tolerance in humans, this material is suggested as a possible therapy in the treatment of 

AIDS 262.  

 

 

1.9 Scope of the thesis  

The principal aim of this study was to pre-screen sulfur containing ligands for their fit and 

activity in the HIV-1 protease active site using Autdock 4.2, to synthesize and fully 

characterize the compounds and their gold complexes and to carry out cell viability tests and 

HIV-1 protease assays of resulting compounds compounds. The research objectives are as 

follows:  

 

 Pre-screening of sulfur containing ligands (benzoyl-isothiocyanate derivatives) to 

establish their fit and predicted activity at the HIV-1 protease active site.  

 Synthesize the compounds that give good predicted inhibition constants and fully 

characterize them using IR, NMR, microanalysis, GC−MS and single crystal XRD for 

some of the ligands.  

 Synthesis and characterization of the corresponding gold complexes of these 

compounds, which were largely unsuccessful but led to the dethiocynation of the 

ligands and subsequent C−N coupling to form benzamides. 

 DFT transistion state studies of the reaction mechanism of the compounds. 

 Cell viability and cytotoxicity studies to ascertain the effects of the compounds on 

peripheral blood mononuclear cells. 

 HIV-1 protease assay and enzyme inhibition studies of the promising compounds.   
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CHAPTER 2 

EXPERIMENTAL 

 

This chapter focuses on chemicals and the suppliers of the reagents that were used in the 

preparation of the compounds, as well as synthesis and some characterization data reported in 

this thesis. Details concerning the instrumentation and softwares used are also provided. 

 

 

2.1 Materials  

Analytical grade reagents and solvents for synthesis were obtained from the suppliers 

indicated in the table below (Table 2.1). The chemicals were used as received (i.e. without 

further purification). 

 

Table 2.1. List of chemicals used. 

 

Chemical % Purity Supplier 

o-Phenylenediamine 99.5 Sigma Aldrich 

Isophthalic acid 99.0 Sigma Aldrich 

4-Methyl-o-phenylenediamine 98.0 Sigma Aldrich 

2-Aminobenizimidazole 97.0 Sigma Aldrich 

m-Toluic acid 99.0 Sigma Aldrich 

2-Aminobenzothiazole 97.0 Sigma Aldrich 

2-Aminobenzoxazole 97.0 Sigma Aldrich 

2-(2-Aminophenyl)-1H-

benzimidazole 

97.0 Sigma Aldrich 

Benzoyl chloride 98.5 Fluka 

4-Methoxybenzoyl chloride 99.0 Sigma Aldrich 

4-Chlorobenzoyl chloride 99.0 Sigma Aldrich 

4-Nitrobenzoyl chloride 98.0 Sigma Aldrich 

4-Bromo benzoyl chloride 98.0 Sigma Aldrich 

Ammonium thiocyanate 98.5 Merck Chemicals 

3-Methoxybenzoyl chloride 99.0 Sigma Aldrich 

3-Chlorobenzoyl chloride 99.0 Sigma Aldrich 

3-Nitrobenzoyl chloride 98.0 Sigma-Aldrich 

3-Bromobenzoyl chloride 98.0 Sigma Aldrich 

Poly phosphoric acid 115.0 Sigma Aldrich 

H2SO4 95.0 Merck Chemicals 

HCl 32.0 SMM Instruments 

L-Serine 99.0 Sigma Aldrich 
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Table 2.1 continued 

L-Proline 99.0 Sigma Aldrich 

L-Alanine 98.0 Sigma Aldrich 

D-Methionine 98.0 Sigma Aldrich 

Chloro(triphenyl phosphinegold(I)) 99.9 Sigma Aldrich 

Triphenyl phosphine 99.0 Aldrich 

Gold(III) chloride 99.0 Sigma Aldrich 

Chloro(dimethylsulfide)gold (I) 95.0 Sigma Aldrich 

Silver Oxide 94.0 Merck Chemicals 

Silver Nitrate 99.0 Sigma Aldrich 

Alanine methyl ester 

Hydrochloride 

99.0 Sigma Aldrich 

Aspartic acid dimethyl ester 

hydrochloride 

97.0 Sigma Aldrich 

Ethyl acetate 98.8 Sigma Aldrich 

Triethylamine 99.0 Merck Chemicals 

Pyridine 99.8 Merck Chemicals 

Acetone 99.0 SMM Instruments 

Diethylether 99.0 Merck Chemicals 

DMSO 99.0 Merck Chemicals 

THF 99.0 Merck Chemicals 

Toluene 99.0 Associated Chemicals 

Methanol 99.0 Merck Chemicals 

Ethanol 99.8 Sigma Aldrich 

Dichloromethane 98.0 SMM Instruments 

Acetonitrile 99.9 Merck Chemicals 

Hexane 98.5 Merck Chemicals 

Thionyl Chloride 98.0 Sigma Aldrich 

FBS -- BioWest, France 

HyClone RPMI - GE Healthcare Life Sciences, 

USA 

PenStrep - Sigma, USA 

MTT 98 Melford Biolaboratories, UK 

EDTA 99 Merck, USA 

Camptothecin 95 Sigma, USA 

Protease Assay Kit   

Trypan blue  Lonza, Belgium 

KHCO3 99 Minema, South Africa 

NH4Cl 99 Minema, South Africa 

Ritonavir 95 Enamine 
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2.2 Spectroscopic techniques 

2.2.1 NMR Spectrometry 

The purity and identification of compounds were determined using 1H and 13C NMR spectra 

which were recorded on a Bruker Avance AV 400 MHz spectrometer operating at 400 MHz 

for 1H and 100 MHz for 13C using DMSO-d6 as solvent and tetramethylsilane as internal 

standard. Chemical shifts are expressed in ppm.  

 

 

2.2.2 Infrared Spectroscopy 

FT–IR spectra of the compounds were recorded on a Bruker Platinum ATR 

Spectrophotometer Tensor 27 and the machine is controlled by Bruker’s OPUS software. 

 

 

2.2.3 Microtitre plate reader 

The microtitre plate was used to measure the absorbance of cell cultures or any other 

biological matrix. The absorbance was measured at 540 nm using a BioTek Epoch 2 

microtitre plate reader. 

 

 

2.2.4 Fluorogenic microplate reader 

The fluorogenic microplate reader was used to measure the absorbance or fluorescence of cell 

cultures or any other biological matrix. The fluorescence was measured using a BioTek 

SynergyMx microtitre plate reader. Excitation/Emission: 340 nm/490 nm. 

 

 

2.3 Analytical methods 

2.3.1 Elemental Analysis 

Elemental analysis was carried out with a Vario Elementary ELIII Microcube CHNS 

elemental analyser.263 Calibration of the instrument was done with the use of the following 

standards in a linear curve adjustment within the total working range. 

Standard 1: Sulfanilamide – C; 41.81, H; 4.65, N; 16.25, S; 18.62% 
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Standard 2: Acetanilide – C; 71.09, H; 0.67, N; 10.36, O; 12.0% 

The basic principle of quantitative CHNOS analysis is high temperature combustion of 

organic and many inorganic solid or liquid samples. The gaseous combustion products are 

purified, separated into their various components and analysed with a suitable detector such 

as thermal conductivity detector (TCD), optional infrared detector (IR) for sulfur, etc. 264 

 

 

2.3.2 Gas Chromatography–Mass Spectrometry  

The masses were determined using an Agilent 7890A GC System connected to a 5975C VL–

MSC with electron impact as the ionization mode and detection by a triple-Axis detector. The 

GC was fitted with a 30 m x 0.25 mm x 0.25 µm DB-5 capillary column. Helium was used as 

carrier gas at a flow rate of 1.6 mL.min−1 with an average velocity of 30.2 cm s−1 and a 

pressure of 63.7 kPa.  

 

 

2.4 Single crystal X-ray 

X-ray diffraction studies were performed at 200 K using a Bruker Kappa Apex II 

diffractometer with graphite monochromated Mo Kα radiation (λ = 0.71073 Å). The crystal 

structures were solved by direct methods using SHELXTL. 265 All non-hydrogen atoms were 

refined anisotropically. Carbon-bound hydrogens were placed in calculated positions and 

refined as riding atoms with bond lengths 0.95 (aromatic CH), 0.99 (CH2), and 0.98 (CH3) Å 

and with Uiso(H) = 1.2 (1.5 for methyl) Ueq (C). Hydrogens bonded to nitrogen were located 

on a Fourier map and allowed to refine freely. Hydrogens on water were restrained to an O–H 

bond length of 0.84 Å and H–O–H angle of 110°. Diagrams and publication material were 

generated using SHELXTL, PLATON,266 and ORTEP-3.267 

 

 

2.5 Autodock 

Autodock is a suite of C programs used to predict the bound conformations of a small, 

flexible ligand to a macromolecular target of known structure. The technique combines 

simulated aneeling for conformation searching with a rapid grid-based method of energy 

evaluation.268 -269 In this work AutoDock 4.2 was used in the pre-screening of the scaffolds. 



P a g e  | 50 

 

F. Odame  Nelson Mandela Metropolitan Univeristy 

The crystal structure of protease (1hxw) was obtained from the protein database and the 

coordinates of ritonavir in the binding pocket noted. Discovery studio was then used to create 

a library of scaffolds which were then minimised using VEGAZZ or Gaussian. The 

minimized structures were then docked in the defined binding pocket and the scaffold with 

the lowest inhibition constants taken forward.  

 

 

2.6 Gaussian  

The calculations were carried out using Gaussian 09 program.270 Molecular geometries of the 

singlet ground state of all the compounds were fully optimised in the gas phase at the density 

functional theory (DFT) level of theory using B3LYP or BWP391 with different functions, 

depending on the specific compound in question but a single function was used per reaction 

mechanism. The corresponding vibrational frequencies were calculated at the same level to 

take account of the zero-point vibrational energy (ZPVE). We confirmed that all the 

reactants, intermediates and products have no imaginary frequencies, and each transition state 

has one and only one, imaginery frequency. The intrinsic reaction coordinate (IRC)  

calculations were performed at the same level of theory to ensure that the transition states led 

to the expected reactants and products.271-273 

 

 

2.7 Melting point determination 

The melting points of the compounds were determined using a Stuart Lasec SMP30 melting 

point apparatus.  

 

 

2.8 Centrifuge 

Centrifuging of whole blood and buffy coat was done with an Eppendorf Centrifuge 5702 
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2.9 Preparative work 

2.9.1 Methyl-N-[2-(3-methylbenzamido)phenylbenzamide (1) 279 

m-Toluic acid ( 0.01 mol, 1.36 g) was heated 

under reflux in thionyl chloride for 3 h. The 

thionyl chloride was distilled off and the 

product (m-toluolyl chloride) dried under 

vacuum for 16 h. o-Phenylenediamine (0.01 

mol, 1.08 g) was reacted with m-toluolyl 

chloride under reflux in pyridine for 12 h. The pyridine was distilled off and the crude 

product was dissolved in a small quantity of methanol and placed on a column. It was then 

eluted with hexane:ethyl acetate by gradient elution starting from 0% ethyl acetate up to 

100%. The elution was started with 50 mL of hexane (100%), followed by 250 mL 

hexane:ethylacetate (1:20) and then 250 mL of hexane:ethylacetate (1:10). The column was 

further eluted with 250 L of hexane:ethyl acetate (3:20) which gave the product. The elution 

was continued with 500 mL of hexane:ethyl acetate (1:5). and then with 250 mL of 

hexane:ethyl acetate (3:10) followed by 250 mL of hexane ethyl acetate (1:1), and it was 

further eluted with 200 mL of ethyl acetate (100%). The column was then washed with 250 

mL methanol (100%). Melting point = 148–150 °C. Yield = 32.0%. 1H NMR (ppm): 10.02 (s, 

2H, N–H), 7.76 (s, 2H, (2I, 2)), 7.75 ( d, 2H, J = 4.4 Hz, (6, 6I )), 7.68 (d, 2H, J = 4 Hz (10, 

13)), 7.66 (d, 2H, J = 4.0 Hz, (4, 4I)), 7.42 (m, 2H, J = 4.0 Hz, (11, 12)), 7.30 (m, 2H, (5, 5I)), 

2.36 (s, 6H, (7, 7I)). 13C NMR (ppm): 20.9 (CH3, 7, 7I), 124.6 (10, 13)), 125.6 (6, 6I)), 125.7 

(10, 13), 128.0 (2, 2I), 128.5 (9, 14), 131.3 (5, 5I), 132.4 (4, 4I), 134.1 (1, 1I), 137.9 (3, 3I), 

165.8 (C=O, (15, 15I)). IR (νmax, cm−1): 3272 (N–H), 2916 (C–H), 1644 (C=O), 1596 (C=C), 

1513 (C–N), 1276 (C–O). Anal. Calcd for C22H20N2O2: C, 76.72; H, 5.85; N, 8.13. Found: C, 

77.15; H, 6.30; N, 8.15. LRMS (m/z, M+): Found for C22H20N2O2 = 344.41, Expected mass = 

344.90.  
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2.9.2 2-(3-Methylphenyl)-1H-benzimidazole (2) 291 

Method A 

Polyphosphoric acid (52 g), in 10 mL of toluene, was 

heated at 120 °C for 30 min, m-Toluic acid (0.1 mol, 13.6 

g) and o-phenylenediamine (0.1 mol, 10.8 g) were added 

and the mixture was heated at 165 °C for 6 h. 20 mL of 

water was added with stirring and then sodium hydrogen 

carbonate was added until effervescence ceased. The product was recrystallized from 

methanol:THF (1:1) and obtained as a white solid. Melting point = 213–215 °C, Yield = 

89%. 

 

 

Method B: 

o-Phenylenediamine ( 0.03 mol, 3.24 g) was mixed with m-methylbenzaldehyde ( 0.03 mol, 

3.60 g ) in 20 mL of triethylamine and heated at 120 °C for 12 h. The reaction was followed 

by TLC to completion. The solvent was removed under high vacuum to obtain brown solid, 

which was washed with ethanol and purified on a column using ethyl acetate:methanol (1:1). 

The product was recrystallized from methanol:THF (1:1) and obtained as a white solid. 

Melting point = 213–215 °C, Yield = 78.0%. 1H NMR (ppm): 8.04 (s, 1H, (2I)), 7.98 (d, 1H, 

J = 8.0 Hz, (6I)), 7.59 (dd, 2H, J = 4.0 Hz, (5, 6)), 7.43 (t, 1H, J = 8.0 Hz, (5I)), 7.30 (d, 1H, J 

= 8 Hz, (4I)), 7.19 (q, 2H, (4, 7)), 2.41 (s, 3H, (7I)). 13C NMR (ppm): 151.5 (C=N, (2)), 138.1 

(8, 9), 130.4 (3I)), 130.2 (1I, 2I), 128.8 (4I, 5I), 127.0 (6I), 123.6 (5, 6)), 121.9 (4, 7)), 21.0 

(CH3, (7I)). IR (νmax, cm–1): 3052 (N–H), 2986 (C–H), 2879 (C–H), 1661 (C=N), 1590 

(C=C), 1487 (C–N). Anal. Calcd for C23H24N2O3: C, 74.97; H, 6.71; N, 11.66. Found: C, 

74.67; H, 6.42; N, 11.95. LRMS (m/z, M+): Found for C14H12N2 = 208.20, Expected mass = 

208.36. 
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2.9.3 2,2,4-Trimethyl-2,3-dihydro-1H-1,5-benzodiazepin-5-ium isophthalate (3) 296 

o-Phenylenediamine (0.01 mol, 1.08 

g) and isophthalic acid (0.01 mol, 1.66 

g) were subjected to microwave 

irradiation at 180 W (50 °C) for 15 

min, after which 2 mL of an 

ethanol:acetone mixture (3:1) was 

added to dissolve the solidified 

reaction mixture. The reaction mixture was allowed to stand for 12 h during which a solid 

product was formed. Finally, the solid was filtered and the product (84%) obtained as a 

yellow solid after recrystallization from ethanol. M.p. 168–172 °C (DSC melting range: 

166.3–181.3 °C). 1H NMR (ppm): 8.48 (s, 1H, (7I)), 8.16 (d, 2H, J = 7.7 Hz, (3I, 5I)) 7.64 (t, 

1H, J = 7.8 Hz, (4I)), 6.84–6.95 (m, 2H, J = 7.6 (8, 9)), 6.79 (d, 2H, J = 7.5 Hz, (6, 7), 3.50–

4.50 (br, 2H, N–H), 2.51 (s, 3H. (14)), 2.16 (s, 2H, (3)), 1.23 (s, 6H, (12, 13). 13C NMR 

(ppm): 171.0 (C=N(4)), 166.7 (C=O(1I), 139.5, (11), 139.1 (10), 133.5 (3I, 5I), 131.4 (2I, 6I), 

130.1 (7I), 129.3 (4I), 126.9 (8), 125.3, (9), 121.2, (7), 120.1 (6), 66.5 (2), 45.2 (3), 30.0 (12, 

13), 29.3 (8). IR (νmax, cm–1): 1710 (C=O), 1607 (C=N), 1208 (C–N), 1552 (COO−), 3309 

(N−H). Anal. calcd. for C12H22N2O4 : C, 67.79; H, 6.21; N, 7.90. Found: C, 67.80; H, 6.24 

N,7.49. HRMS: m/z 189.1392 [MA
+ = 189], m/z 165.0195− [MB

− = 165]. 

 

 

2.9.4 2,2,4-Trimethyl-2,3-dihydro-1H-1,5-benzodiazepine (4) 294 

o-Phenylenediamine (0.02 mol, 2.16 g) was heated under reflux 

with ethanol (10 mL) and acetone (5 mL) at 80 °C for 8 h. The 

solvent was removed under vacuum to give a light brown oily 

residue which was then redissolved in ethanol and placed in the 

refrigerator for 48 h. The product (62%) was obtained as a 

yellow solid after recrystallization from ethanol. M.p. 124–125 

°C. 1H NMR (ppm): 6.89–6.93 (m, 2H, (8, 9)), 6.79–6.87 (m, 

2H, (6, 7)), 4.71 (s, N–H), 2.22 (s, 3H, (3)), 2.16 (s, 2H, (14)), 

1.24 (s, 6H, (12, 13)). 13C NMR (ppm): 170.7 (C=N(4)), 139.3 (11), 139.1 (10), 126.8 (8), 

125.0 (9), 121.0 (7) 119.9 (6), 66.5 (2), 45.2 (3), 30.0 (12, 13), 29.4 (14)). IR: (νmax, cm−1) 
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3294 (N–H), 2964 (C−H), 1633 (C=N), 1430 (C–N). Anal calcd. for C12H22N2: C,76.60; H, 

8.51; N,14.89. Found: C, 76.17; H, 8.47; N, 14.76. LRMS (m/z, M+): Found for C11H12N2O3S 

= 268.00, Expected mass = 268.29. 

 

 

2.9.5 2-[(Benzoylcarbamothioyl)amino]-3-hydroxypropanoic acid (5) 315-316 

Ammonium thiocyanate (0.10 mol, 7.60 g) was 

dissolved in 100 mL of acetone. Benzoyl chloride 

(0.10 mol, 14.57 g) was added followed by heating 

under reflux at 100–120 °C for 2 h. The product was 

filtered and serine (0.10 mol) was added to the filtrate 

and heated under reflux at 100–120 °C for 6 h. 20 mL of water was then added and the 

mixture was heated for a further 2 h. The reaction mixture was extracted with diethyl ether, 

and the solvent removed via rotary evaporation. The followed by drying the compound was 

dried under high vacuum and the product recrystallized as a colourless solid from 

acetone:water (4:1). Yield = 71.0%, Mp = 163–165 °C. 1H NMR (ppm): 11.49 (s, 1H, O(7I)–

H), 11.43 (d, 1H, J = 8 Hz, N–H(4I)), 7.96 (d, 2H, J = 8.0 Hz, (1, 6)), 7.65 (t, 1H, J = 7.6 Hz, 

(4)), 7.53 (t, 2H, J = 7.6 Hz, (3, 5)), 5.34 (br, 1H, N–H, (2I)) , 4.94 (t, 1H, J = 4.0 Hz, (5I)), 

3.88 (dd, 2H, J = 4.0 Hz, (5)). 13C NMR (ppm): 180.3 (C=S(3I)), 170.7 (C=O(1I)), 168.3 

(C=O(7I)), 128.4 (3, 5), 128.5 (2, 6), 132.1 (4), 133.0 (1), 60.5 (6I ), 60.3 (5I). IR (νmax, cm−1): 

3229 (N–H), 2980 (C–H), 1725 (C=S), 1654 (C=O), 1509 (C=C), 1164 (C–N). Anal.calcd. 

for C11H12N2O4S.H2O: C, 46.15; H, 4.93; S, 11.20; N, 9.78. Found: C, 46.92; H, 4.87; S, 

10.67; N, 9.76. LRMS (m/z, M+): Found for C11H12N2O3S = 268.00, Expected mass = 268.29. 

 

 

2.9.6 1-(Benzoylcarbamothioyl)pyrrolidine-2-carboxylic acid (6) 315-316 

Compound 6 was synthesized in a similar manner as compound 

5. The product recrystallized as a white solid from acetone:water 

(4:1). Yield = 75.0%, M.p = 114–117 °C. 1H NMR (ppm): 10.90 

(s, 1H, O(9I)–H), 7.94 (d, 1H, J = 7.6 Hz, (2)), 7.85 (d, 1H, J = 

7.6 Hz, (6)), 7.58 (dd, 1H, J = 7.2, 7.6 Hz (4), 7.50 (m, 2H, (3, 

5)), 4.68 (t, 1H, J = 9.6 Hz, (8I)), 3.68 (m, 2H, (5I)), 2.02 (m, 
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2H, (6I)), 1.99 (dd, 2H, J = 8.8, 6.4 Hz, (7I)). 13C NMR (ppm): 179.1 (C=S(3I)), 171.9 (9II), 

171.2 (9I), 164.0 (1I), 132.9 (1), 132.2 (4), 128.4 (2, 6), 128.2 (3, 5), 65.4 (8I), 62.7 (5I), 61.7 

(5II), 31.0 (6I), 29.4 (6II), 24.19 (7I), 22.94 (7II). IR (νmax, cm−1): 3270 (N–H), 2987 (C–H), 

1730 (C=S), 1659 (C=O), 1491 (C–N). Anal.calcd. for C13H14N2O3S.H2O: C, 52.69; H, 5.44; 

S, 10.83; N, 9.45. Found: C, 52.55; H, 5.64; S, 9.80; N, 9.11. LRMS (m/z, M+): Found for 

C13H14N2O3S = 278.40, Expected mass = 278.33.   

 

 

2.9.7 2-[(Benzoylcarbamothioyl)amino]-4-(methylsulfanyl)butanoic acid (7) 315-316 

Compound 7 was synthesized in a similar manner 

as compound 5. The product recrystallized as a 

white solid from acetone:water (4:1). Yield = 77%, 

Mp = 123–125 °C. 1H NMR (ppm): 11.54 (s, 1H, 

O(9)–H), 11.28 (d, 1H, J = 7.6 Hz, N(2)–H), 7.96 

(d, 2H, J = 7.6 Hz, (2I, 6I)), 7.65 (t, 1H, J =.7.6 Hz, (4I)), 7.52 (t, 2H, J = 7. 6 Hz, (3I, 5I)), 

5.03 (q, 1H, J = 6.8 Hz, (5)), 2.26 (m, 2H, (6)), 2.17 (m, 2H, (7)), 2.09 (s, 3H, (8)). 13C NMR 

(ppm): 180.5 (C=S(3)), 171.8 (9), 168.4 (1), 133.1 (1I), 132.1 (4I), 128.6 (2I, 6I), 128.2 (3I, 

5I), 66.6 (5), 30.5 (8), 29.2 (6), 14.6 (7). IR (νmax, cm−1): 3282 (N–H), 3202 (N–H), 2914 (C–

H), 1715 (C=S), 1664 (C=O), 1519 (C=C), 1193 (C–N). Anal.calcd. for C13H16N2O3S2: C, 

49.98; H, 5.16; S, 20.53; N, 8.97. Found: C, 50.40; H, 5.52; S, 20.03; N, 8.97. LRMS (m/z, 

M+): Found for C13H16N2O3S2 = 312.90, Expected mass = 312.41. 

 

 

2.9.8 2-[(Benzoylcarbamothioyl)amino]propanoic acid (8) 315-316 

Compound 8 was synthesized in a similar manner as 

compound 5. The product recrystallized as a yellow 

solid from acetone:water (4:1). Yield = 65%, Mp = 

161–163 °C 1H NMR (ppm): 11.51 (s, 1H, O(2)–H), 

11.30 (d, 1H, J = 6.8 Hz, N(4)–H.), 7.93 (d, 2H, J = 

7.6 Hz, (2I, 6I), 7.64 (t, 1H, J = 7.6 Hz, (4I), 7.52 (t, 2H, J = 7.6 Hz, (3I, 5I), 4.85 (q, 1H, J = 

7.2 Hz, (5)), 1.49 (d, 3H, J =7.2 Hz (7)). 13C NMR (ppm): 179.9 (C=S(3)), 172.9 (6), 168.5 

(1), 133.0 (1I), 132.1 (4I), 128.7 (2I, 6I), 128.4 (3I, 5I), 63.1 (5), 17.2 (7). IR (νmax, cm−1): 
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3384 (N–H), 2992 (C–H), 1726 (C=S), 1678 (C=O), 1489 (C=C), 1196 (C–N). Anal.calcd. 

for C11H12N2O3S: C, 52.37; H 4.79; S 12.71; N 11.10. Found: C, 52.59; H 5.11; S 12.56 N; 

11.07. LRMS (m/z, M+): Found for C11H12N2O3S = 252.00, Expected mass = 252.29.  

 

 

2.9.9 2-Phenyl-1H-benzimidazole (9) 291 

Polyphosphoric acid (15 g), in 5 mL of toluene, was heated 

at 120 °C for 30 minutes. Compounds 5, 6, 7 or 8 (0.20 

mol) was each added to o-phenylenediamine (0.2 mol) and 

the mixture was heated at 165 °C for 6 h. After cooling, 20 

mL of water was added with stirring and then sodium hydrogen carbonate was added until 

effervescence ceased. The dark brown precipitate obtained was re-dissolved in little methanol 

and placed on the silica gel column and eluted with methanol:ethyl acetate (1:1). The product 

was recrystallized from ethanol:toluene (1:1) and obtained as a brown solid. Yield = 55–68%, 

Mp = 240–242 °C. 1H NMR (ppm): 8.20 (d, 2H, J = 7.2 Hz (4, 7)), 7.61 (m, 2H, J = 2.8, 3.2 

Hz, (5, 6)), 7.56 (t, 2H, J = 7.6 Hz, (2I, 6I) 7.50 (t, 1H, J = 7.6, 6.8 Hz, (4I), 7.21 (m, 2H, J = 

7.6 Hz, (3I, 5I)), 13C NMR (ppm): 151.2 (C=N) (2)), 130.0 (1I), 129.9 (8, 9), 128.9 (3I, 4I, 5I), 

126.4 (2I, 6I), 122.1 (4, 7). IR (νmax, cm–1): 3048 (N–H), 2961 (C–H), 2850 (C–H), 1539 

(C=N), 1461 (C=C), 1443 (C–N). Anal. Calcd for C13H10N2: C, 80.39; H, 5.19; N, 14.42. 

Found: C, 80.29; H, 5.32; N, 14.64. Found for C13H10N2 = 194.10, Expected mass = 194.23.  

 

 

2.9.10 Methyl-2-{[(phenylformamido)methanethioyl]amino}propanoate (10) 317 

Ammonium thiocyanate (0.03 mol, 2.28 g) was 

dissolved in 60 mL of acetone. Benzoyl chloride 

(0.03 mol, 4.22 g) was added followed by heating 

under reflux at 100–120 °C for 2 h. The product was 

filtered and alanine methyl ester hydrochloride was 

added (0.03, 4.19 g) and refluxed at 100–120 °C for 6 h. The solvent was removed and the 

residue redissolved in THF:ethyl acetate(1:1). The product was recrystallized from 

methanol:THF (1:1) and obtained as a white solid. Melting point = 213–215 °C, Yield = 

76.0%. The 1H NMR (ppm ) :11.43 (t, 1H, J = 8.0, 7.2 Hz, N(4)−H), 7.93 (d, 2H, J = 7.6 Hz 
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(2I, 6I)), 7.65 (t, 1H, J = 7.2, 6.8 Hz, (4I)), 7.52 (t, 2H, J = 7.6, 7.2 Hz, (3I, 5I), 4.91 (d, 1H 

(5)), 2.5 (s, 3H (7)), 13C NMR (ppm): 180.3 (C=S), 170.8 (4), 168.3 (1), 133.1 (1I), 132.1 (2I, 

6I) 128.7 (3I, 4I, 5I), 60.5 (8), 59.9 (5). IR (νmax, cm–1): 3229 (N−H), 2929 (C−H), 1724 

(C=S), 1652 (C=O), 1540 (C=C), 1445 (C−N). Anal. Calcd for C12H14N2O3S: C, 54.12; H, 

5.30; N, 10.52; S, 12.04; Found: C, 54.27; H, 5.42; N, 10.48, S, 12.10. LRMS (m/z, M+): 

Found for C14H12N2 = 266.07, Expected mass = 266.32.  

 

 

2.9.11 1,4-Dimethyl -2-{[(phenylformamido)methanethioyl]butanedioate (11) 316 

Ammonium thiocyanate (0.03 mol, 2.28 g) was 

dissolved in 60 mL of acetone. Benzoyl chloride 

(0.03 mol, 4.22 g) was added and heated under reflux 

at 100–120 °C for 2 h. The product was filtered and 

aspartic acid dimethyl ester hydrochloride (0.03 mol, 

5.93 g) added and refluxed at 100–120 °C for 6 h. 

The product was recrystallized from methanol:THF 

(1:1) and obtained as a white solid. Melting point = 213–215 °C, Yield = 81.0%. The 1H 

NMR (ppm): 11.56 (s, 1H, N(1)−H, 11.50 (d, 1H, J = 7.6 Hz, N(2)−H)), 7.92 (d, 2H, J = 7.6 

Hz, (2I, 6I)), 7.65 (t, 1H, J = 7.6 Hz, (4I)), 7.52 (t, 2H, J = 7.60 Hz, (3I, 5I)), 5.41 (d, 1H, J = 6 

Hz, (5)), 3.70 (s, 3H, (9))  3.09 (d, 2H, J = 4.4 Hz, (6)). 13C NMR (ppm): 180.4 (C=S), 170.7 

(4), 170.1 (8), 168.4 (1), 133.0 (1I), 131.9 (3I, 4I, 5I), 128.4 (2I, 6I), 53.8 (5), 52.7 (7), 51.8 

(9), 34.8 (10). IR (νmax, cm–1): 3326 (N−H), 3230 (N−H), 2999 (C−H), 2947 (C−H), 1745 

(C=S), 1722 (C=O), 1666 (C=O), 1578 (C=C), 1437 (C–N). Anal. Calcd for C14H16N2O5S: C, 

51.84; H, 4.97; N, 8.64; S, 9.89. Found: C, 51.73; H, 4.82; N, 8.53; S, 9.92. LRMS (m/z, M+): 

Found for C14H12N2 = 324.35, Expected mass = 324.14. 
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2.9.12 11-(4-Chlorophenyl-1,8,10,12-tetraazatricyclo[7.4.0.02,7]trideca-2(7),3,5,9,11-

pentaene-13-thione (12) (New)  

Ammonium thiocyanate (0.04 mol, 3.05 g) was 

dissolved in 80 mL of acetone. 4-Chlorobenzoyl 

-chloride (0.04 mol, 7.00 g) was added followed 

by heating under reflux at 100–120 °C for 2 h. 

The 4-chlorobenzoyl isothiocyanate (0.04 mol ) 

obtained was filtered and 2-aminobenzimidazole (0.04 mol, 5.33 g) added to the filtrate and 

refluxed at 100–120 °C for 6 h. The mother liquor was allowed to stand in the fumehood 

overnight. The product obtained was filtered and recrystallized from DMSO:Toluene (1:1) as 

a light yellow solid. Melting point = 322–324 °C. Yield = 76.3%. 1H NMR (ppm): 9.48 (d, 

1H, N−H), 8.45 (d, 1H, J = 8.4 Hz (9)), 8.16 (d, 1H, J = 8.4 Hz, (12), 7.95 (d, 1H, J = 8.4 Hz, 

(11), 7.66 (d, 1H, J = 8 Hz, (10), 7.56 (m, 2H, (2I, 6I)), 7.46 (m, 1H, (5I)), 7.18 (m, 1H, (3I)). 

13C NMR (ppm): 166.5 (C=S), 137.7 (4I), 136.6 (1I), 131.2 (8, 13), 130.4 (4), 128.7 (3I, 5I), 

121.7 (9, 12), 117.4 (10, 11), 113.1 (2I, 6I). IR (νmax, cm−1): 3387 (N−H), 3051 (N−H), 2967 

(C−H), 1622 (C=N), 1589 (C=C), 1453 (C−N), 1431(C−N). Anal. Calcd for C15H9ClN4S: C, 

57.60; H, 2.90; N, 17.91; S, 10.10. Found: C, 57.49; H, 2.95; N, 17.86; S, 10.25. LRMS (m/z, 

M+): Found for C15H9ClN4S =312.90, Expected mass = 312.78.  

 

 

2.9.13 11-(4-Bromophenyl)-,8,10,2-tetraazatricyclo[7.4.0.02,7]trideca-2(7),3,5,9,11-

pentaene-13-thone (13) (New)  

Ammonium thiocyanate (0.04 mol, 3.05 g) was 

dissolved in 80 mL of acetone. 4-Bromobenzoyl 

chloride (0.04 mol, 8.78 g) was added followed by 

heating under reflux at 100–120 °C for 2 h. The 4-

bromobenzoyl chloride (0.04 mol) obtained was 

filtered, 2-aminobenzimidazole (0.04 mol, 5.33 g) added to the filtrate and refluxed at 100–

120 °C for 6 h. The mother liquor was allowed to stand in the fumehood overnight. The 

product obtained was filtered and recrystallized from DMSO:Toluene (1:1) as a light yellow 

solid. Melting point = 242–243 °C. Yield = 72.7%. 1H NMR (ppm): 9.49 (d, 1H, J = 8.4 Hz, 

N–H), 8.34 (d, 1H, J = 7.6 Hz, (9)), 8.09 (d, 1H, J = 7.6 Hz, (11)), 7.85 (d, 1H, J = 7.6 Hz, 
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(2I)), 7.78 (d, 1H, J = 7.2 Hz, (25)), 7.72 (m, 2H, (3I,12)), 7.45 (m, 1H, (5I)), 7.16 (m, 1H, 

(6I)) . 13C NMR ( ppm): 166.7 (C=S), 131.6 (1I, 4I), 131.2 (8, 13), 130.4 (4), 128.7 (3I, 5I), 

121.9 (9, 12), 117.2 (10, 11), 112.7 (2I, 6I). IR (νmax, cm−1): 3372 (N−H), 1669(C=S), 1585 

(C=C), 1544 (C=C), 1464 (C=N). Anal. Calcd for C15H9BrN4S: C, 50.43; H, 2.54; N, 15.68; 

S, 8.98. Found: C, 50.21; H, 2.67; N, 15.51; S, 9.12. LRMS (m/z, M+): Found for 

C15H9BrN4S = 357.80, Expected mass = 357.97. 

 

 

2.9.14 11-(4-Methoxyphenyl)-1,8,0,12-tetraazatricyclo[7.4.0.02,7]trideca-2(7),3,9,1-

pentaene-13-thione (14) (New)  

Ammonium thiocyanate (0.04 mol, 3.05 g) was 

dissolved in 80 mL of acetone. 4-

Methoxybenzoyl chloride (0.04 mol, 6.82 g) was 

added followed by heating under reflux at 100–

120°C for 2 h. The 4-methoxybenzoyl 

isothiocyanate (0.04 mol ) obtained was filtered, 2-aminobenzimidazole (0.04 mol, 5.33 g) 

added to the filtrate and refluxed at 100–120 °C for 6 h. The mother liquor was allowed to 

stand in the fumehood overnight, the product obtained was filtered and recrystallized from 

DMSO:Toluene (1:1) as a yellow solid. Melting point = 207–208 °C. Yield = 77.1%. 1H 

NMR (ppm): 9.47 (d, 1H, J = 8.0 Hz (12)), 8.40 (d, 2H, J = 8.4 Hz, (5I, 6I)), 7.64 (m, 2H, (9, 

10)), 7.48 (t, 1H, J = 7.6 Hz, (11)), 7.13 (d, 2H, J = 8.4 Hz, (2I, 3I)), 3.98( s, 3H, (7I)). 13C 

NMR ( ppm): 162.6 (C=S), 130.9 (4), 127.4 (3I, 5I), 122.6 (9, 12), 117.1 (10, 11), 113.8 (2I, 

6I), 55.6 (7I), IR (νmax, cm−1 ): 3387 (N−H), 3009 (N−H), 2987 (C−H), 1691 (C=S), 1593 

(C=C), 1434 (C=N). Anal. Calcd for C16H12N4OS: C, 62.32; H, 3.92; N, 18.17; S, 10.40. 

Found: C, 62.51; H, 4.04; N, 18.30; S, 10.34. LRMS (m/z, M+): Found for C16H12N4OS = 

308.20, Expected mass = 308.36.  

 

 

2.9.15 11-(3-Methoxyphenyl)-1,8,0,12-tetraazatricyclo[7.4.0.02,7]trideca-2(7),3,5,9,11-

pentaene-13-thione (15) (New)  

Ammonium thiocyanate (0.04 mol, 3.05 g) was 

dissolved in 80 mL of acetone. 3-
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Methoxybenzoyl chloride (0.04 mol, 6.82 g) was added followed by heating under reflux at 

100–120 °C for 2 h. The 4-methoxybenzoyl isothiocyanate (0.04 mol ) obtained was filtered, 

2-aminobenzimidazole (0.04 mol, 5.33 g) added to the filtrate and refluxed at 100–120 °C for 

6 h. The mother liquor was allowed to stand in the fumehood overnight, the product obtained 

was filtered and recrystallized from DMSO:Toluene (1:1) as a yellow solid. Melting point = 

268−269 °C. Yield = 81.8 %. 1H NMR (ppm): 9.47 (d, 1H, J = 8.0 Hz, (12)), 8.03 (d, 1H, J = 

7.2 Hz, (9)), 7.95 (s, 1H, (2I)), 7.65 (m, 2H, (4I, 6I)), 7.49 (t, 2H, J = 7.2, 8.0 Hz, (5I, 11), 

7.19 (d, 1H, J = 8.0 Hz (10)), 3.87 (s, 3H, (7I)). 13C NMR ( ppm): 159.5 (4), 150.8, 129.8, 

127.6, 122.4, 121.4, 118.6, 117.4, 113.4, 55.3 (7I) , IR (νmax, cm−1): 3196 (N−H), 3068 

(N−H), 2941 (C−H), 2835 (C−H), 1628 (C=O), 1560 (C=C), 1494 (C−N), 1451 (C−N). Anal. 

Calcd for C16H12N4OS: C, 62.32; H, 3.92; N, 18.17; S, 10.40.  Found: C, 62.22; H, 3.76; N, 

18.08; S, 10.56. LRMS (m/z, M+): Found for C16H12N4OS = 308.10, Expected mass = 308.36.  

 

 

2.9.16 11-(3-Nitrophenyl)-1,8,10,12-tetraazatricyclo[7.4.0.02,7]trideca-2(7),3,5,9,11-

pentaene-13-thione (16) (New)  

Ammonium thiocyanate (0.04 mol, 3.05 g) 

was dissolved in 80 mL of acetone. 3-

Nitrobenzoyl chloride (0.04 mol, 7.42 g) 

was heated under reflux at 100–120 °C for 2 

h. The 3-nitrobenzoyl isothicyanate (0.04 

mol) obtained filtered was filtered, 2-

aminobenzimidazole (0.04 mol, 5.33 g) added to the filtrate and refluxed at 100–120 °C for 6 

h. The mother liquor was allowed to stand in the fumehood overnight, the product obtained 

was filtered and recrystallized from DMSO:Toluene (1:1) as a light yellow solid. Melting 

point = 332–333 °C. Yield = 73.41%. 1H NMR (ppm): 9.48 (d, 1H, J = 8.0 Hz, (23)), 9.22 (s, 

1H, (2I)), 8.97 (s, 1H, (2II )), 8.85 (d, 1H, J = 7.6 Hz, (5I)), 8.54 (d, 1H, J = 7.6 Hz, (6I)), 8.40 

(t, 2H, J = 7.2, 9.2 Hz, (4I, 11)), 7.64 (m, 2H, J = 8.0 Hz, (9, 10)), 7.54 (m, 1H, J = 7.6 Hz, 

(11I), 7.47 (m, 2H, (6II, 12I)), 7.31 (m, 2H, (4II, 9I)), 7.21 (m, 2H, (5II, 10I)). 13C NMR ( 

ppm): 158.0 (4), 152.5 (3I), 150.6 (3), 148.1 (1), 138.8 (13), 134.4 (1I), other aromatic 

resonances (130.5, 128.5, 125.5, 120.1, 117.2, 115.8). IR (νmax, cm−1): 3334 (N−H), 3096 

(N−H), 1684 (C=O), 1524 (C=C), 1470 (C−N), 1422 (C−N). Anal. Calcd for C15H9N5O2S: C, 

N

N

N

N

S

H

4

5

7

3

1
13

8 10

9

11

12

2

6

1I

6I
5I

4I

3I 2I

7I

NO

O

10I

9I

11I
2II

5II

4II



P a g e  | 61 

 

F. Odame  Nelson Mandela Metropolitan Univeristy 

55.72; H, 2.81; N, 21.10; S, 9.92. Found: C, 55.59; H, 2.73; N, 21.22; S, 9.86. LRMS (m/z, 

M+): Found for C15H9N5O2S = 323.30, Expected mass = 323.33.  

 

 

2.9.17 11-(3-Chlorophenyl)-1,8,10,12-tetraazatricyclo[7.4.0.02,7]trideca-2(7),3,5,9,11-

pentaene-13-thione (17) (New)  

Ammonium thiocyanate (0.04 mol, 3.05 g) 

was dissolved in 80 mL of acetone. 3-

Chlorobenzoyl chloride (0.04 mol, 7.00 g) 

was added followed by heating under reflux 

at 100–120 °C for 2 h. The 3-chlorobenzoyl 

isothiocyanate (0.04 mol ) obtained was 

filtered, 2-aminobenzimidazole (0.04 mol, 5.33 g) added to the filtrate and refluxed at 100–

120 °C for 6 h. The mother liquor was allowed to stand in the fumehood overnight, the 

product obtained was filtered and recrystallized from DMSO:Toluene (1:1) as a light yellow 

solid. Melting point= 324–325 °C. Yield = 74.4%. 1H NMR (ppm): 12.72 (br, 1H, (N–H)), 

8.17 (s, 1H, (2I)), 8.09 (d, 1H, J = 7.6 Hz, (4I)), 7.90 (m, 2H, (4II, 6II)), 7.71 (d, 1H, J = 8.0 

Hz, (6I)), 7.62 (d, 1H, J = 8.0 Hz, (12)), 7.53 (t, 2H, J = 7.6 Hz, (5I, 9)), 7.45 (m, 2H, (10, 

10I)), 7.18 (m, 2H, (11, 11I)). 13C NMR (ppm): 168.03 (6) 150.61 (4). Aromatic carbon 

resonances (138.10, 132.87, 132.67, 131.22, 130.17, 128.78, 126.94, 122.02. 112.54). IR 

(νmax, cm−1): 3102 (N−H), 2974 (C−H), 2898 (C−H), 1625, 1480, 1353, 1302, 1282, 1272, 

1233, 1172, 1155, 1103, 1068, 1035,1008, 947. Anal. Calcd for C15H9ClN4S: C, 57.60; H, 

2.90; N, 17.91; S, 10.25.  Found: C, 57.52; H, 2.95; N, 17.82; S, 10.36. LRMS (m/z, M+): 

Found for C15H9ClN4S = 312.57, Expected mass = 312.78.  

 

 

2.9.18 11-(3-Bromophenyl)-1,8,10,12-tetraazatricyclo[7.4.0.02,7]trideca-2(7),3,5,9,11-

pentaene-13-thione (18) (New)  

Ammonium thiocyanate (0.04 mol, 3.05 g) was 

dissolved in 80 mL of acetone. 3-Bromobenzoyl 

chloride (0.04 mol, 8.78 g) was added followed by 

heating under reflux at 100–120 °C for 2 h. The 3-

N

N

N

N

S

H

4

5

7

3

1
13

8 10

9

11

12

2

6

1I

6I
5I

4I

3I 2I

Cl

6II

4II

N

N

N

N

S

H

4

5

7

3

1
13

8 10

9

11

12

2

6

1I

6I
5I

4I

3I 2I

Br



P a g e  | 62 

 

F. Odame  Nelson Mandela Metropolitan Univeristy 

chlorobenzoyl isothiocyanate (0.04 mol ) obtained was filtered, 2-aminobenzimidazole (0.04 

mol, 5.33 g) added to the filtrate and refluxed at 100–120 °C for 6 h. The mother liquor was 

allowed to stand in the fumehood overnight, the product obtained was filtered and 

recrystallized from DMSO:Toluene (1:1) as a light yellow solid. Melting point= 258–260 °C. 

Yield = 75.6%. 1H NMR (ppm): 12.48 (br, 1H, (N–H)), 8.32 (s, 1H, (2I)), 8.12 (d, 1H, J = 8.4 

Hz, (6I)), 7.72 (d, 1H, J = 8.0 Hz, (4I)), 7.46 (m, 3H, (5I, 9, 12)), 7.16 (m, 2H, (10, 11)) 13C 

NMR (ppm): Aromatic carbon resonances (134.0, 131.1, 130.5, 127.5, 122.1, 121.5, 112.5). 

R (νmax, cm−1): 3306 (N−H), 1622 (C=O), 1600 (C=C), 1550 (C=C), 1501 (C=C), 1473 

(C−N). Anal. Calcd for C15H9BrN4S: C, 50.43; H, 2.54; N, 15.68; S, 8.98. Found: C, 50.32; 

H, 2.49; N, 15.52; S, 9.06. LRMS (m/z, M+): Found for C15H9BrN4S = 357.12, Expected 

mass = 357.23. 

 

 

2.9.19 11-(4-Nitrophenyl)-1,8,10,12-tetraazatricyclic[7.4.0.02,7]trideca-2(7),3,5,9,11-

pentaene-13-thione (19) (New)  

Ammonium thiocyanate (0.04 mol, 3.05 g) was 

dissolved in 80 mL of acetone. 4-Nitrobenzoyl 

chloride (0.04 mol, 7.42 g) was added followed 

by heating under reflux at 100–120 °C for 2 h. 

The 4-nitrobenzoyl isothiocyanate (0.04 mol) 

obtained was filtered, 2-aminobenzimidazole (0.04 mol, 5.33 g) added to the filtrate and 

refluxed at 100–120 °C for 6 h. The mother liquor was allowed to stand in the fumehood 

overnight. The product obtained was filtered and recrystallized from DMSO:Toluene (1:1) as 

a light yellow solid. Melting point= 286–288 °C. Yield = 79.3%. 1H NMR (ppm): 12.88 (br, 

1H, (N–H)), 9.50 (d, 1H, J = 8.4 Hz, (9)), 8.34 (m, 2H, (10, 11)), 8.21 (d, 1H, J = (12)), 7.46 

(m, 2H, (2I, 3I)), 7.21 (m, 2H, (5I, 6I)). 13C NMR ( ppm): 165.6 (2), 150.1 (4), 149.2 (3), 

Aromatic carbon resonances (136.6, 130.9, 129.7, 123.5, 122.5, 112.1). IR (νmax, cm−1 ): 3140 

(N−H), 1682 (C=O), 1591 (C=C), 1537 (C=C), 1516 (C=C), 1466 (C−N). Anal. Calcd for 

C15H9N5O2S: C, 55.72; H, 2.81; N, 21.66; S, 9.92. Found: C, 55.61; H, 2.90; N, 21.52; S, 

9.86. LRMS (m/z, M+): Found for C15H9N5O2S =323.15, Expected mass = 323.33. 
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2.9.20 11-Phenyl-1,8,10,12-tetraazatricyclo[7.4.0.02,7]trideca-2(7),3,5,9,11-pentaene-13-

thione (20) (New)  

Ammonium thiocyanate (0.04 mol, 3.05 g) was 

dissolved in 80 mL of acetone, benzoyl chloride (0.04 

mol, 4.65 mL) was added followed by heating under 

reflux at 100–120 °C for 2 h. The benzoyl 

isothiocyanate (0.04 mol) obtained was filtered, 2-

aminobenzimidazole (0.04 mol, 5.33 g) added to the filtrate and refluxed at 100–120 °C for 6 

h. The solvent was removed at the pump, the product obtained was filtered and recrystallized 

from DMSO:Toluene (1:1) as a light yellow solid. Melting point = 185–187 °C. Yield = 

74.3%. 1H NMR (ppm): 9.49 (d, 1H, J = 8.4 Hz, (12)), 8.44 (d, 2H, J = 7.6 Hz, (2I, 6I)), 7.67 

(m, 3H, (4I, 9, 11)), 7.60 (m, 2H, (3I, 5I)), 7.50 (t, 1H, J = 8.0 Hz, (10)). 13C NMR ( ppm):  

Aromatic carbon resonances (132.5, 128.9, 128.7, 127.6, 122.6, 117.4). IR (νmax, cm−1): 3309 

(N−H), 3069 (N−H), 1664 (C=O), 1573 (C=C), 1521 (C=C), 1459 (C−N), 1447 (C−N). Anal. 

