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ABSTRACT

The deregulation of Singapore’s retail electricity market in 2018 and the rapid adop-
tion of solar rooftops have led to the emergence of a new type of energy transaction,
wherein prosumers require flexible tariffs that reflect their willingness to respond to
market price signals as well as new business models. The move toward community
energy schemes, where prosumers can trade their surplus electricity locally, and the
implications this has for tariff design motivates our study. We propose a portfolio of
stylized retail tariffs for different market organizations. Among the proposed con-
figurations are time-of-use (ToU), default vertical and peer-to-peer (P2P) tariffs, the
last of which operates through a blockchain platform. In this study, each Singaporean
district is balanced as a potential future microgrid. An iterative double-auction mech-
anism is designed to calculate a distributed P2P tariff, looking to maximize the ben-
efit for stakeholders. This tariff is then cleared and compared with a bespoke retail
ToU tariff as well as Singapore’s monopolistic regulated vertical tariff.
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1 INTRODUCTION

The progressive liberalization of the Singaporean electricity market, with its increase
in contestable customers being allowed to choose their own electricity suppliers (Han
2014) and its government-orchestrated push toward adding solar panels to rooftops
(Chang and Tay 2006), is leading to a more active profile of stakeholders emerging.
Consumers can choose to become prosumers by producing and storing their own
energy through a combination of solar panels and storage. Nowadays, the surplus of
this domestic solar energy is injected back into the national grid, but prosumers might
be willing to sell it to their neighbors through microgrids in the near future, leading
to a decentralized peer-to-peer (P2P) configuration of market transactions. This new
market structure – where prosumers generate their own electricity and share it with
local consumers – will impact how energy flows and is billed (Zhang et al 2016).

This disruption of the traditional energy sector landscape requires an in-depth
study of its impact on the whole system, including the technical field and consumer
billing mechanisms. Particularly, prosumers will require flexible tariffs that reflect
their willingness to respond to market price signals as well as new business models
in order to move toward this new community energy scheme (Koirala et al 2016;
Omnetric Group 2018).

Moreover, P2P trading and the way it would be implemented under the proposed
system raises questions regarding security, trust and privacy. Indeed, this new con-
figuration implies a decentralized electricity market scheme requiring transparent
and secure market environments. A promising contender to tackle this problem is
blockchain technology (Financial Conduct Authority 2017), due to its distributed
ledger nature (Kang 2017).

Microgrids are being proposed as a system architecture to promote decentralized
configurations in order to increase resilience, prevent energy losses, ease conges-
tion at the national grid (El-hawary 2014), reduce grid costs for customers and, thus,
incentivize people to turn to new community energy schemes. Moreover, decentral-
ized, balanced microgrids would reduce message delivery delay, which is a signif-
icant issue for P2P energy trading (Lu et al 2013), and give more autonomy to the
energy community to set their own consumption and performance goals.

It is interesting to combine auction approaches with this technology: in Sec-
tion 1.3, we offer an example of this using the Kelly mechanism. Few studies reflect
the current case in Singapore, which involves two categories of stakeholders, leading
to a double auction; the Kelly mechanism solves for one-dimensional auctions (Srini-
vasan et al 2016). The liberalization of Singapore’s energy market and the emer-
gence of a new community energy scheme supported by combining microgrids and
blockchain technologies motivate the evaluation of the P2P tariff in this study as an
auction between consumers and prosumers.
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1.1 The Singapore energy sector approach

Formerly vertically integrated (Chang 2004), ie, fully regulated by the government
through the Public Utilities Board (PUB), Singapore’s energy sector is now complet-
ing its move toward so-called full retail competition (FRC), which it began in 2018
(Chang 2007). The generation sector has been open to competition since 2001, while
the retail sector has become progressively liberalized, with the threshold for mar-
ket participation lowered by the Energy Market Authority (2017) from 8000 kWh in
2004 to 2000 kWh in 2015. Hence, contestable consumers, ie, businesses consuming
more than 2 MWh, are now able to buy electricity directly from licensed retailers,
paving the way for the remaining 1.3 million consumers to follow in their footsteps
(Chang 2007). The goals of this deregulation are manifold. Allowing consumers
to choose whether they purchase electricity from a licensed retailer, directly from
the wholesale market or from the government-owned company Singapore Power
Services (SP Services) addresses the question of consumer choice described by
Foley et al (2010). Other expectations of the deregulation process include lower
prices along with more efficient and reliable services. It is also hoped that it will
encourage the rise of economically viable small-scale power generation (Wouters
2015).

Fully aware of microgrids’ potential, Singapore has launched several research
projects on smart grid operations. Since the Intelligent Energy Systems project was
launched in 2009, several research-and-development platforms have been instigated,
such as Singapore’s Renewable Energy Integration Demonstrator (2014), which saw
three microgrids built on Semakau Island (Yang et al 2014). Similarly, the Pulau
Ubin Microgrid Test Bed, in operation since 2013, using thirty participants such as
residential premises, small businesses and government agencies, has led to the cur-
rent (as of writing) electricity price of S$0.80/kWh (Wouters 2015; Yang et al 2014).
In 2016, a microgrid demonstration platform for exchanging renewable energy was
launched using a decentralized digital currency, NRGcoin, based on blockchain
technology, to execute transactions (Facchini 2017).

1.2 Blockchain technology

This type of technology first emerged from computer networks and cryptography to
secure communications as a distributed ledger technology (PwC 2017) that could
help to speed up P2P transactions (Morabito 2017). According to its very defini-
tion as a decentralized technology, blockchain has the capacity to change the tradi-
tional transaction consensus model. This transition to another energy landscape, a
more decentralized system, will require new networking technology to support the
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74 J. Nieto-Martin et al

increased flow of information within the energy system. In this respect, blockchain
could become a future transversal technology that allows secured transactions
between peers.

In a secured transaction environment that uses blockchain technology, each cus-
tomer possesses one public decryption key that gives them access to the blockchain’s
transaction history, and one private encryption key that gives them access to a unique
account from which the execution of transactions is possible (Munsing et al 2017).
The transaction propositions are visible to every participant and are impossible to
modify without the entire community noticing, which leads to a transparent and
immutable process. Moreover, the private key leaves a unique signature, so when
a bid or offer is executed the transaction source is detectable. Each transaction is
temporarily stored in a block of transactions that is waiting to be validated by the
other users. One block is acceptable if it has a valid hash value, which is obtained via
a complicated computational problem that requires a significant amount of energy
to solve. There are several consensus methods for validating blocks of transac-
tions, which ensure both the security and the truthfulness of the trade (Zheng et al
2017).