Calcd for C15H10N4S: C, 64.73; H, 3.62; N, 20.13; S, 11.52. Found: C, 64.81; H, 3.53; N, 

20.20; S, 11.46. LRMS (m/z, M+): Found for C15H10N4S = 278.21, Expected mass = 278.33. 

 

 

2.9.21 N-(1H-Benzimidazol-2-yl)benzamide (21) (New)  

N-(1H-Benzimidazol-2-yl)benzamide (21) was 

accessed by refluxing 11-phenyl-1,8,10,12-

tetraazatricyclo[7.4.0.02,7]trideca-2(7),3,5,9,11-

pentaene-13-thione (0.02 mol, 5.56 g) in 20 mL of 

methanol:weter and 5 mL of triethylamine. The solvent was removed and the residue 

redissolved in methanol. The product obtained was filtered and recrystallized from 

DMSO:Toluene (1:1) as a light yellow solid. Melting point = 228–229 °C. Yield = 76.6%. 1H 

NMR (ppm): 8.17 (d, 2H, J = 7. 2 Hz, (2I, 6I)), 7.59 (d, 1H, J = 7. 2 Hz, (4I)), 7.52 (d, 2H, J = 

7. 2 Hz, (5, 8), 7.48 (m, 2H, (3I, 5I)), 7.14 (m, 2H, (6, 7)). 13C NMR (ppm): 168.4 (C=O() ), 

149.1 (2), 134.5 (4, 9), 131.9 (1I), 128.3 (2I, 3I, 5I, 6I), 121.7 (5, 6, 7, 8), 113.1 (4I). IR (νmax, 

cm−1): 3314 (N−H), 3062 (N−H), 1661 (C=O), 1629 (C=O), 1558 (C=C), 1519 (C=C), 1475 

(C−N), 1455 (C−N). Anal. Calcd for C14H11N3O: C, 70.87; H, 4.67; N, 17.71. Found: C, 
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70.62; H, 4.79; N, 17.82; S, 13.86. LRMS (m/z, M+): Found for C14H11N3S = 237.06, 

Expected mass = 237.26. 

 

 

2.9.22 3-benzoyl-1-(2-hydroxyphenyl) urea (22) (New)  

2-Aminobenzoxazole (0.04 mol, 5.37 g) was added 

to benzoyl isothiocyanate (0.04 mol, 7.91 g) and 

refluxed for 6 h. The solvent was removed and 

redissolved in ethanol. The product obtained was 

filtered and recrystallized from DMSO:Toluene 

(1:1) as a white solid. Melting point = 202−204 °C Yield = 74.8%. 1H NMR (ppm): 11.22 (s, 

1H, N–H, 2), 11.13 (s, 1H, N–H, 2I), 10.97 (s, 1H, 8–OH), 8.15 (d, 1H, J = 7.6 Hz, (7I)). 8.05 

(d, 2H, J = 8.0 Hz, (5, 9)), 7.94 (d, 1H, J = 8.0 Hz, (4I)), 7.64 (dd, 1H, J = 6.8, 7.2 Hz, (7)), 

7.50 (m, 2H, (6, 8), 6.93 (d, 1H, J = 4.0 Hz, (6I)), 6.82 (m, 1H, (5I)). 13C NMR ( ppm): 182.2 

(C=O, (3), 168.7 (C=O, (1)), 167.9 (C=O, (1I)), 150.8 (4), 146.2 (3I), 132.6 (7), 128.4 (6, 8), 

126.24 (5, 9), 123.6 (6I), 119.4 (4I), 119.1 (5I ), 114.5 (7I). IR (νmax, cm−1): 3233 (N−H), 3155 

(N−H), 1694 (C=O), 1655 (C=O), 1599 (C=O), 1559 (C=O), 1475 (C−N), 1456 (C−N). Anal. 

Calcd for C14H12N2O3: C, 65.62; H, 4.72; N, 10.93. Found: C, 65.55; H, 4.65; N, 11.01. 

LRMS (m/z, M+): Found for C14H12N2O3 = 256.26, Expected mass = 256.16.  

 

 

2.9.23 (3-(1,3-Benzothiazol-2-yl)-1-(benzoyl)thiourea (23) (New)  

2-Aminobenzothiazole (0.04 mol, 6.00 g) was 

added to benzoyl isothiocyanate (0.04 mol, 

6.53 g) and refluxed for 6 h. The mother 

liquor was allowed to stand overnight in a 

fume hood. The product obtained was filtered and recrystallized from DMSO:Toluene (1:1) 

as a yellow solid. Melting point = 161–163 °C. Yield = 75.0% 1H NMR (ppm): 8.14 (d, 2H, J 

= 7.6 Hz, (2I, 6I)), 8.0 (d, 1H, J = 7.6 Hz, (8)), 7.8 (d, 1H, J = 8.0 Hz, (11)), 7.66 (t, 1H, J = 

7.6 Hz, (4I)), 7.56 (t, 2H, (3I, 5I)), 7.47 (m, 1H, (10)), 7.34 (m, 1H, (9)). 13C NMR ( ppm): 

169.0 (C=S), 166.0 (C=O), 159.1 (5), 133.0 (1I), 128.9 (4I), 128.6 (2I, 6I), 128.3 (3I, 5I), 

127.3 (8), 126.1 (11), 123.7 (9), 121.8 (10), 120.3 (12). IR (νmax, cm−1): 3327 (N−H), 3055 
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(N−H), 1673 (C=O), 1595 (C=C), 1436 (C−N). Anal. Calcd for C15H11N3OS2: C, 57.49; H, 

3.54; N, 13.41; S, 20.46. Found: C, 57.38; H, 3.457; N, 13.55; S, 20.33. LRMS (m/z, M+): 

Found for C15H11N3OS2 = 313.25, Expected mass = 313.40. 

 

 

2.9.24 3-(1,3-Benzothiazol-2-yl)-1-(4-chlorobenzoyl)thiourea (24) (New)  

2-Aminobenzothiazole (0.04 mol, 5.33 g ) 

was added to of 4-chlorobenzoyl 

isothiocyanate (0.04 mol, 7.91 g) and refluxed 

for 6 h. The mother liquor was allowed to 

stand overnight in a fume hood. The product obtained was filtered and recrystallized from 

DMSO:Toluene (1:1) as a yellow solid. Melting point = 206–207 °C. Yield = 85.9%. 1H 

NMR (ppm): 14.17 (br, 1H, N−H ), 12.31 (br, 1H, N−H), 8.03 (m, 3H, (3I, 6I, 11)), 7. 81 (m, 

1H, (8)), 7.62 (m, 2H, (2I, 6I)), 7.51 (m, 1H, (9)), 7.39 (m, 1H, (10)). 13C NMR ( ppm): 131.7 

(3I, 6I), 131.0 (2I, 5I), 126.60 (9, 10), 124.5 (8, 11). IR (νmax, cm−1): 3379 (N−H), 3229 

(N−H), 1676 (C=O), 1595 (C=C), 1538 (C=C), 1486 (C−N), 1475 (C−N). Anal. Calcd for 

C15H10ClN3OS2: C, 51.79; H, 2.90; Cl, 10.19; N, 12.08, S, 18.44. Found: C, 51.65; H, 3.01; 

Cl, 10.25, N, 12.16; S, 18.52. LRMS (m/z, M+): Found for C15H10ClN3OS2 = 347.95, 

Expected mass = 347.84.  

 

 

2.9.25 3-(1,3-Benzothiazol-2-yl)-1-(4-bromobenzoyl)thiourea (25) (New)  

2-Aminbenzothiazole (0.04 mol, 6.00 g) 

was added to a 4-bromo benzoyl 

isothiocyanate (0.04 mol, 9.68 g) and 

refluxed for 6 h. The mother liquor was 

allowed to stand overnight in a fume hood. The product obtained was filtered and 

recrystallized from DMSO:Toluene (1:1) as a yellow solid. Melting point = 230–232 °C. 

Yield = 75.0%. 1H NMR (ppm): 14.17 (br, 1H, N−H), 12.31 (br, 1H, N−H), 8.06 (d, 1H, J = 

8.0 Hz, (8)), 7.93 (d, 2H, J = 8.0 Hz, (3I, 5I), 7.78 (m, 3H, J = 8.0 Hz, (2I, 6I, 23), 7.50 (t, 1H, 

J = 8.0 Hz, (10)), 7.39 (t, 1H, J = 7.6 Hz, (9)). 13C NMR ( ppm): 131.5 (3I, 5I), 130.9 (2I, 6I), 

126.6 (1I), 124.5 (4I), 122.0 (12). IR (νmax, cm−1): 3060 (N−H), 3018 (N−H), 1676 (C=O), 
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1561 (C=C), 1499 (C−N), 1475 (C−N). Anal. Calcd for C15H10BrN3OS2: C, 45.92; H, 2.57; 

N, 10.71; S, 16.35. Found: C, 46.03; H, 2.65; N, 10.68; S, 16.42. LRMS (m/z, M+): Found for 

C15H10BrN3OS2 = 392.10, Expected mass = 392.29.  

 

 

2.9.26 3-(1,3-Benzothiazol-2-yl)-1-(4-methoxybenzoyl)thiourea (26) (New)  

2-Aminbenzothiazole (0.04 mol, 6.00 g) 

was added to a slight excess of 4-

methoxybenzoyl isothiocyanate (0.04 

mol, 7.73 g) and refluxed for 6 h. The 

mother liquor was allowed to stand overnight in a fume hood. The product obtained was 

filtered and recrystallized from DMSO:Toluene (1:1) as a yellow solid. Melting point = 192–

193 °C. Yield = 73.0%.1H NMR (ppm): 12.06 (s, 1H, N–H), 8.06 (m, 3H, (2I, 6I, 11)), 7.83 

(d, 1H, J = 8.0 Hz, (8)), 7.51(t, 1H, J = 7.2 Hz, (9)), 7.40 (t, 2H, J = 7.2, 7.6 Hz, (10)), 7.11( 

d, 2H, J = 8.0 Hz, (3I, 5I)), 3.87 (s, 3H, (7I)). 13C NMR ( ppm) : 163.6 (C=O), 131.3 (2I, 6I), 

126.6 (1I), 124.2 (10), 121.9 (9), 113.9 (2I, 5I), 55.5 (7I)). IR (νmax, cm−1): 3303 (N−H), 3054 

(N−H), 2961 (C−H), 2928 (C−H), 1675 (N−H), 1594 (C=C), 1533 (C=C), 1499 (C–N), 1476 

(C–N), 1437 (C−N). Anal. Calcd for C16H13N3O2S2: C, 55.96; H, 3.82; N, 12.24; S, 18.67. 

Found: C, 56.02; H, 3.86; N, 12.31; S, 18.74. LRMS (m/z, M+): Found for C16H13N3O2S2 = 

343.30, Expected mass = 343.42. 

 

 

2.9.27 3-(1,3-Benzothiazol-2-yl)-1-(3-methoxybenzoyl)thiourea (27) (New)  

2-Aminbenzothiazole (0.04 mol, 6.00 g) 

was added to 3-methoxybenzoyl 

isothiocyanate ( 0.04 mol, 7.73 g) and 

refluxed for 6 h. The mother liquor was 

allowed to stand overnight in a fume 

hood. The product obtained was filtered and recrystallized from DMSO:Toluene (1:1) as a 

yellow solid. Melting point = 117–119 °C. Yield = 78.5%.1H NMR (ppm): 12.89 (br, 1H, N–

H), 12.21 (br, 1H, N–H), 8.04 (dd, 1H, J = 8.0 Hz, (8)), 7.80 (t, 1H, J = 8.0 Hz, (11)), 7.73 (s, 

1H, (6I)), 7.57 (m, 1H, (10)), 7.48 (t, 2H, J = 8.0 Hz, (2I, 4I)), 7.36 (m, 1H, (9)), 7.23 (t, 1H, J 

N

S

N

N

S H

H O

1
23

4

7

12
11

10

9

8 6 2I 3I

4I

5I6I

1I
5

OCH3 7I

N

S

N

N

S H

H O

1
23

4

7

12
11

10

9

8 6 2I 3I

4I

5I6I

1I
5

7IOCH3



P a g e  | 67 

 

F. Odame  Nelson Mandela Metropolitan Univeristy 

= 8.0 Hz, (3I)), 3.86 (s, 3H, (7I)). 13C NMR ( ppm): 159.50 (C=O), 159.0 (7), 129.8 (5I), 

129.7 (1I), 126.6 (3), 126.2 (10), 124.5 (9), 123.7 (12), 121.5 (11), 120.7 (8), 119.4 (2I), 113.4 

(4I), 112.9 (6I), 55.4 (7I). IR (νmax, cm−1): 3313 (N−H), 3070 (N−H), 2075 (C−H), 1650 

(C=O), 1596 (C=C), 1582 (C=C), 1515 (C=C), 1464 (C−N), 1429 (C−N). Anal. Calcd for 

C16H13N3O2S2: C, 55.96; H, 3.82; N, 12.24; S, 18.67. Found: C, 55.91; H, 3.88; N, 12.30; S, 

18.75. LRMS (m/z, M+): Found for C16H13N3O2S2 = 343.36, Expected mass = 343.42. 

 

 

2.9.28 3-(1,3-Benzothiazol-2-yl)-1-(3-nitrobenzoyl)thiourea (28) (New)  

2-Aminobenzothiazole (0.04 mol, 6.00 g) 

was added to 3-nitrobenzoyl isothiocyanate 

(0.04 mol, 8.33 g ) and refluxed for 6 h. 

The mother liquor was allowed to stand 

overnight in a fume hood. The product 

obtained was filtered and recrystallized from DMSO:Toluene (1:1) as a yellow solid. Melting 

point = 215–216 °C. Yield = 77.3%.1H NMR (ppm): 14.03 (br, 1H, N–H), 12.60 (br, 1H, N–

H), 8.81 (s, 1H, (6I)), 8.50 (d, 1H, J = 8.0 Hz, (4I)), 8.39 (d, 1H, J = 7.6 Hz, (2I)), 8.06 (d, 1H, 

J = 7.6 Hz, (8)) 7.86 (dd, 2H, J = 8 Hz, ( 13I, 11)), 7.52 (t, 1H, J = 7.6 Hz, (9)), 7.41 (t, 1H, J 

= 7.6 Hz, (10)). 13C NMR ( ppm): aromatic carbon signals (147.4, 135.2, 130.3, 124.7, 

123,7). IR (νmax, cm−1) :3460 (N−H), 3088 (N−H), 1692 (C=S), 1670 (C=O), 1567 (C=C), 

1516 (C=C), 1482 (C–N), 1410 (C–N). Anal. Calcd for C15H10N4O3S2: C, 50.27; H, 2.81; N, 

15.63; S, 17.89.  Found: C, 50.35; H, 2.74; N, 15.69; S, 17.94. LRMS (m/z, M+): Found for 

C15H10N4O3S = 358.80, Expected mass = 358.39.  

 

 

2.9.29 3-(1,3-Benzothiazol-2-yl)-1-(3-chlorobenzoyl)thiourea (29) 335 

2-Aminbenzothiazole (0.04 mol, 6.00 g) was 

added to 3-chlorobenzoyl isothiocyanate 

(0.04 mol, 7.91 g) and refluxed for 6 h. The 

mother liquor was allowed to stand overnight 

in a fume hood. The product obtained was 

filtered and recrystallized from DMSO:Toluene (1:1) as a yellow solid. Melting point = 140–
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142 °C. Yield = 76.4%.1H NMR (ppm): 12.29 (br, 1H, N–H), 8.20 (s, 1H, (6I)), 8.06 (m, 2H, 

(8, 11)), 7.93 (d, 1H, J = 8 Hz, (2I)), 7.80 (t, 1H, J = 8.4, 8.8 Hz, (14)), 7.73 (t, 1H, J = 8.0, 

8.4 Hz, (13)), 7.59 (m, 1H, (9)), 7.51 (m, 1H, (10)). 13C NMR (ppm): Aromatic carbon 

signals (133.4, 133.1, 133.0, 130.5, 128.6, 128.1, 127.6, 127, 126.6, 124.2, 124.5, 123.8, 

122.0, 121.8). IR (νmax, cm−1): 3296 (N−H), 3058 (N−H), 1670 (C=O), 1596 (C=C), 1544 

(C=C), 1457 (C−N), 1432 (C−N). Anal. Calcd for C15H 10ClN3OS2: C, 51.79; H, 2.90; N, 

12.08; S, 18.44. Found: C, 51.73; H, 2.84; N, 12.12; S, 18.49. LRMS (m/z, M+): Found for 

C15H10ClN3OS2 = 347.70 Expected mass = 347.84.  

 

 

2.9.30 3-(1,3-Benzothiazoyl-2-yl)-1-(4-nitrobenzoyl)thiourea (30) (New)  

2-Aminobenzothiazole (0.04 mol, 6.00 g) 

was added to 4-nitrobenzoyl isothiocyanate 

(0.04 mol, 8.33 g) and refluxed for 6 h. The 

mother liquor was allowed to stand 

overnight in a fume hood. The product obtained was filtered and recrystallized from 

DMSO:Toluene (1:1) as a yellow solid. Melting point = 226–228 °C. Yield = 75.6% 1H 

NMR (ppm): 12.44 (br ,1H, N-H), 9.14 (br, 1H,0 N-H), 8.36 ( d, 2H, J = 8.0 Hz, (2I, 6I)), 

8.29 (d, 2H, J = 8.0 Hz, (3I, 5I)), 8.20 (d, 1H, J = 8.0 Hz (8)), 8,10 (m, 2H, (9I, 10I)), 7.79 (m, 

1H, (11)), 7.71 (m, 1H, (8I)), 7.52 (m, 1H, (11I)), 7.41 (m, 1H, (10)), 7.25 (m, 1H, (9)). 13C 

NMR ( ppm): 166.5, 148.8, 140.0, 129.9, 128.7, 114.9. IR (νmax, cm−1): 3351 (N−H), 3075 

(N−H), 2073, 1679 (C=O), 1595 (C=C), 1510 (C=C), 1462 (C−N). Anal. Calcd for 

C15H10N4O3S2: C, 50.27; H, 2.81; N, 15.63; S, 17.89.  Found: C, 50.31; H, 2.84; N, 15.57; S, 

17.86. LRMS (m/z, M+): Found for C15H10N4O3S2 = 358.28, Expected mass = 358.39.  

 

 

2.9.31 3-(1,3-Benzothiazol-2-yl)-1-(3-bromobenzoyl)thiourea (31) (New)  

2-Aminobenzothiazole (0.04 mol, 6.00 g) 

was added to 3-bromobenzoyl isothiocyanate 

( 0.04 mol, 9.68 g) and refluxed for 6 h. The 

mother liquor was allowed to stand overnight 

in a fume hood. The product obtained was filtered and recrystallized from DMSO:Toluene 
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(1:1) as a yellow solid. Melting point = 152–153 °C. Yield = 80.0% 1H NMR (ppm): 8.34 (s, 

1H, (6I)), 8.13 (d, 1H, J = 8.0 Hz, (8)), 8.01 (m, 1H, (11)), 7.87 (d, 1H, J = 8.0 Hz, (2I)), 7.80 

(d, 1H, J = 7.6 Hz, (4I)), 7.54 (t, 1H, J = 7.6, 8.0 Hz (3I)), 7.48 (t, 1H, J = 8.0 Hz, (10)), 7.37 

(t, 1H, J = 8.0 Hz, (9)) 13C NMR ( ppm): aromatic resonances (135.6, 130.9, 127.5, 126.6, 

123.64, 121.8). IR (νmax, cm−1): 3232 (N−H), 3155 (N−H), 1694 (C=S), 1665 (C=O), 1599 

(C=C), 1509 (C=C), 1475 (C–N), 1456 (C–N). Anal. Calcd for C15H10BrN3OS2: C, 45.92; H, 

2.57; N, 10.71; S, 16.35. Found: C, 45.88; H, 2.57; N, 10.65; S, 16.43. LRMS (m/z, M+): 

Found for C15H10BrN3OS2 = 392.40, Expected mass = 392.29. 

 

 

2.9.32 4-Bromo-N-[(9E)-8,10,17-triazatetracyclo[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6, 

11(16),12,14-heptaen-9-ylidene]benzamide (32) (New)  

Ammonium thiocyanate (0.02 mol, 1.52 g) was dissolved in 80 

mL of acetone, 4-bromobenzoyl chloride (0.02 mol, 4.84 g) was 

added followed by heating under reflux at 100–120 °C for 2 h. 

The 4-bromobenzoyl isothiocyanate (0.02 mol) obtained was 

filtered, 2(2-aminophenyl-1H-benzimidazole (0.02 mol, 4.19 g) 

added to the filtrate and refluxed at 100–120 °C for 6 h. The 

product obtained was filtered, dried and recrystallized from 

DMSO:Toluene (1:1) as a cream flaky solid. Melting point = 

296–297 °C. Yield = 83.3%. 1H NMR (ppm): 13.26 (br, 1H, N–H), 8.36 (m, 6H, (21, 22, 24, 

25)), 8.01 (d, 1H, J = 8.0 Hz, (14)), 7.77 (d, 1H, J = 8.0 Hz, (17)), 7.50 (t, 1H, J = 8.0 Hz, 

(15)), 7.35 (t, 1H, J = 7.2, 7.6Hz, (16)). 13C NMR ( ppm): 149.7 (12), 129.8 (21, 22, 24, 25), 

126.4 (14), 124.0 (15, 16), 123.6 (4, 5, 6, 7), 121.9 (17). IR (νmax, cm−1): 3026 (N−H), 1637 

(C=O), 1574 (C=C), 1548 (C=C), 1478 (C−N). Anal. Calcd for C21H13BrN4O: C, 60.45; H, 

3.14; N, 13.43. Found: C, 60.31; H, 3.19; N, 13.48; LRMS (m/z, M+): Found for 

C21H13BrN4O = 417.18, Expected mass = 417.26. 
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2.9.33 4-Methoxy-N-[(9E)-8,10,17-triazatetracyclo[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6, 

11(16),12,14-heptaen-9-ylidene]benzamide (33) (New)  

Ammonium thiocyanate (0.02 mol, 1.52 g) was dissolved in 40 

mL of acetone, 4-methoxybenzoyl chloride (0.02 mol, 4.39 g) was 

added followed by heating under reflux at 100–120 °C for 2 h. 

The 4-methoxybenzoyl isothiocyanate (0.02 mol) obtained was 

and filtered 2-(2-aminophenyl)-1H-benzimidazole (0.02 mol, 4.19 

g) added to the filtrate and refluxed at 100–120 °C for 4 h. The 

product obtained was filtered and recrystallized from 

DMSO:Toluene (1:1) as a yellow solid. Melting point = 180–181 

°C. Yield = 75.5%. 1HNMR (ppm): 13.74 (s, 1H, N–H), 8.84 (br, 1H,(7)), 8.36 (d, 1H, J = 

7.6 Hz, (17)), 8.23 (d, 2H, J = 8.0 Hz, (21, 25)), 7.89 (m, 1H, (15)), 7.84 (d, 1H, J = 8.4 Hz, 

(14)), 7.70 (t, 1H, J = 7.6 Hz, (5)), 7.54 (m, 2H, J = 2.8, 3.2 Hz, (4, 6, 16)), 7.08 (d, 2H, J = 

8.0 Hz, (22, 24)), 3.86 (s, 3H, 26). 13C NMR ( ppm): 162.8 (19, 23), 148.7 (10), 146.4 (12) 

143.9 (1, 3), 134.0 (8), 132.4 (21, 25), 131.0 (14, 16, 20), 129.1 (5, 6), 124.2 (15), 123.9 (17), 

119.3 (4, 7), 117.7 (13), 113.8 (22, 24), 55.4 (17), IR (νmax, cm−1 ): 3043 (N−H), 2950 (C−H), 

2913 (C−H), 1635 (C=O), 1567 (C=C), 1507 (C=C), 1478 (C−N), 1445 (C−N), 1415 (C−N). 

Anal. Calcd for C22H16N4O2: C 71.73; H, 4.38; N, 15.21.  LRMS (m/z, M+): Found for 

C22H16N4O2 C 71.62; H, 4.46; N, 15.26; LRMS (m/z, M+): Found for C22H16N4O2 = 368.28, 

Expected mass = 368.39. 

 

 

2.9.34 3-Methoxy-N-[(9E)-8,10,17-triazatetracyclo[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6, 

11(16),12,14-heptaen-9-ylidene]benzamide (34)(New)  

Ammonium thiocyanate (0.02 mol, 1.52 g) was dissolved in 40 mL 

of acetone 3-methoxybenzoyl chloride (0.02 mol, 3.41 g) was 

added followed by heating under reflux at 100–120 °C for 2 h. The 

3-methoxybenzoyl isothiocyanate (0.02 mol) obtained was filtered 

and 2-(2-aminophenyl)-1H-benzimidazole (0.02 mol, 4.19 g) 

added to the filtrate and refluxed at 100–120 °C for 4 h. The 

product obtained was filtered and recrystallized from 

DMSO:Toluene (1:1) as a yellow solid. Melting point = 163–164 
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°C. Yield = 85.5%. 1H NMR (ppm): 13.56 (s, 1H, N–H), 8.66 (br, 1H, (7)), 8.25 (d, 1H, J = 

7.6 Hz, ( 5), 7.72 (d, 3H, J = 7.6 Hz, (21, 23, 25)), 7.64 (m, 2H, (15, 16)), 7.40 (m, 4H, (4, 6, 

14, 22)), 7.11 (d, 1H, J = 8.0 Hz, (17 )), 3.79 (s, 3H, (26)), 13C NMR ( ppm): 177.2 (C=O), 

159.0 (12, 24), 146.1 (1), 143.8 (3, 12), 132.3 (8, 20), 130.0 (22), 129.4 (14, 16), 125.3 (5, 6), 

124.1 (21, 23), 123.6 (4, 7), 121.1 (17), 119.1 (15), 118.4 (13), 113.4 (25), 54.9 (26). IR (νmax, 

cm−1): 3110 (N−H), 2991 (C−H), 2836 (C−H), 1634 (C=O), 1568 (C=C), 1446 (C−N). Anal. 

Calcd for C22H16N4O2: C 71.73; H, 4.38; N, 15.21. LRMS (m/z, M+): Found for C22H16N4O2 

C 71.64; H, 4.49; N, 15.16; LRMS (m/z, M+): Found for C22H16N4O2 = 368.30, Expected 

mass = 368.39. 

 

 

2.9.35 4-Chloro-N-[(9E)-8,10,17-triazatetracyclo[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6, 

11(16),12,14-heptaen-9-ylidene]benzamide (35) (New)  

Ammonium thiocyanate (0.02 mol, 1.52 g) was dissolved in 40 

mL of acetone 4-chlorobenzoyl chloride (0.02 mol, 3.50 g) was 

added followed by heating under reflux at 100–120 °C for 2 h. 

The 4-chlorobenzoyl isothiocyanate (0.02 mol) obtained was 

filtered and 2-(2-aminophenyl)-1H-benzimidazole (0.02 mol, 

4.19 g) added to the filtrate and refluxed at 100–120 °C for 4 h. 

The product obtained was filtered and recrystallized from 

DMSO:Toluene (1:1) as a yellow solid. Melting point = 245–

247 °C. Yield = 79.3%. NMR (ppm): 10.94 (s, 1H, N–H), 8.40 (d, 1H, J = 8.4 Hz (14)), 8.05 

(d, 1H, J = 8.0 Hz, (7)), 7.90 (m, 3H, (17, 21, 25)), 7.74 (m, 1H, (5)), 7.50 (m, 2H, (4, 6)), 

7.46 ( m, 3H, (15, 22, 24)), 6.87 (m, 1H, (16)) 13C NMR ( ppm): 180.2 (C=O), 167.7 (1), 

132.9–128.4 (aromatic carbon signals). IR ( νmax, cm−1 ): 3400 (N−H), 3217 (N−H), 2929 (C–

H), 1666 (C=O), 1511 (C=C), 1432 (C−N). Anal. Calcd for C21H13ClN4O: C, 67.66; H, 3.51; 

N, 15.03. LRMS (m/z, M+): Found for C21H13ClN4O:C, 67.73; H, 3.59; N, 15.10; S, 13.86 

LRMS (m/z, M+): Found for C21H13ClN4O = 372.70, Expected mass = 372.81. 
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2.9.36 3-Nitro-N-[(9E)-8,10,17-triazatetracyclo[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6, 

11(16),12,14-heptaen-9-ylidene]benzamide (36) (New)  

Ammonium thiocyanate (0.02 mol, 1.52 g) was dissolved in 40 

mL of acetone 3-nitrobenzoyl chloride (0.02 mol, 3.714 g) was 

added followed by heating under reflux at 100–120 °C for 2 h. 

The 3-nitrobenzoyl isothiocyanate (0.02 mol) obtained was 

filtered and 2-(2-aminophenyl)-1H-benzimidazole (0.02 mol, 4.19 

g) added to the filtrate and refluxed at 100–120 °C for 4 h. The 

product obtained was filtered and recrystallized from 

DMSO:Toluene (1:1) as a yellow solid. Melting point = 250–252 

°C. Yield = 73.5%. 1H NMR (ppm): 8.69 (s, 1H, (25)), 8.35 (m, 

3H, (4, 7, 23)), 7.92 (m, 1H, (14)), 7.74 (m, 3H, (5, 6, 22)), 7.48 (m, 1H, (15)), 7.34 (m, 1H, 

(16)), 6.86 (d, 1H, J = 8.0 Hz, (17)). 13C NMR ( ppm): I67.3, 166.4, 144.2, Aromatic carbon 

resonances (131.8, 130.7, 129.4, 129.2, 128.8, 128.5, 128.1, 127.4, 124.4, 122.3, 113.5). IR 

(νmax, cm−1): 3327 (N−H), 3134 (N−H), 1673 (C=O), 1596 (C=C), 1514 (C=C), 1486 (C−N). 

Anal. Calcd for C21H13N3O3: C, 65.79; H, 3.42; N, 18.27.  LRMS (m/z, M+): Found for 

C21H13N5O3 C, 65.57; H, 3.53; N, 18.35. LRMS (m/z, M+): Found for C21H13N5O3 = 383.20, 

Expected mass = 383.36. 

 

 

2.9.37 3-Chloro-N-[(9E)-8,10,17-triazatetracyclo[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6, 

11(16),12,14-heptaen-9-ylidene]benzamide (37) (New)  

Ammonium thiocyanate (0.02 mol, 1.52 g) was dissolved in 40 

mL of acetone 3-bromobenzoyl chloride (0.02 mol, 3.50 g)) was 

added followed by heating under reflux at 100–120 °C for 2 h. 

The 3-bromobenzoyl isothiocyanate (0.02 mol) obtained was 

filtered and 2-(2-aminophenyl)-1H-benzimidazole (0.02 mol, 

4.19 g ) added to the filtrate and refluxed at 100–120 °C for 4 h. 

The product obtained was filtered and recrystallized from 

DMSO:Toluene (1:1) as a light yellow solid. Melting point = 

216–217 °C. Yield = 74.9%. 1H NMR (ppm): 12.30 (s, 1H, N–H, 11), 12.13 (s, 1H, 25), 836 

(d, 2H, J = 8.0 Hz, 14, 17), 8.09 (m, 1H, 5, 6), 7. 92 (m, 3H, 21, 22, 23), 7.84 (m, 2H, 4, 7), 
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7.53 (m, 2H, 15, 16) 13C NMR ( ppm): 180.1, 166.8, 149.8, 137.9, 133.3, 129.7, 127.3, 126.7, 

123.7. IR (νmax, cm−1): 1638 (C=O), 1595 (C=C), 1575 (C=C), 1446 (C−N), 1432 (C−N). 

Anal. Calcd for C21H13ClN4O: C, 67.66; H, 3.51; N, 15.03. LRMS (m/z, M+): Found for 

C17H12N4OS C, 67.74; H, 3.59; N, 15.10. LRMS (m/z, M+): Found for C21H13ClN4O = 

372.90, Expected mass = 372.81. 

 

 

2.9.38 4-Nitro-N-[(9E)-8,10,17-triazatetracyclo[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11 

(16),12,14-heptaen-9-ylidene]benzamide (38) (New)  

Ammonium thiocyanate (0.02 mol, 1.52 g) was dissolved in 40 

mL of acetone 4-nitrobenzoyl chloride (0.02 mol, 3.71 g) was 

added to the acetone solution followed by heating under reflux 

at 100–120 °C for 2 h. The 4-nitrobenzoyl isothiocyanate (0.02 

mol) obtained was filtered and 2-(2-aminophenyl)-1H-

benzimidazole (0.02 mol, 4.19 g) added to the filtrate and 

refluxed at 100–120 °C for 4 h. The product obtained was 

filtered and recrystallized from DMSO:Toluene (1:1) as a 

yellow solid. Melting point = 311–313 °C. Yield = 75. 60%. 

1H NMR (ppm): 14.38 (s, 1H, N–H), 8.94 (d, 1H, J = 10.4 Hz, (14)), 8.61 (d, 1H, J = 8.4 Hz, 

(17)), 8.47 (d, 2H, J = 9.6 Hz, (25, 21)), 8.22 (m, 2H, (5,)), 7.95 (m, 1H, (7)), 7.62 (m, 2H, 

(15, 16)), 7.38 (m, 2H, (22, 24)). IR (νmax, cm−1): 3052 (N−H), 1634 (C=O), 1574 (C=C), 

1549 (C=C), 1520 (C=C), 1485 (C−N), 1406 (C−N). Anal. Calcd for C21H13N5O3: C, 65.79; 

H, 3.42; N, 18.27. LRMS (m/z, M+): Found for C21H13N5O3: C, 65.83; H, 3.47; N, 18.25. 

LRMS (m/z, M+): Found for C21H13N5O3:= 383.45, Expected mass = 383.36. 

 

 

2.9.39 N-[(9E)-8,10,17-Triazatetracyclo[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12, 

14-heptaen-9-ylidene]benzamide (39) (New)  

Ammonium thiocyanate (0.02 mol, 1.52 g) was dissolved in 40 

mL of acetone, benzoyl chloride (0.02 mol, 5.62 mL) was added 

followed by heating under reflux at 100–120 °C for 2 h. The 

benzoyl isothiocyanate (0.02 mol) obtained was filtered and 2-(2-
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aminophenyl)-1H-benzimidazole (0.02 mol, 4.19 g) added to the filtrate and refluxed at 100–

120 °C for 4 h. The product obtained was filtered and recrystallized from DMSO:Toluene 

(1:1) as a yellow solid. Melting point = 205–206 °C. Yield = 78.3%. 1H NMR (ppm): 8.36 (d, 

1H, J = 7.6 Hz, (7)), 8.11 (m, 1H, (4)), 7.91 (t, 2H, J = 8.0 Hz, (24, 6)), 7.82 (m, 1H, (14), 

7.67 (m, 2H, (5, 22)), 7.55 (m, 3H, (21, 23, 25)), 7.48 (t, 1H, (17)), 6.92 (m, 2H, (15, 16)). 

13C NMR ( ppm): Aromatic carbon resonances (144.5, 144.4, 135.8, 132.7, 128.9, 

125.6,118.4, 115.1, 104.4). IR (νmax, cm−1): 3056 (N−H), 1633 (C=O), 1593 (C=C), 1565 

(C=C), 1547 (C=C), 1479 (C−N), 1445 (C−N). Anal. Calcd for C21H14N4O: C, 74.54; H, 

4.17; N, 16.56. LRMS (m/z, M+): Found for C21H14N4O: C, 74.62; H, 4.26; N, 16.70. LRMS 

(m/z, M+): Found for C21H14N4O = 338.28, Expected mass = 338.36. 

 

 

2.9.40 1-Benzoyl-3-(5-methyl-2-{[(phenylformamido)methanethioyl]amino}phenyl) 

thiourea (40) 

Compound 40 was accessed by dissolving 

ammonium thiocyanate (0.04 mol, 3.05 g) in 80 mL 

of acetone, benzoyl chloride (0.04 mol, 5.62 g ) was 

then added and heated under reflux at 100–120 °C 

for 2 h. The benzoyl isothiocyanate (0.04 mol) 

obtained was filtered, 4-methyl-o-phenylenediamine 

(0.04 mol, 4.88 g) was added to the filtrate and 

refluxed at 100–120 °C for 3 h. The product obtained was filtered and recrystallized from 

DMSO:Toluene (1:1) as a brown solid. Melting point = 172–173 °C. Yield = 78.0%. 1H 

NMR (ppm) 12.45 (s, 1H, (N−H)), 12.41 (s, 1H, (N−H)), 11.72 (d, 2H, (N−H)), 7.90 (d, 4H, 

J = 8.0 Hz, (2, 6, 2I, 6I)), 7.77 (m, 1H, J = 8.4 Hz, (13)), 7.73 (s, 1H, (15)), 7.64 (t, 2H, J = 

7.2 Hz, (4, 4I)), 7.49 (m, 4H, (3, 5, 3I, 5I)), 7.22 (d, 1H, J = 8.0 Hz, (12)), 2.31 (s, 3H, (17)) 

13C NMR ( ppm): 180.40 (C=S), 168.3 (C=O), 136.8 (14), 133.2 (1, 16, 1I), 133.1 130.9 (4, 

4I), 128.5 (3, 5, 3I, 5I)), 128.3 (2, 6, 2I, 6I)), 127.7 (12), 126.9 (15), 126.5 (13,), 20.7 (17). IR 

(νmax, cm−1): 3186 (N−H), 2981 (C−H), 1670 (C=S), 1593 (C=O), 1512 (C=O), 1487 (C−N). 

Anal. Calcd for C23H20N4O2S2: C 61.59; H, 4.49; N, 12.49; S, 14.30. Found: C 61.65; H, 

4.54; N, 12.56; S, 14.46. LRMS (m/z, M+): Found for C23H20N4O2S2 = 448.40, Expected 

mass = 448.56.  
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General method for the synthesis of compounds 41 to 49 

The compounds were accessed by dissolving ammonium thiocyanate (0.04 mol) in 80 mL of 

acetone, the relevant benzoyl chloride (0.04 mol) derivative was then added and heated under 

reflux at 100–120 °C for 2 h. The benzoyl isothiocyanate (0.04 mol) derivative obtained was 

filtered, o-phenylenediamine (0.04 mol) added to the filtrate and refluxed at 100–120 °C for 3 

h. The mother liquor was allowed to stand overnight in a fume hood. 

 

 

2.9.41 1-Benzoyl-3-(2-{[(phenylformamido)methanethioyl]amino}phenyl)thiourea (41)  

The product obtained was filtered and 

recrystallized from DMSO:Toluene (1:1) as a 

light brown solid. Melting point = 174−176 °C. 

Yield = 78.0%. 1H NMR (ppm): 12.52 (s, 1H, 

N−H), 8.10 (d, 2H, J = 7.2 Hz, (2, 2I)), 7.94 (d, 

2H, J = 7.2 Hz, (11, 16)), 7.71 (m, 2H, (4, 4I)), 

7.65 (t, 2H,(3, 3I)), 7.59 (d, 2H, (12, 15)), 7.48 

(t, 2H, (5, 5I)), 7.42 (m, 2H, (13, 14 ). 13C NMR ( ppm): I67.3 (C=O), 166.4 (C=O), 144.2 

(11, 16), 131.8 (1, 1I), 130.7 (4, 4I), 129.2 (3, 5, 3I, 5I), 128.8 (12, 15), 128.5 (2, 6, 2I, 6I), 

124.4, 113.5 (13, 14). IR (νmax, cm−1): 3327 (N−H), 3262 (N−H), 3134 (N−H), 1673 (C=S), 

1643 (C=O), 1596 (C=C), 1514 (C=C), 1486 (C−N). Anal. Calcd for C22H18N2O2S2: C, 

60.81; H, 4.18; N, 12.89; S, 14.76. Found: C, 60.56; H, 4.28; N, 12.78; S, 14.52. LRMS (m/z, 

M+): Found for C22H18N4O2S2 = 434.45, Expected mass = 434.53.  

 

 

2.9.42 1-(4-Nitrobenzoyl)-3-[2-({[(4-nitrophenyl)formamido]methanthioyl]amino} 

phenyl]thiourea (42) 

The mother liquor was allowed to stand 

overnight in a fume hood. The product 

obtained was filtered and recrystallized from 

DMSO:Toluene (1:1) as a yellow solid. 

Melting point = 202–204 °C Yield = 74.7%. 
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1H NMR (ppm): 12.30 (s, 2H, N−H), 12.13 (s, 2H, N−H), 833 (d, 4H, J = 8.0 Hz, (2, 6, 2I, 

6I)), 8.09 (d, 4H, J = 8.0 Hz, (3, 5, 3I, 5I)), 7.93 (m, 2H, (13, 14)), 7.42 (m, 2H, (12, 15)). 13C 

NMR ( ppm): 180.1 (C=S), 161.0 (C=O), 149.7 (4, 4I), 138.1 (1, 1I), 133.3 (11, 16), 130.20 

(2, 6, 2I, 6I), 127.3 (12, 15), 126.8 (13, 14), 123.2 (3, 5, 3I, 5I). IR (νmax, cm−1): 3200 (N−H), 

3071 (N−H), 1683 (C=S), 1662 (C=O), 1508 (C=C), 1484 (C−N). Anal. Calcd for 

C22H16N6O6S2: C, 50.38; H, 3.07; N, 16.02; S, 12.23. Found: C, 50.49; H, 3.11; N, 16.17; S, 

12.36. LRMS (m/z, M+): Found for C22H16N6O6S2 = 524.20, Expected mass = 524.53. 

 

 

2.9.43 1-(4-Chlorobenzoyl)-3-[2-({[(4-chlorophenyl)formamido]methanethioyl}amino) 

phenylthiourea (43) 

The product obtained was filtered and 

recrystallized from DMSO:Toluene (1:1) as 

a yellow solid. Melting point = 173–175 °C. 

Yield = 70.7% 1H NMR (ppm): 8.52 (m, 

2H), 7.93 (d, 2H, J = 7.6 Hz, (3, 5)), 7.89 (d, 

2H, J = 7.6 Hz, (2, 6)), 7.81 (br, 2H, , (2I, 

6I)), 7.65 (br, 2H, (3I, 6I)), 7.55 (t, 2H, J = 

8.0 Hz, (13, 14)), 7.50 (t, 2H, J = 8.0 Hz, 

(12, 15)) 13C NMR (ppm): 143.8 (1, 1I)), 132.1 (6, 6I )), 125.9 (12, 15)), 124.0 (13, 14)), 

119.6 (2, 2I)). IR (νmax, cm−1) : 3038 (N−H), 1640 (C=O), 1578 (C=C), 1555 (C=C), 1476 

(C−N), 1447 (C−N). Anal. Calcd for C22H16Cl2N4O2S2: C, 52.49; H, 3.20; N, 11.13; S, 12.74.  

Found: C, 52.56; H, 3.26; N, 11.22; S, 12.85. LRMS (m/z, M+): Found for C22H16Cl2N4O2S2 

= 503.20, Expected mass = 503.42.  

 

 

2.9.44 1-(3-Nitrobenzoyl)-3-[2-({[(3-nitrophenyl)formamido]methane}amino)phenyl] 

thourea (44) 

The product obtained was filtered and 

recrystallized from DMSO:Toluene 

(1:1) as a yellow solid. Melting point = 

201–203 °C. Yield = 73.0 % 1H NMR 
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(ppm): 12.34 (s, 2H, (N−H)), 12.18 (s, 2H, (N−H)), 8.65 (s, 2H, (2, 2I)), 8.48 (d, 2H, J = 8.0 

Hz (4, 4I)), 8.31 (d, 2H, J = 8.0 Hz, (6, 6I)), 7.96 (m, 2H, (5, 5I)), 7.78 (dd, 2H, J = 8 Hz, (12, 

15)), 7.44 (t, 2H, J = 4.0, 5.2 Hz (13, 14 )). 13C NMR ( ppm): 180.2 (C=S), 166.4 (C=O), 

147.3 (3, 3I)), 135.1 (1, 1I)), 133.7 (11, 16)), 133.3 (6, 6I)), 130.1 (4, 4I)), 127.4 (5, 5I)), 127.2 

(12, 15)), 126.6 (13, 14 )), 123.5 (2, 2I)). IR (νmax, cm−1) : 3351 (N−H), 3204 (N−H), 1687 

(C=O), 1515 (C=C). Anal. Calcd for C22H16N6O6S: C, 50.38; H, 3.07; N, 16.02; S, 12.23. 

Found: C, 50.24; H, 3.20; N, 16.18; S, 12.19. LRMS (m/z, M+): Found for C22H16N6O6S = 

524.60, Expected mass = 524.53.  

 

 

2.9.45 1-(3-Methoxybenzoyl)-3-[2-({[(3-methoxyphenyl)formamido]methanethioyl} 

amino)phenyl]thiourea (45) 

The product obtained was filtered 

and recrystallized from 

DMSO:Toluene (1:1) as a white 

solid. Melting point = 164−166 °C. 

Yield = 76.4% 1H NMR (ppm): 

12.50 (s, 2H), 11.69 (s, 2H), 7.92 

(m, 2H, (13, 14), 7.50 (d, 2H, J = 

7.6 Hz, (4, 4I)), 7.45 (s, 2H, (2, 2I)), 7.41 (t, 4H, J = 8 Hz, (5, 6, 5I, 6I)), 7.21 (d, 2H, J = 8. 8 

Hz (12, 15)), 3.77 (s, 6H, (17, 17I)). 13C NMR ( ppm): 180.4 (C=S), 168.1 (C=O), 159.0 (3, 

3I), 133.4 (1, 1I), 129.8 (11, 16), 127.1 (5, 5I), 126.6 (12, 15), 120.8 (13, 14), 119.3 (6, 6I), 

113.3 (2, 4, 2I, 4I), 55.5 (17, 17I)).. IR (νmax, cm−1): 3326 (N−H), 3184 (N−H), 3003 (N−H), 

1663 (C=O), 1597 (C=C), 1506 (C=C), 1464 (C−N). Anal. Calcd for C24H22N4O4S2: C, 

58.28; H, 4.48; N, 11.33; S, 12.97. Found: C, 58.12; H, 4.29; N, 11.42; S, 12.86. LRMS (m/z, 

M+): Found for C24H22N4O4S2 = 494.35, Expected mass = 494.59.  
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2.9.46 1-(4-Bromobenzoyl)-3-[2-({[(4-bromophenyl)formamido]methanethioyl}amino) 

phenyl]thiourea (46) 

The product obtained was filtered and 

recrystallized from DMSO:Toluene (1:1) as 

a white solid. Melting point = 205–207 °C. 

Yield = 72.2% 1H NMR (ppm) : 12.37 (s, 

2H), 11.82 (s, 2H), 7.91 (m, 2H, (13, 14)), 

7.81 (d, 4H, J = 8.0 Hz, (2, 6, 2I, 6I)), 7.73 

(d, 4H, J = 7.6 Hz, (3, 5, 3I, 5I)), 7.40 (m, 

2H, (12, 15)).13C NMR ( ppm) : 180.5 (C=S, 9, 9I)), 167.4 (C=O, 7, 7I)), 133.6 (11, 16)), 

131.4 (3, 5, 3I, 5I) 131.2 (1, 1I)), 130.6 (3, 5, 3I, 5I), 127.2 (12, 15)), 127.1 (4, 4I)), 126.7 (12, 

15)),. IR (νmax, cm−1): 3140 (N−H), 2993 (C−H), 1681 (C=O), 1585 (C=C), 1517 (C=C), 

1429 (C−N). Anal. Calcd for C22H16Br2N4O2S2: C, 44.61; H, 2.72; N, 9.46; S, 10.83. Found: 

C, 44.70; H, 2.65; N, 9.40; S, 10.76. LRMS (m/z, M+): Found for C22H16Br2N4O2S2 = 592.20, 

Expected mass = 592.33.  

 

 

2.9.47 1-(4-Methoxybenzoyl)-3-[2-({[(4-methoxylphenyl)formamido]methanethioyl} 

amino)phenyl]thiouea (47) 

The product obtained was filtered and 

recrystallized from DMSO:Toluene (1:1) as a 

white solid. Melting point = 206–208 °C. 

Yield = 77.1% 1H NMR (ppm): 12.56 (s, 2H, 

N−H), 11.48 (s, 2H, N−H), 7.92 (m, 6H, (2, 6, 

2I, 6I, 12, 15)), 7.38 (m, 2H, J = 3.6, 5.6 Hz, 

(13, 14)), 7.01 (d, 4H, (3, 5, 3I, 5I)) ), 3.82 (s, 

6H, (17, 17I)). 13C NMR (ppm): 180.8 (C=S, 9, 9I)) 167.5 (C=O, 7, 7I), 163.2 (4, 4I,), 133.3 

(11, 16), 131.0 (2, 6, 2I, 6I), 126.9 (12, 15), 123.9 (13, 14), 113.71 (3, 5, 3I, 5I), 55.8 (17, 17I) 

. IR (νmax, cm−1): 3404 (N−H), 3278 (N−H), 3001 (N−H), 2961 (C−H), 2837 (C−H), 1653 

(C=O), 1594 (C=C), 1525 (C=C), 1489 (C−N). Anal. Calcd for C24H22N4O4S2: C, 58.26; H, 

4.48; N, 11.33; S, 12.97. Found: C, 58.13; H, 4.37; N, 11.29; S, 13.03. LRMS (m/z, M+): 

Found for C24H22N4O4S2 = 494.20, Expected mass = 494.59.  
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2.9.48 1-(3-Chlorobenzoyl)-3-[2-({[(3-chlorophenyl)formamido]methanethioyl}amino) 

phenyl]thiourea (48) 

The product obtained was filtered and 

recrystallized from DMSO:Toluene 

(1:1) as a light brown solid. Melting 

point = 143–145 °C. Yield =75.3% 1H 

NMR (ppm): 12.40 (br, 2H), 11.88 (s, 

2H, N−H), 8.04 (m, 1H, (6I)), 7.91 (d, 

3H (6, 13, 14)), 7.83 (d, 2H, J = 7.6 Hz 

(12, 15)), 7.70 (d, 2H, J = 8.0 Hz,(4, 4I)), 7.52 (m, 2H, J = 8.0, 7.2 Hz, (5, 5I)), 7.41 (s, 2H, 

(2, 2I)) . 13C NMR (ppm): 180.4 (C=S, (9, 9I)), 167.0 (C=O, (7, 7I)), 134.3 (1, 1I), 133.2 (3, 

3I), 132.8 (4, 4I), 130.5 (5, 5I), 128.5 (2, 2I), 127.3 (12, 15), 127.1 (6, 6I), 126.7 (13, 14). IR 

(νmax, cm−1): 3440 (N−H), 3166 (N−H), 2971 (C−H), 1668 (C=O), 1593 (C=C), 1510 (C=C), 

1471 (C−N). 1459 (C−N). Anal. Calcd for C22H16Cl2N4O2S2: C, 52.49; H, 3.20; N, 11.13; S, 

12.74. Found: C, 52.31; H, 3.29; N, 11.22; S, 12.86. LRMS (m/z, M+): Found for 

C22H16Cl2N4O2S2 = 503.35, Expected mass = 503.42. 

 

 

2.9.49 1-(3-Bromobenzoyl)-3-[2-({[(3-bromophenyl)formamido]methanethioyl}amino) 

phenyl]thiourea (49)  

The mother liquor was allowed to 

stand overnight in a fume hood. The 

product obtained was filtered and 

recrystallized from DMSO:Toluene 

(1:1) as a light yellow solid. Melting 

point = 191–193 °C. Yield = 80.0% 

1H NMR (ppm) : 12.29 (s, 2H), 11.75 

(s, 2H), 7.93 (s, 2H, (2, 2I)), 7.89 (m, 

2H, (13, 14)), 7.79 (d, 4H, (4, 6, 4I, 6I)), 7.44 (d, 2H, J = 8 Hz, (12, 15)), 7.41 (m, 2H, (5, 

5I)). 13C NMR ( ppm) : 180.65 (C=S), 167.74 (C=O), 136.3 (1, 1I), 134.5 (4, 4I), 133.8 (11, 

16), 131.5 (5, 5I), 131.2 (2, 2I), 127.9 (12, 15), 126.9 (6, 6I), 122.1 (13, 14). IR (νmax, cm−1): 

3389 (N−H), 3176 (N−H), 3016 (N−H), 1662 (C=O), 1595 (C=C), 1563 (C=C), 1456 (C−N). 
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Anal. Calcd for C22H16Br2N4O2S2: C, 44.61; H, 2.72; N, 9.46; S, 10.83. Found: C, 44.75; H, 

2.68; N, 9.39; S, 10.70. LRMS (m/z, M+): Found for C22H16Br2N4O2S2 = 592.10, Expected 

mass = 592.33.  

 

 

2.9.50 3-Benzoyl-1-(2-{[(phenylformamido)methanethioyl]amino}ethyl)thiourea (50) 

Compound 50 was accessed 

by dissolving ammonium 

thiocyanate (0.04 mol, 3.05 g) 

in 80 mL of acetone, benzoyl 

chloride (0.04 mol, 5.63 g) 

was then added and heated under reflux at 100–120 °C for 2 h. The benzoyl isothiocyanate 

(0.04 mol) obtained was filtered; ethylene diamine (0.04 mol, 2.40 g) was added to benzoyl 

isothiocyanate and refluxed for 6 h. The mother liquor was allowed to stand overnight in a 

fume hood. The product obtained was filtered and recrystallized from DMSO:Toluene (1:1) 

as a light brown solid. Melting point = 220–222 °C. Yield = 70.85%. 1H NMR (ppm): 10.98 

(s, 2H, 10, 10I), 7.91 (d, 4H, J = 7.6 Hz, (2, 6, 2I, 6I )), 7.61 (t, 2H, J = 7.2 Hz, (4, 4I)), 7.51 

(t, 4H, J = 7.6 Hz, (3, 5, 3I,5I)), 3.09 (s, 4H, (11, 11I)). 13C NMR ( ppm): 180.8 (C=S), 167.3 

(C=O), 132.9 (1, 1I), 132.2 (4, 4I), 128.5 (2, 3, 5, 6, 2I, 3I, 5I, 6I) 43.4 (11, 11I), IR (νmax, 

cm−1): 3420 (N−H), 3229 (N−H), 3047 (N−H), 1664 (C=O), 1579 (C=C), 1507 (C=C), 1448 

(C−N). Anal. Calcd for C18H18N4O2S2: C, 55.94; H, 4.69; N, 14.50; S, 16.59. Found: C, 

56.03; H, 4.74; N, 14.42; S, 16.63. LRMS (m/z, M+): Found for C18H18N4O2S2 = 386.30, 

Expected mass = 386.49.  

 

 

2.9.51 3-Benzoyl-1{[(phenylformido)methanethioyl]amino}thiourea (51) 

Compound 51 was accessed by 

dissolving ammonium thiocyanate 

(0.04 mol, 3.05 g) in 80 mL of 

acetone, benzoyl chloride (0.04 

mol, 5.62 g) was then added and 

heated under reflux at 100–120 °C for 2 h. The benzoyl isothiocyanate (0.04 mol) obtained 
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was filtered hydrazine mono hydrate (0.04 mol, 2.00 g) was added to benzoyl isothiocyanate 

and refluxed for 6 h. The mother liquor was allowed to stand overnight in a fume hood. The 

product obtained was filtered and recrystallized from DMSO:Toluene (1:1) as a white solid. 

Melting point = 345−346 °C. Yield = 71.8%. 1H NMR (ppm): 14.24 (s, 1H, N−H), 12.12 (s, 

1H, N−H), 8.13 (d, 2H, J = 8.0 Hz, (2, 6)), 8.01 (d, 2H, J = 8.0 Hz, (2I, 6I )), 7. 94 (d, 1H, J = 

8.0 Hz, (3)), 7.65 (m, 1H, (4I )), 7.55 (t, 3H, J = 8.0 Hz, (3I, 5I, 5)), 7.50 (m, 1H, (4))13C 

NMR ( ppm): 171.5 (C=O), 168.3 (C=S), 167.3 (C=O), 165.0 (C=O), 156.0 (1), 150.2 (1I), 

134.2 (4), 132.8 (4I), 131.6 (2), 131.2 (2I), 130.7 (3), 128.8 (3I), 128.4 (5), 128.3 (5I), 128.2 

(6), 125.4 (6I). IR (νmax, cm−1): 2988 (C−H), 2911 (C−H), 1670 (C=O), 1658 (C=O), 1536 

(C=C), 1489 (C−N), 1424 (C−N). Anal. Calcd for C16H14N4O2S2: C, 53.61; H, 3.94; N, 

15.63; S, 17.89. Found: C, 53.73; H, 4.02; N, 15.60; S, 17.78. LRMS (m/z, M+): Found for 

C16H14N4O2S2 = 358.36, Expected mass = 358.44.  

 

 

2.9.52 3-Benzoyl-1-(phenylamino)thiourea (52) 

Compound 52 was accessed by dissolving 

ammonium thiocyanate (0.04 mol, 3.05 g) in 80 

mL of acetone, benzoyl chloride (0.04 mol, 5.62 

g) was then added and heated under reflux at 

100–120 °C for 2 h. The product was filtered; 

phenylhydrazine (0.04 mol, 4.33 g) was added to benzoyl isothiocyanate and refluxed for 6 

hours. The solvent was removed at the pump to an oily liquid which was redissolved in 

tetrahydrofuran and allowed to stand for three days The product recrystallized from 

DMSO:Toluene (1:1) as a white solid. Melting point = 242–244 °C. Yield = 71.6%. 1H NMR 

(ppm): 8.03 (m, 2H (3, 5)), 7.44 (m, 2H, (3I, 5I)), 7.37 (d, 5H, (2, 6, 2I, 6I)), 7.34 (s, 1H, (5)), 

7.19 (s, 1H, (4I)) 13C NMR (ppm): 162.9 (C=O), 149.6 (1I), 136.8 (1), 129.9 (2I), 129.4 (4I), 

129.3 (3I, 5I), 128.7 (3, 5), 126.6 (2, 6), 125.1 (3I, 5I). IR (νmax, cm−1): 3070 (N−H), 3018 

(N−H), 2727 (C−H), 1591 (C=O), 1561 (C=O), 1499 (C−N), 1475 (C−N). Anal. Calcd for 

C14H13N3OS: C, 62.31; H, 5.19; N, 14.42; S, 13.86. Found: C, 62.31; H, 5.19; N, 14.42; S, 

13.86. LRMS (m/z, M+): Found for C14H13N3OS = 271.80, Expected mass = 271.97.  
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2.9.53 1-((Benzamido)sulfanylenemethyl)urea (53) 

Compound 53 was accessed by dissolving 

ammonium thiocyanate (0.04 mol, 3.05 g) in 80 mL 

of acetone, benzoyl chloride (0.04 mol, 5.62 g) was 

then added and heated under reflux at 100–120 °C 

for 2 h. The benzoyl isothiocyanate (0.04 mol) 

obtained was filtered, urea (0.04 mol, 2.40 g) was added to resulting benzoyl isothiocyanate 

solution and refluxed for 6 h. The mother liquor was allowed to stand overnight in a fume 

hood. The product obtained was filtered and recrystallized from DMSO:Toluene (1:1) as a 

yellow solid. Melting point = 124−126 °C. Yield = 88.2%.1H NMR (ppm): 13.23 (br, 1H, N–

H), 11.29 (br, 1H, N–H), 7.84 (d, 2H, J = 7.2 Hz, (2, 6)), 7.64 (t, 1H, J = 7.6 Hz, (4)), 7.56 (t, 

2H, J = 7.6 Hz, (3, 5), 13C NMR ( ppm): 179.8 (C=S), 154.8 (C=O), 134.1, (4), 129.5, (3, 5), 

128.6 (2, 6),. IR (νmax, cm−1): 3343 (N−H), 3197 (N−H), 1651 (C=O), 1615 (C=O), 1577 

(C=C), 1528 (C−N), 1489 (C−N), 1449 (C−N). Anal. Calcd for C9H9N3O2S: C, 48.42; H, 

4.06; N, 18.82; S, 14.36. Found: C, 48.53; H, 4.01; N, 18.34; S, 14.45. LRMS (m/z, M+): 

Found for C9H9N3O2S = 223.10, Expected mass = 223.25.  

 

 

2.9.54 3-Benzoyl-1-(4-{[(phenylformamido)methanethioyl]amino}butyl)thiourea (54) 

Compound 54 was accessed 

by dissolving ammonium 

thiocyanate (0.04 mol, 3.05 g) 

in 80 mL of acetone, benzoyl 

chloride (0.04 mol, 5.62 g) 

was then added and heated under reflux at 100–120 °C for 2 h. The benzoyl isothiocyanate 

(0.04 mol) obtained was filtered, 1,4-butanediamine (0.04 mol, 3.53 g) was added to the 

resulting benzoyl isothiocyanate solution and refluxed for 6 h. The solvent was reduced to a 

smaller volume and redissolved in methanol. The product was filtered and recrystallized from 

DMSO:Toluene (1:1) as a light brown solid. Melting point = 159–161 °C. Yield = 80.8%.1H 

NMR (ppm): 11.24 (s, 1H), 10.94 (br, 1H), 7.90 (d, 2H, J = 8.0 Hz, (2, 6, 2I, 6I)), 7.62 (t, 1H, 

J = 7.2, 7.6 Hz, (4, 4I)), 7.48 (t, 2H, J = 7.6 Hz, (3, 5, 3I, 5I,)), 3.76 (m, 4H, (11, 11I)), 2.51, 

(br, 2H, N–H (8, 8)), 2.06 (t, 2H, N–H(10, 10I)) 13C NMR ( ppm): 180.2 (C=S), 167.7 (C=O), 
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132.9 (1, 1I), 132.2 (4, 4I), 128.4 (3, 5, 3I, 5I), 128.3 (2, 6, 2I, 6I), 42.6 (11, 11I), 26.7 (12, 

12I). IR (νmax, cm−1): 3405 (N−H), 3217 (N−H), 2929 (C−H), 1666 (C=O), 1511 (C=C), 1432 

(C−N). Anal. Calcd for C20H22N4O2S2: C, 57.95; H, 5.35; N, 13.32; S, 15.47. Found: C, 

57.87; H, 5.42; N, 13.45; S, 15.36. LRMS (m/z, M+): Found for C20H22N2O2S2 = 414.70, 

Expected mass = 414.54.  

 

 

2.9.55 N-(Benzothiazol-2-yl)-4-nitrobenzamide (55) 

3-(1,3-Benzothiazol-2-yl)-1-(4-

nitrobenzoyl)thiourea (30) (0.08 mmol, 24 

mg) was dissolved in 10 ml of THF, and 

then dimethylsulfoxide gold(I) chloride 

(0.08 mmol, 20 mg) or gold (III) chloride 

(0.08 mmol, 24 mg) was added in the absence of light and stirred under nitrogen at 60 °C for 

4 h. The reaction mixture was filtered and allowed to stand overnight. The product that 

formed was recrystallized from methanol as a white solid of melting point = 295–296 °C. 

Yield = 42.0%. 1H NMR (ppm): 8.39 (q, 4H, J = 6.8, 8.8 Hz, (2, 3, 5, 6)), 8.05 (d, 1H, J = 8.0 

Hz, (10)), 7.81 (d, 1H, J = 8.0 Hz, (13)), 7.50 (d, 1H, J = 7.6, 8.0 Hz, (11)), 7.37 (t, 1H, J = 

7.6 Hz, (12)). IR (νmax, cm−1): 3117 (N−H), 3038 (N−H), 1686 (C=O), 159 (C=C), 1522 

(C=C), 1461 (C−N), 1441 (C−N). Anal. Calcd for C14H9N3O3S: C, 56.18; H, 3.03; N, 14.04; 

S, 10.71. Found: C, 56.05; H, 3.01; N, 13.96; S, 10.52. LRMS (m/z, M+): Found for 

C14H9N3O3S = 299.70, Expected mass = 299.50.  

 

 

2.9.56 N-(Benzothiazol-2-yl)-3-bromobenzamide (56) 

3-(1,3-Benzothiazol-2-yl)-1-(3-bromobenzoyl) 

thiourea (31) (0.08 mmol, 25 mg) was dissolved 

in 10 ml of THF, dimethylsulfoxide gold(I) 

chloride (0.08 mmol, 20 mg) or gold (III) 

chloride (0.08 mmol, 24 mg) was added in the 

absence of light and stirred under nitrogen at 60 

°C for 4 h. The reaction mixture was filtered and allowed to stand overnight. The product 
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recrystallized from methanol as a white solid of melting point = 194–196 °C Yield = 42.0%. 

1H NMR (ppm): 8.35 (s, 1H, (2,6)), 8.12 (d, 1H, J = 8.0 Hz, (`10)), 8.02 (d, 1H, J = 8.4 Hz, 

(13)), 7.86 (d, 1H, J = 8.4 Hz, (6, 2,)), 7.79 (d, 1H, J = 8.4 Hz, (4)), 7.55 (t, 1H, J = 7.6, 8.4 

Hz,(5,3)), 7.49 (t, 1H, J = 7.6, 6.8 Hz, (11)), 7.36 (t, 1H, J =7.6, 6.8 Hz, (12)). IR (νmax, 

cm−1): 3066 (N−H), 2918 (C−H), 2850 (C−H), 1677 (C=O), 1654 (C=O), 1600 (C=C), 1555 

(C=C), 1522 (C=C), 1453 (C−N), 1425 (C−N),. Anal. Calcd for C14H9BrN2OS: C, 50.46; H, 

2.72; N, 8.41; S, 9.62. Found: C, 50.65; H, 2.63; N, 8.57; S, 9.73 LRMS (m/z, M+): Found for 

C14H9BrN2OS = 333.10, Expected mass = 333.20.  

 

 

2.9.57 N-(Benzothiazol-2-yl)-3-methoxybenzamide (57) 

3-(1,3-Benzothiazol-2-yl)-1-(3-

methoxybenzoyl) thiourea (27) (0.07 mmol, 

23 mg) was dissolved in 10 ml of THF, 

dimethylsulfoxide gold(I) chloride ( 0.07 

mmol, 23 mg) or gold (III) chloride (0.07 

mmol, 21 mg) was added in the absence of 

light and stirred under nitrogen at 60 °C for 4 h. The reaction mixture was filtered the solvent 

was removed and the product recrystallized from methanol as a yellow solid of melting point 

= 170–176 °C. Yield = 38.0%. 1H NMR (ppm): 1H NMR (ppm): 11.58 (s, 1H, N−H), 8.02 (t, 

1H, J = 7.2 Hz, (10)), 7.77 (m, 1H, J = 6.8, 7.6 Hz, (13)), 7.73 (s, 1H, (2)), 7.54−7.47 (m, 3H, 

(6, 11, 12 ), 7.37 (m, 1H, (5)), 7.21 (m, 1H, (4)). IR (νmax, cm−1): 3458 (N−H), 3290 (N−H), 

2922 (N−H), 2852 (C−H), 1686 (C=O), 1578 (C=C), 1538 (C=C), 1448 (C−N), 1426 (C−N). 

Anal. Calcd for C15H12N2O2S: C 63.36; H, 4.25; N, 9.85, S, 11.28. Found: C 63.41; H, 4.33; 

N, 9.93, S, 11.32. LRMS (m/z, M+): Found for C15H12N2O2S = 284.20, Expected mass = 

284.33.  

 

 

2.9.58 N-(Benzothiazol-2-yl)benzamide (58) 

3-Benzothiazol-2-yl)-1-(benzoyl)thiourea (23) 

(0.09 mmol, 28 mg ) was dissolved in 10 ml of 

THF, dimethylsulfoxide gold(I) chloride (0.09 
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mmol, 28 mg) or gold (III) chloride was added in the absence of light and stirred under 

nitrogen at 60 °C for 4 h. The reaction mixture was filtered the solvent was removed and the 

product recrystallized from methanol as a white solid of melting point = 115–117 °C. Yield = 

47.0%. .1H NMR (ppm): 8.35 (s, 1H, (10 ) ), 8.14 (d, 1H, J = 7.6 Hz, (13)), 8.04 (d, 1H, J = 

8.0 Hz, (2)), 7.88 (d, 1H, J = 7.6 Hz, (6)), 7.81 (d, 1H, J = 7.6 Hz, (3)), 7.69 (m, 1H, J = 8.0 

Hz, (6)), 7.55 (t, 1H, J = 7.2, 7.6 Hz, (11)), 7.49 (t, 1H, J = 7.2, 8.0 Hz, (12)), 7.36 (t, 1H, J = 

7.6 Hz, (4)). 13C NMR ( ppm): 136.1 (1), 131.5 (4), 127.9 (3, 5), 126.9 (3, 6), 124.3 (11, 12), 

122.3 (10, 13). IR (νmax, cm−1): 3273 (N−H), 3059 (N−H), 2917 (C−H), 1693 (C=O), 1599 

(C=C), 1549 (C=C), 1456 (C−N), 1442 (C−N). Anal. Calcd for C14H10N2OS: C, 66.12; H, 

3.96; N, 11.02; S, 12.61. Found: C, 65.98; H, 4.05; N, 11.10; S. 12.55. LRMS (m/z, M+): 

Found for C14H10N2OS = 254.42, Expected mass = 254.31. 

 

 

2.9.59 1-((Benzamido)formyl)urea (59) 

Compound 52 (0.009 mol, 2.03 g) was refluxed 

in THF (20 mL) for 8 h with silver nitrate 

(0.009 mol, 1.55 g). The reaction mixture was 

then extracted with diethyl ether:methanol(1:1) 

(100 mL) and filtered over celite. The solvent 

was removed at the pump. The product recrystallized from DMSO:Toluene (1:1) as a the 

white fluffy solid of melting point 204–206 °C. Yield = 33.0%. 1H NMR (ppm): 7.82 (d, 2H, 

J = 8.0 Hz, (2, 6)), 7.53 (t, 1H, J = 8.0 Hz, (3, 5)), 7.45 (t, 2H, J = 7.6 Hz (4)). 13C NMR ( 

ppm): 169.6 (C=O), 133.9 (1), 132.1 (4), 128.8 (2, 6), 127.8 (3, 5). IR (νmax, cm−1): 3345 

(N−H), 3225 (N−H), 1710 (C=O), 1663 (C=O),1598 (C=C), 1578 (C=C), 1466 (C−N). Anal. 

Calcd for C9H9N3O3: C 52.17; H, 4.38; N, 20.28. Found: C 52.37; H, 4.45; N, 20.40. LRMS 

(m/z, M+): Found for C9H9N3O3 = 207.06, Expected mass = 207.19. 

 

 

2.9.60 N-(2,3-Dihydro-1H-benzimidazol-2-yl)-3-nitrobenzamide (60) 

Compound 44 (0.0019 mol, 1.006 g) was 

refluxed in THF (20 mL) for 8 h with silver 

nitrate (0.0017 mol mol, 0.29 g) The reaction 
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mixture was then extracted with diethyl ether:methanol(1:1) (100 mL) and filtered over 

celite. The solvent was removed at the pump. The product recrystallized from 

DMSO:Toluene (1:1) as a light yellow solid of melting point 158−159 °C. Yield = 45.0%. 1H 

NMR (ppm): 8.88 (s, 1H, (2)), 8.49 (d, 1H, J = 7.6 Hz, (4)), 8.42 (d, 1H, J = 7.6 Hz, (6)), 

7.81 (t, J = 7.6, 8.0 Hz, (5)), 7.52 (m, 2H, (8, 11)), 7.29 (m, 2H, (9, 10)). 13C NMR ( ppm): 

148.1, (3), 135.3 (7, 12), 130.5 (1), 130.4 (6), 124.0 (5), 123.6 (9, 10), 113.1 (8, 11). IR (νmax, 

cm−1): 3321(N−H), 3100 (N−H), 1703 (C=O), 1634 (C=O), 1531 (C=C), 1471 (C−N), 1447 

(C−N). Anal. Calcd for C14H12N4O3: C 59.15; H, 4.25; N, 19.71. Found: C 59.43; H, 4.32; N, 

19.59 LRMS (m/z, M+): Found for C14H12N4O3 = 284.14, Expected mass = 284.27. 

 

 

2.10 Cytotoxicity assay protocol 

The acute cytotoxic effects of the compounds were determined by exposing them to isolated 

human white blood cells, for a 24 h period. The cell viability was assessed using the MTT 

reduction assay. Briefly, white blood cells were seeded at 25000 cells/well and exposed to 

varying concentrations (500, 50, 5, 0.5 and 0.05 μM) of the compounds. Following the 24 h 

exposure period, MTT was added to the wells and the plates were incubated at 37 ºC for 3 h. 

The resulting formazan crystals formed were dissolved with DMSO and the absorbance at 

405 nm was measured using a BioTek Epoch2 microtitre plate reader. The results of this 

study are presented in Table 4.3 which indicates the compound numbers (in bold) as well as 

the EC50 values calculated for each compound tested. 

 

Whole blood was collected from healthy volunteers (n = 3, 50 ml/person, ethical clearance 

number H15-SCI-BCM-002) in EDTA acid vacutainers and centrifuged at 500 x g (10 min). 

The supernatant (buffy coat) was retained. The blood samples were further centrifuged at 

2000 x g (10 min) and the supernatant (buffy coat) aspirated. Lysis buffer (0.15 M NH4Cl, 1 

mM KHCO3, 0.1 mM EDTA, pH 7.4) was then added with a blood:buffer ratio of 1:9. It was 

then vortexed for 10 seconds and incubated at room temperature for 3 min. Centrifuging was 

completed at 2000 x g (10 min.) and the pellets retained and washed with 3 ml of lysis buffer 

and centrifuged at 1000 x g for 5 min., this step was repeated thrice. The white blood cells 

were diluted in 10 mL RPMI media and supplimented with 5 % FBS and 50 µg/mL PenStrep. 

The white blood cells were stained with 0.4% trypan blue and counted with a 

haemocytometer, the cells were then seeded at 100 µL/well, 250000 cells/well in 96-well 
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plates. The cells were exposed to 20 µL of the compounds (500, 50, 5, 0.5 and 0.05 µM) were 

added for a 24 h period, camptothecin was added as a positive control, whilst PBS:DMSO 

(990:10) was added as a vehicle control and RPMI media used as untreated control.20 µL of 

3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT)274 reagent (0.50 

mg/mL final concentration in the well) was added and incubated for 3 h at 37 °C. 100 µL 

DMSO was added, mixed gently and Incubated for 15 min at 37 °C it was then shaken for 5 

min using the microplate reader and the absorbance measured at A560 nm. 

 

 

2.10.1 Determination of EC50 values 

The term half maximal effective concentration (EC50) refers to the concentration of a drug, 

antibody or toxicant which induces a response halfway between the baseline and maximum 

after a specified exposure time.275 It is commonly used as a measure of drug's potency. The 

EC50 of a graded dose response curve therefore represents the concentration of a compound 

where 50% of its maximal effect is observed. The EC50 values were determined based on the 

dose response curve.276 Different concentrations gave different absorbance vaues. A small 

change in ligand concentration typically result in rapid changes in response in the biological 

system, following a sigmoidal function. The concentration of ligand at half maximum activity 

is the EC50.
277-278 

 

 

2.11 HIV-1 Protease assay 

The kinetic profile of HIV-1 protease was characterized at various inhibitor concentrations 

(100 nM to 0.0500 nM) by measuring the cleavage of the synthetic substrate (Abz-Thr-Ile-

pNO2Phe-Gln-Arg-NH2)  concentrations at an excitation/emission wavelength of 340 nm/490 

nm using a BioTek SynergyMx fluorimeter. Positive controls used in the assay were pepstatin 

(14 nM to 0.080 mM) and ritonavir (100 nM to 0.05 nM). The fluorescence was measured 

using a BioTek SynergyMx microtitre plate reader. Excitation/Emission: 340 nm/490 nm. 

This assay is based on the ability of protease to cleave (Abz-Thr-Ile-pNO2Phe-Gln-Arg-NH2) 

It cleaves the Abz-Thr bond which causes Abz to fluoresce the rate of fluorescence is then 

measurd over time. Buffer 1 (72.73 mM NaAc, pH 5.0) (55 µL) was added to the followed 

inhibitor (20 µL), 20 μL of protease (20 nM) was addedto the well and incubated at 25°C for 

https://en.wikipedia.org/wiki/Dose_response_curve
https://en.wikipedia.org/wiki/Ligand
https://en.wikipedia.org/wiki/Sigmoid_function
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an hour. 120 µL of the substrate (Abz-Thr-Ile-pNO2Phe-Gln-Arg-NH2) dissolve in buffer 2 

(60 mM NaAc, 2 M NaCl, 2.4% DMSO, pH 5.0) was added per well (50 µM). The substrate 

was prepared by dissolving the fluorogenic substrate (10 mg) in 50% acetonitrile (20 mL) and 

further diluting the the stock to 83.3 µM with buffer 2 (1.44 mL substrate + 7.2 mL buffer 2). 

The stock was covered with aluminium foil and stored at −80°C. The mixture was incubated 

for 30 seconds. The reaction rate was measured using relative fluroscence at Ex 337 nm/Em 

425 nm using a BioTek SynergyMx microtitre plate reader, every second for 1 minute 

(Excitation bandwidth = 2.5 nm; Emission bandwidth = 5 nm) 

 

 

2.11.1 Optimiszation of HIV-1 protease concentration screen of structurally diverse 

diamine derivatives of benzoyl isothiocyanate 

 

HIV-1 protease activity was assayed at varying concentrations (2–20 nM) of the protease in 

order to ascertain the optimal concentration to employ in the assay. The concentrations tested 

in the assay are listed in Table 2.2. The rate is obtained from the gradient of the fluorescence 

plotted time. It gives the rate of change in fluorescence with time. A lower rate signify a 

smaller quantity of a fluorogenic species is product per unit time. Whilst a higher rate signify 

that a higher quantity of fluorogenic species is produced per unit time due cleavage by 

protease hence it can be linked directly to protease activity.  

 

Table 2.2 Determination of optimal HIV-1 protease concentration for use in inhibitor 

studies. 

 

Concentration (nM) Rate 

1 -9.3841 

2 6.3757 

5 46.814 

10 503.58 

20 896.66 
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Examples of the progress curves obtained for the hydrolysis of HIV-1 protease substrate by 

HIV-1 protease are shown in Figure 2.1. The rate is the gradient obtained from the progress 

curves for the different concentrations.  

 

       

 

Figure 2.1 Progress curves for the hydrolysis of [Abz-Thr-Ile-pNO2Phe Gln-Arg-NH2] by 

HIV-1 Protease. Ex/Em: 337/425 nm at 25 °C and a pH of 5.0.  

 

 

From the results above, it was decided that 20 nM of protease would be the best 

concentration for the assay because it had an optimal rate.  
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CHAPTER THREE 

DESIGN AND SYNTHESIS OF BENZOYL ISOTHIOCYANATE DERIVATIVES 

 

3.1 Design and synthesis of benzoyl isothiocyanate derivatives: preliminary studies 

The premise of this work was to first screen potential compounds which are based on the 

benzimidazole moiety for HIV-1 protease activity using Autodock 4.2 and to synthesize the 

compounds that give good predicted inhibition constants. The initial pre-screening gave the 

predicted inhibition constants for the following scaffolds (Figures 3.1 and 3.2). Table 3.1 

gives the pre-screening results for some of the derivatives whilst Figure 3.3 gives the ligand 

binding in the active site for the alanine derivative. 
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Figure 3.1 The scaffold obtained from the initial pre-screening Scheme 3.1  
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Figure 3.2 The scaffold obtained from the initial pre-screening Scheme 3.2 
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Table 3.1 Pre-screening result for the potential HIV-1 inhibitors (Schemes 3.1). 

 

Description code Free binding energy Inhibition constants Ki (μM) 

(Scheme 3.1) 

Alanine derivative -7.25 4.85 

Aspartic acid derivative -7.59 2.72 

Amprenavir -4.28 728.93 

Proline derivative -7.72 2.19 

Serine derivative -8.33 0.79 

Phenylalanine derivative -6.85 9.59 

 

 

 

 

Figure 3.3 Ligand binding interaction in protease active site for the alanine derivative. 

 

Based on the pre-screening results schemes 3.1 and 3.2 were developed to access the docked 

compounds. 
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Scheme 3.1 Proposed synthetic path to access some of the docked compounds.  

 

The first step of Scheme 3.1 gave a de-aminated product which could not be taken further.  

The excess acid protonated the amine group which easily deaminated upon heating.  

 

Table 3.2 Pre-screening result for the potential HIV-1 inhibitors (Scheme 3.2). 

 

Description code Free binding energy Inhibition constants Ki (μM) 

(Scheme 3.2) 

Tyrosine derivative -9.58 5.88 

Serine derivative -5.92 45.97 

Proline -6.45 18.61 

Methionine derivative -5.86 50.65 
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The synthesis of the compounds in Scheme 3.2 was then attempted. 
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Scheme 3.2 Proposed synthetic path to access some of the docked compounds (Figure 

3.2). 

 

 

3.2 Synthesis and crystal structures of 3-methyl-N-[2-(3-methylbenzamido) 

phenylbenzamide (1) and 2-(3-methylphenyl)-1H-benzimidazole (2) 

To access the compounds in scheme 3.2 an attempt at synthesizing a benzimidazole by 

heating in 4 N HCl for 4 h was unsuccessful as the starting materials were recovered. 

Refluxing in 1 M sodium hydroxide and 1 M sulfuric acid were equally unsuccessful. 3-

Methylbenzoic acid was converted to the acid chloride by heating it with thionyl chloride in 

toluene at 120 °C for 3 h. An attempt to convert the acid chloride into a benzimidazole by 

reacting it with o-phenylenediamine in pyridine gave 3-methyl-N-[2-(3-methylbenzamido) 

phenylbenzamide (1) (Scheme 3.4). Critical to the success of this reaction is the anhydrous 

atmosphere and the lower temperature of the reaction ensuring that the activation energy for 

the formation of a diamide is not achieved. This allows a single attack by the lone pair of 

electrons on the amine leading to the formation of a benzimidazole, whilst in our case the 
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reaction was attempted at an elevated temperature making a single attack not achievable. The 

synthesis of the diamide was readily achieved by the nucleophilic attack of the carbonyl by 

the diamine with the subsequent loss of a hydrogen chloride gas and this process is aided by 

the presence of a base such as pyridine which takes up the protons from solution (Scheme 

3.3). The ease of loss of the chloride makes it easy for the amide to be formed but the absence 

of a proton source to protonate the carbonyl makes the second attack of the carbonyl by the 

other amine impossible. This resulted is the formation of an amide on the second amine of the 

diamines (diamide formation) rather than the cyclization to form a benzimidazole. 

 

Acyl halides enable facile access to amides and they are prepared using chlorinating agents 

such as thionyl chloride, oxalyl chloride, phosphorus trichloride and phosphorus 

pentachloride.279, 280 The acyl halide is not absolutely necessary, ZnO has been used as a 

catalyst in the formation of amides from formic acid and amines under solvent-free 

conditions at 70 °C,281 with excellent yield in short reaction times with reusability of catalyst. 

Extension to other catalysts have been reported, with catalytic amounts of indium trioxide 

being used in the conversion of carboxylic acid esters to primary amides, 282 and Han et al, 283 

have reported a process for preparation of amides from esters and amines using a catalytic 

system comprised of Group IV metal alkoxides in conjunction with additives including 1-

hydroxy-7-azabenzotriazole (HOAt). In this case, the ester-amide exchange proceeds using a 

variety of structurally diverse esters and amines without azeotropic reflux to remove the 

alcohol by-product. Hydrogen peroxide has been used in the catalytic oxidative amidation 

between aldehydes and amines using Pd-Cl2–xantophos as a catalyst in methanol under acidic 

conditions.284 N-Heterocylic carbene-based ruthenium complexes have been developed as 

highly active catalysts for direct amide synthesis from alcohols and amines.285  

 

A reaction of m-toluic acid with o-phenylenediamine in the presence of polyphosphoric acid 

in toluene which gave 2-(3-methylphenyl)-1H-benzimidazole (2) was then carried out. The 

reaction is thought to proceed by the protonation of the hydroxyl group and the subsequent 

attack of the carbonyl carbon by one of the amines with the loss of water from the carboxylic 

acid. The subsequent protonation of the carbonyl enables it to be attacked by the other amine 

group leading to the loss of water. This reaction is driven by high temperature and excess of 

protons. The workup to remove the excess polyphosphoric acid can complicate the 

purification.  
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The common route for the synthesis of benzimidazoles from diamines is through a 

condensation reaction with carboxylic acids under acid catalysis at high temperatures.286 A 

series of benzimidazoles have also been synthesized by the reaction of phenylenediamine and 

carboxylic acids under solvent free conditions.287  The aldehyde route has also been explored 

to achieve benzimidazoles from diamines despite the fact that monoimines or diimines should 

be the expected products. 2–Substituted benzimidazoles have been synthesized in the 

presence of alumina–methanesulfonic acid (AMA) by microwave irradiation.288 Catalytic 

amounts of zinc acetate have been used to synthesize benzimidazoles from aldehydes and o-

phenylenediamine at room temperature.289 Boron trifluoride dietherate has also been used to 

catalyze the synthesis of benzimidazoles from o-phenylenediamine and aldehydes under 

solvent free conditions.290  

 

The synthesis of compound 2 has been achieved by reacting m-tolualdehyde with o-

phenylenediamine in the presence of triethylamine. The reaction is proposed to proceed by 

the abstraction of a proton by triethylamine from an amine of the o-phenylenediamine 3.1a 

this allows the attack of the carbonyl of the aldehyde 3.2b by the amine forming a 

hydroxylamine 3.3a, the lose of water from 3.3a gives an imine 3.3b which looses a proton to 

give 3.3c, a further proton lose in the presence of molecular oxygen and rearrangement leads 

to the formation of 2.  
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Scheme 3.3 Proposed mechanism for the synthesis of compound 2 from an aldehyde. 

 

Compound 2 have been reported to be accessed by a one pot microwave promoted synthesis 

using sodium hydrogen sulfite in dimethylacetamide.291 Shen et al have also reported the 

synthesis of compound 2 from aryl azides using Iron (III) bromide as catalyst.292 An attempt 

to convert the methyl group in compound 2 to the carboxylic acid using acidified potassium 

dichromate was not successful. The use of selenium dioxide-pyridine in DMSO led to the 

recovery of the starting materials whilst the use of potassium permanganate in benzene and 3 

mol % of 18 crown 6 was also not successful.  
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Scheme 3.4 A synthesis scheme of 3-methyl-N-[2-(3-methylbenzamido)phenylbenzamide 

(1) and 2-(3-methylphenyl)-1H-benzimidazole (2). 

 

The FTIR spectrum of compound 1 (Figure 3.4) gave a band at 3272 cm−1 for the N–H and a 

band at 2916 cm−1 for the aliphatic C–H. The C=O stretch of an amide occurred at 1644 cm−1 

whilst the aromatic C=C stretch occurred at 1596 cm−1. It gave the C–N stretch at 1513 cm−1 

and the C–O stretch occurred at 1276 cm−1.  

 

 

Figure 3.4 IR spectrum of 3-methyl-N-[2-(3-methylbenzamido)phenylbenzamide (1). 
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The IR spectrum of 2 (Figure 3.5) gave a band at 3052 cm–1 for the N–H stretch, whilst the 

aliphatic C–H stretch occurred at 2986 cm–1 and 2879 cm–1. The C=N stretch occurred at 

1661 cm–1 whilst the C=C stretch of an aromatic ring occurred at 1590 cm–1. The C–N stretch 

occurred at 1487 cm–1. 

 

 

Figure 3.5 IR spectrum of 2-(3-methylphenyl)-1H-benzimidazole (2). 

 

The 1H NMR spectrum of compound 1 (Figure 3.6) showed a singlet signal at 10.02 ppm for 

the N–H of the amide. Signals for the aromatic ring occurred between 7.74 and 7.30 ppm, and 

the methyl protons occurred as a singlet signal at 2.36 ppm with integration for six protons. 

The 13C NMR spectrum of compound 1 (Figure 3.7) also gave a signal at 20.9 ppm for the 

methyl groups. 
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Figure 3.6 1H NMR spectrum of 3-methyl-N-[2-(3-methylbenzamido)phenylbenzamide 

(1). 

 

 

 

 

Figure 3.7 13C NMR spectrum of 3-methyl-N-[2-(3-methylbenzamido)phenylbenzamide 

(1). 

 

The 1H NMR spectrum of 2 (Figure 3.8) showed signals for the aromatic ring between 8.04 

and 7.20 ppm. The methyl group occurred as a singlet at 2.41 ppm which was also confirmed 

in the 13C NMR spectrum of compound 2 (Figure 3.9) at 21.0 ppm.  
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Figure 3.8 1H NMR spectrum of 2-(3-methylphenyl)-1H-benzimidazole (2).  

 

 

 

Figure 3.9 13C NMR spectrum of 2-(3-methylphenyl)-1H-benzimidazole (2). 

 

Compound 1 was recrystallized from ethyl acetate:hexane (1:3) and obtained as colourless 

crystals, whilst compound 2 was recrystalized from DMSO:THF (1:2) and obtained as a 

white solid. The crystallographic data, selected bond lengths and bond angles for the crystal 

structures of compounds 1 and 2 are provided in Tables 3.3 and 3.4. The ORTEP diagrams 
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for compounds 1 and 2 are presented in Figures 3.10 and 3.11. Compound 1 crystallized in 

the trigonal space group R–3, while compound 2 crystallized in the monoclinic space group 

P21/c. 

 

 

Table 3.3 Crystallographic data and structure refinement summary for 3-methyl-N-[2-(3-

methylbenzamido)phenylbenzamide (1) and 2-(3-methylphenyl)-1H-

benzimidazole (2). 

 

Property 1 2 

Empirical formula C22H20N2O2 C14H12N2 

Formula weight 344.40 208.26 

Temperature 200 200 

Crystal system Trigonal Monoclinic 

Space group R–3 P21/c 

a (Å) 28.7614(9) 12.3990(6) 

b (Å) 28.7614(9) 9.7826(5) 

c (Å) 11.7819(4) 9.6028(4) 

α (°) 90 90 

β (°) 90 110.615(2) 

γ (°) 120 90 

Volume (Å3) 8440.5(7) 1090.18(9) 

Z 18 4 

D (Calc) (g/cm3) 1.220 1.269 

F(000) 3276 440 

Crystal size (mm3) 0.21 x 0.28 x 0.54 0.08 x 0.23 x 0.56 

μ(MoKa)( /mm ) 0.079 0.076 

Radiation (Å) 0.71073 0.71073 

θ Min-Max (°) 2.4, 28.3 2.7, 28.3 

Dataset −38: 38 ; −32: 38 ; −15: 9 −16: 16 ; −12: 12 ; −12: 

12 Tot., Uniq. Data, Rint 16186, 4646, 0.021 12429, 2692, 0.014 

[I > 2.0 sigma(I)] 2944 2217 

Nref 4646 2692 

Npar 302 150 

R 0.0511 0.0392 

wR2 0.1554 0.1115 

S 1.02 1.03 

Max and Av. Shift/Error 0.00, 0.00 0.00, 0.00 

Min Residual Density (e/Å3) −0.24 −0.19 

Max, Residual Density (e/Å3) 0.28 0.26 
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Table 3.4 Selected bond lengths (Å) and bond angles (°) of 3-methyl-N-[2-(3-

methylbenzamido)phenylbenzamide (1) and 2-(3-methylphenyl)-1H-

benzimidazole (2). 

 

Bond lengths (Å) 

1 2 

O1–C2 1.238(1) N1–C21 1.387(2) 

O2–C3 1.239(2) N2–C2 1.362(1) 

N1–C2 1.339(1) N1–C2 1.322(2) 

N1–C21 1.416(2) N2–C22 1.377(2) 

N2–C3 1.356(2) C1–C13 1.507(2) 

C2–C11 1.553(1) C2–C11 1.464(2) 

N2–C22 1.422(2) C11–C12 1.393(2) 

C2–C41 1.400(2) C12–C13 1.389(2) 

Bond angles (°) 

1 2 

O1–C2–N1 122.6(2) C2–N2–C22 106.9(1) 

N1–C21–C26 120.9(2) C2–N1–C21 104.9(1) 

O1–C2–C11 124.5(1) N1–C2–N2 112.9(1) 

O1–C2–C41 107.8(1) N(2)–C(2–C11 122.3(1) 

O2–C3–N2 121.8(2) N1–C2–C11 124.7(1) 

N1–C2–C11 112.9(1) N1–C21–C22 109.7(1) 

O2–C3–C31 120.9(2) N2–C22–C21 105.5(1) 

C2–N1–C21 125.2(2) N1–C21–C26 130.1(1) 

C3–N2–C22 126.8(1) C2–C11–C16 121.3(1) 

 

 

The bond distances of N1–C2, and N2–C3, which were 1.339(2), and 1.356(2) Å 

respectively, were consistent with the C–N bond of the amide of compound 1 whilst N(2)–

C22 and N1–C21 were 1.422(2) and 1.416(2) Å, showing the C–N with the carbon being part 

of the aromatic ring system. Compound 1 exhibits a disorder in one of its toluene rings with a 

disorder ratio of 0.675:0.325. 
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Figure 3.10  An ORTEP view of compound 3-methyl-N-[2-(3-methylbenzamido) 

phenylbenzamide (1) showing 50% probability displacement ellipsoids and the 

atom labelling. 

 

 

 

Figures 3.11 An ORTEP view of 2-(3-methylphenyl)-1H-benzimidazole (2) showing 50% 

probability displacement ellipsoids and the atom labelling.  

 

The bond distances of O1–C2 and O2–C3 which were 1.238(3) and 1.239(2) Å, respectively, 

in compound I show usual C=O double bond character. The bond lengths are comparable 

with the average bond length of C=O bonds on the CCDC database which is 1.228 Å.293 The 
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O1–C2–N1, O1–C2–C11 and O1–C2–C41 bond angles which were 122.62 (2), 124.50 (4) 

and 107.80(7)˚, respectively, were the angles around the sp2 carbon atoms of the carbonyl in 

compound 1. The disorder in the molecule was clearly shown by the two different angles 

around C(2) with one angle being narrower than the other. These are comparable to the 

average O–C–N bond angle on the CCDC database which is 122.30°. 294 The bond distances 

of N2–C2 and N1–C2 which were 1.362(1) and 1.322(2)) Å respectively, were consistent 

with the C–N bond of the benzimidazole in compound 2 whilst the bond angles of N2–C2–

C11 and N1–C2–C11 which were 122.3(1)) and 124.7(1)Å, were consistent with sp2 carbon 

in compound 2.  

 

 

3.2.1 HOMO-LUMO analysis 

Table 3.5 gives the computed HOMO–LUMO energies for o-phenylenediamine, m-toluolyl 

chloride, m-toluic acid, compounds 1 and 2. The frontier orbitals of m-toluic acid, which was 

used in the synthesis of compound 2, are shown in Figure 3.12. The HOMO is delocalised 

over the entire molecule except the carbonyl group whilst the LUMO is largely delocalised 

over the entire molecule except the methyl group. 

 

Table 3.5 Summary of the HOMO–LUMO energies for o-phenylenediamine, m-toluolyl 

chloride, m-toluic acid, and 3-methyl-N-[2-(3-methylbenzamido) 

phenylbenzamide (1) and 2-(3-methylphenyl)-1H-benzimidazole (2). 

 

 

 HOMO (kJ/mol)  LUMO (kJ/mol)  HOMO-LUMO Gap (kJ/mol) 

o-Phenylenediamine −520.93 −37.70 483.23 

m-Toluoyl chloride −692.24 −197.04 495.20 

m-Toluic acid −684.65 −165.64 519.01 

Compound 1 −620.93 −163.23 457.70 

Compound 2 −573.91 −144.61 429.30 

 

 

This indicates that during charge transfer in a reaction the molecule is stabilised by 

delocalization of electrons over the entire molecule and also confirming the susceptibility of 

the carbonyl to attack by the o-phenylenediamine.  
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Figure 3. 12 The atomic orbitals composition of the frontier molecular orbital for m-toluic 

acid.  

 

The frontier orbitals of m-toluoyl chloride, which were used for the synthesis of compound 1, 

are shown in Figure 3.13. The HOMO is delocalised over the entire molecule except the 

chloride, and the LUMO is also delocalised over the entire molecule except the methyl group. 

This confirms the susceptibility of the molecule to attack by o-phenylenediamine (a 

nucleophile). During charge transfer in this reaction the molecule is stabilised by 

delocalization of electrons over the entire molecule. The contribution of the carbonyl carbon 

atom and the chloride to the LUMO confirm the susceptibility of carbonyl attack by 

nucleophiles and subsequent loss of chloride. 

 

 

 

Figure 3.13 The atomic orbitals compositions of the frontier molecular orbitals for m-

toluolyl chloride.  
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Figure 3.14. shows the frontier orbitals of o-phenylenediamine which was used in the 

syntheses of compounds 1 and 2. The HOMO is delocalised over the entire molecule while 

the LUMO is largely delocalised over the nitrogen atoms and portions of the benzene ring. 

The high electron density on the nitrogen atom enables it to attack the carbonyl centre in the 

synthesis of a diamide. In the synthesis of benzimidazoles in an acidic medium there is no 

loss of a proton but the delocalization of the HOMO on the nitrogen allows the diamine to 

attack the highly susceptible protonated carbonyl of the carboxylic acid.  

 

 

 

Figure 3.14 The atomic orbitals compositions of the frontier molecular orbital for o-

phenylenediamine.  

 

Figure 3.15 shows the frontier orbitals of 3-methyl-N-[2-(3-methylbenzamido) 

phenylbenzamide (1). The HOMO is largely delocalised over the benzene ring contributed by 

o-phenylenediamine, the nitrogen and the carbonyl groups while the LUMO is delocalised 

over the benzene ring contributed by o-phenylenediamine and one of the benzene rings 

contributed by m-toluolyl chloride. The disorder in the molecule obtained from its crystal 

structure since the rings contributed by m-toluolyl chloride would have different reactivities.  
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Figure 3.15 The atomic orbitals compositions of the frontier molecular orbital for 3-

methyl-N-[2-(3-methylbenzamido)phenylbenzamide (1). 

 

Figure 3.16 shows the frontier orbitals of compound 2. The HOMO and LUMO are largely 

delocalised over the entire molecule except the methyl group. This confirms the stability of 

the molecule to attack by an incoming group, possibly due to charge transfer via 

delocalization over the entire molecule. This also confirmed the inability to convert the 

methyl group on compound 2 to a carboxylic acid by a reaction with potassium permanganate 

or to an aldehyde by using selenium dioxide.  