1.3 Pricing decentralized auctions

Several pricing methods exist to incentivize customers to reduce their demand. The
most natural way is to charge customers according to the real-time electricity price
(RTP) (Borenstein 2002), a dynamic tariff that is directly dependent on wholesale
market variations. As a result, the electricity cost will vary all day long and give con-
sumers a true economic signal to favor an optimal socioeconomic use of electricity
(Algarvio et al 2014). This tariff is more suited to large consumers, since they can
afford to study the market to reduce their expenses. The digitalization and meter-
ing of the system will aid in applying this RTP tariff, allowing retailers to hedge
themselves against uncertainty by buying electricity in the wholesale market under
long-term contracts and selling it at spot prices to consumers. RTP tariff participants
can be given a signal that indicates when electricity load reduction is particularly
desirable; this is done by increasing the RTP using a value known as the reliabil-
ity adder, which prevents excessively constraining market conditions from reaching
smaller customers.

In electricity tariff design, employing a variable pricing method – such as the
widely used time-of-use (ToU) pricing approach – is one possible way of providing
customers with more accurate information about real electricity prices while keep-
ing the tariff stable from month to month. A retail tariff is divided into different fixed
prices: these are usually peak, shoulder and off-peak price. Each day is separated into
time blocks, and the corresponding price is asked of the consumer when electricity
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is loaded within a particular time block. Similarly, weekends and holidays are con-
sidered to be off-peak periods: electricity used during this time is therefore charged
at an off-peak price. Another option for achieving tariff accuracy and stability is by
using a mixture of variable and dynamic tariffs. As an example, a customer baseline
load (CBL) tariff would have its demand base charged at the ToU price, while the
demand surplus of the customer is charged at the spot price (Triki and Violi 2007).
To conclude, the main aim of demand-side prices is to lower demand at peak times in
order to reduce both wholesale market prices and the risk of rolling blackouts (Samet
2016).

Reproducing auctions for electricity trading allows us to simulate a real energy
market, with stakeholders interacting with each other as buyers or sellers, leading
to the allocation of items such as goods or resources (Liang et al 2013). Differ-
ent auction mechanisms exist. This study focuses on one unique divisible resource,
electricity, which is going to be traded within the energy market. This type of homo-
geneous auction aims to efficiently allocate that resource – as well as the associated
bidding price that results from the trade – through an optimization problem. The
Vickrey–Clark–Groves (VCG) mechanism proposes a solution for the optimization
problem via price anticipation (Triki and Violi 2007): the efficient allocation of the
resource is done by considering the fact that users are adapting their bids accord-
ing to its impact on trade. This is why the auction system must be party to others’
bidding information (Koutsopoulos and Iosifidis 2010). However, for the purposes
of our study, which involves a P2P configuration that is implemented by simulating
a blockchain platform and constructed according to what has been said before, the
blockchain technology involves privacy protection without reliance on a third party.
Consequently, this mechanism is not suitable for the Singapore case study.

As for the Kelly mechanism, this solves the optimization problem via an opti-
mal allocation of the resource through social optimization. It allows the problem
to be solved in a decentralized manner (Kelly et al 1997). As a result, the auction
involves a third party, the blockchain platform, as the auctioneer or broker; this iter-
atively computes the electricity allocation. Users then update their bidding price.
These results converge until they reach the optimal solution of the social welfare
optimization problem. The Kelly mechanism is an iterative one-dimensional auc-
tion whose algorithm runs in a distributed way, similar to the blockchain technol-
ogy; therefore, designing a P2P tariff based on the Kelly mechanism for buyers’ and
sellers’ interactions through the platform is a suitable proposal.

This paper is organized as follows. In Section 2, an overview of the techniques is
presented. In Section 3, our trial objectives and challenges are further characterized.
In Section 4, our conclusions, learnings, ideas for future work and recommendations
are discussed.

www.risk.net/journals Journal of Energy Markets
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2 TARIFF DESIGN CHARACTERIZATION: THE SINGAPORE
PERSPECTIVE

2.1 Tariff design

Studies such as Huh and Seo (2016), Faqiry (2017), Iosifidis et al (2015), Yoon et al
(2017) and Mihaylov et al (2016) were conducted on tariffs in deregulated environ-
ments, covering everything from load forecasting to tariff design. They also included
comparisons between tariffs. Mills et al (2016) presented two general models that are
commonly used in load profiling: the area and the category (groups of consumers)
models. Load profiles can be extracted from data via statistical analysis or via a pat-
tern recognition method using clustering algorithms. According to Mills et al (2016),
the formulation of fixed or variable tariffs over time for tariff design is one of load
profiling’s main applications. Some dynamic pricing methods – such as a two-stage
pricing scheme, determined through retailer revenue optimization (Borenstein 2002),
or a usage-based dynamic RTP in a smart grid application (Triki and Violi 2007) –
are also analyzed. The former study divides its price design into two stages, the first
being a ToU tariff and the second being a dynamic tariff based on real-time extra
demand. The latter defines a demand threshold to determine both peak and off-peak
times.

An extensive literature exists for the auction approach, particularly in the fields
of communication and networking: see, for example, the 1997 University of Cam-
bridge study on rate control, which describes a basic network model and solves a
utility optimization problem via a decomposition of the system (Kelly et al 1997).
An iterative double-auction mechanism following the Kelly mechanism is designed
to simulate interactions between mobile network operators and access points as well
as to optimize mobile data traffic. A similar algorithm adapted to the energy field
has been used in various papers for energy trading in microgrids (Panapakidis et al
2012; Samadi et al 2010; Sandholm 2002) or for P2P energy trading with electrical
vehicles (Faqiry and Das 2016; Majumder et al 2014). Similarly, auctions follow-
ing the VCG mechanism have been used in papers about microgrid energy trading
simulations (Alvaro-Hermana et al 2016; Jargstorf et al 2015).

As for time-varying tariffs, the most popular type is the ToU tariff, which divides
each day into pricing blocks. As an example, bilateral contracts between power
producers and customers with three rate tariffs are studied via a maximization of
power producers’ profits to determine both prices and future customers to be targeted
(Liang et al 2013). Other types of studies on tariff-related topics include compar-
isons of already-existing prices – such as in Russia, where retail prices and regulated
prices were compared (Liu et al 2015) – or comparisons of tariff schemes through
self-generation scenarios (regarding solar photovoltaics (PVs) and battery storage)
(Kuleshov et al 2012).
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As presented in Section 1, the deregulation of Singapore’s energy market should
lead not only to competition between electricity retailers but also to a rise in pro-
sumers and their participation in the market. A special focus has been made on smart
grids, which will allow prosumers market entry through a P2P energy configuration,
supported by blockchain technology. As a result, three tariff options can be drawn
from this changing landscape: a default tariff entirely regulated by the Singaporean
government, a retail tariff with variable pricing depending on its use (ToU), and a
P2P tariff that is traded in a blockchain environment.

2.2 Singapore’s default tariff

It is assumed that after full deregulation, Singapore’s government will implement a
default tariff that is entirely regulated, as a backup or supplier-of-last-resort tariff on
its customers. The upholding of a regulated tariff after full liberalization is currently
still under debate, and its design varies from country to country (ITS Consultancy
Services 2017). Therefore, the default tariff considered in this paper is set to equal
the current regulated Singaporean electricity tariff, reviewed quarterly for energy cost
and regulated by the Energy Market Authority (2017). This makes it easier to com-
pare with other tariff options as the base tariff. According to SP Group, the current
electricity tariff can be divided into four cost items, all of them in S$/kWh (Cheong
2000).