 

 

 

Figure 3.16 The atomic orbitals compositions of the frontier molecular orbital for 2-(3-

methylphenyl)-1H-benzimidazole (2). 

 

 

3.3 Synthesis and characterization of benzodiazepines 

The next attempt was to form the benzimidazole with a free carboxylic acid retained on the 

product due to our inability to convert the methyl group on the benzimidazole to a carboxylic 
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acid. This was attempted through a reaction of o-phenylenediamine and isophthalic acid 

under microwave irradiation conditions. Equimolar quantities (0.01 mol) of the starting 

materials were irradiated at 180 W (50 °C) for 15 min. To dissolve the solidified reaction 

mixture, 2 mL of an ethanol:acetone mixture (3:1) were added while the reaction mixture was 

still hot. Finally, the reaction mixture was allowed to stand for 12 h. Scheme 3.5 illustrates 

the reaction of o-phenylenediamine and isophthalic acid under microwave irradiation 

conditions. It was later observed that the benzimidazole formation via a condensation 

reaction did not take place. This was attributed to the fact that the activation energy required 

for the reaction of o-phenylenediamine and isophthalic acid was not achieved.  

 

However, the energy acquired during the microwave irradiation was not immediately lost. 

This is because there was no other reagent, be it a solid support or solvent, to absorb the 

energy acquired by the reactants during the microwave irradiation. The introduction of an 

acetone:ethanol mixture into the reaction resulted in the reaction of acetone with o-

phenylenediamine to yield the benzodiazepine, which was protonated by the isophthalic acid 

to form benzodiazepium salt (3), due to a lower activation energy required for this reaction 

(Scheme 3.4). Other researchers have reported similar benzodiazepine derivatives by the 

condensation of o-phenylenediamine and a ketone or an aldehyde in the presence of a catalyst 

(alumina and zirconia),294 and the formation of 7-membered ring (diazepine) systems by 

microwave irradiation of a mixture of an aldehyde, a ketone and ethylene diamine in the 

presence of potassium hydroxide has also been reported.295 The monocarboxylate anion 

formed from the dicarboxylic acid resulted in the formation of a salt with the 

benzodiazepinium cation. Interestingly, it appeared that the reaction occurred without the 

involvement of isophthalic acid, except in the salt formation.296 This phenomenon was further 

ascertained by performing the reaction of o-phenylenediamine and acetone under reflux 

condition in the absence of isophthalic acid to yield compound 4. Compound 4 has been 

accessed via condensation of o-phenylenediamines (OPDA) and ketones in the presence of 

catalytic amount of H-MCM-22 using acetonitrile as a solvent at room temperature.297 Also 

2,4,6-trichloro-1,3,5-triazine (TCT) has been used to catalyze the condensation of 1,2-

diamines and various enolizable ketones to afford 1,5-benzodiazepines in good to excellent 

yields.298 
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Scheme 3.5 Synthesis of 2,2,4-trimethyl-2,3-dihydro-1H-benzodiazepin-5-ium 

isophthalate (3). 

 

When o-phenylenediamine were heated under reflux with ethanol and acetone for 8 h, the 

product obtained was 2,2,4-trimethyl-2,3-dihydro-1H-1,5-benzodiazopine (4) which 

confirmed that the cyclization occurred without the involvement of isophthalic acid. The IR 

spectrum for 2,2,4-trimethyl-2,3-dihydro-1H-1,5-benzodiazepin-5-ium isophthalate (3) 

showed a band at 1710 cm−1 due to the presence of the carbonyl group (C=O) of the 

carboxylic acid (Figure 3.17). The band at 1607 cm−1 was attributed to the presence of the 

iminium group (C=NH+). The bands at 1208 and 1552 cm−1 indicated the presence of the C–

N bond and the C–O bond of the carboxylate ion, respectively. The band at 3309 cm−1 

confirmed the presence of the amine group (NH). 
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Figure 3.17 IR spectrum of 2,2,4-trimethyl-2,3-dihydro-1H-benzodiazepin-5-ium 

isophthalate (3). 

 

Furthermore, the IR spectrum of 2,2,4-trimethyl-2,3-dihydro-1H-1,5-benzodiazepine (4) 

showed bands at 3294 cm−1 for the amine group (N–H) and a band at 2964 cm−1 for the 

methyl groups (Figure 3.18). The bands at 1633 and 1430 cm−1 were observed for the 

presence of an imine group (C=N) and a C–N group, respectively. 

 

 

 

Figure 3.18 IR spectrum of 2,2,4-trimethyl-2,3-dihydro-1H-1,5-benzodiazopine (4). 

 

The 1H NMR spectrum of compound 2,2,4-trimethyl-2,3-dihydro-1H-benzodiazepin-5-ium 

isophthalate (3) displayed a singlet at δ = 2.16 ppm indicating the presence of methylene 
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(CH2) protons (Figure 3.19). The presence of the methylene group was also confirmed by 

both the 13C NMR spectroscopy (δ = 45.2 ppm) (Figure 3.20) and DEPT-135 (Figure 3.21). 

The iminium proton appeared as a broad signal between δ = 3.50 and 4.50 ppm. The carbon 

signal at δ = 30.0 ppm was attributable to the two methyl groups attached to the sp3 carbon 

atom of the 7-membered ring. On the other hand, the singlet at δ = 29.3 ppm was attributable 

to a methyl group attached to the sp2 carbon of the 7-membered ring. The signals at δ = 171.0 

and 166.6 were attributable to the carbon atom of the iminium ion and carbonyl groups of the 

isophthalate anion, respectively. 

 

 

 

Figure 3.19 1H NMR spectra of 2,2,4-trimethyl-2,3-dihydro-1H-1,5-benzodiazepin-5-ium 

isophthalate (3).  

 

 

 

Figure 3.20 13C NMR spectra of 2,2,4-trimethyl-2,3-dihydro-1H-1,5-benzodiazepin-5-ium 

isophthalate (3).  
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Figure 3.21 DEPT spectrum of 2,2,4-trimethyl-2,3-dihydro-1H-benzodiazepin-5-ium 

isophthalate (3). 

 

1H NMR spectrum of 4 (Figure 3.22) displayed a singlet at δ = 2.16 ppm which integrated 

for two hydrogens indicating the presence of a CH2 group. The presence of the CH2 group in 

the 13C NMR spectrum (Figure 3.23) was also confirmed by the inversion of the signal (δ = 

45.2 ppm) in the DEPT-135 spectrum (Figure 3.24). The N–H group appeared as a singlet at 

δ = 4.71 ppm in the 1H spectrum. The singlet at δ = 1.24 ppm which integrated for six 

hydrogens was attributable to the methyl groups attached to the quaternary sp3 carbon, whilst 

the singlet signal at δ = 2.22 ppm with integration for three hydrogens was attributable to the 

methyl group at position 4 on the seven-membered ring. 

 

 

 

Figure 3.22 1H NMR spectrum of 2,2,4-trimethyl-2,3-dihydro-1H-1,5-benzodiazopine (4). 
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Figure 3.23 13C NMR spectrum of 2,2,4-trimethyl-2,3-dihydro-1H-1,5-benzodiazopine (4). 

 

 

Figure 3.24 DEPT spectrum of 2,2,4-trimethyl-2,3-dihydro-1H-1,5-benzodiazopine (4). 

 

The main fragments in the high resolution mass spectra (in negative and positive mode) were 

m/z 165.0195 for the isophthalate ion (C8H5O4
−) and m/z 189.1392 for the benzodiazepinium 

ion (C12H17N2
+) and these were also consistent with the assigned structures. 
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3.3.1 Proposed reaction mechanism for compounds 2,2,4-trimethyl-2,3-dihydro-1H-

benzodiazepin-5-ium isophthalate (3) and 2,2,4-trimethyl-2,3-dihydro-1H-1,5-

benzodiazopine (4) 

Scheme 3.6 shows the proposed reaction mechanism for the formation of benzodiazepine. It 

is proposed that the initial step is the attack of the carbonyl carbon of acetone by the lone pair 

of electrons on the amino group. Due to the difference in electronegativity between the 

carbon atom and the oxygen atom of the carbonyl group, the electron density is shifted 

slightly more towards the oxygen than the carbon, rendering the oxygen to acquire a partial 

negative charge and the carbon atom a partial positive charge. Also, the tendency of the 

nitrogen to attract electrons towards itself allows the hydrogen (N–H) to be easily abstracted. 

The negatively charged the nitrogen which is a better nucleophile, attack the carbonyl in I 

(Scheme 3.6). Loss of a water molecule from II results in the formation of a C=N bond in 

III. The second amine group attacks the carbonyl of another acetone molecule in IV resulting 

in the formation of V and the subsequent loss of a water molecule leads to the formation of 

the C=N group in VI.299 The ethoxide ion, formed from the dissociation of ethanol, abstracts 

a proton from the methyl group, resulting in the formation of the enolate ion in VI. Since 

ethanol is a weak acid, it produces a strong conjugate base that can easily deprotonate a 

weakly acidic proton in this case from a methyl group which is made acidic by the presence 

of unsaturation and a heteroatom on the adjoining carbon.300 The loss of the proton by the 

methyl group makes it a good nucleophile which then attacks the carbon of the C=N bond 

because of the partial positive charge of the carbon as a result of the electron withdrawing 

effect of the nitrogen forming the benzodiazepine VII. In the case of compound 3 the 

benzodiazepine formed in VII is then protonated by the isophthalic acid to form an iminium 

ion which subsequently forms a salt with the isophthalate ion in VIII.  



P a g e  | 115 

 

F. Odame  Nelson Mandela Metropolitan Univeristy 

N

N

H

H

H

H

H3C CH3

O
N

N

H

H

H

C

OH

CH3

CH3

-H2O

N

N C

CH3

CH3

H

H
N

N C

CH3

CH3

H

H

H3C CH3

O

N

N C

CH3

CH3

H

C

CH3

CH3

OH

-H2O
N

N C

CH3

H2C

C

CH3

CH3

H -OEt

3.6a 3.6b

3.6c

3.6d

3.6e
3.6f

H
N

N

C

CH3

CH3

CH3

H
N

N+

C

CH3

CH3

CH3

O

-O

OH

O

4

3

H

H+

 

 

Scheme 3.6 A proposed mechanism for the formation of 2,2,4-trimethyl-2,3-dihydro-1H-

benzodiazepin-5-ium isophthalate (3) and 2,2,4-trimethyl-2,3-dihydro-1H-1,5-

benzodiazopine (4). 
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3.3.2 X-ray crystallography of 2,2,4-trimethyl-2,3-dihydro-1H-benzodiazepin-5-ium 

isophthalate (3) and 2,2,4-trimethyl-2,3-dihydro-1H-1,5-benzodiazopine (4) 

X-ray crystal structures of the 2,2,4-trimethyl-2,3-dihydro-1H-benzodiazepin-5-ium 

isophthalate (3) and 2,2,4-trimethyl-2,3-dihydro-1H-1,5-benzodiazopine (4) were obtained 

using single crystals grown by crystallization from ethanol. Table 3.6 shows the 

crystallographic and structure refinement data for the compounds 3 and 4. The bond distances 

C27–O1 and C27–O2 of the carboxylate ion in 3 were 1.24(2) Å and 1.25(2) Å, respectively 

(Table 3.7). The bond distances indicated delocalisation of the electron density on the 

carboxylate group, with none of the two bonds being distinctly a single or double bond. The 

bond distance of C28–O3 was 1.20(2) Å and was attributable to the C=O double bond whilst 

the bond distance of C28–O4 was 1.32(2) Å indicating C–O single bond of the non-ionized 

carboxylic acid group. The bond length of N2–C5 was 1.28(2) Å which was indicative of the 

C=N double bond whilst the bond length of N1–C1 was 1.47(2) Å which confirmed the C–N 

single bond. The bond angle of C2–C1–C4 was 109.1(1)° confirming the tetrahedral 

geometry (sp3) of the carbon C(3). The bond angle of C6–C5–C4 was 121.2(1)° which was 

consistent with the trigonal planar geometry (sp2) of C5. Similarly, for compound 4, the bond 

length of the N1−C1 single bond was 1.48(2) Å whilst that of the N(2)–C(5) double bond was 

1.28(2) Å (Table 3.7). The bond angle of the sp2 carbon was N(2)–C(5)–C(4) = 123.7(1)° 

confirming that the geometry of carbon C(5) is trigonal planar. The sp3 carbon C(1) had a 

bond angle of N(1)–C(1)–C(4) = 108.6(1)° which is consistent with its tetrahedral geometry.  
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Table 3.6 Crystallographic data and structure refinement for2,2,4-trimethyl-2,3-dihydro-

1H-benzodiazepin-5-ium isophthalate (3) and 2,2,4-trimethyl-2,3-dihydro-1H-

1,5-benzodiazopine (4). 

 

Property 3 4 

Formula C12H17N2C8H5O2 C12H16N2 

Formula Weight 354.40 188.27 

Temperature (K 200 200 

Crystal System Triclinic Orthorhombic 

Space group P-1 Pna 21 

a (Å) 9.3608(4) 12.1454(3 

b (Å) 9.5706(3) 7.2730(2) 

c (Å) 11.9881(4) 11.9222(3) 

α (˚) 101.128(1) 90 

β (˚) 102.728(1) 90 

γ (˚) 114.297(1) 90 

V (Å3) 904.91(6) 1053.13(5) 

Z 2 4 

D (calc) (g/cm^3) 1.301 1.187 

μ(MoKa) (mm) 0.091 0.091 

F(000) 376 408 

Crystal Size (mm) 0.15 x 0.36 x 0.42 0.19 x 0.44 x 0.45 

Radiation (Å) Mo Kα 0.71073 Mo Kα 0.71073 

θ Min–Max (˚) 2.5–28.3 3.3–28.3 

Data set −12:12; −12:12, −15:15;−15:16;−9:9;−10:15 

Tot. Uniq. Data R(int) 16298, 4492 , 

0.015 

9541, 2371, 0.015 

Observed data (I ˃ 2.0 sigma 

(I)) 

3854 2285 

Nref, Npar 4492, 240 2371, 134 

R, Wr2, S 0.0385, 0.1045, 

1.04 

0.0306, 0.0802, 1.03 

Max and Av. Shift/Error 0.00, 0.00 0.00, 0.00 

Min and Max, Resd Dens 

(e/Å3) 

0.20, 0.30 −0.20, 0.18 
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Table 3.7 Selected bond lengths (Å), and bond angles for 2,2,4-trimethyl-2,3-dihydro-

1H-benzodiazepin-5-ium isophthalate (3) and 2,2,4-trimethyl-2,3-dihydro-1H-

1,5-benzodiazopine (4). 

 

 

Bond length 

 3 4 

C27–O1 1.24(2)  

C27–O2 1.25(2)  

C28–O3 1.20(2)  

C28–O4 1.32(2) 1.28(2) 

N2–C5 1.28(2) 1.28(2) 

N1–C1 1.47(2) 1.48(2) 

Bond angles 

C2–C1–C4 109.1(1) 108.6(1) 

C4–C5–C6 121.2(2) 117.5(1) 

C13–C12–N2 117.7(2) 116.9(1) 

16–C11–N1 121.2(1) 119.7(1) 

 

 

 

 

Figure 3.25 An ORTEP view of 2,2,4-trimethyl-2,3-dihydro-1H-benzodiazepin-5-ium 

isophthalate (3) showing 50% probability displacement ellipsoids and the 

atom labelling. 
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Figure 3.26 An ORTEP view of 2,2,4-trimethyl-2,3-dihydro-1H-1,5-benzodiazopine (4) 

showing 50% probability displacement ellipsoids and the atom labelling. 

 

An alternative approach was to synthesize the benzimidazole directly on the amino acids 

derivatives of benzoyl isothiocyanate (Scheme 3.7). Pre-screening with Autodock gave good 

predicted inhibition constants. Hence an attempt was made to synthesize them. Amino acid 

derivatives of benzoyl isothiocyanate can be used as intermediates to construct other 

biologically active molecules with a thiourea backbone, and in this work it was envisaged to 

access benzimidazoles by reacting the amino acids derivatives with 1,2-diaminobenzene. 

However, some thiourea derivatives of various amines have also been synthesized in acetone 

and tested for their anti-amoebic properties.301 

 

The isothiocyanates can be generated by a reaction of the acylated intermediates with 

ammonium thiocyanate in the presence of polyethylene gylcol 400 (PEG 400),302 and then 

reacted with amines to generate the thiourea derivatives. Thiourea derivatives have been 

synthesized through several ways. For example, ethyl isothiocyanates and aromatic amines 

were mixed and stirred at room temperature in acetone for 15 h to give the corresponding 

thioureas in high yields.303 A simple and efficient method for the synthesis of thiourea 

derivatives in high purity and high yield has been reported using tetrabutyl ammonium 

bromide (TBAB) as a phase transfer catalyst.304 A series of thiourea derivatives containing 

the quinazoline 4(3H) framework have been synthesized by Saeed et al.305 Pyrazole acyl 

thiourea derivatives have also been synthesized from monomethylhydrazine (or 
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phenylhydrazine) and ethyl acetoacetate.306 N-(5-Aryl-2-furonyl) thiourea derivatives 

containing substituted pyrimidine rings have been synthesized in good yield using PEGe400 

as a phase transfer catalyst under ultrasonic irradiation.307 

 

Fluorinated pyrazoles, benzene sulfonylurea and thiourea derivatives as well as their cyclic 

sulfonylthioureas have been prepared by the reaction of brominated trifluoromethyl diketones 

with isocyanates and isothiocyanates.308 Benzimidazoles conjugated to thioureas have been 

synthesized by the refluxing of isothiocyanates and benzimidazoles in dimethyl 

formamide.309 Versatile and expeditious syntheses of taurine-derived thioureas, ureas, and 

guanidines using taurine isothiocyanate as the key intermediate have also been reported. The 

thioureas were obtained by a one-pot two-step procedure starting from taurine by the 

isothiocyanation reaction with thiophosgene in aqueous tetrahydrofuran, followed by 

coupling with aliphatic and aromatic amines. Desulfurization of the thiourea derivatives with 

mercury (II) oxide gave either taurine-containing ureas or guanidine.310 Urea and thiourea 

derivatives of diphenylphoshoramidate may be aromatic isocyanates and isothiocyanates in 

tetrahydrofuran in the presence of triethylamine.311 Multifunctional thioureas bearing a 

variety of functional groups at a position remote from the thiourea moiety have been 

synthesized via ruthenium catalyzed Huisgen cycloaddition.312 

 

 

Table 3.8 Pre-screening results of benzimidazoles of the amino acid derivatives of 

benzoyl isothiocyanate. 

 

CODE Energy kcal/mol Inhibition constant Ki 

(μM) 

Cysteine 

derivative 

-7.19 5.37 

Glycine dervative -7.31 4.38 

Alanine derivative -6.39 20.68 

Leucine derivative -7.52 3.08 

Serine derivative -7.69 2.30  

Proline derivative -8.29 0.84 

 



P a g e  | 121 

 

F. Odame  Nelson Mandela Metropolitan Univeristy 

O

Cl

NH4SCN

acetone

O

N S

R

H

NH2

O

OH

acetone

O

N

H

S

N

H

R

H

OH

O
H2N

H2N

O

N

H

S

N

H

R H

N

H
N

PPA/Toluene

3.7a 3.7b 3.7c

3.2a

3.7e

3.7d

 

 

Scheme 3.7 Synthesis of benzimidazoles of amino acid derivatives of benzoyl 

isothiocyanate. 

 

 

3.4  Synthesis and characterization of amino acid derivatives 

Cyclohexanecarbonyl isothiocyanate has been reacted with various amines in acetone, with a 

slightly different work-up procedure which involved the addition of 0.1 N hydrochloric acid 

to the mother liquor before filtration, and this was reported to give higher yields of between 

86 and 93%.313 Amino acid derivatives of benzoyl isothiocyanate have been accessed by 

treating potassium thiocyanate with benzoyl chloride in anhydrous acetone for 1 h and adding 

amino acids and few drops of pyridine to the product and further refluxing for 6 h.314 

 

The syntheses of 2-[(benzoylcarbamothioyl)amino]-3-hydroxypropanoic acid (5), 2-

[(benzoylcarbamothioyl)amino]-4-(methylsulfanyl)butanoic acid (7) and 2-

[(benzoylcarbamothioyl)amino]propanoic acid (8) were readily achieved by the reaction of 

benzoyl isothiocyanate with the different amino acids (Scheme 3.8). Scheme 3.9 gives the 
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reaction path for 1-(benzoylcarbamothioyl)pyrrolidine-2-carboxylic acid (6). The lone pair of 

electrons on the nitrogen atom of the amino acid attacks the carbon of the thione. This shifts 

the electron density onto the nitrogen of the isothiocyanate allowing it to abstract a proton 

from the amine of the amino acid. The FTIR, 1H NMR and 13C NMR confirmed the 

formation of the amino acid derivatives. 2-Phenyl-1H-benzimidazole ( 9) (Schemes 3. 8 and 

3.9) was accessed by the reaction of compounds 5–8 with o-phenylenediamine. The diamine 

attacks the carbonyl close to the benzene ring (benzoyl group) instead of the carboxylic acid 

to form the desired benzimidazole.  
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Scheme 3.8  Synthesis scheme for compounds 5 and 7–9. 
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Scheme 3.9 Synthesis scheme for compounds 6 and 9. 
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N-Benzoyl-N′-carboxyl substituted thiourea derivatives have been synthesized by the reaction 

of benzoyl isothiocyanate with amino acids. In this reaction potassium thiocyanate was used 

as the isothiocyanate source and few drops of pyridine was added after the addition of the 

amino acid.315 N-[Benzoylamino)thioxomethyl]amino acid derivatives have been prepared by 

the reaction of benzoyl isothiocyanate with various amino acids in acetone, namely, histidine, 

alanine, phenylalanine, serine and cysteine, however only the alanine and serine derivatives 

were characterised by NMR.315 The cadmium(II) and zinc(II) complexes of the phenylalanine 

derivatives have also been reported and characterized by IR, NMR, and microanalysis.316 The 

cobalt(II), copper(II) and nickel(II) complexes of the aspartic acid, glutamic acid, methionine, 

leucine and tryptophan derivatives of benzoyl isothiocyanates have been synthesized and 

tested for their antibacterial activity.317  

 

The 1H NMR spectrum (Figure 3.27) of 5 gave a singlet signal at 11.43 ppm for the N–H of 

an amide, another singlet signal attributable to the proton of a hydroxyl group occurred at 

11.49 ppm. This was confirmed in the 1H–1H COSY spectrum (Figure 3.28). A broad signal 

for an N–H also occurred at 5.34 ppm. Aromatic protons occurred between 7.96–7.53 ppm, a 

triplet signal for one proton occurred at 4.94 ppm, a singlet signal for two –methylene protons 

occurred at 3.88 ppm. The 13C NMR spectrum (Figure 3.29) showed a signal at 180.3 ppm 

for the C=S of thione, and two signals at 170.7 and 168.3 for the carbonyl group. Aromatic 

carbons occurred between 133.0 and 128.4 ppm. Two signals at 60.5 and 60.3 ppm were 

observed for the C–H and methylene groups were also observed. The IR spectrum (Figure 

3.30) showed a band at 3229 cm−1 for the N–H of an amide. The aliphatic C–H stretch was 

observed at 2980 cm−1 whilst the C=S stretch occurred at 1725 cm−1 The C=O and the C=C 

bands were observed at 1654 and 1509 cm−1, respectively. The C–N stretch occurred at 1164 

cm−1. 
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Figure 3.27 1H NMR spectrum of 2-[(benzoylcarbamothioyl)amino]-3-hydroxypropanoic 

acid (5).  

 

 

Figure 3.28 1H–1H COSY spectrum of 2-[(benzoylcarbamothioyl)amino]-3-

hydroxypropanoic acid (5).  
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Figure 3.29 13C NMR spectrum of 2-[(benzoylcarbamothioyl)amino]-3-hydroxypropanoic 

acid (5).  

 

 

 

Figure 3.30 IR spectrum of 2-[(benzoylcarbamothioyl)amino]-3-hydroxypropanoic acid 

(5).  

 

The nitrogen protons which do not appear in the 1H NMR spectra of compounds 6, 7 and 8 

exchange with the residual water molecules in DMSO hence are undetectable. The 1H NMR 

spectrum (Figure 3.31) of 6 gave a singlet signal at 10.90 ppm for the proton of a hydroxyl 

group which was consistent with the 1H–1H COSY spectrum (Figure 3.32). Aromatic protons 

occurred between 7.94–7.50 ppm. A triplet signal for one proton was observed at 4.68 ppm. 
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Three sets of multiplet signals for methylene protons were observed at 3.68, 2.02 and 1.99 

ppm. The 13C NMR spectrum (Figure 3.33) showed a signal at 179.1 ppm for the C=S of 

thione, and two signals at 171.9 and 171.2 ppm were due to the carbonyl of two different 

rotamers of 6. Whilst the carbonyl of the amide was observed at 164.0 ppm. Aromatic 

carbons occurred between 132.9 to 128.2 ppm. Six signals for methylene protons were 

observed between 65.4 to 22.94 ppm. The IR spectrum (Figure 3.34) showed a band at 3229 

cm−1 for the N–H stretch. The aliphatic C–H stretch was observed at 2987 cm−1, whilst the 

C=S stretch occurred at 1730 cm−1. The C=O and the C=C bands were observed at 1659 and 

1491 cm−1, respectively. The C–N stretch occurred at 1182 cm−1. The two rotamers in 

solution are formed by restricted rotation around the nitrogen of the proline, specifically 

around the N(2)–C(2) bond, making the carbon signals for all the four carbon atoms in the 

proline ring double but with reduced intensities. This also gave rise to two carbonyl signals 

for the proline part of compound 6 as evident in the 13C NMR and DEPT–135 (Figure 3.35) 

spectra. 

 

 

 

Figure 3.31 1H NMR spectrum of 1-(benzoylcarbamothioyl)pyrrolidine-2-carboxylic acid 

(6).  
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Figure 3.32 1H-1H COSY spectrum of 1-(benzoylcarbamothioyl)pyrrolidine-2-carboxylic 

acid (6). 

 

 

 

Figure 3.33 13C NMR spectrum of 1-(benzoylcarbamothioyl)pyrrolidine-2-carboxylic acid 

(6).  
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Figure 3.34 IR spectrum of 1-(benzoylcarbamothioyl)pyrrolidine-2-carboxylic acid (6).  

 

 

 

Figure 3.35 DEPT 135 spectrum of 1-(benzoylcarbamothioyl)pyrrolidine-2-carboxylic 

acid (6).  

 

The 1D NOESY (Figure 3.36 and 2D NOESY (Figure 3.37) spectra showed an exchange 

between the signals at 4.42 and 4.62 ppm, and both signals are attached to the same carbon 
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that changes position as indicated in the HSQC (Figure 3.38) and HMBC (Figure 3.39) 

spectra. 

 

 

Figure 3.36 1D NOESY spectrum of 1-(benzoylcarbamothioyl)pyrrolidine-2-carboxylic 

acid (6).  

 

 

Figure 3.37 2D NOESY spectrum of 1-(benzoylcarbamothioyl)pyrrolidine-2-carboxylic 

acid (6).  
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Figure 3.38 HSQC spectrum of 1-(benzoylcarbamothioyl)pyrrolidine-2-carboxylic acid 

(6).  

 

 

 

Figure 3.39 HMBC spectrum of 1-(benzoylcarbamothioyl)pyrrolidine-2-carboxylic acid 

(6).  

 

The 1H NMR spectrum (Figure A3.1) of 7 showed a singlet signal at 11.54 ppm and a 

doublet signal at 11.28 ppm for the hydroxyl and N–H group of the amide, respectively. 

Aromatic protons occurred between 7.96–7.52 ppm. A quartet signal at 5.03 ppm was 

observed for the chiral proton, two multiplet signals for two set of methylene protons 
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occurred at 2.26 and 2.17 ppm. A singlet signal for three methyl protons occurred at 2.09 

ppm. The 13C NMR spectrum (Figure A3.2) showed a signal at 180.50 ppm for the C=S of 

the thione. Two signals were observed at 171.8 and 168.4 ppm for the carbonyl. Aromatic 

carbons occurred between 133.1 and 128.2 ppm. A signal for a C–H was observed at 66.6 

ppm. Two methylene groups were observed at 30.5 and 29.2 ppm which were confrimed by 

the inversion in the DEPT–135 spectrum (Figure A3.3). A signal for a methyl group 

occurred at 14.6 ppm. The IR spectrum (Figure A3.4) showed two signals at 3282 and 3202 

cm−1 for and N–H stretch. A signal at 2914 cm−1was observed for the aliphatic C–H stretch. 

The C=S stretch of a thione was observed at 1715 cm−1 whilst the C=O and C=C signals were 

observed at 1664 and 1519 cm−1. The C–N stretch occurred at 1193 cm−1. 

 

The 1H NMR spectrum (Figure A3.5) of 8, gave a singlet signal at 11.51 ppm due to 

hydroxyl group, and another signal at 11.30 ppm for the N–H of an amide. Aromatic protons 

were observed between 7.93 and 7.52 ppm. A quartet signal for one proton was observed at 

4.85 ppm, whilst a doublet signal for three protons was observed 1.49 ppm. The 13C NMR 

spectrum (Figure A3.6) showed a signal at 179.9 ppm for the C=S of thione, and two signals 

at 172.9 and 168.5 for the carbonyl group. Aromatic carbons occurred between 133.0 and 

128.4 ppm. Two signals at 63.1 and 17.2 ppm were observed for the C–H and methyl groups. 

The IR spectrum (Figure A3.7) showed a band at 3384 cm−1 for the N–H of an amide. The 

aliphatic C–H stretch was observed at 2992 cm−1 whilst the C=S stretch occurred at 1726 

cm−1 The C=O and the C=C bands were observed at 1678 and 1489 cm−1, respectively. The 

C–N stretch occurred at 1196 cm−1. 

 

The 1H NMR spectrum (Figure A3.8) of compound 2-phenyl-1H-benzimidazole (9) gave 

signals  between 8.20 and 7.21 ppm for aromatic protons. The13C NMR spectrum (Figure 

A3.9) showed a signal at 151.2 ppm for the C=N of the benzimidazole. Signals for aromatic 

carbons were observed between 130.0 and 122.1 ppm. The IR spectrum (Figure A3.10) 

showed a band at 3048 cm−1 for the N–H of an amide. The aliphatic C–H stretch was 

observed at 2961 and 2850 cm−1 whilst the C=N stretch occurred at 1539 cm−1. The C=C and 

the C–N bands were observed at 1461 and 1443 cm−1, respectively.  
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3.4.1 Crystal structures of amino acid derivatives 

Compounds 5, 6 and 7 were recrystallized from acetone:water (4:1) as colourless crystals, 

whilst compound 8 was recrystallized from acetone:water (4:1) as yellow crystals. The 

crystallographic data, selected bond lengths, bond angles and torsion angles for the structures 

of 5–8 are provided in tables 3.9 and 3.10. Compounds 5 and 6 crystallized in orthorhomic 

space group P212121, whilst compound 7 crystallized in monoclinic space group P21 and 

compound 8 in orthorhomic space group C2221. The absence of rotamers in the solid state 

was confimed during the refinement procedure by means of the Flack parameter in each case.  

The crystal structure of compound 6 has been reported by Ngah et al. and the compound was 

accessed by refluxing proline with benzoyl isothiocyanate in acetone giving a yield of 

76%.316 
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Table 3.9 Crystallographic data and structure refinement summary for compounds 5–8. 

 

Property 5 6 7 8 

CCDC Number 1014079 1014083 1014284 1014322 

Empirical Formula C11H12N2O4S,H2O C13H14N2O3S,H2O C13H16N2O3S2 C11H12N2O3S 

Formula Weight 286.31 296.35 312.42 252.30 

Crystal System orthorhombic Orthorhombic Monoclinic Orthorhombic 

Space group P212121 P212121 P21 C2221 

a (Å) 7.0613(3) 8.8347(5) 5.1663(2) 8.2584(3) 

b (Å) 11.0752(4) 11.8182(7) 1.4170(5) 21.7331(8) 

c (Å) 16.5713(7) 13.3896(8) 12.7108(5) 13.4905(6) 

α (°) 90 90 90 90 

β (°) 90 90 96.843(1) 90 

γ (°) 90 90 90 90 

V [Å^3] 1295.96(9) 1398.01(14) 744.39(5) 2421.28(17) 

Z 4 4 2 8 

D(calc) (g/cm^3) 1.467 1.408 1.394 1.384 

μ(MoKa) ( /mm) 0.268 0.246 0.365 0.265 

F(000) 600 624 328 1056 

Crystal Size (mm) 0.26 x 0.39 x0 0.52 0.47 x0.48 x0.56 0.16 x 0.37 x 0.49 0.23 x 0.53 x 0.72 

Temperature (K) 200 200 200 200 

Radiation (Å) 0.71073 0.71073 0.71073 0.71073 

θ Min–Max (°) 2.2–28.3 2.8–28.4 2.4–28.3 1.9–28.3 

Dataset −7:9;−14:9 ;−22:20 −1:8;−15:13;−17:17 −6:4;−14:15;−16:16 −11:9;−25:28;−15:17 

Tot., Uniq. Data 6893, 3088 10872, 3334 6845, 3344 6792, 3009 

Rint 0.01 0.014 0.017 0.014 

[I > 2.0 sigma(I)] 2991 3224 3176 2879 

Nref, Npar 3088,180 3334, 195 3344,185 3009, 164 

R,w, 0.0227 0.0240 0.0252 0.0238 

R2 .043 0.0650 0.0654 0.0659 

S 1.09 1.03 1.03 1.04 

Max. and Av. 

Shift/Error 
0.00, 0.00 0.00, 0.00 0.000 ,0.00 0.000 ,0.00 

Min..Residual. Density. 

[e/Å^3] 
−0.17 −0.17 −0.20 −0.14 

Max.Residual. Density. 

[e/Å^3 
025 0.24 0.26 0.25 

Flackparameter 0.020(13) 0.002(14) 0.00(2) 0.012(19) 
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Table 3.10 Selected bond lengths (Å) and bond angles (°) of compounds 5–8. 

 

Bond lengths 5 6 7 8 

S1–C2 1.670(2) 1.661(2) 1.676(2) 1.677(1) 

O1–C1 1.232(2) 1.229(2) 1.226(2) 1.222(2) 

N1–C2 1.399(2) 1.420(2) 1.385(3) 1.323(2) 

N1–C1 1.372(2) 1.367(2) 1.383(3) 1.386(2) 

N2–C2 1.331(2) 1.326(2) 1.331(3) 1.487(2) 

C1–C11 1.489(2) 1.488(2) 1.486(3) 1.487(2) 

S2–C7 - - 1.793(3) - 

S2–C6 - - 1.801(2) - 

Bond angles 5 6 7 8 

O1–C1–N1 121.8(1) 121.8(1) 121.5(2) 122.0(1) 

O1–C1–C11 121.6(1) 120.9(1) 121.3(2) 121.8(1) 

S1–C2–N1 118.3(1) 119.2(1) 120.9(2) 119.6(1) 

S1–C2–N2 125.2(1) 124.4(1) 122.3(2) 123.5(1) 

N1–C1–C11 116.6(1) 117.3(1) 117.2(2) 116.2(1) 

N1–C2–N2 116.6(1) 116.3(1) 116.8(2) 116.8(1) 

C1–N1–C2 127.8(1) 123.2(1) 126.9(2) 127.4(1) 

 

 

The ORTEP diagram of 5 is presented in Figure 3.40. The experimental bond distance of 

S1–C2 = 1.670(2) Å in 5 is consistent with the C=S of the thione 318, whilst the C1–O1 and 

C4–O3 bond distances of 1.233(2) Å and 1.202(2) Å show the presence of the carbonyl bond 

of the amide and the carbonyl of the carboxylic acid, respectively. The bond distance of C1–

N1 = 1.372(2) Å is indicative of the C–N bond of the amide. The O2–C4–O3 bond angle of 

124.8(2)° is consistent with the bond angle around the sp2 carbon of the carboxylic acid 

whilst the S1–C2–N2 bond angle of 125.2(1)° indicated the presence of the sp2 carbon of the 

thione. The O1–C1–N1 bond angle of 121.6(1)° also showed the presence of the sp2 carbon 

of the amide.  
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Figure 3.40 An ORTEP view of 2-[(benzoylcarbamothioyl)amino]-3-hydroxypropanoic 

acid (5) showing 50% probability displacement ellipsoids and the atom 

labelling. 

 

 

The structure of 6 is presented in Figure 3.41. The bond distances of O2–C3 and C1–O1 

which were 1.201(2) Å and 1.229(2) Å are consistent with the carbonyl of the carboxylic acid 

and the carbonyl of the amide, respectively. This also compared favourably with the carbonyl 

bond distances in 5. The bond distance of C1–N1 = 1.367(2) Å indicated the C–N bond of the 

amide and it was comparable to the C–N bond distance in 5 which was 1.372(2) Å. The bond 

distance of S(1)–C(2) = 1.661(2) Å showed the presence of the C=S of the thione and was 

comparable to that of 5 (1.670(2) Å). The O3−C3−O2 bond angle of 125.0(1)° is indicative 

of the sp2 carbon of the carbonyl of the carboxylic acid and the N1–C1–O1 bond angle of 

121.8(1)° also confirmed the presence of the sp2 carbon of the carbonyl and these were 

comparable to the bond angles observed in 5. The S1–C2–N1 bond angle of 119.2(1)° also 

indicated the presence of the sp2 carbon of the thione. The ORTEP diagrams of compounds 7 

and 8 are presented in Figures 3.42 and 3.43. Their metrical parameters are similar to those 

of compounds 5 and 6.  
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Figure 3.41 An ORTEP view of 1-(benzoylcarbamothioyl)pyrrolidine-2-carboxylic acid 

(6) showing 50% probability displacement ellipsoids and the atom labelling.  

 

 

 

 

Figure 3.42 An ORTEP view of 2-[(benzoylcarbamothioyl)amino]-4-(methylsulfanyl) 

butanoic acid (7) showing 50% probability displacement ellipsoids and the 

atom labelling.  
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Figure 3.43 An ORTEP view of 2-[(benzoylcarbamothioyl)amino]propanoic acid (8) 

showing 50% probability displacement ellipsoids and the atom labelling.  

 

 

3.4.2 HOMO-LUMO analysis 

In view of the fact that compounds 5-8 are useful intermediates in accessing other complex 

molecules, it was important to carry out some theoretical studies to gain insight into the 

nature of these compounds in terms of their chemical reactivity. In fact, a chemical reaction 

that was attempted on compounds 5-8, i.e. a cyclization reaction with 1,2-diaminobenzene at 

the carboxylic acid site to form benzimidazoles, has been unsuccessful yielding rather a 

benzimidazole through the diamine attacking the carbonyl of the benzoyl group (compound 

9) instead of the carboxylic acid site. This prompted us to carry out some computational 

studies in order to predict the reactivity of these compounds. The highest occupied molecular 

orbital and lowest unoccupied molecular orbital energy separations, HOMO–LUMO energy 

gaps, have been evaluated by DFT methods. The frontier orbitals are useful in predicting the 

most reactive position in π-electron systems 319 and to explain several types of reactions in a 

conjugated system like benzoyl isothiocyanate.  

 

Benzoyl isothiocyanate is characterised by a small highest occupied molecular orbital-lowest 

unoccupied molecular orbital (HOMO–LUMO) separation, which is the result of a significant 

degree of intramolecular charge transfer from the end capping electron-donor groups through 

a π-conjugated path.320  The HOMO and LUMO are the main orbitals that determine chemical 
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stability of the species.321 The HOMO, which represents the ability to donate an electron, is 

delocalised over the entire molecule except the carbonyl and carbon of the thione whilst the 

LUMO (which represent the ability to accept an electron) shows delocalization of it orbitals 

over both the carbon atoms of the carbonyl and the thione indicating that both are susceptible 

to attack by an incoming group but because the carbonyl is sterically hindered the carbon of 

the thione is the preferred site of attack and this attack is further stabilized by charge transfer 

through the benzene ring. The energy of the HOMO is directly related to the ionization 

potential whilst the energy of the LUMO is related to the electron affinity. The energy 

difference between HOMO and LUMO orbitals, known as the energy gap, determines the 

stability or reactivity of molecules.322 A narrow energy gap for benzoyl isothiocyanate is 

consistent with its high reactivity. The energy gap is a critical parameter in determining 

molecular electrical transport properties because it is a measure of electron conductivity.323 

The hardness of a molecule also corresponds to the gap between the HOMO–LUMO 

orbitals.324 Large HOMO−LUMO gap indicates high stability and resistance to charge 

transfer, therefore, hard molecules have a large HOMO−LUMO gap.  

 

Table 3.11 gives the computed energy gap between the LUMO and HOMO of compounds 5–

8 and benzoyl isothiocyanate as well as the amino acids. The computed energy gap between 

the LUMO and HOMO of benzoyl isothiocyanate is narrow which implies that it is a soft 

molecule.325 Compound 5 with a HOMO–LUMO gap of 432.18 kJ/mol is lower compared to 

that of serine which is 606.60 kJ/mol, confirming that L-serine is harder and less reactive 

than 5, even though their sites of reactivity differ. L-Proline with a HOMO–LUMO gap of 

564.14 kJ/mol is harder but less reactive than 6 which has a HOMO–LUMO gap of 410.45 

kJ/mol, but the reactivity of these compounds are concentrated on different sites of the 

molecules. Compound 7 with a HOMO–LUMO gap of 349.67 kJ/mol is harder but less 

reactive than D-methionine which has a HOMO–LUMO gap of 508.09 kJ/mol, and alanine 

with a HOMO–LUMO gap of 592.37 kJ/mol is hard and less receive than 8 which is 418.40 

kJ/mol. From this information, it is not clear why the carboxylic acid site is less reactive in 

the benzoyl isothiocyanates derivatives compared with the amino acids since these molecules 

are softer than the parent amino acids. This prompted the study of the frontier orbitals.  
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Table 3.11 Summary of the HOMO-LUMO energies for compounds 5–8 and the starting 

materials.  

 HOMO (kJ/mol) LUMO (kJ/mol) HOMO–LUMO gap (kJ/mol) 

Benzoyl isothiocyanate −7I5.16 −498.40 216.76 

Compound 5 −675.93 −243.75 432.18 

Serine −692.24 −85.64 606.60 

Compound 6 −616.00 −205.55 410.45 

Proline −638.97 −74.83 564.14 

Compound 7 −564.17 −214.50 349.67 

Methionine −599.43 −91.34 508.09 

Compound 8 −651.52 −233.12 418.40 

Alanine −678.72 −86.35 592.37 

 

 

Figure 3.44 shows the HOMO and LUMO orbitals of benzoyl isothiocyanate. The HOMO is 

delocalised over the thione, nitrogen and the ring with the oxygen atom making no 

contribution whilst the LUMO is delocalised over nearly the entire molecule. This suggests 

that the entire molecule is involved in the acceptance of electrons which makes this species 

very reactive.  

 

 

Figure 3.44  The atomic orbitals compositions of the frontier molecular orbitals for benzoyl 

isothiocyanate. 

 

The frontier orbitals of 5 (Figure 3.45) shows that the HOMO is mostly concentrated on the 

sulfur of the thione, the nitrogen atoms and the phenyl ring, whilst the LUMO is largely 

delocalised over the thione, the nitrogen atoms, the carbonyl and over the benzene ring which 
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aids in stabilising the compound during charge transfer via delocalization over the benzene 

ring. The carboxylic acid has no contribution to the frontier orbitals (LUMO) hence is 

unreactive in the compound. This further confirmed the inability to convert it to a 

benzimidazole by reacting it with 1,2-diaminobenzene. The frontier orbitals of serine (Figure 

3.46) are distributed over the entire molecule with most of the atoms making a contribution. 

The carboxylic acid makes a little contribution to the LUMO hence the cyclization should be 

possible on a free serine. 

 

 

Figure 3.45  The atomic orbitals compositions of the frontier molecular orbital for 2-

[(benzoylcarbamothioyl)amino]-3-hydroxypropanoic acid (5).  

 

 

 

Figure 3.46 The atomic orbitals compositions of the frontier molecular orbital for serine.  

 

The frontier orbitals of 6 are shown in Figure 3.47. The HOMO is mostly concentrated on 

the sulfur of the thione and is slightly delocalised on the nitrogen atoms whilst the LUMO is 
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largely delocalised over the entire molecule except the carboxylic acid and the methylene 

groups. Once again, the carboxylic acid was unreactive because it makes no contribution to 

the frontier orbitals which confirmed why it could not be converted to a benzimidazole. The 

frontier orbitals of proline are delocalized over nearly the entire molecule in LUMO 

confirming the possibility for benzimidazole formation whilst in the HOMO the orbital is 

delocalized over the nitrogen and the surrounding carbon atoms (Figure 3.48). 

 

Figure 3.47  The atomic orbitals compositions of the frontier molecular orbitals for 1-

(benzoylcarbamothioyl)pyrrolidine-2-carboxylic acid (6).  

 

 

 

Figure 3.48  The atomic orbitals compositions of the frontier molecular orbitals for proline. 

 

Figure 3.49 shows the frontier orbitals of 7. The HOMO is mostly concentrated on the sulfur 

atoms and the methylene groups from the methionine whilst the LUMO is mostly delocalised 

over the benzene ring, the carbonyl, the nitrogen atoms and the thione. The delocalisation of 

the LUMO over the benzene ring aids in stabilising the compound during charge transfer. 
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The carboxylic acid makes no contribution to the frontier orbitals (LUMO) which again 

confirmed its unreactivity. In frontier orbitals of methionine (Figure 3.50) the LUMO is 

delocalised over the entire molecule except the sulfur and methyl group attached to it, whilst 

its HOMO is delocalized on the entire molecule except the carboxylic acid.  

 

 

 

Figure 3.49  The atomic orbitals compositions of the frontier molecular orbitals for 2-

[(benzoylcarbamothioyl)amino]-4-(methylsulfanyl)butanoic acid (7).  

 

 

 

Figure 3.50 The atomic orbitals compositions of the frontier molecular orbitals for 

methionine. 

 

The frontier orbitals of compound 8 are shown in Figure 3.51. The HOMO is mostly 

concentrated on the sulfur of the thione and is slightly delocalised on the nitrogen and the 

carboxylic acid whilst the LUMO is largely delocalised over the entire molecule except the 

carboxylic acid and the methyl group. The carboxylic acid could not be functionalized to a 
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benzimidazole by the attachment of 1,2-diamonobenzene due to the fact that the carboxylic 

acid has no contribution to the LUMO, which would receive the incoming electrons. The 

frontier orbitals of alanine in Figure 3.52 shows delocalization over the entire molecule in 

the LUMO whilst the HOMO is also delocalized over the entire molecule with little 

contribution from the carboxylic acid.  

 

 

 

Figure 3.51 The atomic orbitals compositions of the frontier molecular orbitals for 2-

[(benzoylcarbamothioyl)amino]propanoic acid (8). 

 

 

 

Figure 3.52 The atomic orbitals compositions of the frontier molecular orbitals for alanine. 

 

The cyclization to form a benzimidazole using the alanine has been reported to be accessed 

by solvent free melting 326 and also in the presence of a mixture of orthophosphic acid and 

polyphosporic acid via microwave irradiation.327 Hence, the compounds were not reproduced 

here. However, the theoretical calculations indicate that the amino acid derivatives of benzoyl 
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isothiocyanate are not reactive to the cyclization reaction with 1,2-diaminobenzene at the 

carboxylic acid site. The frontier orbitals are rather concentrated on the carbonyl attached to 

the phenyl ring and the thione making that carbonyl more susceptible to and attack by the 

lone pair of electrons of an amine. 

 

 

3.5 Synthesis of the amino acid ester derivatives 

A new set of scaffolds were pre-screened (Table 3.12) and an attempt was made at 

synthesizing them. 

 

 

Table 3.12 Autodock pre-screening of alternative benzimidazole linked amino acid 

derivatives (Scheme 3.10).  

 

 

 

Synthesis of the amino acid ester derivatives of the compounds was then attempted based on 

the pre–screening results. The first approach was to make the amino acid derivatives of 

benzoyl isothiocynate, convert it to the ester by heating it in trimethylsilyl chloride in 

methanol and reacting it with 2-aminobenzimidazole to form an amide as indicated in 

Scheme 3.10 below. The products were oily and purification was not successful. TLC gave a 

continuous streak in ethyl acetate:hexane (4:1). Purification on column still gave oily 

products which were impure and could not be purified or separated by the techniques 

available.  

 

Descriptive Code Free binding energy Inhibition constant Ki (μM) 

Alanine derivative -6.56 15.57 

Serine derivative -7.23 5.00 

Methionine derivative -7.27 4.67 

Glycine derivative -7.74 2.10 

Leucine derivative -7.48 3.32 

Cysteine derivative -7.38 3.92 
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Amino acid methyl esters were then used as starting materials instead of the acids. The 

workup to isolate a pure product was not successful in most cases and only yielded impure 

oils that never solidified or could not be purified.  
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Scheme 3.10 Synthesis of amide of amino acid derivatives of benzoyl isothiocynate. 

 

Also chlorination of the amino acid derivatives was carried out ( Scheme 3.11). Any attempt 

to purify the products led to their decomposition, possibly due to the presence of water in the 

solvents used. 
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Scheme 3.11 Synthesis of amides of amino acid derivatives of benzoyl isothiocyanate via 

chlorination of the acid. 

 

Direct chlorination of the amino acid was also attempted (Scheme 3.12). In this the amine 

group also reacted with the thionyl chloride used. The product formed breaks down upon 

addition of a solvent.  
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Scheme 3.12 Synthesis of amide of via chlorination of amino acid.  

 

Reaction of the alanine methyl ester hydrochloride and aspartic acid dimethyl ester with 

benzoyl isothiocyanate gave the desired products but an attempt to convert the alanine methyl 

ester derivative to the amide by reacting it with 2-aminobenzimidazole in THF and pyridine 

was not successful as starting materials were recovered. The aspartic acid dimethyl ester and 

alanine methyl ester derivatives of benzoyl isothiocyanate have also been synthesized in 

acetone from the corresponding thione.328, 329 A methoxy substituted derivative of benzoyl 

isothiocyanate has been accessed by boiling the thione directly in methanol.330 The amino 

acid methyl ester derivative of benzoyl isothiocyanate has been accessed by refluxing the 

amino acid and benzoyl isothiocyanate in alcohol in the presence of a base.331 

 

 

3.5.1 Methyl-2-{[(phenylformamido)methanethioyl]amino}propanoate (10) 

The alanine methyl ester hydrochloride reacted with benzoyl isothiocyanate via an attack of 

the thione carbon by the lone pair of electrons on the nitrogen which is separated from the 
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hydrochloride in situ to form compound 10. The IR spectrum (Figure 3.53) showed a band at 

3229 cm-1 for the N–H stretch, a band at 2929 cm-1 for the aliphatic C–H stretch, a band at 

1652 cm-1 for the C=O stretch, a band at 1599 cm-1 for the C–N stretch and another band at 

1540 cm-1 for the C=C stretch. The 1H NMR (Figure 3.54) gave a triplet signal at 11.43 ppm 

for the N-H, signals for aromatic protons were observed between 7.93 and 7.51 ppm, a 

doublet signal was observed at 4.91 ppm for proton of the chiral carbon. Whilst a singlet 

signal for three protons was observed at 2.51 ppm for the methoxy group. The 13CNMR 

(Figure 3.55), showed a signal at 180.28 ppm for the C=S, signals for the carbonyl were 

observed at 170.79 ppm and 168.30 ppm. Signals were observed between 133.1 and 

128.7ppm, for aromatic carbons, a signal was observed at 60.48 ppm for the methoxy group 

and another signal was observed at 59.55 ppm for the chiral carbon. 

 

 

 

Figure 3.53  IR spectrum of methyl-2-{[(phenylformamido)methanethioyl]amino} 

propanoate (10). 
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Figure 3.54 1H NMR spectrum of methyl-2-{[(phenylformamido)methanethioyl]amino} 

propanoate (10). 

 

 

 

Figure 3.55 13C NMR spectrum of methyl-2-{[(phenylformamido)methanethioyl]amino} 

propanoate (10). 
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3.5.2 1,4-Dimethyl-2-{[(phenylformamido)methanethioyl]butanedioate (11) 

The aspartic acid dimethyl ester dihydrochloride reacted with benzoyl isothiocyanate via an 

attack of the thione carbon by the lone pair of electrons on the nitrogen which is separated 

from the hydrochloride in situ to form compound 11. 

The IR spectrum (Figure 3.56) showed a bands 3326 and 3230 cm-1 for the N–H stretch, 

bands at 2999 and 2947 cm-1 were observed for the aliphatic C–H stretch, a band was 

observed at 1745 cm-1 for the C=O stretch, a band was observed at 1578 cm-1 for the C=C 

stretch. The 1H NMR (Figure 3.57 ) gave singlet signal at 11.56 ppm and a doublet signal at 

11.50 ppm for N(1)–H and N(2)–H respectively. While signals for aromatic protons were 

observed between 7.92 and 7.52 ppm, a doublet signal for a proton was observed at 5.41 

ppm, whilst doublet signal for two protons was observed at 3.09 ppm. The 13CNMR (Figure 

3.58), showed a signal at 180.4 ppm for C=S, signals at 170.7 and 168.4 ppm were observed 

for C=O, signals were observed between 133.0–128.4 ppm for aromatic carbons. Signals at 

53.8 ppm and 52.7 ppm were observed for the methoxy group. Another signal was observed 

at 51.8 ppm for the chiral carbon and a signal was observed at 34.8 ppm for the methylene 

carbon. 

 

 

 

Figure 3.56 IR spectrum of 1,4-dimethyl-2-{[(phenylformamido)methanethioyl] 

butanedioate (11). 
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Figure 3.57 1H NMR spectrum of 1,4-dimethyl-2-{[(phenylformamido)methanethioyl] 

butanedioate (11). 

 

 

 

Figure 3.58 13C NMR spectrum of 1,4-dimethyl-2-{[(phenylformamido)methanethioyl] 

butanedioate (11). 

 

 

3.5.3 Crystal structures of amino acid ester derivatives 

Compounds 10 and 11 were recrystallized from methanol:THF (1:1) as white crystals. The 

crystallographic data, selected bond lengths, bond angles and torsion angles for the structures 
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of 10 and 11 are provided in tables 3.14 and 3.15. Compounds 10 and 11 crystallized in 

triclinic space group P-1 whilst compound 10 crystallized in monoclinic space group P21. 

 

Table 3.13 Crystallographic data and structure refinement summary for compounds 10 

and 11.  

 

 

Property 10 11 

Formula C12H14N2O3S C14H16N2O5S 

Formula Weight 266.31 324.35 

Crystal System Triclinic Monoclinic 

Space group P-1 P21 

a [Å] 7.4237(4) 7.5089(3) 

b [Å] 8.7173(5) 11.0379(5) 

c [Å] 11.3227(6) 9.2036(5) 

α [°] 73.411(2) 90 

β [°] 72.173(3) 93.469(2) 

γ [°] 68.967(3) 90 

V [Å^3] 638.24(6) 761.42(6) 

Z 2 2 

D(calc) [g/cm^3] 1.386 1.415 

Mu(MoKa) [ /mm ] 0.256 0.238 

F(000) 280 340 

Crystal Size [mm] 0.10 x  0.21 x  0.23 0.16 x  0.37 x  0.67 

Temperature (K) 200 200 

Radiation [Å] MoKa      0.71073 MoKa      0.71073 

Theta Min-Max [°] 1.9,  28.3 2.7,  28.3 

Dataset -9:  9 ; -11: 11 ; -14: 15 -9:  9 ; -14: 14 ;  -7: 12 

Tot., Uniq. Data, R(int) 11443,   3178,  0.018 5643,   3578,  0.009 

Observed Data [I > 2.0 

sigma(I)] 
2539 3475 

Nref, Npar 3178,  173 3578,  209 

R, wR2, S 0.0425, 0.1166, 1.02 0.0246, 0.0679, 1.04 

Max. and Av. Shift/Error 0.00, 0.00 0.00, 0.00 

Min. and Max. Resd. Dens. 

[e/Å^3] 
-0.29, 0.93 -0.19, 0.23 
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Figures 3.59 and 3.60 gives the ORTEP diagrams for compounds 10 and 11. The bond 

distances of S1-C2 in compound 10 was 1.676(2) which comparable to the bond distance of 

S1-C2 in compound 11 which was 1.671(2).The bond distance of N1-C1 in compound 10 

was 1.380 whilst the bond distance for whilst the N1-C1 bond distance of compound 11 was 

1.378(2). The bond distance of N2-C2 in compound 10 was 1.318(2) compared to the N2-C2 

in compound 11 which 1.324(2). The bond angle of C1-N1-C2 in compound 10 was 127.2(1) 

whilst the bond angle of C1-N1-C2 in compound 11 was 127.1(1). In compound 10 the S1-

C2-N2 bond angle was 124.3(1) which was comparable to the S1-C2-N2 bond angle in 

compound 11 which was 124.5(1). The bond angle of N2-C3-C6 was 110.4(2) in compound 

10 whilst the bond angle of N2-C3-C6 in compound 11 was 113.6(1).  

 

Table 3.14 Selected bond lengths (Å) and bond angles (˚) for methyl-2-

{[(phenylformamido)methanethioyl]amino}propanoate (10).  

 

Bond lengths 

10 11 

S1-C2 1.676(2) S1-C2 1.671(2) 

O1-C1 1.219(2) O3-C4 1.333(2) 

O3-C4 1.194(1) O1-C1 1.223(2) 

N1-C2 1.392(2) N2-C3 1.454(2) 

N2-C3 1.455(2) N1-C1 1.378(2) 

N2-C2 1.318(2) N2-C2 1.324(2) 

N1-C1 1.380(2) N1-C2 1.396(2) 

Bond angles 

10 11 

C1-N1-C2 127.2(1) S1-C2-N1 118.4(1) 

O1-C1-N1 121.9(2) C1-N1-C2 127.1(1) 

N1-C1-C11 116. 9(1) O1-C1-N1 122.5(2) 

S1-C2-N1 118.9(1) N1-C1-C11 116.1(1) 

N1-C2-N2 116.7(2) N1-C2-N2 117.1(1) 

N2-C-C6 110.4(2) N2-C3-C6 113.6(1) 

O3-C4-C3 126.2(2) N2-C3-C4 108.7(1) 

S1-C2-N2 124.3(1) O2-C4-O3 124.8(2) 

O1-C1-C11 121.2(2) S1-C2-N2 124.5(1) 
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Figure 3.59 An ORTEP view of methyl-2-{[(phenylformamido)methanethioyl]amino} 

propanoate (10).  

 

 

Figure 3.60 An ORTEP view of 1,4-dimethyl-2-{[(phenylformamido)methanethioyl] 

butanedioate (11). 
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3.6 Design and synthesis of benzoyl isothiocyanate derivatives with structurally 

diverse diamines 

Due to the lack of success in the synthesis of the pre-screened scaffolds a new set of 

compounds (Scheme 3.13), were then screened for their anti-HIV-1 protease activity using 

Autodock 4.2. Table 3.16 gives the summary of the compounds screened and their predicted 

inhibition constants. 
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Scheme 3.13 Synthesis of benzoyl isothiocyanate derivatives with structurally diverse 

diamines. 
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Table 3.15 Summary of compounds screened and their predicted inhibition constants of 

diamine derivatives of benzoyl isothiocyanates. 

 

Group 1 

(RI)  

K
i
 μM  Group II 

(RII)  

K
i
 μΜ Group III 

(RIII)  

K
i
 μM Group IV 

(RIV)  

K
i
 μM 

4-Cl 6.88 H 5.87 4-Br 1.28 3-Br 0.095 

4-Br 4.67 4-Cl 6.16 4-OMe 2.50 H 0.13 

4-OMe 8.22 4-Br 5.30 3-OMe 1.07 4-NO2 0.47 

3-OMe 4.66 4-OMe 11.09 4-Cl 1.65 4-Cl 0.21 

3-NO2 3.37 3-OMe 7.55 3-NO2 0.98 3-NO2 0.11 

3-Cl 3.72 3-NO2 9.71 3-Cl 0.796 3-OMe 1.90 

3-Br 3.47 3-Cl 3.11 4-NO2 2.68 4-Br 0.12 

4-NO2 7.74 4-NO2 11.31 H 3.02 4-OMe 0.81 

H 6.33 3-Br 7.70   3-Cl 0.06 

      H, 3-Me 0.106 

 

 

Other diamines derivatives (Scheme 3.14) other than phenylenediame based derivatives that 

were also pre-screened and synthesized are showed in Scheme 3.14 and Table 3.17.  

 

Table 3.16 Summary of other diamines screened and their predicted inhibition constants. 

 

Other diamines 

Group IV 

K
i
 μM 

1,2-ethane diamine  0.45  

Hydrazine 10.98 

Phenylhydrazine 0.25 

1,4-butane diamine 1.34 
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Scheme 3.14 Synthesis of benzoyl isothiocyanate derivatives of other diamines. 

 

3.7  Conclusions  

-The attempted synthesis of benzimidazole via an acid chloride led to the formation of 3-

methyl-N-[2-(3-methylbenzamido)phenylbenzamide (1). The single crystal XRD molecular 

structure of compound 1 showed a disorder in the moloecule by a ratio 0.675:0.325. 

 

-The synthesis of 2-(3-methylphenyl)-1H-benzimidazole (2) has been achieved by 

polyphosphoric acid catalyzed condensation of carboxylic acids and o-phenylenediamine. A 

novel triethylamine catalyzed condensation of o-phenylenediamine with 3-

methylbenzaldehyde has been carried out and the product characterized. The single crystal 

XRD molecular structure of compound 2 has been discussed.  
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-A novel method for the synthesis of 2,2,4-trimethyl-2,3-dihydro-1H-benzodiazepin-5-ium 

isophthalate (3) via microwave irradiation of o-phenylenediamine and isophthalic acid in the 

presence of acetone has been presented and the compound was characterized by IR, NMR, 

microanalysis and GC-MS. The single crystal XRD molecular structure of compound has 

been discussed.  

 

-The synthesis of 2-[(benzoylcarbamothioyl)amino]-3-hydroxypropanoic acid (5), 1-

(benzoylcarbamothioyl)pyrrolidine-2-carboxylic acid (6), 2-[(benzoylcarbamothioyl) amino]-

4-(methylsulfanyl) butanoic acid (7) and 2-[(benzoylcarbamothioyl)amino]propanoic acid (8) 

has been achieved from the reaction of benzoyl isothiocyanate with L-serine, L-proline, D-

methionine and L-alanine respectively and characterized by IR, NMR, microanalysis and 

GC-MS. The existence of two rotamers of compound 6 in solution which has not been 

reported is first presented in this thesis. The single crystal XRD molecular structure of 

compounds 5, 6, 7 and 8 have been discussed. 

 

-The reaction of the carboxylic acid on each of compounds 5, 6, 7 and 8 with a o-

phenylenediamine led to the formation of 2-phenyl-1H-benzimidazole (9) in each case and 

the product have been characterized by IR, NMR, microanalysis and GC-MS. The 

unsuccessful conversion of the carboxylic acids in compounds 5, 6, 7 and 8 to the 

benzimidazole upon reaction with o-phenylenediamine confirms the low reactivity of the 

carboxylic acid in these compounds. 

 

-DFT computational studies have been carried out to compute the HOMO and LUMO and the 

species that contribute to the frontier orbitals and also to attempt to explain the reasons why 

the attempted condensation of the carboxylic acids on comopounds 5, 6, 7 and 8 with o-

phenylenediamine to form a benzimidazole was unsuccessful.  

 

-The synthesis methyl-2-{[(phenylformamido)methanethioyl]amino}propanoate (10) has 

been achieved by the reaction of alanine methyl ester hydrochloride with benzoyl 

isothiocyanate . The product has been characterized by IR, NMR, microanalysis and GC-MS. 

The single crystal XRD molecular structure of compound 10 has been discussed.  

 

-The synthesis of 1,4-dimethyl-2-{[(phenylformamido)methanethioyl]butanedioate (11) has 

been achieved by the reaction of aspartic acid dimethyl ester hydrochloride with benzoyl 
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isothiocyanate and characterized by IR, NMR, microanalysis and GC-MS. The single crystal 

XRD molecular str4ucture of compound 11 is presented.  

 

-The pre-screening of a large number of benzoyl isothiocyanate derivatives of structurally 

diverse diamines using Autodock 4.2 to ascertain their fit of the protease active site have been  

presented. The computed inhibition constants and binding energies have been used to inform 

the synthesis of the compounds.  
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CHAPTER FOUR 

TETRAAZATRICYCLIC DERIVATIVES 

 

4.1 Synthesis and characterization of tetraazatricyclic derivatives 

Based on the pre-screening the following set of compounds were synthesized (Scheme 4.1). 

The tetraazatricyclics are thought to proceed by the attack of the carbonyl of the benzoyl 

isothiocyanate derivative by the 2-substituted amino group of the benzimidazole. Water is 

formed in the process while the lone pair of the nitrogen in the benzimidazole ring attacks the 

carbon of the thione leading to the formation of a tetraazatricyclic ring. A detailed reaction 

mechanism for this reaction has been discussed in Scheme 4.4 and Figure 4.5.  

 

N

O S

N

N

N

N

S

H

N

N

H2N

H

acetone

R = H, 3-OCH3, 3-NO2, 3-Br, 3-Cl

        4-OCH3, 4-NO2, 4-Br, 4-Cl

R R
3.7b 3.10b

3.13c

 

Scheme 4.1 Synthesis of tetraazatricyclic derivatives. 

 

Tetraazatricyclics with aliphatic side chains have been synthesized before by different 

methods (Schemes 4.2, 4.3). N-benzimidazol-2-yl iminoester has been heated with thiourea 

in dry toluene under reflux for 48 h to afford 1,3,5-triazino [1,2-a]benzimidazolo-2-thione.332 
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Scheme 4.2 Synthesis of tetraazatricyclic derivatives from thiourea.  
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Reaction of N-benzimidazol-2-yl iminoester with carbon disulfide in the presence of 

triethylamine and under reflux in ethanol afforded thiadiazine thione [1,2-a] benzimidazolo-

1,3,5-thiadiazin-2-thione.332 
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Scheme 4.3 Synthesis of tetraazatricyclic derivatives from carbon disulfide. 

 

 

4.2 11-(4-Chlorophenyl-1,8,10,12-tetraazatricyclo[7.4.0.02,7]trideca-2(7),3,5,9,11-

pentaene-13-thione (12) 

The IR spectrum (Figure A4.1) showed an N–H stretch at 3387 cm–1 and a C–H stretch for 

an sp2 carbon at 2967 cm–1, a band for the C=N stretch was observed at 1622 cm–1 and the 

aromatic C=C was observed at 1589 cm–1. The 1H NMR (Figure A4.2) and 1H–1H COSY 

(Figure A4.3) spectra showed a doublet resonace at 9.48 ppm for an aromatic deshielded by 

the electron pair from a heteroatoms whilsts other protons appeared between 8.45 and 7.18 

ppm. The 13C NMR spectrum (Figure A4.4) gave resonances between 166.5 and 113.1 ppm 

for aromatic carbons.  

 

 

4.3 11-(4-Bromophenyl)-,8,10,2-tetraazatricyclo[7.4.0.02,7]trideca-2(7),3,5,9,11-

pentaene-13-thione (13) 

The IR spectrum (Figure A4.5) showed an N–H stretch at 3372 cm–1, a band for the C=N 

stretch at 1669 cm–1 and the aromatic C=C was observed at 1585 cm–1. In the 1H NMR 

(Figure A4.6) and 1H–1H COSY (Figure A4.7) spectra resonances for aromatic protons 

occurred between 9.49 and 7.17 ppm. In the 13C NMR spectrum (Figure A4.8) resonances 

between 177.8 and 112.7 ppm were observed for aromatic carbons.  

 



P a g e  | 162 

 

F. Odame  Nelson Mandela Metropolitan Univeristy 

4.4 11-(4-Methoxyphenyl)-1,8,0,12-tetraazatricyclo[7.4.0.02,7]trideca-2(7),3,9,1-

pentaene-13-thione (14)  

The IR spectrum (Figure A4.9) showed an N–H stretch at 3387 cm–1, a band for the C=N 

stretch was observed at 1691 cm–1 and the aromatic C=C was observed at 1593 cm–1. The 1H 

NMR (Figure A4.10) and 1H–1H COSY (Figure A4.11) spectra gave a signal at 9.47 ppm 

for a an aromatic proton deshielded by the electron pair of a heteroanm Whilst other 

resonances for aromatic protons occurred between 8.40 and 7.13 ppm. The protons of the 

methoxy group occurred at 3.98 ppm. The 13C NMR spectrum (Figure A4.12) gave signals 

between 177.8 and 112.7 ppm for aromatic carbons. The methoxy group occurred at 55.5 

ppm. 

 

 

4.5 11-(3-Methoxyphenyl)-1,8,0,12-tetraazatricyclo[7.4.0.02,7]trideca-2(7),3,5,9,11-

pentaene-13-thione (15) 

The IR spectrum (Figure A4.13) showed an N–H stretch at 3196 cm–1, a band for aliphatic 

C–H stretch was observed at 2941 cm-1, the C= stretch was observed at 1628 cm–1 whilst a 

band for aromatic C=C was observed at 1560 cm–1. The 1H NMR (Figure A4.14) and 1H–1H 

COSY (Figure A4.15) spectra gave a signal at 9.47 ppm for a an aromatic proton deshielded 

by the electron pair of a heteroatom. Other aromatic protons resonated between 8.03 and 7.19 

ppm. The protons of the methoxy group appeared at 3.87 ppm. The 13C NMR spectrum 

(Figure A4.16) gave signals between 159.5 and 113.4 ppm for aromatic carbons whilst the 

methoxy group occurred at 55.4 ppm.  

 

 

4.6 11-(3-Nitrophenyl)-1,8,10,12-tetraazatricyclo[7.4.0.02,7]trideca-2(7),3,5,9,11-

pentaene-13-thione (16) 

The IR spectrum (Figure 4.1) showed an N–H stretch at 3334 cm–1, a band for the C=N 

stretch at 1684 cm–1 and the aromatic C=C was observed at 1524 cm–1. The 1H NMR (Figure 

4.2) and 1H–1H COSY (Figure 4.3) spectra gave signals between 9.48 ppm and 7.19 ppmfor 

aromatic protons. The signals in both the 1H NMR and 13C NMR spectra have been doubled 

possible due to the existence of two different species in solution that might have been 

triggered by the presence of the nitro group. This confirms tautomerism in the 3-nitro 
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derivative of tetrazatricylics synthesized from thiones. In the 13C NMR spectrum (Figure 4.4) 

aromatic carbons resonated between 179.0 and 111.4 ppm for aromatic carbons.  

 

 

 

Figure 4.1 IR spectrum of 11-(3-nitrophenyl)-1,8,10,12-tetraazatricyclo[7.4.0.02,7] 

trideca-2(7),3,5,9,11-pentaene-13-thione (16). 

 

 

 

 

Figure 4.2 1H NMR spectrum of 11-(3-nitrophenyl)-1,8,10,12-tetraazatricyclo 

[7.4.0.02,7]trideca-2(7),3,5,9,11-pentaene-13-thione (16). 
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Figure 4.3 1H 1H COSY spectrum of 11-(3-nitrophenyl)-1,8,10,12-tetraazatricyclo 

[7.4.0.02,7]trideca-2(7),3,5,9,11-pentaene-13-thione (16). 

 

 

 

Figure 4.4  13C NMR spectrum of  11-(3-nitrophenyl)-1,8,10,12-tetraazatricyclo 

[7.4.0.02,7] trideca-2(7),3,5,9,11-pentaene-13-thione (16). 
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4.7 11-(3-Chlorophenyl)-1,8,10,12-tetraazatricyclo[7.4.0.02,7]trideca-2(7),3,5,9,11-

pentaene-13-thione (17) 

The IR spectrum (Figure A4.17) showed an N–H stretch at 3102 cm–1, a band for the C=N 

stretch at 1625 cm–1 and the aromatic C=C was observed at 1595 cm–1. The 1H NMR (Figure 

A4.18) and 1H–1H COSY (Figure A4.19) spectra gave a resonance at 12.77ppm for a proton 

of a benzimidazoyl NH whilst other aromatic protons occurred between 8.17 and 7.18 ppm. 

In the 13C NMR spectrum (Figure A4.20) aromatic carbons resonated between 166.0 and 

112.5 ppm.  

 

 

4.8 11-(3-Bromophenyl)-1,8,10,12-tetraazatricyclo[7.4.0.02,7]trideca-2(7),3,5,9,11-

pentaene-13-thione (18) 

The IR spectrum (Figure A4.21) showed an N–H stretch at 3306 cm–1 a band for the C=N 

stretch at 1622 cm–1 and the aromatic C=C was observed at 1550 cm–1. The 1H NMR (Figure 

A4.22) and 1H–1H COSY (Figure A4.23) spectra gave signals at 12.48 ppm a proton of a 

benzimidazoyl NH whilst the aromatic protons appeared 8.32 and 7.16 ppm. In the 13C NMR 

spectrum (Figure A4.24) resonance between 134.0 and 112.5 ppm were observed for 

aromatic carbons. 

 

 

4.9 11-(4-Nitrophenyl)-1,8,10,12-tetraazatricyclic[7.4.0.02,7]trideca-2(7),3,5,9,11-

pentaene-13-thione (19) 

The IR spectrum (Figure A4.25) showed an N–H stretch at 3140 cm–1, a band for the C=N 

stretch at 1682 cm–1 and the aromatic C=C was observed at 1591 cm–1. In the 1H NMR 

(Figure A4.26) and 1H–1H COSY (Figure A4.27) spectra the benzimidazoyl proton 

resonated at 12.88 ppm whilst the aromatic protons appeared between 9.50 and 7.21 ppm. 

The 13C NMR spectrum (Figure A4.28) gave signals between 165.6 and 112.5 ppm for 

aromatic carbons. 
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4.10 11-Phenyl-1,8,10,12-tetraazatricyclo[7.4.0.02,7]trideca-2(7),3,5,9,11-pentaene-13-

thione (20)  

The IR spectrum (Figure A4.29) showed an N–H stretch at 3309 cm–1, a band for the C=N 

stretch at 1664 cm–1 and the aromatic C=C was observed at 1573 cm–1. The 1H NMR (Figure 

A4.30) and 1H–1H COSY (Figure A4.31) spectra gave signals between 9.49 and 7.21ppm for 

aromatic protons. The 13C NMR spectrum (Figure A4.32) gave signals between 165.6 and 

117.4 ppm for aromatic carbons. 

 

 

4.11 Transition state studies on tetraazatricyclic derivatives 

The predicted reaction pathway computed proceeds by the coming together of benzoyl 

isothicyanate and 2-aminobenzimidazole as indicated in I1 (Scheme 4.4). With the distance 

between the 2-amino group and the carbon of the thione being 4.41 Ǻ. I1 is a singlet species 

of no charge with no imaginary frequency and a dipole moment of 9.10 Debye. I1 is used as 

reference in the computation of the relative free energies. The functional used in the 

computation of I1 is B3LYP with the basis set of 6-31G(d), it was obtained by optimising the 

starting material to a minimum and also tracing the reverse IRC path of the transition state 

T1. During the transition from I1 to T1 there is a reduction in the bond distance to 1.70 Ǻ in 

T1, which is a singlet species of no charge with a single imaginary frequency and a dipole 

moment of 5.81 Debye. The relative free energy of T1 compared to I1 is +31.97 kcal/mol.  

 

A forward displacement of T1 along the IRC pathway and an optimization of the resultant 

species gives P1 which a singlet species of no charge, no imaginary frequency and with a 

dipole moment of 2.98 Debye. The relative free energy of P1 is +3.62 kcal/mol. The 

transition from T1 to P1 involves a change in orientation of 2-aminobenzimidazole with the 

bond distance between the amine group and the thione carbon increasing to 4.01Ǻ in the 

process. P1 proceeds via two distinct pathways through T2 or T3. In T2 the amine of the 

benzimidazole attacks the thione carbon whilst in T3 the carbonyl is converted to a hydroxyl 

group by the abstraction of a proton from 2-aminobenzimidazole leading to the formation of a 

a hydroxy group. T2 is a singlet species of no charge with a single imaginary frequency and a 

dipole moment of 3.24 Ǻ. The relative free energy of T2 is +30.65 kcal /mol. T3 is also a 

singlet species of charge 2 with a single imaginary frequency and a dipole moment of 9.03 
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Debye. The relative free energy of T3 is +439.09 kcal/mol. The forward displacement of T2 

along the IRC pathway leads to P2 a singlet species of no charge , no frequency and a dipole 

moment of 8.66 Debye. The relative energy of P2 is +20.47 kcal/mol.  

 

The intermediate obtained from T3 is P3 which is a singlet species of no charge and no 

imaginary frequency with a dipole moment of 2.85 Debye. P3 leads to T4, which is a singlet 

species of no charge with a single imginary frequency. The dipole moment of T4 is 8.81 

Debye. The relative energy of T4 is +438.00 kcal/mol. Forward displacement of T4 along the 

IRC pathway leads to P4, which is a singlet species of no charge, no imginary frequency with 

a dipole moment 7.34 Debye. The relative energy of P4 is +33.04 kcal/mol. T5 which is a 

singlet species of no charge with a single imginary of 1 and a dipole moment of T5 is 12.25 

Debye. The relative energy of T5 is +42.04 kcal/mol. P5 is a singlet species of no charge , no 

imginary frequency with a dipole moment 10.40 Debye. The relative energy of P5 is +3.14 

kcal/mol. T6 which is a singlet species of no charge with an imginery frequency of 1. The 

dipole moment of T5 is 5.78 Debye. The relative energy of T6 is +5.22 kcal/mol. P6 is a 

singlet species of no charge, no imginery frequency with a dipole moment of 8.70 Debye. 

The relative energy of P6 is +0.96 kcal/mol. The pathway through T2 would be the preferred 

pathway because the energy required to go through the transition state is much lower than for 

T3.  
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Scheme 4.4 DFT reaction mechanism of tetraazatricyclic derivatives. 
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Figure 4.5 Potential energy surface for  the formation of the tetraazatricyclic derivatives. 

 

 

4.12 N-(1H-Benzimidazol-2-yl)benzamide (21)    

Tautomerism is a phenomena associated to thiones and some thione tautomers have been 

reported to exist at very low temperatures.333 Ab initio calculations including continuum 

treatments of the solvent effect, leading to thione forms HC(dS)OH and CH3C(dS)OH have 

been found to be less predominant, irrespective of the solvent polarity.334 An attempt at 

exploiting the tautomerism in tetraazatricyclics (Scheme 4.5) led to the a degration of the 

tetraazatricylic to form N-(1H-benzimidazol-2-yl)benzamide (21).  
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Scheme 4.5 Degradative synthesis of N-(1H-benzimidazol-2-yl)benzamide (21).  

 

An attempt to convert the tetraazatricyclic to the tautomer of S by abstracting a proton led to 

its degradation through a base catalysed dethiocyanation. A full mechanism is described 

Section 4.13. The IR spectrum (Figure 4.6) showed bands at 3314 and 3062 cm–1 for N–H 

stretch, a band for the C=O stretch was observed at 1661 cm–1, and the C=N and C=C bands 

were observed at 1558 and 1519 cm–1, respectively. The 1H NMR (Figure 4.7) and 1H–1H 

COSY (Figure 4.8) spectra gave signals between 8.17 and 7.14 ppm for aromatic protons, 

amide proton signals exchanges with the water molecules hence are not observable. The 13C 

NMR spectrum (Figure 4.9) gave signals between 168.6 and 111.4 ppm for aromatic 

carbons. 

 

 

 

Figure 4.6 IR spectrum of N-(1H-benzimidazol-2-yl)benzamide (21). 



P a g e  | 171 

 

F. Odame  Nelson Mandela Metropolitan Univeristy 

 

 

Figure 4.7 1H NMR spectrum of N-(1H-benzimidazol-2-yl)benzamide (21). 

 

 

Figure 4.8 1H–1H COSY spectrum of N-(1H-benzimidazol-2-yl)benzamide (21). 
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Figure 4.9 13C NMR spectrum of N-(1H-benzimidazol-2-yl)benzamide (21). 

 

 

4.13 Transition state studies on N-(1H-benzimidazol-2-yl)benzamide (21) 

The density functional theory based computation using Gaussian 09 at the B3PW91 with a 

basis set of 6-31G(d) level has been used to compute and predict a reaction pathway for the 

formation of compounds N-(1H-benzimidazol-2-yl)benzamide (21) , Scheme 4.6 gives the 

computed reaction mechanism for the formation of N-(1H-benzimidazol-2-yl)benzamide (21) 

in the gas phase. The predicted reaction pathway proceeds by the attack of the 

tetrazatetracyclic by a water molecule as indicated in I1, which is a singlet species of no 

charge and a dipole moment of 8.60 Debye. I1 is used as reference in the computation of the 

relative free energies. The functional used in the computation of I1 is B3PW91 with the basis 

set of 6-31G(d), it was obtained by optimising the starting material to a minimum and also 

tracing the reverse intrinsic reaction coordinate (IRC) path of the transition state TS1. TS1 is 

singlet species of no charge with a dipole moment of 12.32 Debye. It is a saddle point with a 

single imaginary frequency, obtained according to the Berny algorithm and subsequent 

vibrational analysis. The relative free energy of TS1 is 36.44 kcal/mol.  

 

A forward IRC computation and optimization of the subsequent structure gave P1 which is a 

singlet species of no charge with a dipole moment of 10.14 Debye. The relative free energy 
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of P1 is 31.38 kcal/mol. The cleavage of a C–N bond in P1 leads to the formation of TS2 

which is also a singlet species with a charge of 2 and a dipole moment of 16.23 Debye. TS2 

is a saddle point with a single imaginary frequency. The relative free energy of TS2 is 297.44 

kcal/mol. A forward IRC pathway from TS2 gives P2 which a singlet species of no charge, 

and an imaginary frequency of zero. The dipole moment of P2 is 5.80 Debye, with a relative 

free energy of 12.55 kcal/mol. The cleavage of the thiocyanate from the P2 gives TS3 which 

is a saddle point of charge 2 and a single imaginary frequency. It is a singlet species of dipole 

moment 3.04 Debye. The relative free energy of TS3 is 453.42 kcal/mol. A forward 

displacement of TS3 gives P3 which is also a singlet of no charge and an imaginary 

frequency of zero. The relative free energy of P3 is 11.18 kcal/mol.  

 

A rearrangement of P3 gives TS4 which is also a saddle point with a charge of 2 and it is a 

singlet species with a single imaginary frequency and a dipole moment of 7.32 Debye and a 

relative free energy of 443.24 kcal/mol. The forward displacement of TS4 along the IRC path 

and a subsequent minimization of the resulting intermediate gave P4 which is a singlet 

species of no charge with a dipole moment of 1.48 Debye and a relative free relative of 10.85 

kcal/mol. The computation of the various transitions states that give compound 21 have been 

carried out. Several of the steps in this computational scheme have a plausible activation, and 

this scheme serves as proof of concept that a computational path exists with a continuous 

path from reactants to products. Further work will investigate alternative pathways from P2 

to P3, for example where the computed activation is an unplausible 441 kcal/mol. Other 

aspects that will be included in further work will be the use of modern functionals such as 

wB97-XD or M06. 
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Scheme 4.6 DFT reaction mechanism of N-(1H-benzimidazol-2-yl)benzamide (21).  
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Figure 4.10 Potential energy surface, derived from transition states and intrinsic reaction 

coordinate calculations illustrating the pathway for the formation of N-(1H-

benzimidazol-2-yl)benzamide (21) 

 

 

4.14 3-Benzoyl-1-(2-hydroxyphenyl) urea (22)  
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Scheme 4.7  Synthesis of 3-benzoyl-1-(2-hydroxyphenyl) urea (22). 
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Compound 22 is thought to be formed by the attack of the carbonyl of the benzoyl 

isothiocyanate by the 2-amino group of the 2-aminobenzoxazole as shown in I with a 

subsequent picking up of a proton by the carbonyl to form a hydroxyl group in II (Scheme 

4.8). The loss of the thiocyanate group and a proton led to the formation of III. Water attacks 

the carbon atom between the heteroatoms leading to a ring  opening as shown in IV with a 

further loss of a proton leading to the formation of 22. 
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Scheme 4.8 Proposed reaction mechanism for the formation of 3-benzoyl-1-(2-

hydroxyphenyl) urea (22). 

 

The IR spectrum (Figure 4.11) showed two bands for an N–H stretch at 3233 and 3155 cm–1. 

Two bands for the C=O stretch were observed at 1694 and 1655 cm–1, the C=N stretch was 

observed at 1599 cm-1 whilst the aromatic C=C was observed at 1559 cm–1. The 1H NMR 

(Figure 4.12) and 1H–1H COSY (Figure 4.13) spectra gave singlet signals at 11.22 and 11.13 
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ppm for the proton of an amide. A signal was observed at 10.97 ppm for the hydroxyl proton. 

whilst three signals were observed at 10.11, 9.87 and 9.55 ppm possibly due to long range 

coupling amongst the protons. The aromatic protons occurred between 8.15 and 6.82 ppm. 

The 13C NMR spectrum (Figure 4.14) gave a signal at 182.06 ppm. Signals for carbonyls 

were observed at 168.67 and 167.94 ppm, signals between 150.8 and 114.1 ppm for aromatic 

a carbons. 

 

 

 

Figure 4.11 IR spectrum of 3-benzoyl-1-(2-hydroxyphenyl) urea (22). 

 

 

 

Figure 4.12 1H NMR spectrum of 3-benzoyl-1-(2-hydroxyphenyl) urea (22). 
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Figure 4.13 1H-1H COSY spectrum of 3-benzoyl-1-(2-hydroxyphenyl) urea (22). 

 

 

 

Figure 4.14 13C NMR spectrum of 3-benzoyl-1-(2-hydroxyphenyl) urea (22). 

 

 

4.15 Crystal structures of compounds 20, 21 and 22 

Compounds 20, 21 and 22 were recrystallized from DMSO:toluene (1:1). Compound 20 was 

obtained as a yellow solid, whilst compounds 21 and 22 were obtained as white crystals. The 

crystallographic data, selected bond lengths, bond angles and torsion angles for the crystal 

structures of compounds 20, 21 and 22 are provided in Tables 4.1 and 4.2. The ORTEP 

diagrams for compounds 20, 21 and 22 are presented in Figures 4.15, 4.16 and 4.17. 
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Compounds 20 and 22 crystallized in the monoclinic space group P21/c, whilst compound 21 

crystalized in the monoclinic space group C2/c. 

 

 

Table 4.1 Crystallographic data and structure refinement summary for compounds 20, 21 

and 22.  

 

Property 20 21 22 

Formula C15H10N4S,C2H6OS C14H11N3O C14H12N2O3 

Formula Weight 356.48 237.26 256.26 

Crystal System Monoclinic monoclinic Monoclinic 

Space group P21/c C2/c P21/c 

a [Ǻ] 12.4761(4) 29.0638(13) 12.5355(16) 

b [Ǻ] 14.7020(4) 5.0660(2) 6.3401(9) 

c [Ǻ] 9.7388(2) 25.8395(10) 16.262(2) 

α [°] 90 90 90 

β [°] 104.209(1) 113.493(1) 110.324(5) 

γ [°] 90 90 90 

V [Ǻ^3] 1731.68(8) 3489.2(2) 1212.0(3) 

Z 4 12 4 

D(calc) [g/cm^3] 1.367 1.355 1.404 

Mu(MoKa) [ /mm ] 0.319 0.089 0.101 

F(000) 744 1488 536 

Crystal Size [mm] 0.10 x  0.27 x  0.31 0.12 x  0.42 x  0.63 0.18 x  0.19 x  0.32 

Temperature (K) 200 200 200 

Radiation [Å] MoKa   0.71073 MoKa      0.71073 MoKa  0.71073 

θ Min-Max [°] 2.2,  28.3 2.7,  28.4 1.7,  28.4 

Dataset -16: 16 ; -18: 19 ; -12:  9 -38: 32 ;  -6:  6 ; -

28: 34 

-16: 16 ;  -8:  7 ; -21: 

20 

Tot., Uniq. Data, 

R(int) 

15730,   4306,  0.022 15397,   4347,  

0.019 

10913,   3016,  0.045 

Observed data [I > 

2.0 sigma(I)] 

3443 2992 1807 

Nref, Npar 4306,  223 4347,  325 3016, 181 

R, wR2, S 0.0345, 0.0966, 1.04 0.0518, 0.1336, 1.03 0.0478, 0.1223, 1.01 

Max. and Av. 

Shift/Error 

0.00, 0.00 0.00, 0.00 0.00, 0.00 

Min. and Max. Resd. 

Dens. [e/Å^3] 

-0.31, 0.29 -0.31, 0.33 -0.27, 0.19 

 

 

The bond distance of S1–C2 in compound 20 is 1.664(1) Å, whilst the N3-C3 bond distance 

is 1.322(2), the bond distances of N1-C2, N2-C3, N2-C2 and N3-C1 which forms part of the 

six membered ring are 1.349(2), 1.336(2), 1.402(2) and 1.346 (2) Ǻ, respectively. The bonds 
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are not distinctly single or double bonds suggesting that the nitrogen atoms are sp2 

hybridized. This ensures that an electron cloud is delocalized over the atoms in the six 

membered ring for stability. The bond angles of N1-C2-N2, S1-C2-N2 and C1-N1-C2 in 

compound 20 are 116.1(1), 121.1(1) and 120.2(1), respectively. The bond angles are 

consistent with the sp2 hybridization of the carbon and nitrogen atoms. In compound 21 the 

six membered ring collapses through base-catalysed dethiocyanation leading to the formation 

of an amide. The bond distance of O11-C12 is 1.227(2) Ǻ which is consistent with a carbonyl 

whilst the bond distances of N13-12 and N11-C11 are 1.368(2) and 1.350(2) Ǻ, respectively. 

The bond angles of N11-C11-N13, O11-C11-N13 and N12-C12-N13 are 123.6(2), 121.8(2) 

and 122.0(2) Ǻ, respectively. The bond distances of O1-C1 and O2-C2 in compound 22 are 

1.236(2) Ǻ and 1.226(2) Ǻ, respectively which is consistent with the bond length of a 

carbonyl whilst the O3-C22 bond distance is 1.366(2) Ǻ. The N1-C1 and N1-C2 bond 

distances are 1.369(2) and 1.406(2) respectively. The bond angles of N11-C11-N13, O11-

C12-N13 and N12-C11-N13 in compound 22 are 123.6(2), 121.8(2) and 122.0(2) 

respectively confirming that the carbon atoms involved are sp2 hybridized.  

 

 

Table 4.2 Selected bond lengths (Å) and bond angles (°) for compounds 20, 21 and 22. 

 

 

Bond lengths 

20 21 22 

S1-C2 1.664(1) O11-C12 1.227(2) O1-C1 1.2364(19) 

N3-C3 1.322(2) N13-C12 1.368(2) O2-C2 1.2262(19) 

N1-C2 1.349(2) N11-C11 1.350(2) O3-C22 1.366(2) 

N1-C1 1.336(2) N13-C11 1.381(2) N1-C1 1.369(2) 

N2-C3 1.382(2) N12-C112 1.397(2 N1-C2 1.406(2) 

N2-C2 1.402(2) N12-C11 1.318(2) N2-C2 1.339(2) 

N3-C1 1.346(2)   N2-C21 1.402(2) 

Bond angles 

20 21 22 

C1-N1-C2 120.2(1) N11-C11-N12 114.4(2) C1-N1-C2 128.8(1) 

N1-C2-N2 116.1(1) N11-C11-N13 123.6(2) C2-N2-

C21 

128.0(1) 

S1-C2-N2 121.1(1) O11-C12-N13 121.8(2) O1-C1-N1 120.9(2) 

N1-C1-N2 113.3(1) N12-C11-N13 122.0(2) O2-C2-N1 118.3(2) 

N3-C2-N4 126.2(1)   O2-C2-N2 125.5(2) 

N2-C2-N3 115.4(1))   N1-C2-N2 116.2(1) 
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Figure 4.15 An ORTEP view of 11-phenyl-1,8,10,12-tetraazatricyclo[7.4.0.02,7]trideca-

2(7),3,5,9,11-pentaene-13-thione (20) showing 50% probability displacement 

ellipsoids and the atom labelling. 

 

 

 

Figure 4.16 An ORTEP view of N-(1H-benzimidazol-2-yl)benzamide (21) showing 50% 

probability displacement ellipsoids and the atom labelling. 
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Figure 4.17 An ORTEP view of 3-benzoyl-1-(2-hydroxyphenyl) urea (22) showing 50% 

probability displacement ellipsoids and the atom labelling. 

 

 

4.2 Biochemical studies 

4.2.1 Cell viability and cytotoxicity tests 

The acute cytotoxic effects of tetraazatricyclic derivatives determined by exposing them to 

isolated human white blood cells, for a 24-hour period. The cell viability was were assessed 

using the MTT reduction assay and the results is are presented in Table 4.3 which indicates 

the compound numbers (in bold) as well as the EC50 values calculated for each compound 

tested.  

 

 

Table 4.3 Cell viability results for tetraazatricyclics. 

 

Tetraazatriacyclics EC50 

μM 

12 38.0  

13 179.2 

14 5.3 

15 86.0 

16 126.5 

17 126.3 

18 0.2 

19 350.0 

20 175.0 

21 175.5 
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The EC50 values for the tetraazatricyclics (Figure 4.18) showed varying effects on the cell 

viability of human white blood cells. Compound 18 (unsubtituted), 12 (4-chloro) and 14 (4-

methoxy) derivatives were found to be cytotoxic, giving EC50 values of 0.15 ± 0.051, 37.96 ± 

21.87 and 5.28 ± 2.95 μM, respectively.This suggested that substitution at position 4 on the 

phenyl ring of tetraazatriacyclics with a methoxy or a chloro group leads to increased 

cytotoxic effects. 

 

 

 

Figure 4.18 EC50 values for the tetraazatricyclics (μM). Error bars represent the SEM for n 

= 3.  

 

A library of eleven compounds were tested and for the next section only typical examples are 

illustrated of how the EC50 values were calculated. The cytotoxic effects of compounds 18 

and 19, which are the most cytotoxic and least cytotoxic compounds among the 

tetraazatriacyclic derivatives, respectively, are represented in Figure 4.19. The 3 bromo 

derivative (18) of the tetraazatricyclics was the most cytotoxic suggesting that the presence of 

the bromo group at position 3 leads to a increase in cytoxicity whilst the presence of the nitro 

group (19) at position 4 leads to a decrease in cytotoxicity.  
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Figure 4. 19 EC50 values for compounds 18 and 19 (μM). Error bars represent the SEM for 

n = 3. 

 

4.2.2 HIV-1 protease screen of tetraazatricyclics 

Table 4.3 and Figure 4.20 show the HIV-1 screening results for the tetraazatricyclics. The 

screening of the compounds was done at 100 µM of inhibitor and that for ritonavir was done 

at 10 µM. Most of the compounds gave a percentage inhibition of less than 40%, except 

compounds 19 (4-nitro derivative) and 16 (3-nitro derivative) with % inhibition of 

59.57±13.59 and 79.97±11.97, respectively. These compounds are not cytotoxic. Their 

activity might be due to the rigid scaffold of the tetraazatricyclic which enables it to fit the 

active site of HIV-1 protease to be able to interact with the bridging water molecules via 

hydrogen bonding or dipole-dipole interaction. 

 

Table 4.3 HIV-1 protease screening results for tetraazatricyclics. 

 

Compound Fluorescence Standard 

deviation 

% Activity 

relative to 

untreated 

control 

%Inhibition 

relative to 

untreated 

control 

Ritonavir 36.24 1.88 9.34 90.66 

12 423.28 2.28 109.12 0 

13 394.04 4.61 101.58 0 

14 416.40  0.72 107.35 0 

15 148.69 4.61 65.80 34.20 

16 45.26 11.97 20.03 79.97 

17 346.13 10.82 89.23 10.77 

18 448.35 6.19 115.58 0  

19 156.83 13.59 40.43 59.57 

20 351.26 7.94 90.55 9.45 

21 320.73 1.71 82.68 17.32 
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Figure 4.20  HIV-1 protease screening results illustrating % inhibition of tetraazatricyclics 

(100 μM) and ritonavir (10 μM) compared to untreated control. Error bars 

represent SEM for n = 3. 

 

11-(3-Nitrophenyl)-1,8,10,12-tetraazatricyclo [7.4.0.02,7] trideca-2(7),3,5,9,11-pentaene-13-

thione (16) gave the best inhibition of 79.97% at an inhibitor concentration of 100 μM and 

protease concentration of 20 μM among the tetratazaticyclics. It is consistent with the 

docking results which gave a predicted inhibition constant of 3.37 μM as the best docking 

result among the tetraazatricyclics. Figure 4.21 gives the 2D representation of compound 16 

in the protease active site. Compound 16 binds to the aspartate B25 residue in the protease 

active site via hydrogen bonding this allows the molecule to sit in the protease active site. 

Further binging to aspartate A29 and A30 residues via the oxygen atoms on the nitro group 

allows the molecule to effectively hinder access to the bridging water molecules by the 

natural substrate hence inhibiting protease activity to a larger extent.  
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Figure 4.21 2D represent of 11-(3-nitrophenyl)-1,8,10,12-tetraazatricyclo[7.4.0.02,7] 

trideca-2(7),3,5,9,11-pentaene-13-thione (16) in protease active site.  

 

 

11-(4-Nitrophenyl)-1,8,10,12-tetraazatricyclic [7.4.0.02,7]trideca-2(7),3,5,9,11-pentaene-13-

thione (19) also gave very good inhibition in the bioassay with a percentage inhibition of 

59.57% at an inhibitor concentration of 100 μM and a protease concentration of 20 μM gave 

a predicted inhibition constant of 3.37 μM in the docking studies. Figure 4.22 gives the 2D 

representation of compound 19 in the protease active site. The activity of compound 19 

against protease can be explained from the fact that it binds to the aspartate B25 residue at the 

protease active site through hydrogen bonding, and further binding to the aspartate B30 of 

protease ensures that it can inhibit the natural substrate by binding more strongly to amino 

acid groups at the active site denying it access to the briding water molecule. The lower 

activity of compound 19 compared to compound 16 is due to the fact that it binds less 

strongly to the aspartate moiety hence its inhibition of the active site is lower. The predicted 

inhibition constant of 7.74 μM for compound 19 is lower that that of compound 16 (3.37 

μM).  
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Figure 4.22 2D represent of 11-(4-nitrophenyl)-1,8,10,12-tetraazatricyclic[7.4.0.02,7] 

trideca-2(7),3,5,9,11-pentaene-13-thione (19) in protease active site.  