� Energy cost (14.58c/kWh): the cost of fuel, subject to market conditions, and
the power generation cost, eg, manpower, maintenance and capital costs.

� Network cost (5.30c/kWh): the cost of transmitting and distributing electricity
through the electricity network.

� Market support service (MSS) fee (0.37c/kWh): the customer service cost,
eg, billing and metering costs.

� Market administration and power system operator (PSO) fee (0.05c/kWh): the
cost of operating the power system and administrating the wholesale electricity
market.

Prosumers who inject their solar-panel-produced electricity into the grid are paid
based on the prevailing low-tension electricity tariff minus a grid charge. To compare
this default tariff with the others, we will set its value at 0.203 S$/kWh: this is the
value of the current regulated electricity tariff available from SP Group (Cheong
2000).

www.risk.net/journals Journal of Energy Markets
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2.3 ToU retail tariff

Following a full deregulation of the market, consumers will potentially choose retail-
ers without considering their level of electricity consumption. As described in Sec-
tion 2.1, retail pricing can take different forms, from a fully fixed price to a dynamic
price that varies over time. Knowing that only small consumers are considered in
this case study, dynamic pricing cannot be used due to the risk of excessive instabil-
ity (SP Group 2018). The widely adopted price scenario ToU pricing is thus chosen
instead.

For simplicity, it is assumed that the retail tariffs used in this paper are only ToU
prices in S$/kWh. According to SP Group, contestable consumers who have con-
tracts with ToU pricing are charged off-peak prices from 23:00 until 07:00 and peak
prices the rest of the time (Jaske 2002). As shown in Jaske (2002), the off-peak price
is 60% of the peak price. Therefore, the retail tariff peak value used in this paper is
the current regulated tariff of 0.203 S$/kWh, while the off-peak value is 60% of that,
ie, 0.1218 S$/kWh.

2.4 P2P tariff

The P2P tariff option is for consumers who would like to sell (or buy) their electricity
directly to (or from) their neighbors without interacting with a centralized entity or
reducing the maximum possible use of the system. The approach chosen to calcu-
late this tariff is an iterative double-auction method (Kelly et al 1997) adapted from
the Kelly mechanism. Indeed, the interaction between consumers and prosumers for
P2P trading can be modeled by a homogeneous auction that aims to optimally allo-
cate resources and their associated bidding prices. As said in Section 2.1, the Kelly
mechanism is the most well adapted for solving the optimization problem while
maintaining users’ privacy, which is one of the main reasons for using a blockchain
platform.

2.4.1 Microgrid trading in a blockchain

Agreements are made online through a blockchain platform. This blockchain-
technology-based website, operated as an intermediary, can provide consumers with
both guaranteed privacy and cheaper transactions, while offering stakeholders access
to vital information (Financial Conduct Authority 2017). A fixed-cost item is there-
fore assumed for platform operation and maintenance, which is determined through
a P2P tariff calculation. A blockchain technology consensus depends on a network
security protocol, which requires a certain amount of calculation time to find a hash
matching some prerequisite requirements in order to validate modifications of infor-
mation (Evangelopoulos et al 2016). This consensus-reaching protocol is costly in
terms of energy, since the validation algorithm runs on electricity. As it stands, this
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amount of energy is included in one’s electricity consumption profile, so there is
no need to consider its cost in a P2P tariff; however, in future models, data center
locations will need to be taken into consideration.

As aforementioned, a P2P configuration implies the use of local microgrids instead
of the national grid, due to its very definition as a system of neighbor energy trad-
ing. Grid costs can be considered as users’ contribution to losses, system load peaks
and users’ connection to the grid (Pop et al 2018). Knowing that a P2P electricity
exchange between neighbors reduces transmission distance, due to the use of micro-
grids, as well as energy transmission losses (Evangelopoulos et al 2016), it can be
assumed that the microgrid cost in each district is a portion of the grid cost, set at 70%
of the national grid cost of 0.035 S$/kWh (Cheong 2000; Energy Market Authority
2017).

The cost of solar electricity generation is calculated using the levelized cost of
electricity (LCOE) method, which is well established in energy finance and for policy
(Chuan et al 2014). As a result, the solar panel electricity generation price is set
depending on: the average capital cost of a basic solar panel composed of crystalline
PV modules, the capital cost interest rate, the panel depreciation, and the operation
and insurance costs. For the rest of our paper, this solar cost is set at 0.275 S$/kWh,
calculated using the 2014 Singapore Solar Roadmap for a turnkey system price of
2500 S$/kWp and a cost capital of 8% (Chuan et al 2014).

3 DISTRIBUTED TARIFF MODELING

3.1 Singapore’s context and tariff option assumptions

To model the liberalization of Singapore’s electricity market, several assumptions
will need to be made in this case study. These are as follows. Only small consumers,
ie, residential consumers and small industrial or commercial consumers with low
voltage (400/230 V), are considered. It is assumed that small consumers do not have
the knowledge to buy electricity directly from the wholesale market. Every house-
hold can install a generation unit and share electricity. As noted previously, solar
energy is one of the most viable renewable energy sources in Singapore, according
to the Energy Market Authority (2017). Thus, prosumers’ generation is only due
to solar panel installation. Singapore has been divided into five areas by the Urban
Redevelopment Authority (URA) in order to facilitate urban planning (Luther and
Reindl 2014): the north block, the northeast block, the west block, the east block and
the central block, as displayed in Figure 1. For P2P tariff simulation, only regions
have been taken into consideration, since the data available from the Energy Market
Authority is categorized by area. Therefore, this distribution will be referred to as a
zone, district, region or area in the remainder of this study, without distinction, and
each zone is considered to be a microgrid.
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FIGURE 1 Map of Singapore area divisions by the URA.

Source: Energy Market Authority (2017).

3.2 Iterative double auction for retail tariff design

The data pertaining to installed solar PV capacity per district and per consumer cat-
egory (contestable and noncontestable consumers) in Singapore is provided by the
Energy Market Authority (2017). Every hour, solar energy generation data per dis-
trict is supplied by the National Renewable Energy Laboratory’s (NREL’s) PVWatts
Calculator (Urban Redevelopment Authority 2016). This is calculated with the
installed solar capacity for a 21% system loss. The data for solar energy generation
is only available by district; this is then aggregated for fitting into the five district
market participant areas of Figure 1.

The data covering monthly average electricity demand per household and the num-
ber of households per district is provided by the Energy Market Authority (2017).
Thereafter, reduced to an hourly basis, the average electricity demand is multiplied
by the number of households per district and then spread over one day.