 

Figure 4.23 give sthe 2D representation of compound 18 in the protease active site. The zero 

inhibition of 11-(3-bromophenyl)-1,8,10,12-tetraazatricyclo [7.4.0.02,7]trideca-2(7),3,5,9,11-

pentaene-13-thione (18) in the bioassay is due to the fact the the bromide group is not able to 

effectively bind to groups in the active site. Even though the N-H group of compound 18 

binds to the aspartate A25 unit, the orientation acquired upon binding to the aspartate A25 

unit moves the bromide group away from the aspartate A29 and B29 greatly reducing it 

ability to effectively inhibit the natural substrate. In the docking studies due to the large size 

of bromide its presence in the active site ensures that most of the volume of the binding site is 

unavailable for occupancy by the natural substrate hence a fairly good inhibition constant of 

3.47 μM is predicted for compound 18.  
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Figure 4.23 2D represent of compound 11-(3-bromophenyl)-1,8,10,12-tetraazatricyclo 

[7.4.0.02,7]trideca-2(7),3,5,9,11-pentaene-13-thione (18) in protease active site.  

 

4.3 Conclusions   

-The synthesis of novel tetraazatricyclic derivatives by the reaction of 2-aminobenzimidazole 

and benzoyl isothicyanate derivatives has been carried out and the compounds have been 

characterized by IR, NMR, microanalysis and GC-MS. Tautomerism of the thione residue 

has been observed when a nitro group is substituted at position 3 in the aryl ring leading to 

the existence of two different species in solution. 

 

-The transition state studies on the formation of tetraazatricyclic derivatives using the density 

functional theory in Gaussian is presented. The reaction pathway from reactants leading up to 

the products with the different intermediates and transition states have been computed and 

their feasibility discussed. 

 

-The novel triethylamine catalyzed decomposition of tetraazatricyclics to give N-(1H-

benzimidazol-2-yl)benzamide (21) have been carried out and characterized by IR, NMR, 

microanalysis and GC-MS.  

 



P a g e  | 189 

 

F. Odame  Nelson Mandela Metropolitan Univeristy 

-The transition state studies on the degradation of tetraazatricyclics to form N-(1H-

benzimidazol-2-yl)benzamide (21) have been presented. The computation involved the 

density functional theory in Gaussian. The reaction pathway from reactants leading up to the 

products with the different intermediates and transition states have been carried out and their 

feasibility discussed. 

 

-The novel synthesis of 3-benzoyl-1-(2-hydroxyphenyl) urea (22) from the reaction of 

benzoyl isothiocyanate and 2-aminobenzoxaxole has been carried out and characterized by 

IR, NMR, microanalysis and GC-MS.  

 

-Single crystal XRD molecular structure of 11-phenyl-1,8,10,12-tetraazatricyclo 

[7.4.0.02,7]trideca-2(7),3,5,9,11-pentaene-13-thione (20), N-(1H-benzimidazol-2-yl) 

benzamide (21) and 3-benzoyl-1-(2-hydroxyphenyl) urea (22) have been discussed. 

 

-Cell viability tests of the tetraazatricylics have been carried out. Compound 18 

(unsubtituted), 12 (4-chloro) and 14 (4-methoxy) derivatives were found to be cytotoxic, with 

EC50 values of 0.15 ± 0.051, 37.96 ± 21.87 and 5.28 ± 2.95 μM, respectively 

 

-HIV-1 protease screen of the tetraazatricyclic derivatives have been presented. Compounds 

19 (4-nitro derivative) and 16 (3-nitro derivative) showed good activity against HIV-1 

protease with % inhibition of 59.57±13.59 and 79.97±11.97 μM respectively. The results 

were consistent with the docking studies, and the orientation adopted by compound 16 at the 

active site of protease ensures that it binds more strongly to amino acid residues than the 

other derivatives.  
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CHAPTER FIVE 

3-(1,3-BENZOTHIAZOL-2-YL)-1-(BENZOYL)THIOUREA DERIVATIVES 

 

5.1 Synthesis of 3-(1,3-benzothiazol-2-yl)-1-(benzoyl)thiourea derivatives 

A series of 1-(2/4-substituted-benzoyl)-3-benzothiazol-2-yl-thioureas has been synthesized 

from benzothiazol-2-ylamine and benzoyl isothiocyanates in satisfactory yields.335 The 

synthesized compounds were evaluated for analgesic activity by the hot plate method using 

aspirin (100 mg/kg). Some of the compounds showed analgesic activity.335 

The benzothiazole derivatives were formed by the direct attack of the thione carbon by the 2-

amino group of benzothiazole. 

 

R = H, 4-OCH3, 4-NO2, 4-Br, 4-Cl

     3-OMe, 3-NO2, 3-Br, 3-Cl
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Scheme 5.1 Synthesis of 3-(1,3-benzothiazol-2-yl)-1-(benzoyl)thiourea derivatives. 

 

 

5.2 3-(1,3-Benzothiazol-2-yl)-1-(benzoyl)thiourea (23) 

The IR spectrum (Figure A5.1) showed bands at 3327 and 3055 cm-1 for the N–H stretch, a 

band for the C=O stretch occurred at 1673 cm–1 whilst a band for the C=N stretch was 

observed at 1595 cm–1 and the aromatic C=C was observed at 1505 cm–1. The 1H NMR 

(Figure A5.2) and 1H–1H COSY (Figure A5.3) spectra gave signals at 12.22 and 11.23 ppm 

for a proton of an amide whilst the aromatic protons occurred between 8.14 and 7.34 ppm. 

The 13C NMR spectrum (Figure A5.4) gave a signal at 169.0 ppm, for the C=S while the 

C=O signal occurred at 166.0 ppm. Signals between 133.0 and 114.7 ppm were aromatic 

carbons. 
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5.3 3-(1,3-Benzothiazol-2-yl)-1-(4-chlorobenzoyl)thiourea (24) 

The IR spectrum (Figure A5.5) showed an N–H stretch at 3302 and 3035 cm–1, a band for 

the C=O stretch at 1668 cm–1, a band for the C–N stretch at 1591 cm-1 and the aromatic C=C 

stretch was observed at 1549 cm–1. The 1H NMR (Figure A5.6) and 1H–1H COSY (Figure 

A5.7) spectra gave signals at 14.16 and 12.29 ppm for a proton of an amide whilst the 

aromatic protons occurred between 8.03 and 7.39 ppm. The 13C NMR spectrum (Figure 

A5.8) gave signals between 138.2 and 122.1 ppm for aromatic carbons. 

 

 

5.4 3-(1,3-Benzothiazol-2-yl)-1-(4-bromobenzoyl)thiourea (25) 

The IR spectrum (Figure A5.9) showed an N–H stretch at 3379 and 3229cm–1, a band for the 

C=N stretch at 1682 cm–1 and the aromatic C=C was observed at 1591 cm–1. The 1H NMR 

(Figure A5.10) and 1H-1H COSY (Figure A5.11) spectra gave signals at 14.17 and 12.31 

ppm for a proton of an amide whilst the aromatic protons occurred between 8.06 and 7.39 

ppm. The 13C NMR spectrum (Figure A5.12) gave signals between 131.7 and 122.0 ppm for 

aromatic carbons. 

 

 

5.5 3-(1,3-Benzothiazol-2-yl)-1-(4-methoxybenzoyl)thiourea (26) 

The IR spectrum (Figure A5.13) showed an N–H stretch at 3303 and 3054 cm–1, bands for 

the aliphatic C–H stretch occurred at 2961 and 2928 cm-1, a band for the C=O stretch at 1675 

cm–, a band for the C=N stretch at 1594 cm–1 and the aromatic C=C was observed at 1533 

cm–1. The 1H NMR (Figure A5.14) and 1H–1H COSY (Figure A5.15) spectra gave signals at 

12.08 ppm for a proton of an amide whilst the aromatic protons occurred between 8.06 and 

7.40 ppm. The methoxy protons occurred as a singlet signal at 3.87 ppm. The 13C NMR 

spectrum (Figure A5.16) gave a signalat 163.6 for the C=N whislst aromatic resonances were 

observed between 131.3. and 113.9 ppm for aromatic carbons. The methoxy carbon occurred 

at 55.4 ppm. 
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5.6 3-(1,3-Benzothiazol-2-yl)-1-(3-methoxybenzoyl)thiourea (27)  

The IR spectrum (Figure 5.1) showed an N–H stretch at 3313 and 3070 cm–1, a band for the 

C=O stretch at 1650 cm–1, a band for the C=N stretch at 1596 cm–1 and the aromatic C=C was 

observed at 1582 cm–1. Signals for protons of an amide resonates at 12.89 and 12.21 ppm in 

1H NMR (Figure 5.2) and 1H–1H COSY (Figure 5.3) spectra whilst the aromatic protons 

occurred between 8.04 and 7.23 ppm. The methoxy protons occurred as a singlet signal at 

3.86 ppm. The 13C NMR spectrum (Figure 5.4) gave signals between 159.5 and 112.9 ppm 

for aromatic carbons. The methoxy carbon occurred at 55.4 ppm. 

 

 

 

Figure 5.1 IR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(3-methoxybenzoyl)thiourea (27). 
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Figure 5.2 1H NMR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(3-methoxybenzoyl)thiourea 

(27). 

 

 

 

Figure 5.3 1H–H COSY spectrum of 3-(1,3-benzothiazol-2-yl)-1-(3-)thiourea (27). 
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Figure 5.4 13C NMR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(3-methoxybenzoyl) 

thiourea (27). 

 

 

5.7 3-(1,3-Benzothiazol-2-yl)-1-(3-nitrobenzoyl)thiourea (28) 

The IR spectrum (Figure A5.17) showed an N–H stretch bands at 3460 and 3088 cm–1, a 

band for the C=O stretch at 1692 cm–1, a band for the C=N stretch at 1670 cm–1 and the 

aromatic C=C was observed at 1615 cm–1. The 1H NMR (Figure A5.18) and 1H-1H COSY 

(Figure A5.19) spectra gave signals at 14.03 and 12.60 ppm for a proton of an amide whilst 

the aromatic protons resonates between 8.81 and 7.41 ppm. The 13C NMR spectrum (Figure 

A3.20) gave signals between 147.4 and 123.7 ppm for aromatic carbons. 

 

 

5.8 3-(1,3-Benzothiazol-2-yl)-1-(3-chlorobenzoyl)thiourea (29)  

The IR spectrum (Figure A5.21) showed an N–H stretch 3296 and 3058–1, a band for the 

C=C stretch at 1670 cm–1, and a band for the C=N stretch at 1596 cm–1. The aromatic C=C 

was observed at 1544 cm–1. The 1H NMR (Figure A5.22) and 1H–1H COSY (Figure A5.23) 

spectra gave a broad signal at 12.29 ppm for a proton of an amide whilst the aromatic protons 

occurred between 8.20 and 7.38 ppm. The 13C NMR spectrum (Figure A5.24) gave signals 

between 133.4 and 121.8 ppm for aromatic carbons. 
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5.9 3-(1,3-Benzothiazoyl-2-yl)-1-(4-nitrobenzoyl)thiourea (30)  

The IR spectrum (Figure A5.25) showed an N–H stretch at 3351 and 3075 cm–1, a band for 

the C=O stretch occurred at 1679 cm–1 whilst a band for the C=N stretch observed at 1595 

cm–1 and the aromatic C=C was observed at 1510 cm–1. The 1H NMR (Figure A5.26) and 

1H–1H COSY (Figure A5.27) spectra gave a signal at 12.44 ppm for a proton of an amide 

whilst the aromatic protons occurred between 9.14 and 7.25 ppm. The 13C NMR spectrum 

(Figure A5.28) gave signals between 165.6 and 112.5 ppm for aromatic carbons. 

 

 

5.10 3-(1,3-Benzothiazol-2-yl)-1-(3-bromobenzoyl)thiourea (31)  

The IR spectrum (Figure 5.5) showed an N–H stretch at 3232 and 3155 cm–1, band for the 

C=O stretch at 1694 cm–1, a band for the C=N stretch at 1682 cm–1 and the aromatic C=C was 

observed at 1599 cm–1. The 1H NMR (Figure 5.6) and 1H–1H COSY (Figure 5.7) spectra. 

gave signals at 8.34 ppm for a proton of an amide whilst the aromatic protons occurred 

between 8.12 and 7.37 ppm. In the 13C NMR spectrum, (Figure 5.8) the signal at 206.6 ppm 

was due to the C=O of acetone. Signals between 135.6 and 121.8 ppm were observed for for 

aromatic carbons. Whilst the signal at 30.0ppm was due to the methyl groups of acetone. 

 

 

Figure 5.5 IR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(3-bromobenzoyl)thiourea (31). 
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Figure 5.6 1H NMR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(3-bromobenzoyl)thiourea 

(31). 

 

 

Figure 5.7 1H–1H COSY spectrum of 3-(1,3-benzothiazol-2-yl)-1-(3-bromobenzoyl) 

thiourea (31). 
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Figure 5.8  13C NMR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(3-bromobenzoyl)thiourea 

(31). 

 

 

5.11 Crystal structure of some 3-(1,3-benzothiazol-2-yl)-1-(benzoyl)thiourea 

derivatives 

Compounds 23, 27 and 31  were recrystallized from DMSO:Toluene (1:1) and obtained as 

yellow crystals. The crystallographic data, selected bond lengths and bond angles for the 

crystal structures of compounds 23, 27 and 31 are provided in Tables 5.1 and 5.2. The 

ORTEP diagrams for compounds 23, 27 and 31 are presented in Figures 5.9, 5.10 and 5.11. 

Compound 23 crystallized in the monoclinic space group P2/c, while compound 27 

crystallized in the triclinic space group P-1. Compound 31 crystallized in the orthorhombic 

space group Pbca. The bond distance of O1–C1 in compound 23 is 1.219(2) Å, which is 

consistent with a carbonyl whilst the O1-C1 bond distances in compound 27 and 31 are 1.418 

(9) and 1.220 (2) respectively. The S2-C22 bond distances for compounds 23, 27 and 31 are 

1.744(1), 1.751(1) and 1.745(2) respectively confirms the the C=S bond of a thione whilst the 

N1-C2 bond distances in compounds 23, 27 and 31 are 1.386(2), 1.389(8) and 1.391(2) 

respectively which are consistent with C-N single bond. 

The bond angles of O1-C1-N1 in compounds 23 and 31 are 121.6(1) and 122.6(2) whilst the 

bond angle of O2-C2-O1 in compound 27 is 120.6(2), confirming that the carbon atom 
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involved is sp2 hybridized. The bond angles in C1-N1-C2 in compound 23 is 127.7(1) whilst 

the bond angle in C2-N1-C3 in compound 27 is 128.6(5). The bond angle of C1-N1-C2 is 

127.8(2)in compound 31 confirming the sp2 hybridization of the nitrogen atom.  

 

 

Table 5.1 Crystallographic data and structure refinement summary for compounds 23, 27 

and 31. 

 

 

 

 

Property 24 27 31 

Formula C15H11N3OS2 C16H14N3O2S2 C15 H10 Br N3OS2 

Formula Weight 313.41 344.42 392.28 

Crystal System Monoclinic Triclinic Orthorhombic 

Space group P2/c P-1 Pbca 

a [Ǻ] 12.3658(3) 5.8481(5) 13.4779(7) 

b [Ǻ] 5.8347(1) 11.6099(11) 11.7371(5) 

c [Ǻ] 19.5189(4) 11.7178(10) 19.2452(10) 

α [°] 90 90.784(4) 90 

β [°] 90.154(1) 90.059(3) 90 

γ [°] 90 101.936(3) 90 

V [Ǻ^3] 1408.30(5) 778.31(12) 3044.4(3) 

Z 4 2 8 

D(calc) [g/cm^3] 1.478 1.470 1.712 

Mu(MoKa) [ /mm ] 0.379 0.355 2.978 

F(000) 648 358 1568 

Crystal Size [mm] 0.00 x 0.00 x 0.00 0.10 x  0.17 x  0.64 0.36 x  0.40 x  0.43 

Temperature (K) 200 200 200 

Radiation [Å] MoKa    0.71073 MoKa      0.71073 MoKa      0.71073 

θ Min-Max [°] 2.1, 28.4 1.7,  28.4 2.5,  28.4 

Dataset -16: 16 ;  -6:  7 ; -

26: 26 

-7:  4 ; -15: 15 ; -15: 15 -17: 16 ; -15: 15 ; -25: 

20 

Tot., Uniq. Data, 

R(int) 

12549, 3499, 0.017 12421, 3776, 0.024 22448, 3759, 0.024 

Observed data [I > 

2.0 sigma(I)] 

3041 3526 3052 

Nref, Npar 3499, 198 3776,  210 3759,  207 

R, wR2, S 0.0285, 0.0791, 

1.08 

0.1036, 0.2738, 1.12 0.0235, 0.0610, 1.04 

Max. and Av. 

Shift/Error 

0.00, 0.00 0.00, 0.00 0.00, 0.00 

Min. and Max. 

Resd. Dens. 

[e/Å^3] 

-0.20, 0.34 -0.60, 1.27 -0.40, 0.35 
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Table 5.2 Selected bond lengths (Å) and bond angles (˚) for compounds 23, 27 and 31. 

 

 

 

 

 

Figure 5.9 An ORTEP view of compound 3-(1,3-benzothiazol-2-yl)-1-(benzoyl)thiourea 

(23) showing 50% probability displacement ellipsoids and the atom labelling. 

Bond lengths 

23 27 31 

O1-C1 1.219(2) O1-C1 1.418(1) O1-C1 1.220(2) 

S2-C22 1.744(1) S2-C22 1.751(1) S2-C22 1.745(2) 

N1-C2 1.386(2) N1-C2 1.389(1) N1-C2 1.391(2) 

N2-C3 1.383(2) N2-C3 1.331(1) N2-C3 1.384(2) 

N3-C21 1.385(2) N3-C21 1.385(1) N3-C21 1.382(2) 

S1-C2 1.662(1) S1-C3 1.671(1) S1-C2 1.650(2) 

S2-C3 1.748(1) S2-C4 1.762(1) S2-C3 1.746(2) 

N1-C1 1.393(2) O2-C2 1.231(1) N1-C1 1.379(2) 

N2-C2 1.337(2) N1-C3 1.377(1) N2-C2 1.340(2) 

N3-C3 1.293(2) O1-C14 1.346(1) Br1-C13 1.896(2) 

Bond angles 

23 27 31 

O1-C1-N1 121.6(1) O2-C2-N1 120.6(6) O1-C1-N1 122.6(2) 

C1-N1-C2 127.7(1) C2-N1-C3 128.6(5) C1-N1-C2 127.8(2) 

S1-C2-N1 119.8(1) S1-C3-N1 119.5(1) S1-C2-N1 120.0(1) 

S1-C2-N2 125.5(1) S1-C3-N2 125.0(1) S1-C2-N2 125.2(1) 

S2-C3-N2 125.12(9

) 

S2-C4-N2 124.5(1) S2-C3-N2 125.4(1) 

S2-C3-N3 117.54(9

) 

S2-C4-N3 117.1(1) S2-C3-N3 117.4(1) 

O1-C1-C11 122.2(1) N2-C4-N3 118.4(1) N2-C3-N3 117.3(2) 

N3-C21-C22 115.0(1) C1-O1-C14 118.8(1) C3-N3-

C21 

109.9(1) 

C3-S2-C22 87.7(1) C4-S2-C22 87.5(1) O1-C1-

C11 

121.3(2) 
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Figure 5.10 An ORTEP view of compound 3-(1,3-benzothiazol-2-yl)-1-(3-

methoxybenzoyl)thiourea (27) showing 50% probability displacement 

ellipsoids and the atom labelling. 

 

 

 

 

Figure 5.11 An ORTEP view of compound 3-(1,3-benzothiazol-2-yl)-1-(3-

bromobenzoyl)thiourea (31) showing 50% probability displacement ellipsoids 

and the atom labelling. 
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5.12 Transition state studies on the formation of 3-(1,3-Benzothiazol-2-yl)-1-(3-

nitrobenzoyl)thiourea derivatives 

The predicted reaction pathway proceeds by the coming together of 2-aminobenzothiazole 

and benzoyl isothiocyanate (I1) (Scheme 5.1). The computation of all the transition states 

and intermediates was carried out using the B3LYP function and the basis set was 6-31g(d). 

I1 is used as reference in the computation of the relative free energies, it is a singlet with no 

charge of zero and a dipole moment of 2.15 Debye and an imaginary frequency of zero. The 

distance between the carbon of the thione and the nitrogen of the 2-aminobenzothiazole for I1 

is 3.66 Ǻ. I1 is obtained from the backward displacement of TS1 through the IRC pathway. 

TS1 is singlet species of no charge and a single imaginary frequency. It has a dipole moment 

of 4.38 Debye.  

 

The distance between the carbon of the thione and the nitrogen of the 2-aminobenzothiazole 

to 1.60Ǻ and a relative free energy of +27.30 kcal/mol. The C-N bond then forms in P1 

which is a singlet species of no charge with a frequency of zero. P1 has a dipole moment of 

6.47 Debye and a relative free energy of +8.92 kcal/mol. TS2 is a singlet species of no charge 

with a single imaginary frequency and a dipole moment of 6.85 Debye as well as a relative 

free energy of +11.78 kcal/mol. P2 is obtained from the forward displacement of TS1. It is a 

singlet species of no charge with an imaginary frequency of zero. P2 has a dipole moment of 

5.57 Debye and a relative free energy of +2.80 kcal/mol. A detailed reaction mechanism has 

been successfully carried out. The computation of two transition states has been carried out 

based on an intermediate P1 and a product P2 has been obtained.  
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Scheme 5.2 DFT reaction mechanism of 3-(1,3-benzothiazol-2-yl)-1-(benzoyl)thiourea. 
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Figure 5.12 Potential energy surface for 3-(1,3-benzothiazol-2-yl)-1-(benzoyl)thiourea 

derivatives. 

 

 

5.2 Biochemical studies 

 

5.2.1 Cell viability and cytotoxicity tests 

The acute cytotoxic effects of benzoyl isothiocyanate derivatives of 3-(1,3-benzothiazol-2-

yl)-1-(benzoyl)thiourea derivatives were determined by exposing them to isolated human 

white blood cells, for a 24-hour period. The results of cytotoxicity test are presented in Table 

5.3 which indicates the compound numbers (in bold) as well as the EC50 values calculated for 

each compound tested.  
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Table 5.3 Cell viability results for benzoyl isothiocyanate derivatives. 

 

Benzothiazoles EC50 μΜ 

23 327.3 

24 330.2 

25 193.6 

26 175.2 

27 188.0 

28 383.9 

29 176.3 

30 24.1 

31 1.2 

 

The EC50 values for the benzothiazole derivatives (Figure 5.13) gave varying effects on the 

cell viability of human white blood cells. Compounds 31 (3-bromo) and 30 (4-nitro) 

derivatives were found to be cytotoxic with EC50 values of 1.207 ± 0.58 and 24.08 ± 13.14 

μM, respectively. This suggest that substitution at position three with a bromo group and 

substitution at position four with a nitro group leads to an increase in cytotoxic effects among 

the benzothiazole derivatives. 

 

 

 

 

Figure 5.13 EC50 values for the benzothiazole derivatives (μM). Error bars represent the 

SEM for n = 3. 
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The cytotoxicity of compounds 31 and 28, which are the most and least cytotoxic 

compounds, respectively, among the benzothaizole derivatives are shown in Figure 5.14. The 

presence of the bromo group (31) at position 3 among the benzothiazole derivatives leads to 

an increase in cytotoxicity whilst the presence of the nitro group (28) leads to a decrease in 

cytotoxocity. 

 

   

 

Figure 5.14 EC50 values for compounds 28 and 31 (μM). Error bars represent the SEM for 

n = 3. 

 

 

5.2.2 The HIV-1 protease screening of 3-(1,3-benzothiazol-2-yl)-1-(benzoyl)thiourea 

derivatives 

 

The HIV-1 screening of the 3-(1,3-benzothiazol-2-yl)-1-(benzoyl)thiourea derivatives was 

done at 100 µM of inhibitor and that for ritonavir was done at 10 µM. All the compounds 

gave a percentage inhibition of less than 40%. Their lack of activity might be due to their the 

presence of polar groups making them more reactive to the constituents of the matrix used for 

their introduction to protease. In the modeling of these scaffolds of the 3-(1,3-benzothiazol-2-

yl)-1-(benzoyl)thiourea derivatives, there was some interaction between the atoms in the 

protease active site and the substituents via hydrogen bonding or dipole dipole interaction but 

does not seem to occur in the HIV-1 screens, hence the lack of activity among these 

compounds. 
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Table 5.4 HIV-1 protease screening results for 3-(1,3-benzothiazol-2-yl)-1-

(benzoyl)thiourea derivatives. 

 

Compound Fluorescence Standard 

deviation 

% Activity 

relative to 

untreated 

control  

% 

Inhibition 

relative to 

untreated 

control 

Ritonavir 36.24 1.88 9.34 90.66 

23 304.19 3.42 78.42 21.58 

24 296.57 11.7 76.46 23.54 

25 350.75 25.84 90.42 9.58 

26 335.22 6.93 86.42 13.58 

27 438.39 6.12 113.02 0 

28 403.1 10.75 103.92 0 

29 418.44 16.41 107.87 0 

30  222.43 0.65 98.43 1.57 

31 151.6 6.27 67.09 32.91 

 

 

 

 

Figure 5.15 HIV-1 protease screening results illustrating % inhibition of benzothiazole 

(100 μM) and ritonavir (10 μM) derivatives compared to untreated control. 

Error bars represent SEM for n = 3. 

 

 

The presence of polar groups on 3-(1,3-benzothiazol-2-yl)-1-(benzoyl)thiourea derivatives 

makes these compounds more reactive in the complex matrix of the acetate buffer used. The 
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compounds would easily interact with other molecules in water and the water molecule as 

well. This decreases the amount of these compounds that can get to the active site of HIV-1 

protease for binding. Though at the active site it can undergo binding to the aspartate A25 

residue (Figure 5.16) the orientation adapted upon binding can not ensure that the natural 

substrate is inhibited effectively hence the general lower inhibitory activity of these 

compounds against protease. The docking result gave predicted inhibition constants between 

3.11 μM and 11.31 μM. 

 

 

 

Figure 5.16 2D representation of 3-(1,3-benzothiazol-2-yl)-1-(4-chlorobenzoyl)thiourea 

(24) in the HIV-1 protease binding site.  
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5.3 Conclusions 

-2-Aminobenzothiazole derivatives of benzoyl isothiocyanates have been synthesized and 

characterized by IR, NMR, GC-MS, and microanalysis. 

-The single crystal XRD molecular structures of compounds 3-(1,3-benzothiazol-2-yl)-1-

(benzoyl)thiourea (23), 3-(1,3-benzothiazol-2-yl)-1-(3-methoxybenzoyl)thiourea (27) and 3-

(1,3-benzothiazol-2-yl)-1-(3-bromobenzoyl)thiourea (31) have been discussed. 

 

-DFT transition state studies of the formation of 3-(1,3-benzothiazol-2-yl)-1-

(benzoyl)thiourea (23) have been carried out and the factors that drive the reaction discussed. 

 

-Cell viability test on the benzothiazole derivatives have been computed and EC50 values 

obtain. Compounds 31 (3-bromo) and 30 (4-nitro) derivatives were found to be cytotoxic 

with EC50 values of 1.207 ± 0.58 and 24.08 ± 13.14 μM, respectively. 

 

-HIV-1 protease screen for the benzothiazole derivatives have been carried out. All the 

compounds in this set gave percentage inhibition lower than 40% at a concentration of 100 

μM of inhibitor and 20 μM of protease. 
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CHAPTER SIX 

TRIAZATETRACYCLIC DERIVATIVES 

6.1 Synthesis of triazatetracyclics 

Triazatetetracyclics have been made by other methods.336-340 Twelve N-glycosyl amines have 

been synthesised using 4,6-O-benzylidene-D-glucopyranose and different substituted 

aromatic amines, including some diamines that resulted in bis-glycosyl amines. Another set 

of six N-glycosyl amines were synthesised using different hexoses and pentoses with 2-(o-

aminophenyl)benzimidazole. In these reactions only the 2-amino group reacted with the 

hydroxyl groups of 2-(o-aminophenyl)benzimidazole.336 Reactions of substituted aldehydes 

with 2-(o-aminophenyl)benzimidazole have been reported to yield Schiff bases.337 The 

syntheses of 2-(2-nitrophenyl)-1-benzoyl-1H-benzimidazole derivatives and their reduction 

to the corresponding 2-benzimidazoylbenzamides have been reported. The compounds were 

cleanly and efficiently converted to the corresponding 6-arylbenzimidazo[1,2-c]quinazolines 

by microwave activation using SiO2-MnO2 as solid inorganic support.338  Triazatetracyclics 

have also been synthesized by heating 2-(2-aminophenyl) benzimidazole and aryl aldehyde 

under reflux in ethanol for 5 h.339 Also some triazatetracyclic compounds with substitution on 

the aryl ring have been synthesized from aminophenylbenzimidazole and substituted aryl 

aldehydes at room temperature in ethanol- acetic acid mixtures.340  

 

Triazatetracyclics have been accessed by the reaction of benzoyl isothiocyanate derivatives 

with 2-(2-aminophenyl)-1H-benzimidazole in this work. The reaction is thought to proceed 

by the attack of the thione carbon by the lone pair on the nitrogen of the 2-aminophenyl 

group without the presence of a base leading to the formation of thiol. Protonation of the thiol 

leads to the evolution of hydrogen sulfide, during which the nitrogen of the benzimidazole 

also attacks the carbon. The loss of the hydrogen sulfide is what drives the reaction. A 

reaction scheme is presented in Scheme 6.1. 
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R = H, 4-OCH3, 4-NO2, 4-Br, 4-Cl

    3-OCH3, 3-NO2, 3-Br, 3-Cl
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Scheme 6.1  Synthesis of triazatetracyclics derivatives. 

 

 

6.2 Problems with solubility  

Most of the triazatetracylics are partially soluble in DMSO and insoluble in D2O and 

deuterated chloroform. It was impossible to conclusively assign signals in the 1H NMR and 

13C NMR spectra in DMSO because signal suppression. Hence conclusive characterization of 

these compounds were achieved using GC-MS, microanalysis, IR and single crystal XRD.  

 

 

6.3 4-Bromo-N-[(9E)-8,10,17-triazatetracyclo[8.7.0.02,7.011,16]heptadeca-

1(17),2,4,6,11(16) ,12,14-heptaen-9-ylidene]benzamide (32)  

The IR spectrum (Figure A6.1) showed a band at 3026 cm−1 for and N–H stretch. A band at 

1637 cm−1 was observed for the C=O stretch. The C–N stretch was observed at 1574cm-1, 

whilst the C=C band was observed at 1548 cm−1. The 1H NMR (Figure A6.2) and 1H–1H 

COSY (Figure A6.3) spectra of compound 32 showed a signal at 13.27 ppm for the NH 

proton. Aromatic protons resonating between 8.36 and 7.37 ppm were observed. The 13C 

NMR spectrum (Figure A6.4) showed signals between 149.7 and 121.9 ppm for aromatic 

protons. 
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6.4 4-Methoxy-N-[(9E)-8,10,17-triazatetracyclo[8.7.0.02,7.011,16]heptadeca-

1(17),2,4,6,11(16),12,14-heptaen-9-ylidene]benzamide (33) 

The IR spectrum (Figure A6.5 showed a band at 3043 cm−1 for and N–H stretch. Bands for 

the aliphatic C–H stretch were observed at 2950 and 2913 cm−1. A band at 1635 cm−1 was 

observed for the C=O stretch. The C–N stretch was observed at 1567, whilst the C=C band 

were observed 1478 cm-1. In the 1H NMR (Figure A6.6) and 1H–1H COSY (Figure A6.7) 

spectra a singlet signal for the proton of the NH resonated at 13.74 ppm. Aromatic protons 

were observed between 8.84 and 7.08 ppm. A singlet signal for three protons occurred at 3.86 

ppm for the methoxy protons. The 13C NMR spectrum (Figure A6.8) showed signals 

between 170.2 and 113.8 ppm for aromatic carbons. The methoxy group was observed at 

55.41 ppm. 

 

 

6.5 3-Methoxy-N-[(9E)-8,10,17-triazatetracyclo[8.7.0.02,7.011,16]heptadeca-

1(17),2,4,6,11(16),12,14-heptaen-9-ylidene]benzamide (34) 

The IR spectrum (Figure 6.1) showed a band at 3110 cm−1 for and N–H stretch. Bands for the 

aliphatic C–H stretch were observed at 2991 and 2836 cm−1. A band at 1634 cm−1 was 

observed for the C=O stretch. The C-N stretch was observed at 15680 cm-1. The 1H NMR 

(Figure 6.2) and 1H–1H COSY (Figure 6.3) spectra of compound 33 gave a singlet resonance 

at 13.56 ppm for the NH proton. Aromatic protons resonating  8.66 and 7.11 ppm were 

observed. A singlet signal for three protons was observed at 3.79 ppm for the methoxy 

protons. The 13C NMR spectrum (Figure 6.4) showed signals between 177.20 and 113.4 ppm 

for aromatic protons. The methoxy group was observed at 54.94 ppm. 
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Figure 6.1 IR spectrum of 3-methoxy-N-[(9E)-8,10,17-triazatetracyclo [8.7.0.02,7.011,16] 

heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] benzamide (34). 

 

 

 

Figure 6.2 1H NMR spectrum of 3-methoxy-N-[(9E)-8,10,17-triazatetracyclo 

[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 

benzamide (34). 
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Figure 6.3 1H 1H COSY spectrum of 3-methoxy-N-[(9E)-8,10,17-triazatetracyclo 

[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 

benzamide (34). 

 

 

 

Figure 6.4 13C NMR spectrum of 3-methoxy-N-[(9E)-8,10,17-triazatetracyclo 

[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 

benzamide (34). 
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6.6 4-Chloro-N-[(9E)-8,10,17-triazatetracyclo[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11 

(16),12,14-heptaen-9-ylidene]benzamide (35) 

The IR spectrum (Figure A6.9) showed a band at 3025 cm−1 for and N–H stretch. A band at 

1637 cm−1 was observed for the C=O stretch. The C–N stretch was observed at 15630 cm-1. 

The 1H NMR (Figure A6.10) and 1H–1H COSY (Figure A6.11) spectra of compound 35 

showed a singlet signal at 13.49 ppm for the NH proton. Signals from aromatic protons 

resonating between 9.40 and 6.87 ppm were observed. The 13C NMR spectrum ( Figure 

A6.12) showed signals between 166.9 and 115.3 ppm for aromatic protons. In the 

characterization of compound 35 due to its low solubility in DMSO the spectra obtained for 

1H and 13C NMR had enhance signals for impurities when an attempt was made to obtain 

significant quantities of sample dissolved in the solvent used. When this was avoided 

extremely low signals were obtained with most peaks suppressed in the 1H NMR spectrum 

and no peaks observed in the 13C NMR spectrum. Conclusive characterization of this 

compound was achieved with using IR, GC-MS and elemental analysis.  

 

 

6.7 3-Nitro-N-[(9E)-8,10,17-triazatetracyclo[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11 

(16),12,14-heptaen-9-ylidene]benzamide (36) 

The IR spectrum (Figure A6.13) showed a band at 3082 cm−1 for and N–H stretch. A band at 

1634 cm−1 was observed for the C=O stretch. The C–N stretch was observed at 1594 cm-1. In 

the 1H NMR (Figure A6.14) and 1H–1H COSY (Figure A6.15) spectra of compound 36 a 

singlet resonace occurred at 13.48 ppm for the NH proton. Aromatic protons were observed 

between 9.37 and 6.86 ppm. The 13C NMR spectrum (Figure A6.16) showed signals between 

165.9 and 114.9 ppm for aromatic protons. Due to the low solubility of compound 36 in 

DMSO, the spectral obtained for 1H NMR and 13C NMR had enhanced signals for impurities, 

when an attempt was made to obtain significant quantities of sample dissolved in the solvent 

used. When this was avoided, extremely low signals were obtained with most peaks 

suppressed in the 1H NMR spectrum and no peaks observed in the 13C NMR spectrum. 

Conclusive characterization of this compound was achieved with using IR, GC-MS and 

elemental analysis.  
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6.8 3-Chloro-N-[(9E)-8,10,17-triazatetracyclo[8.7.0.02,7.011,16]heptadeca-1(17),2,4, 

6,11(16),12,14-heptaen-9-ylidene]benzamide (37)  

The IR spectrum (Figure A6.17) showed a band at 1638 cm-1 for the C=O stretch. The C–N 

stretch was observed at 1595 whilst the C=C stretch occurred at 1575 cm-1. The 1H NMR 

(Figure A6.18) spectrum of compound 37 showed a singlet at 13.50 ppm for the proton of an 

amide. Aromatic protons resonating between 9.41 and 6.56 ppm were observed. The 13C 

NMR spectrum (Figure A6.19) showed signals between 166.4 and 113.4 ppm for aromatic 

protons. The methoxy group was observed at 54.94 ppm. 

 

The spectral data obtained for 1H NMR and 13C NMR had enhanced signals for impurities 

due to its low solubility in DMSO when an attempt was made to obtain significant quantities 

of sample dissolved in the DMSO. When this was avoided extremely low signals were 

obtained with most peaks suppressed in the 1H NMR spectrum and no peaks observed in the 

13C NMR spectrum. Conclusive characterization of this compound was achieved with using 

IR, GC-MS and elemental analysis. 

 

 

6.9 4-Nitro-N-[(9E)-8,10,17-triazatetracyclo[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11 

(16),12,14-heptaen-9-ylidene]benzamide (38) 

The IR spectrum (Figure A6.20) showed a band at 3052 cm−1 for an N–H stretch. A band at 

1634 cm−1 was observed for the C=O stretch. The C–N stretch was observed at 1574 cm-1. 

The 1H NMR spectrum (Figure A6.21) of compound 38 showed a singlet resonance at 14.38 

ppm for the proton of an amide. Aromatic protons resonating between 8.94 and 7.38 ppm 

were observed. Due to poor solubility of compound 38 the 13C NMR spectral data could not 

be obtained 

 

 

6.10 N-[(9E)-8,10,17-triazatetracyclo[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11 

(16),12,14-heptaen-9-ylidene]benzamide (39)  

The IR spectrum (Figure A6.22) showed a band at 3056 cm−1 for and N–H stretch. A band at 

1633 cm−1 was observed for the C=O stretch The C–N stretch was observed at 1593 cm-1. In 

the 1H NMR (Figure A6.23) and 1H–1H COSY (Figure A6.24) spectra of compound 39 the 
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NH proton reosonated as a singlet at 14.38 ppm. Aromatic protons were observed between 

8.36 and 6.92 ppm. The 13C NMR spectrum (Figure A6.25) showed signals between 104.4 

and 144.4 ppm for aromatic carbons.  

 

The formation of triazatetracyclic have been extended to include aldehyde and ketones. The 

reaction is thought to proceed by the attack of the carbonyl of the ketone or aldehyde (6.2a) 

(Scheme 6.1) by the lone pair on the nitrogen of the 2-aminophenyl group without the 

presence of a base leading to the formation of the hydroxyl on the ketone or aldehyde (6.2b) 

Protonation of the hydroxyl group lead to its loss as water (6.2c). After which the nitrogen of 

the benzimidazole also attacks the carbon leading to the formation of a triazatetracyclic 

(6.2d). 
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Scheme 6.2 Proposed reaction mechanism for the formation of triazatetracyclics from 

ketones and aldehydes.  

 

 

6.11 Crystal structure of compound 39 

Compounds 39 was recrystallized from DMSO:Toluene (1:1). Compound 39 was obtained as 

white crystals. The crystallographic data, selected bond lengths and bond angles for the 
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crystal structure of compound 39 are provided in Tables 6.1 and 6.2. The ORTEP diagram 

for compound 39 in Figure 6.5. Compound 39 crystallized in the monoclinic space group 

P21/c.  

Table 6.1 Crystallographic data and structure refinement summary for compounds 39.  

 

Property 39 

Formula C21H14N4O 

Formula Weight 338.36 

Crystal System Monoclinic 

Space group P21/c 

a [Ǻ] 15.8980(7) 

b [Ǻ] 4.8067(2) 

c [Ǻ] 21.0455(10) 

α [°] 90 

β [°], 101.153(2) 

γ [°] 90 

V [Ang^3] 1577.86(12) 

Z 4 

D(calc) [g/cm^3] 1.424 

Mu(MoKa) [ /mm ] 0.092 

F(000) 704 

Crystal Size [mm] 0.05 x  0.32 x  0.59 

Temperature (K) 200 

Radiation [Å] MoKa   0.71073 

Theta Min-Max [°] 2.0,  28.3 

Dataset -21: 21 ;  -6:  6 ; -27: 28 

Tot., Uniq. Data, R(int) 21774, 3928, 0.022 

Observed Data [I > 2.0 sigma(I)] 3165 

Nref, Npar 3928,  239 

R, wR2, S 0.0375, 0.1047, 1.03 

Max. and Av. Shift/Error 0.00, 0.00 

Min. and Max. Resd. Dens. [e/Å^3] -0.20, 0.27 

 

 

The bond distance of O1–C3 in compound 39 is 1.245(1) Å, which is consistent with a 

carbonyl whilst the NI-C1, N1-C11, and N2-C1 bond distances in compound 39 are 1.301(2), 

1.393(2), and 1.406(1) Ǻ respectively. The bonds are not distinctly single nor double bonds 

suggesting the triazatetracylcic is stabilized by the quasi aromatization of the six 

memberedirng formed after the loss of hydrogen sulphide. To make the molecule more 

stable. The bond angles of N1-C1-C21, N1-C1-N2 and N2-C1-C21 in compound 39 are 

128.6(1), 113.3(1) and 118.1(1) Ǻ respectively. The carbon atoms involved are all sp2 

hybridized but the presence of electronegive groups around them tend to distort their electron 
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densities and hence the bond angles. The lone pairs on the nitrogen atoms are contributed to 

stabilise the six membered ring.  

 

 

Table 6.2 Selected bond lengths (Å) and bond angles (°) for compound 39. 

 

Bond lengths (Å)  

O1-C3 1.245(1) 

N1-C1 1.301(2) 

N1-C11 1.393(2) 

N2-C1 1.406(1) 

N4-C3 1.368(1) 

N2-C2 1.378(1) 

Bond angles (°) 

C1-N1-C11 104.8(1) 

C1-N2-C2 124.1(1) 

C1-N2-C12 105.9(1) 

N4-C3-C31 114. 8(1) 

N1-C1-C21 128.6(1) 

N2-C2-N3 115.4(1) 

N1-C1-N2 113.3(1) 

N2-C1-C21 118.1(1) 

 

 

 

 

Figure 6.5 An ORTEP view of N-[(9E)-8,10,17-triazatetracyclo[8.7.0.02,7.011,16] 

heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene]benzamide (39) 

showing 50% probability displacement ellipsoids and the atom labelling. 
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6.12 Transition state studies on the formation of triazatetracyclics derivatives 

The predicted reaction pathway proceeds by the attack of the thione of  benzoyl 

isothiocyanate by the amino group attached to the benzene ring as indicated I1 (Scheme 6.2) 

which is a singlet species of no charge and a dipole moment of 6.01 Debye. I1 is used as 

reference in the computation of the relative free energies. The functional used in the 

computation of I1 is B3LYP with the basis set of 6-31G(d). I1 is obtained by optimising the 

starting material to a minimum and also tracing the reverse IRC path way of the transition 

state TS1. TS1 is singlet of charge 2 with a dipole moment of 6.15 Debye It is a saddle point 

with a single imaginary frequency, according to the Berny algorithm and a subsequent 

vibrational analysis. The relative free energy of TS1 is +396.54 kcal/mol. A forward IRC 

computation and optimization of the subsequent structure gave P1 which is a singlet species 

of no charge and frequency with a dipole moment of 9.59 Debye. The relative free energy of 

P1 is -13.64 kcal/mol.  

 

Rearrangement of electrons leads to TS2 which is also a doublet species with a charge of 1, a 

single imaginary frequency and a dipole moment of 4.47 Debye. TS2 is a saddle point with a 

single imaginary frequency and a relative free energy of +171.30 kcal/mol. A forward IRC 

pathway from TS2 gives P2 which a singlet species of no charge, and a imaginary frequency 

of zero. The dipole moment of P2 is 4.37 Debye, with a relative free energy of -9.70 

kcal/mol. P2 is formed by the migration of a proton from the amino group onto the sulfur. A 

rearrangement of electrons in P2 leads to the formation of TS3, a saddle point of charge 2 

with a dipole moment of 5.68 kcal/mol. The relative free energy of TS3 is 387.45 kcal/mol. A 

further rearrangement gives the more stable intermediate P3 which is also a singlet with no 

charge and imaginary frequency but have a relative energy of +284.63 kcal/mol. A ring 

closure occurs when carbon of the thiol is attacked by the lone pair of electrons on the 

nitrogen to form TS4, a singlet of no charge with a single imaginary frequency and a dipole 

moment of 9.99 Debye. The relative free energy of TS4 is +394.22 kcal/mol. A forward 

displacement of TS4 along the IRC and subsequent optimization of the product yields P4, a 

singlet of no charge and  imaginery frequency but with a dipole moment of 16.86 Debye. The 

relative energy of P4 is +126.65 kcal/mol. The rearrangement of the species, a proton shift 

and cleavage of the C-S bond leads to the formation of TS5 with a loss of hydrogen sulphide. 

TS5 is a transition state of no charge, with a single imaginary frequency and a dipole moment 

of 3.36 Debye. It has a relative energy of 152.03 kcal/mol.  
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A rearrangement of electrons leads to the formation of P5 which is has no charge and 

imaginary frequency but with a dipole moment of 2.18 Debye and a relative energy of 46.15 

kcal/mol. The detailed reaction mechanism for the synthesis of triazatetracyclics has been 

computed to obtain five transition states of four intermediates and a product. Again these 

preliminary results illustrate the feasibility of  the formation of product, and future work will 

investigate further transition states in order to find a plausible mechanism. 
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Scheme 6.3 DFT reaction mechanism of triazatetracyclics. 
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Figure 6.6 Potential energy surface for the formation of triazatetracyclics. 

 

 

6.2 Biochemical studies 

6.2.1 Cell viability and cytotoxicity tests 

The acute cytotoxic effects of of triazatetracyclics were determined by exposing them to 

isolated human white blood cells, for a 24-hour period. The cell viability was were assessed 

using the MTT reduction assay and the results are presented in Table 6.3 which indicates the 

compound numbers (in bold) as well as the EC50 values calculated for each compound 

tested.  

 

Table 6.3 Cell viability results for benzoyl isothiocyanate derivatives. 

 

Triazatetracyclics EC50 

μM 

32 45.47 

33 45.09 

34 131.26 

35 252.77 

36 136.72 

37 74.95 

38 164.05 

39 163.67 

 



P a g e  | 222 

 

F. Odame  Nelson Mandela Metropolitan Univeristy 

The EC50 values for the triazatetracyclics (Fgure 6.7) showed varying effects on the cell 

viability of human white blood cells. Compounds 32 (4-bromo), 33 (4-methoxy) and 37 (3-

chloro) derivatives were cytotoxic giving EC50 values of 45.47 ± 21.92, 45.09 ± 13.79 and 

74.94 ± 13.17 μM, respectively. Substitution at position four with a bromo or a methoxy 

leads to an increase in cytotoxic effects of triazatetracyclics. Also a substitution at position 

three with a chloro makes triazatetracyclics cytotoxic. 

 

 

 

 

Figure 6.7 EC50 values for the triazatetracyclics (μM). Error bars represent the SEM for n 

= 3. 

 

The cytotoxicity of compounds 35 and 33, which are the most and least cytotoxic compounds 

among the triazatetracyclic derivatives, respectively is shown in Figure 6.8. The presence of 

the chloro group (35) at position four in the triazatetracyclic leads to an increase in 

cytotoxicity, whilst the presence of a methoxy group (33) leads to a decrease in cytotoxicity.  
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Figure 6.8 EC50 values for compounds 35 and 33 (μM). Error bars represent the SEM for 

n = 3. 

 

 

6.2.2 HIV-1 protease screen of triazatetracyclic derivatives  

Table 6.5 and Figure 6.9 gives the HIV-1 screening results for the triazatetracyclics. The 

screening of the compounds was done at 100 µM of inhibitor and that for ritonavir was done 

at 10 µM. Most of the triazatetracyclics do not have a significant % inhibition when 

compared to ritonavir. This primarily might be due to poor solubility of these compounds in 

the buffer used with 2% DMSO. 

 

 

Table 6.4 HIV-1 protease screening results for triazatetracyclics. 

 

Compounds Fluorescence Standard 

deviation 

% Activity 

relative to 

untreated 

control 

%Inhibition 

relative to 

untreated 

control 

Ritonavir 36.24 1.88 9.34 90.67 

32 478.51 4.7 123.36 0 

33 353.86 2.68 91.22 8.78 

34 354.87 8.85 91.48 8.52 

35 405.49 10.65 104.53 0  

36 317.61 25.8 81.88 18.12 

37 157.91 10.75 69.88 30.12 

38 182.64 3.29 80.82 19.18 

39 380.73 9.67 98.15 1.85 
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Figure 6.9 HIV-1 protease screening results illustrating % inhibition of triazatetracyclics 

(100 μM) and ritonavir (10 μM) relative to untreated control. Error bars 

represent SEM for n = 3. 

 

Figures 6.10 and 6.11 give the 2D representation of compounds 38 and 35 in the protease 

active site respectively  

 

The activity of 4-nitro-N-[(9E)-8,10,17-triazatetracyclo [8.7.0.02,7.011,16] heptadeca-

1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] benzamide (35) in the bioassay was due to the 

fact that it was able to undergo hydrogen bonding with aapartate B25 and aspartate A25. This 

makes it impossible for the natural substrate to access the active site of the enzyme. 
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Figure 6.10 2D representation of 4-nitro-N-[(9E)-8,10,17-triazatetracyclo [8.7.0.02,7.011,16] 

heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] benzamide (38). in the 

HIV-1 protease binding site  

 

The lack of activity of 4-chloro-N-[(9E)-8,10,17-triazatetracyclo [8.7.0.02,7.011,16] heptadeca-

1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] benzamide (35) against protease was because it 

does not undergo any significant interaction with the groups at the active site of protease. 

The predicted inhibition conatants of this class of compounds range from 0.98 μM to 3.02 

μM but the predicted inhibition could not be realized because of the poor solubility of these 

compounds in DMSO and water which was used for the bioassay. 
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Figure 6.11 2D representation of 4-chloro-N-[(9E)-8,10,17-triazatetracyclo 

[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 

benzamide (35) in the HIV-1 protease binding site  

 

 

6.3 Conclusions 

-Novel triazatetracyclics derivatives have been synthesized from the reaction of benzoyl 

isothiocyanate with 2 (2-aminophenyl)-1H-benzimidazole. The compounds have been 

characterized with spectroscopy, microanalysis and GC-MS.  

 

-The single crystal XRD molecular structure of N-[(9E)-8,10,17-triazatetracyclo 

[8.7.0.02,7.011,16] heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene]benzamide (39) has 

been discussed. 

 

-Transition state studies on the formation of N-[(9E)-8,10,17-triazatetracyclo[8.7.0.02,7.011,16] 

heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene]benzamide (39) has been carried out 
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using Gaussian. The various transition states in the reaction pathway and the resulting 

intermediates have been computed to explain a possible reaction mechanism for these 

compounds. 

 

-Cell viability tests of the triazatetracyclics showed that compounds 32 (4-bromo), 33 (4-

methoxy) and 37 (3-chloro) were cytotoxic giving EC50 values of 45.47 ± 21.92, 45.09 ± 

13.79 and 74.94 ± 13.17 μM, respectively. 

 

-The low solubility of the triazatetracyclics is the main reason why these class of compounds 

exhibited a low inhibition against HIV1 protease. 
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CHAPTER SEVEN 

PHENYL THIOUREA COMPOUNDS AND OTHER DIAMINE DERIVATIVES 

7.1 Synthesis of phenyl thiourea compounds and other diamine derivatives 

A solvent-free 3-component one-pot reaction between 2,6-diaminopyridine or 1,2-

diaminobenzene and NH4SCN with subsequent addition of an aryl chloride afforded bis-1-

(aroyl)-3-(aryl)thioureas in excellent yields. The thiocyanate derivatives were first 

synthesized and then used to prepare the thiourea derivatives (41).341 Benzoyl chloride has 

been reacted with ammonium thiocyanate in CH2Cl2 solution under solid–liquid phase 

transfer catalysis, using polyethylene glycol-400 as the catalyst, to give the corresponding 

benzoyl isothiocyanate. Dropwise addition of a solution of 1,4-butylenediamine in CH2Cl2 

yielded 3,3'-dibenzoyl-1,1'-(butane-1,4-diyl)dithiourea (54),342 while 3,3-bis(4-nitrophenyl)-

1,10-(p-phenylene) dithiourea dimethylsulfoxide disolvate has been prepared by the reaction 

of (p-nitro)benzoyl isothiocyanate with p-phenylenediamine in CH2Cl2 using polyethylene 

glycol-400 as a phase transfer catalyst.343 This reaction has been carried using 1,6-

hexyldiamine as the source of diamine to give N,N-(1,6-hexamethylene)-

bis(benzoylthiourea)(50).344 Thiocarbonohydrazide has been converted into 1-

aminothiocarbamoyl-4-aroyl-3-thiosemicarbazides and 1,5-bis(aroylthiocarbamoy1) 

thiocarbonohydrazides by the addition of one or two moles of aroyl isothiocyanate, 

respectively. 1-Phenyl- or 1-benzylidene-thiocarbonohydrazide and aroyl isothiocyanates 

gave the appropriate mono-adducts analogously. 1-Aminothiocarbamoyl-4-benzoyl-3-

thiosemicarbazide, the simplest representative of these classes of compounds, is cyclized to 

3-mercapto-5-phenyl-1,2,4-triazole in alkaline media, and to 2-benzamido-5-mercapto- 1,3,4-

thiadiazole in acid media, the action of alkyl halides in the appropriate alcohol yields 2-

benzamido-5-alkylthio-l,3,4-thiadiazoles 345 The reaction of benzoyl isothiocyanate with o-

phenylenediamine has been carried out in acetone using potassium thiocyanate as thiocyanate 

source (40).346. 

In this study, the phenyl thiourea derivatives are formed by the attack of the thione carbon by 

the two amino groups on the molecule.  
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Scheme 7.1 Synthesis of 1-benzoyl-3-(2-{[(phenylformamido)methanethioyl]amino} 

phenyl) thiourea derivatives. 

 

 

7.1.1 1-Benzoyl-3-(5-methyl-2-{[(phenylformamido)methanethioyl]amino}phenyl) 

thiourea (40) 

The IR spectrum (Figure A7.1) showed a band at 3186 cm−1 for an N–H stretch. A band was 

observed at 2981 cm-1. A band for the C=O stretch of an amide was observed at 1670 cm−1. 

The C-N stretch was observed at 1593 cm-1. The 1H NMR spectrum (Figure A7.2) of 

compound 40 showed a two doublet at signals at 12.45 ppm and 11.72 ppm for the proton of 

an amide. Aromatic protons were observed between 7.90 and 7.22 ppm. A singlet signal for 

three protons was observed at 2.31 ppm. The 13C NMR spectrum (Figure A7.3) showed a 

signal at 180.4 ppm for the C=S, whilst the C=O signal was observed at 168.3 ppm. Signals 

for aromatic carbons occurred between 136.8 and 126.5 ppm aromatic carbons. The signal for 

a methyl group was observed at 20.7 ppm.  

 

 

7.1.2 1-Benzoyl-3-(2-{[(phenylformamido)methanethioyl]amino}phenyl)thiourea (41)  

The IR spectrum (Figure A7.4) showed a bands at 3265, 3137 and 3005 cm−1 for an N–H 

stretch. A band at 1686 cm−1 was observed for the C=O stretch of an amide. The C–N stretch 

was observed at 1591 cm-1. The 1H NMR spectrum (Figure A7.5) of compound 40 showed a 
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two doublet at signals at 12.45 and 11.72 ppm for the proton of a amide. Aromatic protons 

were observed between 7.90 and 7.22 ppm. A singlet signal for three protons was observed at 

2.31 ppm. The 13C NMR spectrum (Figure A7.6) showed a signal at 180.4 ppm for the C=S, 

whilst the C=O signal was observed at 168.3 ppm. Signals for aromatic carbons occurred 

between 136.8 and 126.5 ppm for aromatic carbons.  

 

 

7.1.3 1-(4-nitrobenzoyl)-3-[2-({[(4-nitrophenyl)formamido]methanthioyl phenyl] 

thiourea}amino) (42) 

The IR spectrum (Figure A7.7) showed an N–H stretch at 3200 cm–1. A band for the C=N 

stretch at 1683 cm–1 and the aromatic C=C was observed at 1601 cm–1. The 1H NMR 

spectrum (Figure A7.8) gave signals at 12.30 and 12.12 ppm for a proton of an amine whilst 

the aromatic protons occurred between 8.33 and 7.42 ppm. The 13C NMR spectrum (Figure 

A7.9) showed a signal at 180.1 ppm for the C=S, whilst the C=O signal was observed at 

161.0 ppm. Signals for aromatic carbons occurred between 149.7 and 123.2 ppm. 

 

 

7.1.4 1-(4-Chlorobenzoyl)-3-[2-({[(4-chlorophenyl)formamido]methanethioyl}amino) 

phenylthiourea (43) 

The IR spectrum (Figure A7.10) showed an N–H stretch at 3038 cm–1, a band for the C=N 

stretch at 1640 cm–1 and the aromatic C=C was observed at 1600 cm–1. The 1H NMR 

spectrum (Figure A7.11) gave signals between 8.52–7.55 ppm for aromatic protons. The 13C 

NMR spectrum (Figure A7.12) showed a signal between 143.7 and 119.6 ppm for aromatic 

carbons.  

 

 

7.1.5 1-(3-Nitrobenzoyl)-3-[2-({[(3-nitrophenyl)formamido]methane}amino)phenyl] 

thourea (44) 

The IR spectrum ( Figure 7.1 ) showed N–H stretches at 3351 and 3204 cm–1, a band for the 

C=O stretch was observed at 1687 cm-1. Whilst bands for the C=N and C=C stretches were 

observed at 1603 cm–1 and the aromatic C=C was observed at 1515 cm–1, respectively. The 
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1H NMR spectrum (Figure 7.2) gave signals 12.34 and 12.18 ppm for a proton of an amide 

whilst aromatic protons occurred between 8.65 and 7.44 ppm. The 13C NMR spectrum 

(Figure 7.3) gave a signal at 180.20 ppm for the C=S group, a signal for the C=O group was 

observed at 166.4 ppm and signals between 147.3 and 123.5 ppm were observed for aromatic 

carbons. 

 

 

 

Figure 7.1 IR spectrum of 1-(3-nitrobenzoyl)-3-[2-({[(3-nitrophenyl)formamido] 

methane}amino)phenyl]thourea (44).  

 

 

 

Figure 7.2 1H NMR spectrum of 1-(3-nitrobenzoyl)-3-[2-({[(3-nitrophenyl)formamido] 

methane}amino)phenyl]thourea (44). 
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Figure 7.3 13C NMR spectrum of 1-(3-nitrobenzoyl)-3-[2-({[(3-nitrophenyl) formamido] 

methane}amino)phenyl]thourea (44). 

 

 

7.1.6 1-(3-Methoxybenzoyl)-3-[2-({[(3-methoxyphenyl)formamido]methanethioyl} 

amino)phenyl]thiourea (45) 

The IR spectrum (Figure A7.13) showed N–H stretches at 3326 and 3184 cm–1. Bands for 

the C=O stretch, C=C and C–N stretches were observed at 1663 cm–1, 1552 and 1527 cm–1 

respectively. The 1H NMR spectrum (Figure A7.14) gave signals at 12.50 and 11.69 ppm for 

a proton of an amine whilst the aromatic protons occurred between 7.92 and 7.21 ppm. The 

methoxy protons occurred as a signal at 3.77 ppm. The 13C NMR spectrum (Figure A7.15) 

showed a signal at 180.4 ppm for the C=S, whilst the C=O signal was observed at 168.1 ppm. 

Signals between 165.6 and 112.5 ppm were observed for aromatic carbons, whilst a signal for 

the methoxy group was observed at 55.5 ppm. 

 

 

7.1.7 1-(4-Bromobenzoyl)-3-[2-({[(4-bromophenyl)formamido]methanethioyl} 

amino)phenyl]thiourea (46) 

The IR spectrum (Figure A7.16) showed an N–H stretch at 3140 cm–1. Bands for the C=O 

stretch, the C–N and the C=C was observed at 1681 cm–1, 1585 cm-1 and 1517 cm–1. The 1H 

NMR spectrum (Figure A7.17) gave signals at 11.82 and 12.37 ppm for a proton of an amine 
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whilst the aromatic protons occurred between 7.40 and 7.91 ppm. The 13C NMR spectrum 

(Figure A7.18) gave a signal at 180.5 ppm for the C=S, whilst a signal at 167.4 ppm was 

observed for the carbonyl. Signals were observed between 126.7 and 133.6 ppm for aromatic 

carbons. 

 

 

7.1.8 1-(4-Methoxybenzoyl)-3-[2-({[(4-methoxylphenyl)formamido]methanethioyl} 

amino)phenyl]thiouea (47) 

The IR spectrum (Figure A7.19) showed N–H stretches at 3404 and 3278 cm–1. Bands for 

the C=N and C=C stretches were observed at 1682 and 1591 cm–1, respectively. The 1H NMR 

spectrum (Figure A7.20) gave signals at 12.56 and 11.48 ppm for a proton of an amine 

whilst the aromatic protons occurred between 7.92 and 7.01 ppm. The protons of the methoxy 

group occurred at 3.82 ppm. The 13C NMR spectrum (Figure A7.21) gave a signal at 180.8 

cm-1 for the C=S, a signal at 167.5 and 163.2 ppm were observed for the C=O signifying the 

unsymmetrical nature of the molecule, and signals between 133.3 and 113.7 ppm were 

observed for aromatic carbons. The methoxy group was observed at 55.8 ppm. 

 

 

7.1.9 1-(3-Chlorobenzoyl)-3-[2-({[(3-chlorophenyl)formamido]methanethioyl} 

amino)phenyl]thiourea (48) 

The IR spectrum (Figure A7.22) showed N–H stretches at 3440 and 3166 cm–1. Bands for 

the C=O stretch, the C=N stretch and the C=C stretch were observed 1668 cm-1, 1593 cm–1 

and 1510 cm–1. The 1H NMR spectrum (Figure A7.23) gave signals at 11.88 and 12.40 ppm 

for a proton of an amide whilst the aromatic protons occurred between 8.04 and 7.41 ppm. 

The 13C NMR spectrum (Figure A7.24) gave a signal at 180.4 ppm for the C=S, whilst the 

carbonyl occurred at 167.0 ppm and signals between 134.3 and 126.7 ppm were observed for 

aromatic carbons. 

 

 

 

 



P a g e  | 234 

 

F. Odame  Nelson Mandela Metropolitan Univeristy 

7.1.10 1-(3-Bromobenzoyl)-3-[2-({[(3-bromophenyl)formamido]methanethioyl} 

amino)phenyl]thiourea (49) 

The IR spectrum (Figure A7.25) showed an N–H stretch at 3176 cm–1. Bands for the C=O 

stretch, the C–N stretch and the C=C stretch were observed at 1662, 1595 and 1563 cm–1, 

respectively. The 1H NMR spectrum (Figure A7.26) gave signals at 12.37 and 11.82 ppm for 

a proton of an amine whilst the aromatic protons occurred between 7.91 and 7.40 ppm. The 

13C NMR spectrum (Figure A7.27) gave a signal at 180.6 ppm for the C=S, whilst a signal at 

167.4 ppm was observed for the thione. Signals were observed between 136.3 and 122.1 ppm 

for aromatic carbons.  

 

 

7.1.11 3-Benzoyl-1-(2-{[(phenylformamido)methanethioyl]amino}ethyl)thiourea (50) 

The IR spectrum (Figure 7.4) showed bands at 3420 and 3229 cm−1 for an N–H stretch. A 

band for an aliphatic C–H was observed at 3047 cm-1, whilst a band at 1664 cm−1 was 

observed for the C=O stretch of an amide. The C–N stretch was observed at 1579 cm-1. The 

1H NMR spectrum (Figure 7.5) of compound 50 showed a singlet for two protons at 10.98 

ppm. Aromatic protons were observed between 7.91 and 7.51 ppm. The 13C NMR spectrum 

(Figure 7.6) showed a signal at 180.8 ppm for the C=S, whilst the C=O signal was observed 

at 167.3 ppm. Signals for aromatic carbons occurred between 132.9 and 128.5 ppm for 

aromatic protons, whilst a signal for aliphatic carbons occurred at 43.4 ppm. 

 

 

Figure 7.4 IR spectrum of 3-benzoyl-1-(2-{[(phenylformamido)methanethioyl] 

amino}ethyl)thiourea (50). 
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Figure 7.5 1H NMR spectrum of 3-benzoyl-1-(2-{[(phenylformamido)methanethioyl] 

amino}ethyl)thiourea (50). 

 

 

Figure 7.6 13C NMR spectrum of 1 3-benzoyl-1-(2-{[(phenylformamido)methanethioyl] 

amino}ethyl)thiourea (50). 

 

 

7.1.12 3-Benzoyl-1{[(phenylformido)methanethioyl]amino}thiourea (51) 

The IR spectrum (Figure A7.28) showed a band at 2988 cm−1 for an N–H stretch. Bands at 

1670 and 1658 cm−1was observed for the C=O stretch of an amide and the C–N stretch was 
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observed at 1536 cm1. The 1H NMR spectrum (Figure A7.29) of compound 51 showed 

singlet signals at 14.24 ppm and 12.12 ppm for a proton of an amide each. Aromatic protons 

were observed between 8.01 and 7.51 ppm. The 13C NMR spectrum (Figure A7.30) showed 

signals at 171.5 and 168.3 ppm for the C=S, whilst the C=O signals were observed at 167.3 

and 165.0 ppm. Signals for aromatic carbons occurred between 134.2 and 125.4 ppm for 

aromatic carbons. 

 

7.1.13 Crystal structures of compounds 40, 50 and 51 

Compounds 40, 50 and 51 were recrystallized from DMSO;Toluene (1:1). Compound 50 

were obtained as white crystals, whilst compounds 40 and 49 were obtained as brown and 

light brown crystals respectively. The crystallographic data, selected bond lengths and bond 

angles for the crystal structures of compounds 40, 50 and 51 are provided in Tables 7.1 and 

7.2. The ORTEP diagrams for compounds 40, 50 and 51 are presented in Figures 7.7, 7.8 and 

7.9. Compounds 40 and 50 crystallized in the monoclinic space group P21/c, while 

compound 51 crystallized in the monoclinic space group P21/n.  
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Table 7.1 Crystallographic data and structure refinement summary for compounds 40, 50 

and 51  

 

Property 40 50 51 

Formula C23H20N4 O2S2 C18H18N4O2S2 C16H14N4O2S2, 

2(C2H6OS) 

Formula Weight 448.57 386.50 514.73 

Crystal System Monoclinic monoclinic Monoclinic 

Space group P21/c P21/c P21/n 

a [Ǻ] 10.8288(4) 11.2036(13) 6.3738(2) 

b [Ǻ] 17.8575(7) 7.1780(8) 15.3854(5) 

c [Ǻ] 22.6276(9) 11.0901(13) 12.6585(4) 

α [°] 90 90 90 

β [°], 92.581(2) 100.783(5) 93.448(1) 

γ [°] 90 90 90 

V [Ang^3] 4371.2(3) 876.11(18) 1239.09(7) 

Z 8 2 2 

D(calc) [g/cm^3] 1.363 1.465 1.380 

Mu(MoKa) [ /mm ] 0.272 0.325 0.417 

F(000) 1872 404 540 

Crystal Size [mm] 0.23 x  0.32 x  

0.54 

0.14 x  0.22 x  

0.25 

0.15 x  0.27 x  0.33 

Temperature (K) 200 200 200 

Radiation [Å] MoKa      0.71073 MoKa      0.71073 MoKa      0.71073 

Theta Min-Max [°] 1.9,  28.4 3.4,  28.4 2.1,  28.3 

Dataset -14:  9 ; -23: 20 ; -

30: 30 

-14: 14 ;  -9:  9 ; -

13: 14 

-7:  8 ; -20: 20 ; -16: 

12 

Tot., Uniq. Data, R(int) 40580, 10903, 

0.028 

2175,  2175,  

0.000 

11663,  3088, 0.020 

Observed Data [I > 2.0 sigma(I)] 7835 1986 2596 

Nref, Npar 10903,  616 2175,  128 3088,  155 

R, wR2, S 0.0605, 0.1408, 

1.08 

0.1277, 0.4138, 

1.17 

0.0298, 0.0821, 1.03 

Max. and Av. Shift/Error 0.18, 0.00 0.00, 0.00 0.00, 0.00 

Min. and Max. Resd. Dens. [e/Å^3] -0.63, 0.71 -1.59, 1.64 -0.27, 0.33 

 

 

In compound 40 the bond distances O21-C21 and O11-C11 are 1.230(1) and 1.224(1) which 

are consistent with carbonyls, while the bond distances of S21-C22 and S11-C12 which are 

1.667(1) and 1.667(1) are typical of thiones. The bond angles of S21-C22-N22 and O11-C11-

N11 are 127.6(2) and 122.4(2) respectively this confirms the carbon atoms are sp2 hybridized.  

The bond distances of S1-C2 and O1-C1 in compound 50 are 1.662(1) and 1.218(1) for a 

thione and a carbonyl respectively. The bond distance of C3-C3a is 1.522(1) which is 

consistent with a carbon-carbon single bond. The bond angles of S1-C2-N2 and S1-C2-N1 
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are 126.0(1) and 118.4(1) confirming that the carbon is sp2 hybridized, whilst the bonded of 

N2-C3-C3_a which is 111.1(1) confirms the carbon is sp3 hybridized. In compound 51 the 

bond distance S1-C2 which was 1.668(1) was consistent with a thione, whilst the carbonyl 

O1-C1 occurred at 1.225(2) Å. The N2-N2a bond distance was 1.373(2) Å. The bond angles 

of O1-C1-N1 and O1-C1-C11 were 122.9(1) and 122.0(1) respectively, confirming that the 

carbon atom involved is sp2 hybridized.  

 

 

Table 7.2 Selected bond lengths (Å) and bond angles (˚) for compounds 40, 50 and 51  

 

Bond lengths (Å) 

40 50 51 

S21-C22 1.667(1) S1-C2 1.662(1) S1-C2 1.668(1) 

S11-C12 1.667(1) O1-C1 1.218(1) O1-C1 1.225(2) 

O21-C21 1.230(1) C1-C11 1.492(1) N1-C1 1.382(2) 

O11-C11 1.224(1) N1-C2 1.405(1) N1-C2 1.383(2) 

N21-C22 1.399(1) N1-C1 1.371(1) N2-N2a 1.373(2) 

N22-C22 1.332(1) C3-C3a 1.522(1) N2-C2 1.332(2) 

Bond Angles (°) 

40 50 51 

N21-C22-N22 114.5(2) C1-N1-C2 128.6(1) O2-S2-C4 106.2(1) 

S21-C22-N22 127.6(2) C2-N2-C3 123.3(1) O2-S2-C3 105.6(1) 

O11-C11-N11 122.4(2) O1-C1-N1 122.4(1) N2a-N2-C2 119.6(1) 

N21-C21-

C211 

117.6(2) S1-C2-N2 126.0(1) N1-C1-C11 115.1(1) 

N11-C12-N12 114.7(2) S1-C2-N1 118.4(1) N1-C2-N2 116.1(1) 

  N1-C1-C11 115.3(1) S1-C2-N1 121.2(1) 

  O1-C1-C11 122.3(1) C3-S2-C4 97.1(1) 

  N1-C2-N2 115.6(1) C1-N1-C2 126.5(1) 

  N2-C3-C3_a 111.1(1) O1-C1-N1 122.9(1) 

    O1-C1-C11 122.0(1) 

    S1-C2-N2 122. 8(1) 
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Figure 7.7 An ORTEP view of 1-benzoyl-3-(5-methyl-2-{[(phenylformamido) 

methanethioyl]amino}phenyl)thiourea (40) showing 50% probability 

displacement ellipsoids and the atom labelling. 

 

 

 

Figure 7.8 An ORTEP view of 3-benzoyl-1-(2-{[(phenylformamido) methanethioyl] 

amino}ethyl)thiourea (50) showing 50% probability displacement ellipsoids 

and the atom labelling. 
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Figure 7.9 An ORTEP view of 3-benzoyl-1{[(phenylformido) methanethioyl] 

amino}thiourea dimethyl sulfoxide (51) showing 50% probability 

displacement ellipsoids and the atom labelling. 

 

 

7.1.14 3-Benzoyl-1-(phenylamino)thiourea (52) 

The reaction proceeds by the attack of benzoyl isothiocyanate by the primary amine of the 

phenylhydrazine. The IR spectrum (Figure A7.31) showed bands at 3060 and 3018 cm−1 for 

N–H stretches. The C–N stretch was observed at 1595 cm-1 whilst the aromatic C=C stretch 

occurred at 1561 cm1. The 1H NMR spectrum (Figure A7.32) of compound 51 showed 

signals between 8.03-7.19 ppm for aromatic protons. The 13C NMR spectrum (Figure A7.33) 

showed a signal at 162.9 ppm for the C=O signal. Signals for aromatic carbons were 

observed between 149.6 and 125.1 ppm.  

 

 

7.1.15 1-((Benzamido)sulfanylenemethyl)urea (53) 

Urea attacks the benzoyl isothiocyanate on one end of the molecule. Potassium thiocyanate in 

acetone has been reacted with benzoyl chloride at 50 °C. Urea was added and heated at 55 °C 

for 5 h. This gave a yield of 30% 346 whilst refluxing in acetone for 6 h gave 86%. The IR 

spectrum (Figure A7.34) showed bands 3343 and 3197 cm-1 for N–H stretches. The C–N 

stretch was observed at 1615 cm-1 whilst the aromatic C=C stretch occurred at 1577 cm-1. The 

1H NMR spectrum (Figure A7.35) of compound 45 showed singlet signals at 13.23 and 

11.29 ppm for the N–H protons. Aromatic protons were observed between 7.90 and 7.56 
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ppm. The 13C NMR spectrum (Figure A7.36) showed signals at 179.8 ppm for the C=S. 

Signals for aromatic carbons occurred between 154.8 and 128.6 ppm. 

 

 

7.1.16 3-Benzoyl-1-(4-{[(phenylformamido)methanethioyl]amino}butyl)thiourea (54) 

The lead ion selective electrodes have been manufactured by synthesizing a benzoyl 

thioureido group ionophores having two sulfur groups on the both ends of ethane, propane 

and butane molecules. The ionophore containing propane moiety showed the best 

responsivity to lead ion. With the 1,3–bis(N,N'–benzoylthioureido)propane ionophore, the 

best result was found when it included with the o–nitrophenyloctylether plasticizer with the 

highest permittivity and the oleic acid additive. The ionosphores were synthesized by the 

reaction of ammonium thiocyanate and benzoyl chloride in acetone for 1 h. 1,2-

Daminoethane, 1,3-diaminopropane or 1,4-diaminobutane dissolved in acetone was were 

added and stirred at room temperature for 2 h.348 

 

1,4-Butane diamine reacts through both amino groups hence it reacts with two moles of 

benzoyl isothiocyanate. The IR spectrum (Figure 7.10) showed bands at 3405 and 3217 cm-1 

for N–H stretch. A band for the C=O stretch was observed at 1666 cm-1. The C–N stretch was 

observed at 1511 cm-1. The 1H NMR spectrum (Figure 7.11) of compound 54 showed singlet 

signals at 11.22 and 10.97 ppm. Aromatic protons were observed between 7.89 and 7.50 ppm. 

Signals for aliphatic protons were observed at 3.76 and 2.06 ppm. The 13C NMR spectrum 

(Figure 7.12) showed a signal at 180.2 ppm for the C=S, whilst a signal at 167.8 ppm was 

observed for the C=O. Signals for aromatic carbons occurred between 132.6 and 128.4 ppm. 

Signals for methylene groups were observed at 42.66 and 26.87 ppm. 
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Figure 7.10 IR spectrum of 3-benzoyl-1-(4-{[(phenylformamido)methanethioyl] 

amino}butyl)thiourea (54). 

 

 

 

Figure 7.11 1H NMR spectrum of 3-benzoyl-1-(4-{[(phenylformamido) methanethioyl] 

amino}butyl)thiourea (54). 
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Figure 7.12 13C NMR spectrum of 3-benzoyl-1-(4-{[(phenylformamido)methanethioyl] 

amino} butyl)thiourea (54). 

 

 

7.1.17 Crystal structures of compounds 53 and 54 

Compounds 53 and 54 were recrystallized from DMSO:Toluene (1:3) and obtained as yellow 

solid and a light brown solid respectively. The crystallographic data, selected bond lengths 

and bond angles for the crystal structures of compounds 53 and 54 are provided in Tables 

3.26 and 3.27. The ORTEP diagrams for compounds 53 and 54 are presented in Figures 7.13 

and 7.14. Compound 53 crystallized in the monoclinic space group C2/c, while compound 54 

crystallized in the monoclinic space group P21/c. 
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Table 7.3 Crystallographic data and structure refinement summary for compounds 53 

and 54.  

 

Property 53 54 

Formula C9H9N3O2S C20H22N4O2S2 

Formula Weight 223.26 414.56 

Crystal System monoclinic Monoclinic 

Space group C2/c P21/c 

a [Ǻ] 10.2528(5) 5.9962(2) 

b [Ǻ] 12.8418(6) 23.2946(10) 

c [Ǻ] 16.0986(7) 7.1680(3) 

α [°] 90 90 

β [°] 106.159(2) 103.777(2) 

γ [°] 90 90 

V [Å^3] 2035.87(16) 972.42(7) 

Z 8 2 

D(calc) [g/cm^3] 1.457 1.416 

Mu(MoKa) [ /mm ] 0.301 0.298 

F(000) 928 436 

Crystal Size [mm] 0.24 x 0.41 x 0.47 0.06 x 0.47 x 0.58 

Temperature (K) 200 200 

Radiation [Ǻ] MoKa, 0.71073 MoKa  0.71073 

Theta Min-Max [°] 2.6,  28.3 3.1,  28.3 

Dataset -9: 13 ; -13: 17 ; -21: 21 -7:  7 ; -29: 31 ;  -9:  

9 

Tot., Uniq. Data, R(int) 9431, 2514, 0.013 13405,   2402,  0.020 

Observed Data [I > 2.0 sigma(I)] 2215 2022 

Nref, Npar 2514,  152 2402,  135 

R, wR2, S 0.0351, 0.1000, 1.06 0.0339, 0.0931, 1.06 

Max. and Av. Shift/Error 0.00, 0.00 0.00, 0.00 

Min. and Max. Resd. Dens. [e/Å^3] -0.58, 0.47 -0.20, 0.32 

 

 

The bond distance of O1-C1 in compound 53 is 1.215(2) Å, which is consistent with a 

carbonyl whilst the N1-C1, N1-C2, and N2-C3 bond distances in compound 53 are 1.386(2), 

1.367(2) and 1.402(2) Ǻ respectively which are consistent with the C-N single bond. The 

bond distance of S1-C2 which is 1.648 (2) Ǻ is consistent with a thione. The bond angles of 

O2-C3-N2 and S1-C2-N1 are 121.8(1) and 127.6(1) respectively shows the carbon atom is 

sp2 hybridized. The torsion angles of C3-N2-C2-S1 and C2-N2-C3-O2 in compound 53 are 

174.4(1) and 9.8(2)° suggest that there is restricted rotation in the molecule. In compound 54 

the carbonyl O1-C1 was 1.223(2), whilst the thione S1-C2 was 1.673(1). The bond angles of 

O1-C1-C11, N1-C2-N2 and S1-C2-N2 in compound 54 were 122.1(1), 117.8(1) and 124.7(1) 

which is characteristic of sp2 hybridized carbon.  
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Table 7.4 Selected bond lengths (Å) and bond angles (°) for compounds 53 and 54. 

 

Bond lengths (Å) 

53 54 

S1-C2 1.648(1) S1-C2 1.673(1) 

O1-C1 1.215(2) O1-C1 1.223(2) 

O2-C3 1.239(2) N1-C1 1.374(2) 

N1-C1 1.386(2) N2-C2 1.321(2) 

N1-C2 1.367(2) N2-C3 1.461(2) 

N2-C3 1.402(2) N1 -C2 1.390(2) 

N3-C3 1.325(2) C3-C4 1.521(2) 

N2-C2 1.374(2) C4-C4_a 1.522(2) 

Bond angles (°)  

53 54 

C1-N1-C2 128.8(1) C1-N1-C2 129.3(1) 

C2-N2-C3 128.6(1) C2-N2-C3 122.3(1) 

N2-C3-N3 113.9(1) O1-C1-C11 122.1(1) 

O2-C3-N3 124.4(1) N1-C2-N2 117.8(1) 

S1-C2-N2 118.2(1) S1-C2-N2 124.7(1) 

N1-C2-N2 114.2(1) N2-C3-C4 112.4(1) 

O2-C3-N2 121.8(1) S1-C2-N1 117.5(1) 

S1-C2-N1 127.6(1) N1-C1-C11 115.4(1) 

O1-C1-N1 123.2(1) O1-C1-N1 122.5(1) 

 

 

 

 

 

Figure 7.13 An ORTEP view of 3-benzoyl-1{[(phenylformido)methanethioyl] 

amino}thiourea (53) showing 50% probability displacement ellipsoids and the 

atom labelling. 
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Figure 7.14 An ORTEP view of 3-benzoyl-1-(4-{[(phenylformamido) methanethioyl] 

amino}butyl)thiourea (54) showing 50% probability displacement ellipsoids 

and the atom labelling. 

 

 

7.2 Biochemical studies 

 

7.2.1 Cell viability and cytotoxicity tests 

The acute cytotoxic effects of benzoyl isothiocyanate derivatives of diamines were 

determined by exposing them to isolated human white blood cells, for a 24-hour period. The 

cell viability was were assessed using the MTT reduction assay and the results are presented 

in Table 7.4 which indicates the compound numbers (in bold) as well as the EC50 values 

calculated for each compound tested.  
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Table 7.5 Cell viability results for diamine derivatives of benzoyl isothiocyanate 

derivatives. 

 

Diamines EC50 

μM 

40 204.5 

41 191.7 

42 147.9 

43 130.5 

44 481.7 

45 264.0 

46 17.0 

47 100.0 

48 69.2 

49 35.9 

50 211.6 

51 479.3 

52 279.6 

53 260.5 

54 68.4 

 

The EC50 values for the diamine derivatives (Figure 7.15) of benzoyl isothiocyanate showed 

varying effects of the inhibitors on the cell viability of human white blood cells. Compounds 

46 (4-bromo derivative) and 48 (3-chloro derivative) gave EC50 values of 17.04 ± 9.75 μM 

and 69.20 ± 38.160 μM, respectively, whilst compound 54 (1,4-butane diamine) and 49 (3-

bromo), which were also cytotoxic, gave EC50 values of 68.37 ± 26.45 μM and 35.90 ± 20.55 

μM. Substitution at position three with a bromo and a chloro leads to an increase in its 

cytotoxic effects among the diamine derivatives. Similarly, a substitution at position four 

with bromo also leads to an increase in cytotoxic effects among the diamine derivatives.  
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Figure 7.15 EC50 values for the diamine derivatives of benzoyl isothiocyanate (μM). Error 

bars represent the SEM for n = 3. 

 

 

The cytotoxicity test of compounds 46 and 40 which are the most and least cytotoxic 

compounds, respectively, among the diamine derivatives of benzoyl isothiocyanate, depicted 

in Figure 7.16. The presence of the bromo group ( 46) at position four in the diamines leads 

to an increase in cytotoxicity, whilst the presence of the methyl group (40 ) at position three 

on the phenylenediamine in the diamines leads to a decrease in cytotoxicity. 

 

 

  

 

Figure 7.16 EC50 values for compounds 46 and 40 (μM). Error bars represent the SEM for 

n = 3.  
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7.2.2 HIV-1 protease screen of structurally diverse diamine derivatives of benzoyl 

isothiocyanate 

Table 7.6 and Figure 7.17 gives the HIV-1 screening results for the diamine derivatives of 

benzoyl isothiocyanate. The screening of the compounds was done at 100 µM of inhibitor 

and that for ritonavir was done at 10 µM. All the compounds gave a percentage inhibition 

lower than 40% of the untreated control except compound 49 which gave a percentage 

inhibition of 97.03 ± 10.61% compared to the untreated control. Compound 48 gave the best 

inhibition constant of 0.060 μM in the in silico results among the diamine derivatives does 

not inhibit HIV-1 protease significantly at 100 μM. The deviation from the predicted 

inhibition constants observed in the in silico results may be due to solvent effect and the 

complex matrix introduced by the presence of buffers and intermolecular interaction between 

inhibitor molecules. In the model, the inhibitor was placed in a defined space in the active site 

and the interactions were computed whilst in the actual assay the inhibitor had to navigate the 

solvent matrix to the active site to elicit any activity. Compound 49 (3-bromo derivative ) 

gave high % inhibition it should be noted it is cytotoxic to white blood cells. That not 

withstanding derivatizing compound 49 might improve its activity and reduce the cytotoxic 

effects in its analogues. 
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Table 7.6 HIV-1 protease screening results of some diamines derivatives of benzoyl 

isothiocyanate. 

 

Compound Fluorescence Standard 

deviation 

% Activity 

relative to 

untreated control 

% Inhibition 

relative to 

untreated control  

Ritonavir 36.24 1.88 9.34 90.66 

40 186.01 9.605 82.31 17.69 

41 202.70  6.12 89.70 10.30 

42 155.85 0.418 68.97 31.03 

43 402.60  4.103 103.79 0 

44 152.13 11.03 67.32 32.68 

45 243.51 4.6 107.76 0 

46 159.05 4.103 70.38 29.62 

47 446.80  2.43 115.18 0 

48 381.00  11 98.22 1.78 

49 11.522 0.37 2.97 97.03 

51 147.94 20.69 65.4 34.53 

52 145.79 5.238 64.516 35.49 

53 268.44 10.605 69.20 30.80 

54 151.00  0.1584 66.82 33.18 
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Figure 7.17 HIV-1 protease screening results illustrating % inhibition of selected diamine 

derivatives of benzoyl isothiocyanate (100 μM) and ritonavir (10 μM) relative 

to untreated control. Error bars represent SEM of n =3. 

 

The predicted inhibition constants of between 0.06 and 1.90 uM were the best predicted 

inhibition constants and this was consistent with the results from the bioassay as these 

compounds gave the best inhibition against HIV-1 potease. This is due to the fact that these 

compounds are bigger and fit into the active site better and interacts or binds to more amino 

acid residues in the active site of protease making them more effective inhibitors. This can be 

seen in Figures 7.18, 7.19 ,7.20 and 7.21 which give the 2D representation of compounds 47, 

54, 46 and 49 respectively in the protease active site. The presence of polar group on this 

class of compounds improves the extent of interaction at the active site both in the docking 

studies and the bioassays making this class of compounds more active against protease. 
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Figure 7.18 2D representation of 1-(4-methoxybenzoyl)-3-[2-({[(4-methoxylphenyl) 

formamido]methanethioyl}amino)phenyl]thiouea (47) in the HIV-1 protease 

binding site.  
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Figure 7.19 2D representation of 3-benzoyl-1-(4-{[(phenylformamido)methanethioyl] 

amino}butyl)thiourea (54) in the HIV-1 protease binding site. 
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Figure 7.20 2D representation of 1-(4-bromobenzoyl)-3-[2-({[(4-bromophenyl) 

formamido]methanethioyl}amino)phenyl]thiourea (46) in the HIV-1 protease 

binding site. 
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Figure 7.21 2D representation of 1-(3-bromobenzoyl)-3-[2-({[(3-bromophenyl) 

formamido]methanethioyl}amino)phenyl]thiourea (49) in the HIV-1 protease 

binding site. 

 

 

7.3 Conclusions  

-Structurally diverse aromatic and aliphatic diamine derivatives of benzoyl isothiocyanates 

have been synthesized and characterized by spectroscopy, microanalysis and GC-MS. 

 

-The single crystal XRD molecular structures of 1-benzoyl-3-(5-methyl-2-

{[(phenylformamido)methanethioyl]amino}phenyl)thiourea (40), 3-benzoyl-1-(2-

{[(phenylformamido)methanethioyl]amino}ethyl)thiourea (50), 3-benzoyl-

1{[(phenylformido)methanethioyl]amino}thiourea (51), 3-benzoyl-1{[(phenylformido) 

methanethioyl]amino}thiourea (53), 3-benzoyl-1-(4-{[(phenylformamido) methanethioyl] 

amino}butyl)thiourea (54) have been discussed. 
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-The cell viability tests of the diamines derivatives showed that 1-(4-bromobenzoyl)-3-[2-

({[(4-bromophenyl)formamido]methanethioyl}amino)phenyl]thiourea (46) and 1-(3-chloro 

benzoyl)-3-[2-({[(3-chlorophenyl)formamido]methanethioyl}amino)phenyl]thiourea (48) 

were cytotoxic with EC50 values of 17.04 ± 9.75 μM and 69.20 ± 38.160 μM respectively, 

whilst 1-(3-bromobenzoyl)-3-[2-({[(3-bromophenyl)formamido]methanethioylamino) 

phenyl]thiourea (49), 3-benzoyl-1-(4-{[(phenylformamido)methanethioyl]amino}butyl) 

thiourea (54) which were also cytotoxic gave EC50 values of 35.90 ± 20.55 and 68.37 ± 26.45 

μM.  

 

-The HIV-1 protease assay of 1-(3-bromobenzoyl)-3-[2-({[(3-bromophenyl)formamido] 

methanethioylamino)phenyl]thiourea (49) gave an inhibition of 97% at an inhibitor 

concentration of 100 μΜ and a protease concentration of 20 nM. 
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CHAPTER EIGHT 

 

GOLD AND SILVER CATALYZED REACTIONS OF BENZOYL 

ISOTHIOCYANATE DERIVATIVES 

 

8.1 Attempted synthesis of gold compounds 

The attempted synthesis of gold compounds using 3-(1,3-benzothiazol-2-yl)-1-

(benzoyl)thiourea derivatives led to the formation of benzamides. Benzamides have been 

developed through the cleavage of sp3 C-Ph bond of methyl arenes with N-substituted 

formamides.349 Various benzamides have been prepared in low to moderate yields.349 A 

procedure for the oxidative synthesis of amides from styrenes and amines has been 

developed.350 Various primary and secondary amides were formed in moderate yields (25–

81%).350 Synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with 

amines using a catalytic system comprised of supported gold nanoparticles in methanol has 

been reported as a highly efficient and selective process.351 Pathway for both N-

benzoylationand N-acetylation of anilines, amines, diamines, and aminoalcohols using enol 

esters have been accessed in good yields.352 The enantioselective synthesis of atropisomeric 

tertiary benzamides employing catalytic electrophilic aromatic substitution reactions have 

been reported.353 PtCl2 or AuBr3 (1−3 mol %) has been used to promote the generation and 

[3+2] cycloaddition of transition-metal-containing azomethine ylides derived from N-(o-

alkynylphenyl)imines bearing an internal alkyne moiety. Tricyclic indole derivatives having a 

substituent at the 3-position of the indole nucleus have been accessed by this method.354 A 

gold-catalyzed nitrene transfer reaction has been reported in which a gold(I) compound, 

supported by 4,4′,4′′- tri-tert-butyl-2,2′:6′,2′′-terpyridine (tBu3tpy) as the ligand, efficiently 

catalyzes olefin aziridination with the use of PhI(OAc)2 and sulfonamides. This system also 

mediates carbene insertion into benzene.355 A complimentary diamination of alkenes by using 

homogeneous gold catalysts has been reported. The key step is an intramolecular alkyl–

nitrogen bond formation from a gold(III) intermediate. This process validates the concept of 

reductive elimination from high oxidation catalyst states for this type of C–N bond forming 

reactions.356 

Our attempt to make gold complexes of sulfur-containing ligands gave varying results. An 

attempted reaction of chlorotriphenylphosphinegold(I) with the ligands in the presence of 
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silver oxide in acetonitrile and dichloromethane led to the recovery of the triphenylphosphine 

whilst the ligand was decomposed. Another attempt with triphenylphosphine, the ligands and 

chlorodimethylsulfoxidegold(I) also resulted in the formation of chlorotriphenylphosphine 

gold(I) (Scheme 8.1) Another attempt with 3-(1,3-benzothiazol-2-yl)-1-(4-nitrobenzoyl) 

thiourea, triphenylphosphine and chlorodimethylsulfoxidegold(I) in tetrahydrofuran under 

nitrogen and the absence of light also gave chlorotriphenylphosphinegold(I) whilst the ligand 

was recovered.  
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Scheme 8.1 Attempted synthesis of gold complex of benzothiazole derivatives.  

 

Another to synthesize the gold complexes of the 3-(1,3-benzothiazol-2-yl)-1-(4-

benzoyl)thiourea derivatives (Scheme 8.2) led to the gold catalyzed dethiocyanation of 3-

(1,3-benzothiazol-2-yl)-1-(4-benzoyl)thiourea derivatives to give benzamides. 
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Scheme 8.2 Attempted synthesis of gold complexes of 3-(1,3-benzothiazol-2-yl)-1-(4-

benzoyl)thiourea derivatives. 

 

Due to the very small quantites of material used in the synthesis of these compounds very 

small amounts of products were obtained hence concentrated samples were not obtained for 

the 13C NMR spectral analysis of these compounds. Hence the products were conclusively 

characterized using IR, GC-MS, microanalysis and single crystal XRD in tendem. 

 

 

8.1.1 N-(Benzothiazol-2-yl)-4-nitrobenzamide (55)  

This is thought to proceed by the attack of gold by the sulfur due to its strong affinity for 

gold. A suspected electron redistribution converts the gold(I) to with a gold(0) which is a by-

product whilst the thiocyanate is lost from the ligand in the process. A detailed mechanism 

has not been investigated yet but the final product suggests a gold-catalysed dethiocyanation 

and a C-N coupling to form an amide. The IR spectrum (Figure A8.1) showed an N–H 

stretch of an amide at 3117 cm–1, a band for the C=O stretch was observed at 1686 cm–1 and 

the C=N stretch was observed at 1599 cm–1. Whilst the aromatic C=C stretch was observed at 

1522 cm-1. The 1H NMR spectrum (Figure A8.2) gave signals between 8.39 and 7.37 ppm 
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for aromatic protons. The 13C NMR spectrum (Figure A8.3) gave signals between at 130.4 

and 124.1 for aromatic carbons.  

 

 

8.1.2 N-(Benzothiazol-2-yl)-3-bromobenzamide (56)  

The reaction is thought to proceed in a similar manner to compound 55. The IR spectrum 

(Figure A8.4) showed an N–H stretch at 3066 cm–1, a band for the C=O stretch was observed 

at 1677 cm–1 and the aromatic C=C was observed at 1555 cm–1. The 1H NMR spectrum 

(Figure A8.5) 13C NMR spectrum of N-(benzothiazol-2-yl)-4-nitrobenzamide (55) gave 

signals between 8.35 and 7.36 ppm for aromatic protons. The 13C NMR spectrum (Figure 

A8.6) gave signals between at 131.5 and 122.5 for aromatic carbons.  

 

 

8.1.3 N-(Benzothiazol-2-yl)-3-methoxybenzamide (57) 

The reaction is thought to proceed in a similar manner to compound 55. The IR spectrum 

(Figure A8.7) showed an N–H stretch at 3458 cm–1, the bands for the aliphatic C-H stretch 

were observed at 2922 and 2852 cm-1, a band for the C=O stretch was observed at 1686 cm–1 

and the aromatic C=C and the C–N stretch were observed at 1604 and 1578 cm–1, 

respectively. The 1H NMR spectrum (Figure A8.8) gave a signal at 11.580 ppm for the 

proton of an amine. Signals between 8.02 and 7.21 ppm were observed for aromatic protons. 

The 13C NMR spectrum (Figure A8.9) gave signals between at 159.7 and 109.5 for aromatic 

carbons, whilst a signal for the methoxy group was observed at 55.8 ppm. 

 

 

8.1.4 N-(Benzothiazol-2-yl)benzamide (58) 

The reaction is thought to proceed in a similar manner to compound 55. The IR spectrum 

(Figure 8.1) showed an N–H stretch at 3273 cm–1, a band for the C=O stretch was observed 

at 1693 cm–1 and the aromatic C=C and the C–N stretches were observed at 1599 and 1549 

cm–1, respectively. The 1H NMR spectrum (Figure 8.2) gave signals between 8.35 and 7.36 

ppm for aromatic protons. The 13C NMR spectrum (Figure 8.3) gave signals between at 

136.1 and 122.3 for aromatic carbons.  
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Figure 8.1 IR spectrum of N-(benzothiazol-2-yl)-benzamide (58). 

 

 

 

Figure 8.2 1H NMR spectrum of N-(benzothiazol-2-yl)-benzamide (58). 
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Figure 8.3 13C NMR spectrum of N-(benzothiazol-2-yl)-benzamide (58). 