The iterative double-auction mechanism based on the Kelly mechanism can simu-
late and provide solutions for an electricity trading system between a group of buyers
and sellers, bidding through an energy broker, even if it only has partial information
(see Figure 2). The broker, which takes the form of a blockchain platform in this
paper, gradually optimizes the market equilibrium, ultimately reaching a social wel-
fare efficient solution (Dobos 2013). The idea behind the social welfare optimization
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FIGURE 2 Iterative double-auction processes flowchart.
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problem is to maximize buyers’ utilities (ie, the amount of electricity provided by
sellers), while minimizing sellers’ cost functions (ie, the cost of producing solar elec-
tricity and using the grid). This method was chosen because it incentivizes bidders
to propose real values without any bias; this is because it is impossible for them
to anticipate the impact of their bids on prices (Koutsopoulos and Iosifidis 2010).
This reflects a realistic scenario, since small consumers are considered unlikely to
spend time trading their electricity consumption in real time. To solve the social wel-
fare optimization problem, the iterative double-auction mechanism resolves an opti-
mization allocation subject to the same constraints, ie, sellers’ and buyers’ capacity
constraints in this particular case. This is combined with pricing (for buyers) and
reimbursement (for sellers) rules.

As a result, this process is a double auction wherein buyers and sellers interact by
submitting their bidding price for each area (including themselves). Based on this,
the broker calculates the amount of electricity received by the buyer and supplied
by the seller, limited by each zone’s maximum capacity, by solving the optimiza-
tion problem. Bids are then adjusted at the following iteration, which leads to an
adjustment of the traded electricity. The algorithm iterates until market equilibrium
is reached.

Each of the studied areas in Singapore has an electricity demand value Dmax and
a solar electricity generation value Gmax, which are traded through a platform with
each other to fix the exchange amount and the final price. Dmax and Gmax are the
inputs of this auction system. Each area can trade with itself, since clusters of con-
sumers and prosumers in the same area are considered. A blockchain platform is
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considered to act as a local energy broker that manages electricity trading between
areas. To incentivize trading within the same area, a grid charge that is 30% less
expensive than in other areas is considered.

3.3 Case study formulation

Consider a network with a set of areas that can both buy and sell electricity, since
they all have a demand for energy and produce solar energy. To let them interact
with each other, each area has two profiles, ie, a buying profile and a selling profile.
Let buying electricity areas be denoted by i , i D 1; : : : ; Nmax (number of areas in
Singapore), and selling electricity areas be denoted by j , j D 1; : : : ; Nmax.
Dmax

i is the total demand for electricity of area i , where D is the total electricity
demand of Singapore traded in the auction and Di is the electricity demand vector
of area i , with dij the electricity demand of area i for discharging area j so that
Di

�
Dfdij8i 2 N g and D �

DfDi8i 2 N g with N D f1; 2; : : : ; Nmaxg. Similarly,
Gmax

j is the total amount of solar electricity generated by area j , where G is the total
electricity supply of Singapore traded in the auction and Gj is the electricity supply
vector of area j , with gj i the electricity supply of area j for charging area i , so that
Gj

�
Dfgj i8j 2 N g and G �

DfGj8j 2 N g with N D f1; 2; : : : ; Nmaxg.
Bi is the buying price vector of area I so that Bi

�
Dfbij8i 2 N g, and Sj is the

selling price vector of area j so that Sj
�
Dfsj i8j 2 N g. Two functions – the utility

(satisfaction) function for the buying profile and the cost function for the selling
profile – are considered in (3.1) and (3.2):

Ui .Di / D
X

i

ln.dij C 1/: (3.1)

The satisfaction function corresponds to the level of satisfaction each buyer
obtains as a function of its energy consumption. As users are interested in consuming
as much electricity as possible before reaching their maximum capacity, the utility
function is nondecreasing:

Lj .Gj / D
X

i

.SCC GC/g2
ji

2
; (3.2)

where SC is the solar cost and GC is the grid charge. The cost function represents
the cost of providing electricity to the sellers. As described above, the grid charge is
cheaper when the transaction is within the same area, ie, when i D j .

3.3.1 Social welfare optimization problem

SW D max
D;G

�X
i

Ui .Di / �
X

j

Lj .Gj /

�
: (3.3)
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The objective of this problem is to maximize buyers’ utilities, ie, the amount of
energy they can buy, while minimizing sellers’ electricity production and trading
costs.

This maximization function is subject to three main constraints:X
j

dij 6 Dmax
i ; (3.4)

�gj i D dij ; (3.5)X
i

gj i 6 Gmax
j : (3.6)

This objective function is strictly concave, continuous and differentiable through
Ui , a natural logarithm function, and Lj , a quadratic function. Relaxation of the
constraints leads to the following Lagrangian L1:

L1 W
X

i

Ui .Di / �
X

j

Lj .Gj / �
X

i

˛i

�X
j

dij �D
max
i

�
�

X
j

ˇi

�X
i

gj i �G
max
j

�
�

X
i

X
j

; (3.7)

with ˛; ˇ > 0 the vectors of Lagrange multipliers corresponding to the constraints
(3.4)–(3.6), and � the matrix of Lagrange multipliers corresponding to the constraint
(3.5). According to Kelly’s study, � can also be considered as a charge per energy
unit. The social welfare function is strictly concave. Therefore, it possesses a unique
optimal solution that can be described using the necessary Karush–Kuhn–Tucker
(KKT) conditions. Hence, the optimal primal variables – Dı and Gı – and dual
variables – ˛ı, ˇı and �ı – are given as follows.

� Stationarity:

@Ui .D
ı
i /

@dij

D ˛ıi C �
ı
ij ; (3.8)

@Lj .G
ı
j /

@Gj i

D �ˇıj C �
ı
ij : (3.9)

� Complementary slackness:

˛ıi

�X
j

d ıij �D
max
i

�
D 0; (3.10)

ˇıj

�X
i

gıj i �G
max
j

�
D 0: (3.11)
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3.3.2 Optimal allocation problem

AL W max
D;G

�X
i

X
j

�
bij ln dij �

sj i

2
g2

ji

��
: (3.12)

This second optimization problem is subject to the same constraints as the social
welfare one: (3.4)–(3.6).

As this new objective function is also strictly concave, continuous and derivable, it
therefore admits a unique optimal solution. A relaxation of the constraints generates
the following Lagrangian L2:

L2 W
X

i

X
j

�
bij ln dij �

sj i

2
g2

ji

�
�

X
i

˛i

�X
j

dij �D
max
i

�
�

X
j

ˇi

�X
i

gj i �G
max
j

�
�

X
i

X
j

�ij .dij � �gj i /: (3.13)

The KKT conditions application yields the optimal variables ˛ı, ˇı, �ı, Dı and
Gı.

� Stationarity:

@bij ln d ıij
@dij

D ˛ıi C �
ı
ij D

bij

d ıij
; (3.14)

@1
2
sj ig

ı2
ji

@gj i

D �ˇıj C �
ı
ij D sj ig

ı
j i ; (3.15)

) d ıij D
bij

˛ıi C �
ı
ij

; (3.16)

) gıj i D
�ˇıj C �

ı
ij

sj i

: (3.17)

� Complementary slackness:

˛ıi

�X
j

d ıij �D
max
i

�
D 0; (3.18)

ˇıj

�X
i

gıj i �G
max
j

�
D 0: (3.19)

It should be noted that (3.18) and (3.19) are similar to (3.10) and (3.11) since
both objective functions are under similar constraints.

� Constraints similarity: the allocation problem yields a solution identical to
the unique solution of the social welfare one, ie, Dı �

DDı and Gı
�
DGı.
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Therefore, the following equations are deduced:

bij D
@Ui .D

ı
i /

@dij

d ıij ; (3.20)

sj i D
.@Lj .G

ı
j /=@Gj i / � 1

gıj i

: (3.21)

The following optimal electricity buying and selling problems model bidders’
behavior. Let Payi .Bi / be the payment function given to the buyer and let Rewj .Sj /

be the reward function given to the seller, both managed by the broker.

3.3.3 Optimal electricity buying problem

EB.electricity buying/ D max
Bi

.UiDi / � Payi .Bi /; (3.22)

Payi .Bi / D
X

j

bij : (3.23)

PROOF According to (3.22),

@Ui .Di /

@dij

D
@Payi .Bi /

@dij

D
@Payi .Bi /

@bij

@bij

@dij

:

According to (3.16),
@bij

@dij

D ˛i C �ij :

So,
@Payi .Bi /

@dij

D 1:

�

3.3.4 Optimal electricity selling problem

ES.electricity selling/ D max
Si

.Rewj .Sj / � Lj .Gj //; (3.24)

Rewj .Sj / D
.��ij C ǰ /

2

Sj i

: (3.25)

PROOF According to (3.24),

@Lj .Gj /

@gj i

D
@Rewj .Sj /

@gj i

D
@Rewj .Sj /

@sj i

@sj i

@gj i

:
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According to (3.17),

@sj i

@gj i

D
�S2

ji

�ij � ǰ

:

According to (3.9),

@Rewj .Sj /

@sj i

D
..��ij � ǰ /=S

2
ji /@Lj .Gj /

@gj i

D
��ij � ǰ

S2
ji

.� ǰ C �ij / D
�.��ij C ǰ /

2

S2
ji

:

Buyers’ and sellers’ bids are determined by the users themselves. Since they know
their own utility or cost functions, they can easily solve optimal electricity selling and
buying problems with (3.20) and (3.21), leading to the following equations:

bij D
d ıij

d ıij C 1
; (3.26)

sj i D SCC GC: (3.27)

Knowing (3.26) and (3.27), it should be mentioned that Sj represents the seller
bidding price in S$/kWh, while Bi is the buyer bidding price in S$/kWh. Therefore,
the latter requires further calculations to make it the same unit as the selling price.

�

3.3.5 Dual variables calculation

After relaxing the optimization functions’ constraints by forming the Lagrangians
L1 and L2, the dual variables ˛, ˇ and � must be updated. As these constraints are
convex and differentiable, the solution of their minimization is unique, so a gradient
method can be used:

˛i .t C 1/ D

�
˛i .t/C s

�X
j

dij �D
max
i

��C
; (3.28)

ǰ .t C 1/ D

�
ǰ .t/C s

�X
i

gij �G
max
j

��C
; (3.29)

�ij .t C 1/ D �ij .t/C s.dij .t/ � �dj i .t//; (3.30)

where s is a sufficiently small positive step size, t is the iteration index and .�/C

denotes the projection onto a nonnegative orthant.
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3.3.6 Iterative double-auction algorithm

As the optimization problems above are solved using a dual decomposition method
with a gradient approach for the updated dual variables, the algorithm we implement
solves the problems over multiple iterations. For each iteration, the broker checks
if the termination condition is satisfied, ie, whether the bid price satisfies the con-
vergence criterion ". The smaller this latter value, the more precise the bid price’s
difference between two iterations:

DiffB D
b

kC1;t
ij � b

k;t
ij

b
kC1;t
ij

; DiffS D
s

kC1;t
j i � s

k;t
j i

s
kC1;t
j i

I

these are the bid prices tested at the end of each iteration.
The broker calculates the new amount of electricity that will potentially be

exchanged as well as all the dual variables. This information is then transmitted to
buyers and sellers and used to let them deduce their new bidding price. At the end
of all the iterations for a time t , the reward and payment functions are determined.
This iteration is reiterated for each period of time. The iterative double auction is
described in detail in Algorithm 1. The initialization of primal (D, G) and dual
(˛, ˇ, �) variables is determined by the broker. ˛ and ˇ are chosen to satisfy the
complementary slackness described in (3.18) and (3.19), while D and G must sat-
isfy the constraint (3.5) for any value of �. As an example, one can choose ˛ D 0,
ˇ D 0 and �gj i D dij for any �.

4 RESULTS

The iterative double-auction algorithm has been implemented in Fortran for a con-
vergence criterion " D 0:0001 and with a gradient method step size of 0.05. The
auction simulation takes into account five buyers and five sellers, which represent
Singapore’s aforementioned five districts. The auction is implemented each hour of
a given day; here, we use a summer’s day, August 15, 2015, as our reference day.

4.1 Convergence

4.1.1 Social welfare

The double-auction mechanism converges after fifty-five iterations for this conver-
gence criterion. However, as shown in Figure 3, convergence can be considered
compliant after nineteen iterations to achieve a more relaxed criterion.
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Algorithm 1: Iterative double auction
Input : ", s
Output: D.kI t /, G.kI t /, B.k C 1I t /, S.k C 1I t /, ˛.k C 1; t/, ˇ.k C 1; t/,

�.k C 1; t/

Initialize ˛.k D 0; t/, ˇ.k D 0; t/, �.k D 0I t /, D.k D 0I t /, G.k D 0I t /,
k D 0

for t D 0 to T do
Solve Problem EB (Input W D.kI t /; G.kI t /; Output W B.k C 1I t /)

by (3.5)–(3.20)
Solve Problem ES (Input W D.kI t /; G.kI t /; Output W S.k C 1I t /)
by (3.5)–(3.21)

Solve Problem Al (Input W B.kI t /; S.kI t /; ˛.k; t/; ˇ.k; t/; �.k; t/;
Output W D.kI t /; G.kI t /) by (3.5)–(3.16) and (3.5)–(3.17)

Update dual variables through the gradient method
Calculate DiffB , DiffS
k D k C 1

repeat
do these things

until DiffB < " and DiffS < " k D k � 1;
end
Calculate reward price and payment price

4.1.2 Impact of �

As presented in Section 3.3, � is one of the dual variables (in S$/kWh) and is con-
sidered equivalent to the buyer’s bidding price when the other dual variables ˛ and
ˇ equal 0. Two simulations were run with two different values of �. The first one
employed � equal to 0.25 and the other used � equal to 0.6. The results do not change,
but the second simulation converges after eighty-four iterations and the social welfare
profile has different values for the earlier iterations, as displayed in Figure 4.