 

 

8.1.5 Crystal structures of compounds 55, 56, 58 and chlorotriphenylphosphinegold(I). 

Compounds 55, 56, 58 and chlorotriphenylphosphinegold(I) were recrystallized from 

methanol. The crystallographic data, selected bond lengths and bond angles for the crystal 

structures of compounds 55, 56, 58 and triphenyl phosphine are provided in Tables 8.1 and 

8.2. The ORTEP diagrams for compounds 55, 56, 58 and triphenylphosphine are presented in 

Figures 8.4, 8.5 and 8.6 respectively. Compound 55 crystallized in the orthorhombic space 

group Pbcn while compound 56 crystallized in the triclinic space group P-1. Compound 58 

crystallized in the monoclinic space group P21/n. The ORTEP diagram of 

chlorotriphenylphosphinegold(I) is presented in Figure 8.7 and the complex crystalized in the 

orthorhombic space P212121. 
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Table 8.1 Crystallographic data and structure refinement summary for compounds 55, 

56, 58 and chlorotriphenylphosphinegold(I) 

 

Property 55 56 58 Au(PPh3)Cl 

Formula C14H9N3O3S C14H9BrN2OS C14H10N2OS C18H15AuClP 

Formula Weight 299.30 333.19 254.30 494.69 

Crystal System Orthorhombic Triclinic Monoclinic Orthorhombic 

Space group Pbcn P-1 P21/n P212121 

a [Ǻ] 29.023(4) 5.9083(3) 5.9236(4) 10.1354(4) 

b [Ǻ 7.7882(10) 7.6853(4) 16.7628(10) 12.3093(5) 

c [Ǻ 11.5676(17) 14.4978(8) 11.8749(7) 13.0568(5) 

α [°] 90 77.501(2) 90 90 

β [°] 90 78.463(3) 102.305(2) 90 

γ [°] 90 89.036(3) 90 90 

V [Ǻ^3] 2614.7(6) 629.47(6) 1152.04(12) 1628.96(11) 

Z 8 2 4 4 

D(calc) [g/cm^3] 1.521 1.758 1.466 2.017 

Mu(MoKa) [ /mm ] 0.262 3.422 0.268 9.283 

F(000) 1232 332 528 936 

Crystal Size [mm] 0.15 x  0.30 x  0.51 0.03 x  0.17 x  0.50 0.34 x  0.40 x  0.74 0.26 x  0.31 x  0.63 

Temperature (K) 273 200 200 200 

Radiation [Å] MoKa      0.71073 MoKa      0.71073 MoKa 0.71073 MoKa      0.71073 

θ Min-Max [°] 2.7,  28.4 2.7,  28.3 2.1, 28.3 2.3,  28.3 

Dataset -38: 38 ; -10:  6 ; -15: 

15 

-7: 7 ; -8: 10 ;-18: 

19 

-7:  7 ; -22: 20 ; -15: 

14 

-11: 13 ; -16: 16 ; -17: 

17 

Tot., Uniq. Data, 

R(int) 

29350, 3272,  0.025 11395,  3118,  

0.029 

10261, 2851,  0.012 27916, 4037, 0.036 

Observed data [I > 

2.0 sigma(I)] 

2537 2603 2659 3887 

Nref, Npar 3272,  194 3118,  176 2851, 167 4037,  190 

R, wR2, S 0.0440, 0.1303, 1.09 0.0283, 0.0710, 

1.05 

0.0302, 0.0820, 1.05 0.0182, 0.0455, 1.09 

Max. and Av. 

Shift/Error 

0.00, 0.00 0.00, 0.00 0.00, 0.00 0.00, 0.00 

Min. and Max. 

Resd. Dens. 

[e/Å^3] 

-0.37, 0.34 0.42, 0.52 -0.24, 0.38 -1.52, 0.69 

 

 

The bond distance of O1-C2 in compounds 55, 56 and 58 are 1.213(2), 1.216(1) and 1.221(1) 

repectively, which is consistent with a carbonyl whilst the S1-C1 bond distances were 

1.737(2), 1.747(2) and 1.750(1) Å respectively are consistent with the C=S bond. The bond 

angle of C1-S1-C12 in compounds 55, 56 and 58 are 88,3(1), 87.9(1) and 88.10(5) (°) 

respectively whilst the bond angle of S1-C1-N1 in compounds 55, 56 and 58 are 116.9(1), 

117.5(2) and 117.2(1) (°). The bond distances of Au1-P1 and Au-Cl1 in Au(PPh3)Cl 
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triphenylphosphine is 1.816(4) and 2.229(1) respectively whilst the bond angles of Cl1-Au1-

P1 and Au1-P1-C11 are 114.2(1) and 11.9(1) respectively. 

 

Table 8.2 Selected bond lengths (Å) and bond angles (°) for compounds for compounds 

55, 56, 58 and chlorotriphenylphosphinegold(I)  

 

Bond lengths (Å) 

55 56 58 Au(PPh3)Cl 

S1-C1 1.737(2) 1.747(2) 1.750(1) P1-C31 1.378(6) 

S1-C12 1.734(2) 1.741(2) 1.741(1) Au1-Cl1 2.229(1) 

O1-C2 1.213(2) 1.216(2) 1.221(1) Au1-P1 1.816(4) 

N1-C11 1.393(2) 1.391(3) 1.397(1) P1-C11 1.813(4) 

N1-C1 1.296(2) 1.301(2) 1.300(1) P1-C21 1.816(4) 

N2-C2 1.367(2) 1.370(2) 1.375(1)   

N2-C1 1.375(2) 1.375(3) 1.381(1)   

Bond Angles (°) 

55 56 58 Au(PPh3)Cl 

C1-S1-C12 88.3(1) 87.9(1) 88.1(1) C11-P1-C21 103.9(2) 

C1-N1-C11 109.8(2) 109.3(2 109.7(1) Cl1-Au1-P1 114.2(1) 

C1-N2-C2 123.2(2) 124.0(2) 124.1(1) Au1-P1-C11 111.9(1) 

S1-C1-N1 116.9(1) 117.5(2) 117.2(1) Au1-P1-C21 112.8(1) 

S1-C1-N2 121.8(1) 121.4(1) 121.8(1) Au1-P1-C31 105.8(2) 

 

 

 

 

 

Figure 8.4 An ORTEP view of N-(benzothiazol-2-yl)-4-nitrobenzamide (55) showing 

50% probability displacement ellipsoids and the atom labelling. 
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Figure 8.5 An ORTEP view of N-(benzothiazol-2-yl)-3-bromobenzamide (56) showing 

50% probability displacement ellipsoids and the atom labelling. 

 

 

 

 

Figure 8.6 An ORTEP view of N-(benzothiazol-2-yl)benzamide (58) showing 50% 

probability displacement ellipsoids and the atom labelling. 
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Figure 8.7 An ORTEP view of chlorotriphenylphosphinegold(I). 

 

 

8.2 Silver catalyzed transformations  

In the silver catalyzed transformation, the approach was to synthesize silver complexes and 

substitute it with gold in the complex.357 Gold(I) N-heterocyclic carbene (NHC) complexes 

have been obtained in good yields from the corresponding silver complexes by treatment with 

[AuCl(PPh3)] following the silver carbene transfer route. The silver complexes were 

synthesized from the benzimidazolium halide salts by the in situ reactions with Ag2O in 

dichloromethane as a solvent at room temperature.358 An attempt was made to carry out the 

synthesis of silver(I) complexes so as to carry out the transmetallation reaction.  
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Scheme 8.3 Synthesis of gold compounds via silver complexes. 
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8.2.1 1-((Benzamido)formyl)urea (59)  
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Scheme 8.4 Synthesis of 1-((benzamido)formyl)urea (59). 

 

1-((Benzamido)formyl)urea 56 is formed by the silver catalysed substitution of sulfur with 

oxygen, the source of oxygen is presumably water. The IR spectrum (Figure A8.10) showed 

bands for the N–H stretches at 3345 and 3225 cm–1. The band for the C=O stretch was 

observed at 1710 cm–1. A band for the C=N and the aromatic C=C were observed at 1663 and 

1598 cm–1, respectively. The 1H NMR spectrum (Figure A8.11) gave signals between 8.05 

and 7.27 ppm for aromatic protons. The 13C NMR spectrum (Figure A8.12) gave a signal at 

169.6 ppm for the carbonyl and signals between 132.1 and 127.8 ppm were observed for 

aromatic carbons.  
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8.2.2 N-(2,3-Dihydro-1H-benzo[d]imidazol-2-yl)-3-nitrobenzamide (60)  
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Scheme 8.5 Synthesis of N-(2,3-dihydro-1H-benzo[d]imidazol-2-yl)-3-nitrobenzamide 

  (60).  

 

The reaction is thought to proceed by the loss of a benzoyl isothiocyanate unit to from 8.6a. 

The attack of the thione carbon by the lone electrons on the nitrogen leads to the formation of 

8.6b which forms leads to 60 upon rearrangement and possible loss of hydrogen sulfide. 
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Scheme 8.6 Proposed pathway for the synthesis of N-(2,3-dihydro-1H-benzo[d]imidazol-

2-yl)-3-nitrobenzamide (60). 

 

 

N-(2,3-Dihydro-1H-benzo[d]imidazol-2-yl)-3-nitrobenzamide (60) was formed by the silver-

catalysed cleavage and cyclization of compound 44. The IR spectrum (Figure A8.13 ) 

showed signals at 3321 and 3100 cm-1 for the N–H stretch, a signal was observed for the 

C=N stretch at 1682 cm–1 and the aromatic C=C was observed at 1591 cm–1. The 1H NMR 

spectrum (Figure A8.14) gave signals for aromatic protons between 8.88 and 7.29 ppm. The 

13C NMR spectrum (Figure A8.15) gave signals between 148.1 and 113.1 ppm for aromatic 

carbons.  

 

 

8.2.3 Crystal structures of compounds 59 and 60 

Compounds 59 and 60 were recrystallized from DMSO:Toluene(4:1). The crystallographic 

data, selected bond lengths and bond angles for the crystal structures of compounds 59 and 60 

are provided in Tables 8.3 and 8.4. The ORTEP diagrams for compounds 59 and 60 are 

presented in Figures 8.8 and 8.9 respectively. Compound 59 crystallized in the monoclinic 

space group P21/c while compound 60 crystallized in the triclinic space group P-1.  
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Table 8.3 Crystallographic data and structure refinement summary for compounds 59 

and 60. 

 

Property 59 60 

Formula C9H9N3O3 2(C14H11N4O3), O4S, 

2(C2H6OS), C2H6O, H2O 

Formula Weight 207.19 882.94 

Crystal System Monoclinic Triclinic 

Space group P21/c P-1 

a [Ǻ] 7.8993(4) 11.5334(7) 

b [Ǻ 22.3734(10) 13.6711(8) 

c [Ǻ 5.1861(2) 15.0439(9) 

α [°] 90 66.063(2) 

β [°] 99.912(2) 77.082(3) 

γ [°] 90 69.274(3) 

V [Ǻ^3] 902.88(7) 2018.8(2) 

Z 4 2 

D(calc) [g/cm^3] 1.524 1.452 

Mu(MoKa) [ /mm ] 0.118 0.260 

F(000) 432 924 

Crystal Size [mm] 0.04 x0.32 x  0.62 0.12 x 0.48 x 0.64 

Temperature (K) 200 200 

Radiation [Å] MoKa      0.71073 MoKa      0.71073 

θ Min-Max [°] 1.8,  28.3 1.7, 28.4 

Dataset -9: 10 ; -29: 29 ;  -6: 6 -15: 14 ; -18: 18 ; -18: 20 

Tot., Uniq. Data, R(int) 12790,   2244, 0.022 36051, 10032, 0.019 

Observed data [I > 2.0 sigma(I)] 1939 7758 

Nref, Npar 2244,  152 10032,  566 

R, wR2, S 0.0354, 0.0948, 1.06 0.0497, 0.1462, 1.05 

Max. and Av. Shift/Error 0.00, 0.00 0.00, 0.00 

Min. and Max. Resd. Dens. 

[e/Å^3] 

-0.22, 0.30 -0.71, 0.91 

 

 

The bond distances of O1-C1 and N1-C1 in compound 59 are 1.220(1) and 1.377(1) 

repectively, confirming a carbonyl and a C-N which is neither distinctly single or a double 

bond suggesting delocalization of the electrons between the atoms. The bond angles of O1-

C1-N1 and O2-C2-N1 are 129.1(1) and 118.6(1) respectively are consistent with Sp2 

hybridized carbon. In compound 60 bond distances of N22-C21 and O21-C22 are 1.337(3) 

and 1.218(3) Å respectively, which confirms a C-N bond withe electrons delocalized 

betweeen the atoms whilst the C=O confirms the carbonyl bond. The bond angles of N22-

C21-N23 and O22-N24-O23 are 23.0(2) and 122.7(2) (°) 
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Table 8.4 Selected bond lengths (Å) and bond angles (°) compounds for compounds 59 

and 60.  

 

Bond lengths(Å)  

59 60 

O1-C1 1.220(1) N22-C21 1.337(3) 

O2-C2 1.218(1) N23-C22 1.383(3) 

O3-C3 1.229(1) N23-C21 1.358(2) 

N1-C1 1.377(1) N24-C223 1.469(3) 

N1-C2 1.396(1) O21-C22 1.218(3) 

N2-C2 1.359(1) O22-N24 1.215(3) 

N2-C3 1.410(1) O23-N24 1.215(3) 

N3-C3 1.327(1)   

Bond angles(°)  

59 60 

C1-N1-C2 129.1(1) O22-N24-C223 118.6(2) 

O1-C1-N1 121.7(1) O22-N24-O23 123.0(2) 

N1-C2-N2 116.6(1) N22-C21-N23 122.7(2) 

O2-C2-N2 124.9(1) N21-C21-N23 127.4(2) 

O2-C2-N1 118.6(1) N21-C21-N22 109.9(2) 

O3-C3-N3 124.9(1) O21-C22-N23 121.4(2) 

N2-C3-N3 117.9(1) N23-C22-C221 117.1(2) 

O3-C3-N2 117.2(1)   

 

 

 

 

 

Figure 8.8 An ORTEP view of 1-((benzamido)formyl)urea (59). 
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Figure 8.9 An ORTEP view of N-(2,3-dihydro-1H-benzo[d]imidazol-2-yl)-3-

nitrobenzamide (60)  

 

 

8.3 Conclusions  

-An attempted synthesis of the gold compounds of the benzothiazole derivatives led to C-N 

coupling with the loss of the thiocyanate unit. The same products were obtained for both 

gold(I) dimethylsulfoxide chloride or gold(III) chloride with gold(0) being a side product in 

both cases. The reaction is thought to proceed by the attack of the thione moiety by the gold 

ion leading to the formation of a possible gold complex as intermediate. The reduction of 

gold to gold (0) and the dethiocyanation allows the C–N couple to occur leading to the 

formation of the benzamides. The products obtained were N-(benzothiazol-2-yl)-4-

nitrobenzamide (55), N-(benzothiazol-2-yl)-3-bromobenzamide (56), N-(benzothiazol-2-yl)-

3-methoxybenzamide (57) and N-(benzothiazol-2-yl)benzamide (58). The compounds have 

been fully characterized and the crystal structures of compounds 55, 56 and 58 have been 

discussed. However, a full mechanism is yet to be investigated. This work present the first 

report of such a gold catalysed transformation. 

  

-An attempted synthesis of a silver complex of 1-((benzamido)sulfanylenemethyl)urea (53) 

led to the silver catalysed conversion of compound 53 to 1-((benzamido)formyl)urea (56). 
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The product has been characterized  by spectroscopy, microanalysis and GC-MS. The crystal 

structure of compound 56 has been discussed.  

 

-Another attempt at synthesizing a silver complex of compound 44 led to the formation N-

(2,3-dihydro-1H-benzo[d]imidazol-2-yl)-3-nitrobenzamide (60) by the silver-catalyzed 

cleavage and cyclization of compound 44. The compound 60 has been characterized by 

spectroscopy, microanalysis and GC-MS. The crystal structure of compound 60 has been 

discussed.  
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CHAPTER NINE 

CONCLUSIONS AND FUTURE WORK 

9.1 Conclusions 

In this study a set of amino acid-linked benzimidazole derivatives were designed using 

Autodock 4.2 (Chapter 3) and the attempted synthesis of these compounds led to the novel 

synthesis of 2,2,4-trimethyl-2,3-dihydro-1H-benzodiazepin-5-ium isophthalate (3) via 

microwave irradiation of o-phenylenediamine and isophthalic acid in the presence of acetone. 

A new set of amino acid derivatives were also designed using Autodock 4.2. The synthesis of 

the amino acid derivatives was successfully carried out. It was observed that the proline 

derivative exhibited the existence of rotamers in solutions which has been observed for the 

first time among these compounds. Conversion of the amino acid derivatives to 

benzimidazoles on the carboxylic acid was not successful. 

 

In Chapter 4, novel tetraazatricyclic derivatives were prepared by the reaction of 2-

aminobenzimidazole and benzoyl isothiocyanate derivatives. Though aliphatic derivatives of 

sulfur-containing tetraazatricyclics have been synthesized before this work presents the first 

synthesis of the aromatic derivatives of tretraazatricyclics from benzoyl isothiocyanates. 

Tautomerism of the thione residue has been observed when a nitro group is substituted at 

position 3 in the aryl ring leading to the existence of two different species in solution. Density 

functional theory transition state studies of the reaction mechanism of tetraazatricyclics have 

been carried in this work to compute a reaction pathway for tetraazatricylics through the 

various intermediates and transition states. This thesis also presents the first base catalyzed 

degradation of sulfur containing tetrazatricyclics to give N-(1H-benzimidazol-2-yl)benzamide 

(21). The DFT transition state studies of this degradation has also been carried out.The cell 

viability tests of the tetraazatricylics showed that compound 18 (unsubtituted), 12 (4-chloro) 

and 14 (4-methoxy) derivatives were cytotoxic, with EC50 values of 0.15 ± 0.051, 37.96 ± 

21.87 and 5.28 ± 2.95 μM, respectively. The HIV-1 protease screen of the tetraazatricyclic 

derivatives have been presented. Compounds 19 (4-nitro derivative) and 16 (3-nitro 

derivative) showed good activity against HIV-1 protease with % inhibition of 59.57±13.59 

and 79.97±11.97 respectively. This is consistent with the docking studies, the orientation 

adapted by compound 16 at the active site of protease ensures that it binds more strongly to 

amino acid residues than the other derivatives. The reaction of benzoyl isothiocyanate with 2-

aminobenzoxazole yielded 3-benzoyl-1-(2-hydroxyphenyl)urea (22) and the postulated 
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reaction mechanism suggests a ring opening of the 2-aminobenzoxazole ring and there is no 

precedent to this type of benzoyl isothiocyanate catalyzed ring opening in literature. 

 

2-Aminobenzothiazole derivatives of benzoyl isothiocyanates have been synthesized and and 

the DFT transition state studies of the formation of 3-(1,3-benzothiazol-2-yl)-1-

(benzoyl)thiourea (23) carried to compute the possible reaction pathway with intermediates 

and transition states in Chapter 5. Cell viability test on the benzothiazole derivatives showed 

that compounds 31 (3-bromo) and 30 (4-nitro) were cytotoxic with EC50 values of 1.207 ± 

0.58 and 24.08 ± 13.14 μM, respectively. In the HIV-1 protease screen for the benzothiazole 

derivatives, all the compounds in this set gave percentage inhibition lower than 40% at a 

concentration of 100 μM of inhibitor and 20 μM of protease. The low reactivity of these 

compounds could be due to the presence of polar groups that make them interact to greater 

extent with the constituents of the buffer used. The compounds did not interact sufficiently 

with the target molecule. 

 

Novel triazatetracyclics derivatives have been synthesized from the reaction of benzoyl 

isothiocyanate with 2(2-aminophenyl)-1H-benzimidazole in Chapter 6. Transition state 

studies on the formation of N-[(9E)-8,10,17-triazatetracyclo[8.7.0.02,7.011,16] heptadeca-

1(17),2,4,6,11(16),12,14-heptaen-9-ylidene]benzamide (39) has been computed to obtain the 

various transition states in the reaction pathway and the resulting intermediates to explain a 

possible reaction mechanism for these compounds. The cell viability tests of the 

triazatetracyclics showed that compounds 32 (4-bromo), 33 (4-methoxy) and 37 (3-chloro) 

were cytotoxic giving EC50 values of 45.47 ± 21.92, 45.09 ± 13.79 and 74.94 ± 13.17 μM, 

respectively. This class of compounds exhibited a low inhibition against HIV1 protease 

because of their low solubility in the acetate buffer used for the assay. 

 

In Chapter 7, the cell viability tests of aromatic and aliphatic diamine derivatives of benzoyl 

isothiocyanates have been carried out and this showed that 1-(4-bromobenzoyl)-3-[2-({[(4-

bromophenyl)formamido]methanethioyl}amino)phenyl]thiourea (46) and 1-(3-chloro 

benzoyl)-3-[2-({[(3-chlorophenyl)formamido]methanethioyl}amino)phenyl]thiourea (48) 

were cytotoxic with EC50 values of 17.04 ± 9.75 μM and 69.20 ± 38.160 μM respectively, 

whilst 1-(3-bromobenzoyl)-3-[2-({[(3-bromophenyl)formamido]methanethioylamino) 

phenyl] thiourea (49), 3-benzoyl-1-(4-{[(phenylformamido)methanethioyl]amino}butyl) 

thiourea (54) which were also cytotoxic gave EC50 values of 35.90 ± 20.55 and 68.37 ± 26.45 
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μM. In the HIV-1 protease assay of the aromatic and aliphatic diamine derivatives of benzoyl 

isothiocyanates, 1-(3-bromobenzoyl)-3-[2-({[(3-bromophenyl)formamido] 

methanethioylamino) phenyl]thiourea (49) gave an inhibition of 97% at an inhibitor 

concentration of 100 μΜ and a protease concentration of 20 nM. This was the best result 

from the bioassays. The attempt to obtain an IC50 for these assays was not possible with the 

concentration range chosen because the data obtained did not fit an exponential curve with a 

99.5% confidence level.  

 

An attempted synthesis of the gold compounds of the benzothiazole derivatives in Chapter 8 

led to C–N coupling with the loss of the thiocyanate unit. The same products were obtained 

for both gold(I) dimethylsulfoxide chloride or gold(III) chloride with gold(0) being a side 

product in both cases. The reaction is thought to proceed by the attack of the thione moiety by 

the gold ion leading to the formation of a possible gold complex as intermediate. The 

reduction of gold to gold (0) and the dethiocyanation allows the C-N couple to occur leading 

to the formation of the benzamides. This work presents the first report of such a gold 

catalyzed transformation. An attempted synthesis of a silver complex of 1-((benzamido) 

sulfanylenemethyl)urea (53) led to the silver catalyzed conversion of compound 53 to 1-

((benzamido)formyl)urea (56), where water is presumed to be the source of oxygen. Another 

attempt at synthesizing a silver complex of compound 44 led to the formation N-(2,3-

dihydro-1H-benzo[d]imidazol-2-yl)-3-nitrobenzamide (60) the silver-catalysed cleavage and 

cyclization of compound 44. 

 

 

9.2 Future Work 

Though compound 49 is the most active against HIV-1 protease but it is also cytotoxic hence 

derivatizing by introducing other groups in place of the bromide might reduce it cytotoxicity. 

This could be achieved by the addition of aliphatic side chains could be introduced onto 

compounds 16 and 19. Derivatization of compound 49 should also achieve acceptable 

cytotoxicity levels. 

 

The synthesis of the gold complexes using chlorotetrahydrothiophenegold(I) would be 

explored, since introduction of gold into these compounds is known to improve their activity 

against HIV-1. The novel gold-catalysed dethiocyanation reaction coupled with C–N 
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coupling to form an amide would be further investigated and the detailed reaction mechanism 

studied.  

 

Further work on the HIV-1 protease assay would be carried out to obtain kinetic information. 

The data obtained would be interpreted using the Michaelis-Menten equation to ascertain the 

type of inhibition exhibited by these compounds. 

 

Thermodynamic data would be obtained by displacement titration calorimetry. Pepstatin 

would be used as a weak binder and the number of active sites obtained from its titration with 

HIV-1 protease. A subsequent titration with selected benzoyl isothiocyanate derivatives (eg 

compounds 16, 19 or 49) and this could be completed to obtain data about the binding 

energy, Gibbs free energy, the entropy and enthalpy. This could contribute to determining the 

therapeutic potential of compound 49. 
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APPENDIX A 

CHARACTERIZATION SPECTRAL FOR AMINO ACID DERIVATIVES OF 

BENZOYL ISOTHIOCYANATE 

 

 

 

 

Figure A3.1 1H NMR spectrum of 2-[(benzoylcarbamothioyl)amino]-4-(methylsulfanyl) 

butanoic acid (7). 
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Figure A3.2 13C NMR spectrum of 2-[(benzoylcarbamothioyl)amino]-4-(methylsulfanyl) 

butanoic acid (7). 

 

 

Figure A3.3 DEPT spectrum of 2-[(benzoylcarbamothioyl)amino]-4-(methylsulfanyl) 

butanoic acid (7). 

 

 

 

Figure A3.4 IR spectrum of 2-[(benzoylcarbamothioyl)amino]-4-(methylsulfanyl)butanoic 

acid (7). 
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Figure A3.5 1H NMR spectrum of 2-[(benzoylcarbamothioyl)amino]propanoic acid (8).  

 

 

 

Figure A3.6 13C NMR spectrum of 2-[(benzoylcarbamothioyl)amino]propanoic acid (8).  
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Figure A3.7 IR spectrum of 2-[(benzoylcarbamothioyl)amino]propanoic acid (8).  

 

 

Figure A3.8 1H NMR spectrum of 2-phenyl-1H-benzimidazole (9).  
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Figure A3.9 13C NMR spectrum of 2-phenyl-1H-benzimidazole (9). 

 

 

 

Figure A3.10 IR spectrum of 2-phenyl-1H-benzimidazole (9).  
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APPENDIX B 

 

CHARACTERIZATION DATA FOR TETRAAZATRICYCLIC DERIVATIVES 

 

 

 

Figure A4.1 IR spectrum of 11-(4-chlorophenyl-1,8,10,12-tetraazatricyclo[7.4.0.02,7] 

trideca-2(7),3,5,9,11-pentaene-13-thione (12). 

 

 

 

Figure A4.2 1H NMR spectrum of 11-(4-chlorophenyl-1,8,10,12-tetraazatricyclo[7.4.0.02,7] 

trideca-2(7),3,5,9,11-pentaene-13-thione (12). 
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Figure A4.3 1H-1H COSY spectrum of 11-(4-chlorophenyl-1,8,10,12-

tetraazatricyclo[7.4.0.02,7] trideca-2(7),3,5,9,11-pentaene-13-thione (12). 

 

 

 

 

Figure A4.4 13C NMR spectrum of 11-(4-chlorophenyl-1,8,10,12-

tetraazatricyclo[7.4.0.02,7]trideca-2(7),3,5,9,11-pentaene-13-thione (12). 
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Figure A4.5 IR spectrum of 11-(4-bromophenyl)-,8,10,2-tetraazatricyclo[7.4.0.02,7]trideca-

2(7),3,5,9,11-pentaene-13-thione (13). 

 

 

 

Figure A4.6 1H NMR spectrum of 11-(4-bromophenyl)-,8,10,2-tetraazatricyclo [7.4.0.02,7] 

trideca-2(7),3,5,9,11-pentaene-13-thione (13). 
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Figure A4.7 1H 1H COSY  spectrum of 11-(4-bromophenyl)-,8,10,2-

tetraazatricyclo[7.4.0.02,7]trideca-2(7),3,5,9,11-pentaene-13-thione (13). 

 

 

Figure A4.8 13C NMR spectrum of 11-(4-bromophenyl)-,8,10,2-

tetraazatricyclo[7.4.0.02,7]trideca-2(7),3,5,9,11-pentaene-13-thione (13). 
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Figure A4.9 IR spectrum of 11-(4-methoxyphenyl)-1,8,10,12-tetraazatricyclo[7.4.0.02,7] 

trideca-2(7),3,9,1-pentaene-13-thione (14). 

  

 

 

Figure A4.10 1H NMR spectrum of 11-(4-methoxyphenyl)-1,8,10,12-tetraazatricyclo 

[7.4.0.02,7] trideca-2(7),3,9,1-pentaene-13-thione (14). 
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Figure A4.11 1H 1H COSY spectrum of 11-(4-methoxyphenyl)-1,8,10,12-

tetraazatricyclo[7.4.0.02,7] trideca-2(7),3,9,1-pentaene-13-thione (14). 

 

 

 

 

Figure A4.12 13C NMR spectrum of  11-(4-methoxyphenyl)-1,8,10,12-tetraazatricyclo 

[7.4.0.02,7]trideca-2(7),3,9,1-pentaene-13-thione (14). 
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Figure A4.13 IR spectrum of 11-(3-methoxyphenyl)-1,8,10,12-tetraazatricyclo0 

[7.4.0.02,7]trideca-2(7),3,5,9,11-pentaene-13-thione (15). 

 

 

 

Figure A4.14 1H NMR spectrum of 11-(3-methoxyphenyl)-1,8,10,12-tetraazatricyclo 

[7.4.0.02,7]trideca-2(7),3,5,9,11-pentaene-13-thione (15). 
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Figure A4.15 1H H COSY spectrum of 11-(3-methoxyphenyl)-1,8,10,12-tetraazatricyclo 

[7.4.0.02,7]trideca-2(7),3,5,9,11-pentaene-13-thione (15). 

 

 

 

 

Figure A4.16 13C NMR spectrum of 11-(3-methoxyphenyl)-1,8,10,12-tetraazatricyclo 

[7.4.0.02,7] trideca-2(7),3,5,9,11-pentaene-13-thione (15). 
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Figure A4.17 IR spectrum of 11-(3-chlorophenyl)-1,8,10,12-tetraazatricyclo[7.4.0.02,7] 

trideca-2(7),3,5,9,11-pentaene-13-thione (17). 

 

 

 

Figure A4.18  1H NMR spectrum of 11-(3-chlorophenyl)-1,8,10,12-tetraazatricyclo 

[7.4.0.02,7] trideca-2(7),3,5,9,11-pentaene-13-thione (17). 
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Figure A4.19 1H H COSY spectrum of 11-(3-chlorophenyl)-1,8,10,12-tetraazatricyclo 

7.4.0.02,7] trideca-2(7),3,5,9,11-pentaene-13-thione (17). 

  

 

 

Figure A4.20 13C NMR spectrum of 11-(3-chlorophenyl)-1,8,10,12-tetraazatricyclo 

[7.4.0.02,7]trideca-2(7),3,5,9,11-pentaene-13-thione (17). 
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Figure A4.21 13C NMR spectrum of 11-(3-bromophenyl)-1,8,10,12-tetraazatricyclo 

[7.4.0.02,7]trideca-2(7),3,5,9,11-pentaene-13-thione (18). 

 

 

Figure A4.22 1H NMR spectrum of 11-(3-bromophenyl)-1,8,10,12-tetraazatricyclo 

[7.4.0.02,7]trideca-2(7),3,5,9,11-pentaene-13-thione (18). 
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Figure A4.23 1H 1H COSY spectrum of 11-(3-bromophenyl)-1,8,10,12-tetraazatricyclo 

[7.4.0.02,7]trideca-2(7),3,5,9,11-pentaene-13-thione (18). 

 

 

 

Figure A4.24 13C NMR spectrum of 11-(3-bromophenyl)-1,8,10,12-tetraazatricyclo 

[7.4.0.02,7]trideca-2(7),3,5,9,11-pentaene-13-thione (18). 
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Figure A4.25  IR spectrum of 11-(4-nitrophenyl)-1,8,10,12-tetraazatricyclic 

[7.4.0.02,7] trideca-2(7),3,5,9,11-pentaene-13-thione (19). 

 

 

Figure A4.26 1H NMR spectrum of 11-(4-nitrophenyl)-1,8,10,12-tetraazatricyclic [7.4.0.02,7] 

trideca-2(7),3,5,9,11-pentaene-13-thione (19). 
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Figure A4.27 1H H COSY spectrum of 11-(4-nitrophenyl)-1,8,10,12-tetraazatricyclic 

[7.4.0.02,7] trideca-2(7),3,5,9,11-pentaene-13-thione (19). 

 

 

Figure A4.28 13C NMR spectrum of 11-(4-nitrophenyl)-1,8,10,12-tetraazatricyclic 

[7.4.0.02,7] trideca-2(7),3,5,9,11-pentaene-13-thione (19). 
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Figure A4.29 IR spectrum of 11-phenyl-1,8,10,12-tetraazatricyclo[7.4.0.02,7]trideca-

2(7),3,5,9,11-pentaene-13-thione (20). 

 

 

 

Figure A4.30 1H NMR spectrum of 11-phenyl-1,8,10,12-tetraazatricyclo[7.4.0.02,7]trideca-

2(7),3,5,9,11-pentaene-13-thione (20). 
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Figure A4.31 1H-1H COSY spectrum of 11-phenyl-1,8,10,12-tetraazatricyclo[7.4.0.02,7] 

trideca-2(7),3,5,9,11-pentaene-13-thione (20). 

 

 

Figure A4.32 13C NMR spectrum of 11-phenyl-1,8,10,12-tetraazatricyclo[7.4.0.02,7]trideca-

2(7),3,5,9,11-pentaene-13-thione (20). 
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APPENDIX C 

CHARACTERIZATION DATA FOR 3-(1,3-BENZOTHIAZOL-2-YL)-1-(BENZOYL) 

THIOUREA DERIVATIVES 

 

 

 

Figure A5.1 IR spectrum 3-(1,3-benzothiazol-2-yl)-1-(benzoyl)thiourea (23). 

 

 

 

Figure A5.2 1H NMR spectrum 3-(1,3-benzothiazol-2-yl)-1-(benzoyl)thiourea (23). 
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Figure A5.3 1H–1H COSY spectrum 3-(1,3-benzothiazol-2-yl)-1-(benzoyl)thiourea (23). 

 

 

Figure A5.4 13C NMR spectrum 3-(1,3-benzothiazol-2-yl)-1-(benzoyl)thiourea (23). 
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Figure A5.5 IR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(4-chlorobenzoyl)thiourea (24). 

 

 

 

Figure A5.6 1H NMR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(4-chlorobenzoyl)thiourea 

(24). 
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Figure A5.7 1H–1H COSY spectrum of 3-(1,3-benzothiazol-2-yl)-1-(4-

chlorobenzoyl)thiourea (24). 

 

 

 

Figure A5.8 13C NMR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(4-chlorobenzoyl)thiourea 

(24). 
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Figure A5.9 IR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(4-bromobenzoyl)thiourea (25). 

 

 

Figure A5.10 1H NMR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(4-bromobenzoyl)thiourea

   (25). 
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Figure A5.11 1H 1H COSY spectrum of 3-(1,3-benzothiazol-2-yl)-1-(4-bromobenzoyl) 

thiourea (25). 

 

 

Figure A5.12 13C NMR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(4-bromobenzoyl)thiourea 

(25). 
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Figure A5.13 IR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(4-methoxybenzoyl)thiourea (26). 

 

 

 

Figure A5.14 1H NMR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(4-methoxybenzoyl)thiourea 

(26). 
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Figure A5.15 1H H COSY spectrum of 3-(1,3-benzothiazol-2-yl)-1-(4-

methoxybenzoyl)thiourea (26). 

 

 

 

Figure A5.16 13C NMR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(4-methoxybenzoyl) 

thiourea (26). 
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Figure A5.17 IR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(3-nitrobenzoyl)thiourea (28). 

 

 

Figure A5.18 1H NMR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(3-nitrobenzoyl)thiourea 

(28). 
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Figure A5.19 1H–1H COSY spectrum of 3-(1,3-benzothiazol-2-yl)-1-(3-nitrobenzoyl) 

thiourea (28). 

 

 

 

Figure A5.20 13C NMR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(3-nitrobenzoyl)thiourea 

(28).  
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Figure A5.21 IR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(3-chlorobenzoyl)thiourea (29). 

 

 

Figure A5.22 1H NMR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(3-chlorobenzoyl)thiourea 

(29). 
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Figure A5.23 1H–1H COSY spectrum of 3-(1,3-benzothiazol-2-yl)-1-(3-chlorobenzoyl) 

thiourea (29). 

 

 

 

Figure A5.24 13C NMR spectrum of 3-(1,3-benzothiazol-2-yl)-1-(3-chlorobenzoyl)thiourea 

(29). 
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Figure A5.25 IR spectrum of 3-(1,3-benzothiazoyl-2-yl)-1-(4-nitrobenzoyl)thiourea (30). 

 

 

Figure A5.26 1H NMR spectrum of 3-(1,3-benzothiazoyl-2-yl)-1-(4-nitrobenzoyl)thiourea 

(30). 
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Figure A5.27 1H–1H COSY spectrum of 3-(1,3-benzothiazoyl-2-yl)-1-(4-nitrobenzoyl) 

thiourea (30). 

 

 

Figure A5.28  13C NMR spectrum of 3-(1,3-benzothiazoyl-2-yl)-1-(4-nitrobenzoyl)thiourea 

(30). 
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APPENDIX D 

CHARACTERIZATION DATA OF TRIAZATETRACYCLIC DERIVATIVES 

 

 

 

Figure A6.1 IR spectrum of 4-bromo-N-[(9E)-8,10,17-triazatetracyclo [8.7.0.02,7.011,16] 

heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene]benzamide (32). 

 

 

 

Figure A6.2 1H NMR spectrum of 4-bromo-N-[(9E)-8,10,17-triazatetracyclo 

[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 

benzamide (32). 
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Figure A6.3 1H–1H COSY spectrum of 4-bromo-N-[(9E)-8,10,17-triazatetracyclo 

8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 

benzamide (32). 

 

 

 

Figure A6.4 13C NMR spectrum of 4-bromo-N-[(9E)-8,10,17-triazatetracyclo 

[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 

benzamide (32). 
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Figure A6.5 IR spectrum of 4-methoxy-N-[(9E)-8,10,17-triazatetracyclo[8.7.0.02,7.011,16] 

heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene]benzamide (33). 

 

 

 

Figure A6.6 1H NMR spectrum of 4-methoxy-N-[(9E)-8,10,17-triazatetracyclo 

[8.7.0.02,7.011,16] heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 

benzamide (33). 
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Figure A6.7 1H–1H COSY spectrum of 4-methoxy-N-[(9E)-8,10,17-triazatetracyclo 

[8.7.0.02,7.011,16] heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 

benzamide (33). 

 

 

  

Figure A6.8 13C NMR spectrum of 4-methoxy-N-[(9E)-8,10,17-triazatetracyclo 

[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 

benzamide (33). 
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Figure A6.9 IR spectrum of 4-chloro-N-[(9E)-8,10,17-triazatetracyclo [8.7.0.02,7.011,16] 

heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] benzamide (35). 

 

 

 

Figure A6.10 1H NMR spectrum of 4-chloro-N-[(9E)-8,10,17-triazatetracyclo 

[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 

benzamide (35). 
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Figure A6.11 1H H COSY spectrum of 4-chloro-N-[(9E)-8,10,17-triazatetracyclo 

[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 

benzamide (35). 

 

 

 

Figure A6.12 13C NMR spectrum of 4-chloro-N-[(9E)-8,10,17-triazatetracyclo 

[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 

benzamide (35). 
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Figure A6.13 IR spectrum of 3-nitro-N-[(9E)-8,10,17-triazatetracyclo [8.7.0.02,7.011,16] 

heptadeca-1(17),2,4,6,11(16), 12,14-heptaen-9-ylidene] benzamide (36). 

 

 

 

Figure A6.14 1H NMR spectrum of 3-nitro-N-[(9E)-8,10,17-triazatetracyclo 

[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 

benzamide (36). 
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Figure A6.15 1H H COSY spectrum of 3-nitro-N-[(9E)-8,10,17-triazatetracyclo 

[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 

benzamide (36). 

 

 

 

Figure A6.16 13C NMR spectrum of 3-nitro-N-[(9E)-8,10,17-triazatetracyclo 

[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 

benzamide (36). 
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Figure A6.17 IR spectrum of 3-chloro-N-[(9E)-8,10,17-triazatetracyclo 

[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 

benzamide (37). 

 

 

Figure A6.18 1H NMR spectrum of, 3-chloro-N-[(9E)-8,10,17-triazatetracyclo 

[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 

benzamide (37). 
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Figure A6.19 13C NMR spectrum of 3-chloro-N-[(9E)-8,10,17-triazatetracyclo 

[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 

benzamide (37). 

 

 

 

Figure A6.20 IR spectrum of 4-nitro-N-[(9E)-8,10,17-triazatetracyclo [8.7.0.02,7.011,16] 

heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] benzamide (38). 
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Figure A6.21 1H NMR spectrum of 4-nitro-N-[(9E)-8,10,17-triazatetracyclo 

[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 

benzamide (38). 

 

 

 

 

Figure A6.22 IR spectrum of N-[(9E)-8,10,17-triazatetracyclo[8.7.0.02,7.011,16]heptadeca-

1(17),2,4,6,11(16),12,14-heptaen-9-ylidene]benzamide (39). 



P a g e  | 357 

 

F. Odame  Nelson Mandela Metropolitan Univeristy 

 

 

Figure A6.23 1H NMR spectrum of 3-bromo-N-[(9E)-8,10,17-triazatetracyclo 

[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 

benzamide (39). 

 

 

Figure A6.24 1H 1H COSY spectrum of 3-bromo-N-[(9E)-8,10,17-triazatetracyclo 

[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 

benzamide (39). 
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Figure A6.25 13C NMR spectrum of 3-bromo-N-[(9E)-8,10,17-triazatetracyclo 

[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,11(16),12,14-heptaen-9-ylidene] 

benzamide (39). 
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PHENYL THIOUREA COMPOUNDS AND OTHER DIAMINE DERIVATIVES 

 

 

 

Figure A7.1 IR spectrum of 1-benzoyl-3-(5-methyl-2-{[(phenylformamido)methanethioyl] 

amino}phenyl)thiourea (40). 

 

 

Figure A7.2 1H NMR spectrum of 1-benzoyl-3-(5-methyl-2-{[(phenylformamido) 

methanethioyl] amino}phenyl)thiourea (40). 
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Figure A7.3 13C NMR spectrum of 1-benzoyl-3-(5-methyl-2-{[(phenylformamido) 

methanethioyl] amino} phenyl)thiourea (40). 

 

 

 

 

Figure A7.4 IR spectrum of 1-benzoyl-3-(2-{[(phenylformamido)methanethioyl]amino} 

phenyl)thiourea (41).  
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Figure A7.5 1H NMR spectrum of 1-benzoyl-3-(2-{[(phenylformamido)methanethioyl] 

amino}phenyl)thiourea (41). 

 

 

Figure A7.6 13C NMR spectrum of 1-benzoyl-3-(2-{[(phenylformamido)methanethioyl] 

amino}phenyl)thiourea (41). 
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Figure A7.7 IR spectrum of 1-(4-nitrobenzoyl)-3-[2-({[(4-nitrophenyl)formamido] 

methanthioylphenyl]thiourea}amino) (42). 

 

Figure A7.8 1H NMR spectrum of 1-(4-nitrobenzoyl)-3-[2-({[(4-nitrophenyl)formamido] 

methanthioylphenyl]thiourea}amino) (42). 
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Figure A7.9 13C NMR spectrum of 1-(4-nitrobenzoyl)-3-[2-({[(4-nitrophenyl)formamido] 

methanthioyl phenyl]thiourea }amino) (42). 

 

 

 

 

Figure A7.10 IR spectrum of 1-(4-chlorobenzoyl)-3-[2-({[(4-chlorophenyl)formamido] 

methanethioyl}amino)phenylthiourea (43). 
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Figure A7.11 1H NMR spectrum of 1-(4-chlorobenzoyl)-3-[2-({[(4-chlorophenyl) 

formamido]methanethioyl}amino)phenylthiourea (43). 

 

 

Figure A7.12 13C NMR spectrum of 1-(4-chlorobenzoyl)-3-[2-({[(4-chlorophenyl) 

formamido]methanethioyl}amino)phenylthiourea (43). 
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Figure A7.13 IR spectrum of 1-(3-methoxybenzoyl)-3-[2-({[(3-methoxyphenyl)formamido] 

methanethioyl}amino)phenyl]thiourea (45). 

 

 

Figure A7.14 1H NMR spectrum of 1-(3-methoxybenzoyl)-3-[2-({[(3-methoxyphenyl) 

formamido]methanethioyl}amino)phenyl]thiourea (45). 
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Figure A7.15 13C NMR spectrum of 1-(3-methoxybenzoyl)-3-[2-({[(3-methoxyphenyl) 

formamido] methanethioyl}amino)phenyl]thiourea (45). 

 

 

 

Figure A7.16 IR spectrum of 1-(4-bromobenzoyl)-3-[2-({[(4-bromophenyl)formamido] 

methanethioyl}amino)phenyl]thiourea (46). 
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Figure A7.17 1H NMR spectrum 1-(4-bromobenzoyl)-3-[2-({[(4-bromophenyl)formamido] 

methanethioyl}amino)phenyl]thiourea (46). 

 

 

 

Figure A7.18 13C NMR spectrum of 1-(4-bromobenzoyl)-3-[2-({[(4-bromophenyl) 

formamido] methanethioyl}amino)phenyl]thiourea (46). 
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Figure A7.19 IR spectrum of 1-(4-methoxybenzoyl)-3-[2-({[(4-methoxylphenyl) 

formamido]methanethioyl}amino)phenyl]thiouea (47). 

 

 

Figure A7.20 1H NMR spectrum of 1-(4-methoxybenzoyl)-3-[2-({[(4-methoxylphenyl) 

formamido]methanethioyl}amino)phenyl]thiouea (47). 
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Figure A7.21 13C NMR spectrum of 1-(4-methoxybenzoyl)-3-[2-({[(4-methoxylphenyl) 

formamido]methanethioyl}amino)phenyl]thiouea (47). 

 

 

 

Figure A7.22 IR spectrum of 1-(3-chlorobenzoyl)-3-[2-({[(3-chlorophenyl)formamido] 

methanethioyl} amino)phenyl]thiourea (48). 
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Figure A7.23 1H NMR spectrum of 1-(3-chlorobenzoyl)-3-[2-({[(3-chlorophenyl) 

formamido]methanethioyl}amino)phenyl]thiourea (48). 

 

 

 

Figure A7.24 13C NMR spectrum of 1-(3-chlorobenzoyl)-3-[2-({[(3-chlorophenyl) 

formamido] methanethioyl}amino)phenyl]thiourea (48).  
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Figure A7.25 IR spectrum of 1-(3-bromobenzoyl)-3-[2-({[(3-bromophenyl)formamido] 

methanethioyl}amino)phenyl]thiourea (49). 

 

 

 

Figure A7.26 1H NMR spectrum of 1-(3-bromobenzoyl)-3-[2-({[(3-bromophenyl) 

formamido] methanethioyl}amino)phenyl]thiourea (49). 
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Figure A7.27 13C NMR spectrum of 1-(3-bromobenzoyl)-3-[2-({[(3-bromophenyl) 

formamido]methanethioyl}amino)phenyl]thiourea (49). 

 

 

 

Figure A7.28 IR spectrum of 3-benzoyl-1{[(phenylformido)methanethioyl]amino}thiourea 

(51). 
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Figure A7.29 1H NMR spectrum of 3-benzoyl-1{[(phenylformido)methanethioyl]amino} 

thiourea (51). 

 

 

 

Figure A7.30  13C NMR spectrum of 3-benzoyl-1{[(phenylformido)methanethioyl] 

amino}thiourea (51). 
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Figure A7.31 IR spectrum of 3-benzoyl-1-(phenylamino)thiourea (52). 

 

 

 

Figure A7.32 1H NMR spectrum of 3-benzoyl-1-(phenylamino)thiourea (52). 
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Figure A7.33 13C NMR 3-benzoyl-1-(phenylamino)thiourea (52). 

 

 

 

Figure A7.34 IR spectrum of 1-((benzamido)sulfanylenemethyl)urea (53). 
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Figure A7.35 1H NMR spectrum of 1-((benzamido)sulfanylenemethyl)urea (53). 

 

 

 

 

Figure A7.36 13C NMR spectrum of 1-((benzamido)sulfanylenemethyl)urea (53). 



P a g e  | 377 

 

F. Odame  Nelson Mandela Metropolitan Univeristy 

APPENDIX F 

Gold and silver catalysed reactions of benzoyl isothiocyanate derivatives 

 

 

 

Figure A8.1 IR spectrum of N-(benzothiazol-2-yl)-4-nitrobenzamide (55). 

 

 

 

Figure A8.2 1H NMR spectrum of N-(benzothiazol-2-yl)-4-nitrobenzamide (55). 
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Figure A8.3 13C NMR spectrum of N-(benzothiazol-2-yl)-4-nitrobenzamide (55). 

 

 

 

Figure A8.4 IR spectrum of N-(benzothiazol-2-yl)-3-bromobenzamide (56).  
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Figure A8.5 1H NMR spectrum of N-(benzothiazol-2-yl)-3-bromobenzamide (56). 

 

 

 

Figure A8.6 13C NMR spectrum of N-(benzothiazol-2-yl)-3-bromobenzamide (56). 
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Figure A8.7 IR spectrum of N-(benzothiazol-2-yl)-3-methoxybenzamide (57). 

 

 

 

Figure A8.8 1H NMR spectrum of N-(benzothiazol-2-yl)-3-methoxybenzamide (57). 
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Figure A8.9 13C NMR spectrum of N-(benzothiazol-2-yl)-3-methoxybenzamide (57). 

 

 

 

Figure A8.10 IR spectrum of 1-((benzamido)formyl)urea (59).  
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Figure A8.11 13C NMR spectrum of 1-((benzamido)formyl)urea (59). 

 

 

 

Figure A8.12 13C NMR spectrum of 1-((benzamido)formyl)urea (59). 
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Figure A8.13 IR spectrum of N-(2,3-dihydro-1H-benzimidazol-2-yl)-3-nitrobenzamide 

(60).  

 

 

 

Figure A8.14 1H NMR spectrum of N-(2,3-dihydro-1H-benzimidazol-2-yl)-3-

nitrobenzamide (60).  
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Figure A8.15 13C NMR spectrum of N-(2,3-dihydro-1H-benzimidazol-2-yl)-3-

nitrobenzamide (60).  

 

 

 

 

 

 

 