4.2 Blockchain platform fee

The final bidding prices between buyer 1 and other sellers are plotted in Figure 5
to highlight the difference between buyer and seller bidding prices. This means that
the blockchain platform buys electricity from sellers at one price and sells it to buy-
ers at a higher price, so the iterative double-auction mechanism is weakly budget
balanced. This revenue can be considered as the maximum blockchain fee charge-
able for using the platform. Thus, users wishing to be provided with electricity
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FIGURE 3 Number of iterations’ convergence for all areas and social welfare evolution.
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FIGURE 4 Social welfare profile and number of iterations with � equal to 0.6.
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through a P2P configuration would have to pay a maximum blockchain platform
fee of 0.10 S$/kWh, which represents 24% of their total selling price.

4.3 Microgrid incentive

According to Figure 6, electricity trading within the same area leads to a higher
amount of electricity being exchanged at a lower price, since the buyer can receive
1.36 kWh at the tariff 0.424 S$/kWh instead of 1.316 kWh at 0.432 S$/kWh. As a
result, users obtain a 2% discount for trading within the microgrid to which they
are linked, which leads to 25 cents in savings per day while receiving an extra
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FIGURE 5 Areas’ bidding price comparison between sellers and buyers.

FIGURE 6 Impact of trading within the same area compared with auctioning in other
areas.
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1 kWh per day. Thus, users are incentivized to buy electricity from their own area
through this discount on the grid charge, since using their area’s microgrid instead of
the national grid is less costly.

4.4 Location and seasonality in solar generation

According to the data provided by the Energy Market Authority and the NREL’s
PVWatts calculator, the amount of electricity generated by solar PVs varies greatly
according to district (see Figure 7), since the solar PVs’ installed capacity is het-
erogeneously spread over the city. It should also be highlighted that, according to
Figure 8, there is only a slight difference between the amount of solar electricity
produced in winter and in summer, that difference being 28.53 MW at the peak of
each profile’s day. Surprisingly, more electricity is generated on December 24 than
on August 15. This might be due to Singapore’s tropical rainforest weather, however,
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FIGURE 7 Solar generation on August 15, 2016 for Singapore’s districts.
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FIGURE 8 Singapore’s central district solar generation for two representative days.
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so the amount of electricity produced would depend more on the cloudiness of the
day than on seasonality (Energy Market Authority 2017; Pop et al 2018).

4.4.1 Peers’ contribution across the platform

The amount of electricity exchanged within one area varies slightly between the
beginning and the end of the day. This can be explained by the amount of solar
energy that is produced during a day. From 07:00 to 08:00, the energy generated is
multiplied by twelve. Similarly, it is divided by five from 17:00 to 18:00. For the rest
of the day, the electricity variation does not exceed 200%. A double auction was run
using five areas selling and buying at 13:00 (August 15), when solar production is at
its maximum. Table 1 displays the amount of electricity traded by each area at that
time, both with each other and via self-production.
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TABLE 1 Amount of electricity exchanged for five stakeholders.

MWh Area 1 (%) Area 2 (%) Area 3 (%) Area 4 (%) Area 5 (%)

Area 1 8.285 45 21 15 11 8
Area 2 7.238 32 44 17 4 3
Area 3 7.147 27 19 41 8 5
Area 4 3.216 21 6 13 39 21
Area 5 3.194 24 9 12 18 37

FIGURE 9 Buyer electricity demand for August 15, 2016.
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Figure 9 shows that stakeholders exhibit the same behavior. As highlighted before,
more electricity is exchanged when a double auction takes place within the same
area. It should be noted that the amount of electricity received by all areas depends
on their solar generation and therefore the amount of flexible distributed generation
allocated to the bidding pool.

4.5 Tariff comparison

First, it should be noted that the P2P tariff only applies to bids between 07:00 and
18:00 due to the settings of the case study and users’ willingness to trade the pro-
duced solar power during this interval. To highlight this point, Figure 10 shows that
P2P tariffs do vary throughout the day, following the profile of electricity exchanged
during that day, with peak solar production hours being as low as 0.1242 S$/kWh.
Therefore, the bidding price depends on the amount of electricity generated, the total
demand and users’ solar production.
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FIGURE 10 6 � 6 users’ configuration: comparison of tariffs on August 15.
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Finally, because the P2P tariff is unavailable for the first and last hours of the day,
the ToU tariff is the cheapest available tariff at these times. However, from 08:00 to
17:00 the P2P tariff becomes competitive as the amount of solar generation increases,
being at central hours of the day 41% cheaper than the ToU or the default-regulated
tariff.

4.6 Summary

This iterative double-auction algorithm has been implemented with bidders’ privacy
being ensured. As a result, buyers and sellers are the only ones who know their own
utility or cost functions. Moreover, bids are supposed to be sent simultaneously to
the broker in each iteration.

For both �, the results are considered to be converging after around twenty-two
iterations, which means this is a really fast process that requires almost instantaneous
computational time. This finding aligns with results found in the literature regarding
iterative double auctions, such as in Faqiry (2017), where convergence is achieved
between seven and thirty-five iterations, depending on the step size chosen; and in
Iosifidis et al (2015), where the algorithm converges after a maximum of 117 sec-
onds and for less than fifty iterations, depending on the number of users involved
in the energy trade. As a result, this algorithm converges to the optimal point of
the social welfare problem, satisfying constraints (3.4)–(3.6) and consequently the
complementary slackness conditions (3.10) and (3.11), as specified in Faqiry (2017).
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Moreover, the high speed obtained and the few iterations needed to run the algorithm,
as described in detail above, reveal the effectiveness and efficiency of this iterative
double-auction algorithm.

It should be noted that, with the particular cost function set for sellers, their bid-
ding price always corresponds to the real cost of producing energy plus the grid
charge. This means that they are described as selfless through this function. The dif-
ference between these two prices varies between 0.06 and 0.11 S$/kWh, depending
on whether the deal is within the same area, ie, made via a microgrid, or between two
different areas. Being positive, this difference shows that the iterative double-auction
mechanism is weakly budget balanced, as is supposed by various papers (see Iosifidis
et al 2015; Srinivasan et al 2016). As a result, the presence of an average, positive
price difference in this case study can also be found where the value equals S$0.35.
This price represents the maximum amount that a broker will earn while operating
the transaction. Therefore, the maximum blockchain platform considered would be
0.08 S$/kWh, which is the minimum difference between the bidding prices of the
buyer and the seller.

According to Figure 10 and all of the data from the auction simulation, the bidding
price is always lower when energy trading happens within the same area, ie, through
self-supply. Moreover, the amount of energy exchanged within and between micro-
grids is higher than that for energy trading through the national grid. This assumption
is due to the incentive introduced in the cost function, where the grid charge is 30%
less expensive if electricity trading happens within the same region, ie, if energy
trading is transmitted and distributed through a microgrid.

5 CONCLUSIONS

In this paper, an electricity market is simulated using an iterative double-auction
algorithm that resolves a social welfare optimization problem based on the Kelly
auction mechanism. It is adapted to the case of Singapore’s district-to-district FRC,
simulating the interaction between the country’s five areas: these are considered to
be prosumers who both generate solar energy and require a certain amount of elec-
tricity. Each region is considered to be a buyer as well as a seller, and they can
provide services for themselves, as they may be considered microgrid balancing dis-
tricts. The exchange of electricity with districts other than themselves is carried out
via the traditional grid. A blockchain platform, which is used as the trading plat-
form between users, plays the role of auctioneer (or broker) during the auction. This
auction requires the presence of an auctioneer (the blockchain platform) and has to
incentivize trading within the same area, which means that the electricity distribution
goes through a microgrid instead of the traditional grid. The calculated P2P tariff is
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then compared with a regulated tariff, the default tariff and a retail tariff based on the
ToU pricing design.

The algorithm converges after fewer than twenty iterations and maximizes the
social welfare optimization problem to find a solution that satisfies all of the con-
straints. This is an effective approach since it does not require considerable cal-
culation time. The auction satisfies the condition of privacy. On the one hand, the
algorithm does not require full information on all users since each user bids a price
according to the amount of electricity exchanged, calculated by the broker, and keeps
for itself its utility and cost functions. On the other hand, privacy is also made pos-
sible by using a permissioned blockchain, where participants are licensed before
joining.

A reasonable P2P tariff is proposed, which for hours where the production of solar
energy is brought into the mix provides the lowest tariff available to prosumers. As
this distributed business model is being discussed across the industry, we propose
that the blockchain platform fee should be between 0.05 and 0.08 S$/kWh. With-
out having introduced incentives, the P2P value proposition offers a competitive rate
during solar production hours compared with the default and retail ToU tariffs. It
is assumed that introducing storage as a distributed resource could lower the cur-
rent value proposition for this tariff by enabling it to become competitive during the
remaining hours as well.

DECLARATION OF INTEREST

The authors report no conflicts of interest. The authors alone are responsible for the
content and writing of the paper.

REFERENCES

Algarvio, H., Lopes, F., Sousa, J. A., and Lagarto, J. (2014). Power producers trading elec-
tricity in both pool and forward markets. In 25th International Workshop on Database
and Expert Systems Applications (DEXA), Munich, Germany. IEEE (https://doi.org/
10.1109/DEXA.2014.41).

Alvaro-Hermana, R., Fraile-Ardanuy, J., Zufiria, P. J., Knapen, L., and Janssens, D. (2016).
Peer to peer energy trading with electric vehicles. IEEE Intelligent Transportation
Systems Magazine 8(3), 33–44 (https://doi.org/10.1109/MITS.2016.2573178).

Borenstein, S. (2002). The theory of demand-side price incentives. In Dynamic Pric-
ing, Advanced Metering and Demand Response in Electricity Markets, Borenstein, S.,
Jaske, M., and Rosenfeld, A. (eds), pp. 5–31. Energy Foundation.

Chang, Y. (2004). Deregulation in the national electricity market of Singapore: com-
petition and efficiency. In IEEE International Conference on Electric Utility Deregula-
tion, Restructuring and Power Technologies, Hong Kong, China. IEEE (https://doi.org/
10.1109/DRPT.2004.1338460).

www.risk.net/journals Journal of Energy Markets



96 J. Nieto-Martin et al

Chang, Y. (2007). The new electricity market of Singapore: regulatory framework, mar-
ket power and competition. Energy Policy 35(1), 403–412 (https://doi.org/10.1016/
j.enpol.2005.11.036).

Chang, Y., and Tay, T. H. (2006). Efficiency and deregulation of the electricity market in
Singapore. Energy Policy 34(16), 2498–2508 (https://doi.org/10.1016/j.enpol.2004.08
.015).

Cheong, S. S. (2000). Deregulation of the power industry in Singapore. In 5th Interna-
tional Conference on Advances in Power System Control, Operation and Management,
APSCOM-00, Hong Kong, China. IET.

Chuan, L., Rao, D. M., Venkateswara, V., and Abhisek, U. (2014). Load profiling of
Singapore buildings for peak shaving. In Power and Energy Engineering Confer-
ence (APPEEC), 2014 IEEE PES Asia-Pacific, pp. 1–6. IEEE (https://doi.org/10.1109/
APPEEC.2014.7065998).

Dobos, A. P. (2013). PVWatts version 1 technical reference. Technical Report, NREL/TP-
6A20-60272. National Renewable Energy Laboratory, Golden, CO (https://doi.org/10
.2172/1096689).

El-hawary, M. E. (2014). The smart grid: state-of-the-art and future trends. Electric Power
Components and Systems 42(3–4), 239–250 (https://doi.org/10.1080/15325008.2013
.868558).

Energy Market Authority (2017). Singapore energy statistics. Report. URL: https://bit.ly/
2uKdvwt.

Evangelopoulos, V. A., Georgilakis, P. S., and Hatziargyriou, N. D. (2016). Optimal oper-
ation of smart distribution networks: a review of models, methods and future research.
Electric Power Systems Research 140, 95–106 (https://doi.org/10.1016/j.epsr.2016
.06.035).

Facchini, A. (2017). Distributed energy resources: planning for the future. Nature Energy
2(8), 17129 (https://doi.org/10.1038/nenergy.2017.129).

Faqiry, M. N. (2017). Efficient double auction mechanisms in the energy grid with
connected and islanded microgrids. PhD Thesis, Kansas State University.

Faqiry, M. N., and Das, S. (2016). Double-sided energy auction in microgrid: equilibrium
under price anticipation. IEEE Access 4, 3794–3805 (https://doi.org/10.1109/ACCESS
.2016.2591912).

Financial Conduct Authority (2017). Discussion paper on distributed ledger technology.
Discussion Paper, April. URL: https://bit.ly/2oY6NMx.

Foley, A. M., Gallachoir, B., Hur, J., Baldick, R., and McKeogh, E. J. (2010). A strategic
review of electricity systems models. Energy 35(2), 4522–4530 (https://doi.org/10.1016/
j.energy.2010.03.057).

Han, W. W. (2014). More businesses to benefit as electricity market further liberalised.
Today, October 27.

Huh, J.-H., and Seo, K. (2016). Futures/Option Electric Power Pricing in Smart Grid Using
Game Theory and Hybrid AMI Based on Weather Clearness, Advanced Multimedia and
Ubiquitous Engineering. Lecture Notes in Electrical Engineering, Volume 393, pp. 477–
483. Springer (https://doi.org/10.1007/978-981-10-1536-6 62).

Iosifidis, G., Gao, L., Huang, J., and Tassiulas, L. (2015). A double auction mechanism for
mobile data offloading markets. Transactions on Networking 23(5), 1634–1647 (https://
doi.org/10.1109/TNET.2014.2345875).

Journal of Energy Markets www.risk.net/journals



Community energy retail tariffs in Singapore 97

ITS Consultancy Services (2017). Power share – battery storage leads the charge of the
microgrid. Blog Post, ITS Consultancy. URL: https://bit.ly/2fXy9C4.

Jargstorf, J., Jonghe, C. D., and Belmans, R. (2015). Assessing the reflectivity of residen-
tial grid tariffs for a user reaction through photovoltaics and battery storage. Sustainable
Energy, Grids and Networks 1, 85–98 (https://doi.org/10.1016/j.segan.2015.01.003).

Jaske, M. (2002). Practical implications of dynamic pricing. In Dynamic Pricing, Advanced
Metering, and Demand Response in Electricity Markets. Energy Foundation.

Kang, J., Yu, R., Huang, X., Maharjan, S., Zhang, Y., and Hossain, E. (2017). Enabling
localized peer-to-peer electricity trading among plug-in hybrid electric vehicles using
consortium blockchains. IEEE Transactions on Industrial Informatics 13(6), 3154–3164
(https://doi.org/10.1109/TII.2017.2709784).

Kelly, F., Maulloo, A., and Tan, D. (1997). Rate control for communication networks:
shadow prices, proportional fairness and stability. Working Paper, University of Cam-
bridge (https://doi.org/10.1038/sj.jors.2600523).

Koirala, B. P., Koliou, E., Friege, J., Hakvoort, R. A., and Herder, P. M. (2016). Energetic
communities for community energy: a review of key issues and trends shaping inte-
grated community energy systems. Renewable and Sustainable Energy Reviews 56,
722–744 (https://doi.org/10.1016/j.rser.2015.11.080).

Koutsopoulos, I., and Iosifidis, G. (2010). Auction mechanisms for network resource allo-
cation. In 8th International Symposium on Modeling and Optimization in Mobile, Ad Hoc,
and Wireless Networks, Avignon, France, pp. 554—563. IEEE.

Kuleshov, D., Viljainen, S., Annala, S., and Gore, O. (2012). Russian electricity sec-
tor reform: challenges to retail competition. Utilities Policy 23, 40–49 (https://doi.org/
10.1016/j.jup.2012.05.001).

Liang, X., Li, X., Lu, R., Lin, X., and Shen, X. (2013). UDP: usage-based dynamic pricing
with privacy preservation for smart grid. Transactions on Smart Grid 4(1), 141–150
(https://doi.org/10.1109/TSG.2012.2228240).

Liu, T., Tan, X., Sun, B., Wu, Y., Guan, X., and Tsang, D. H. K. (2015). Energy management
of cooperative microgrids with P2P energy sharing in distribution networks. In 2015
IEEE International Conference on Smart Grid Communications (SmartGridComm),
Miami, FL. IEEE (https://doi.org/10.1109/SmartGridComm.2015.7436335).

Lu, X., Wang, W., and Ma, J. (2013). An empirical study of communication infrastructure
towards the smart grid: design, implementation and evaluation. IEEE Transactions on
Smart Grid 4(1), 170–183 (https://doi.org/10.1109/TSG.2012.2225453).

Luther, P. J., and Reindl, D. T. (2014). Solar photovoltaic (PV): roadmap for Singapore
2014. Report. URL: https://bit.ly/30qj7rE.

Majumder, B. P., Faqiry, M. N., Das, S., and Pahwa, A. (2014). An efficient iterative dou-
ble auction for energy trading in microgrids. In Symposium on Computational Intelli-
gence Applications in Smart Grid (CIASG), Orlando, FL. IEEE (https://doi.org/10.1109/
CIASG.2014.7011556).

Mihaylov, M., Razo-Zapata, I., Radulescu, R., Jurado, S., Avellana, N., and Nowe, A.
(2016). Smart grid demonstration platform for renewable energy exchange. In Advances
in Practical Applications of Scalable Multi-agent Systems. PAAMS Collection/Lecture
Notes in Computer Science, Volume 9662. Springer (https://doi.org/10.1007/978-3-319-
39324-7 30).

www.risk.net/journals Journal of Energy Markets



98 J. Nieto-Martin et al

Mills, D., Wang, K., Malone, B., Ravi, A., Marquardt, J., Chen, C., Badev, A., Brezin-
ski, T., Fahy, L., Liao, K., Kargenian, V., Ellithorpe, M., Ng, W., and Baird, M. (2016).
Distributed ledger technology in payments, clearing, and settlement. In Finance and
Economics Discussion Series 2016-095. Board of Governors of the Federal Reserve
System, Washington, DC (https://doi.org/10.17016/FEDS.2016.095).

Morabito, V. (2017). Blockchain technology and management. In Business Innovation
Through Blockchain: The B3 Perspective, p. 10. Springer (https://doi.org/10.1007/
978-3-319-48478-5 1).

Munsing, E., Mather, J., and Moura, S. (2017). Blockchains for decentralized optimization
of energy resources in microgrid networks. In 2017 IEEE Conference on Control Tech-
nology and Applications (CCTA), pp. 2164–2171. IEEE (https://doi.org/10.1109/CCTA
.2017.8062773).

Nelson, T., and Reid, C. (2014). Reconciling energy prices and social policy. Electricity
Journal 27(1), 104–114 (https://doi.org/10.1016/j.tej.2013.12.007).

Omnetric Group (2018). Power to the people: community energy as a major driver of
change in the global energy ecosystem. Report, July. URL: https://bit.ly/2WaipiE.

Panapakidis, I. P., Alexiadis, M. C., and Papagiannis, G. K. (2012). Load profiling in the
deregulated electricity markets: a review of the applications. In 9th International Con-
ference on the European Energy Market (EEM), Florence, Italy. IEEE (https://doi.org/
10.1109/EEM.2012.6254762).

Pop, C., Cioara, T., Antal, M., Anghel, I., Salomie, I., and Bertoncini, M. (2018). Blockchain
based decentralized management of demand response programs in smart energy grids.
Sensors 18(1), 162 (https://doi.org/10.3390/s18010162).

PwC (2017). Blockchain: an opportunity for energy producers and consumers? Report,
PwC Global Power & Utilities.

Samadi, P., Mohsenian-Rad, A.-H., Schober, R., Wong, V. W., and Jatskevich, J. (2010).
Optimal real-time pricing algorithm based on utility maximization for smart grid. In
IEEE International Conference on Smart Grid Communications (SmartGridComm),
Gaithersburg, MD. IEEE (https://doi.org/10.1109/SMARTGRID.2010.5622077).

Samet, H. (2016). Evaluation of digital metering methods used in protection and reactive
power compensation of micro-grids. In Renewable and Sustainable Energy Reviews 62,
260–279 (https://doi.org/10.1016/j.rser.2016.04.032).

Sandholm, T. (2002). Algorithm for optimal winner determination in combinatorial auctions.
In Artificial Intelligence 135, 1–54 (https://doi.org/10.1016/S0004-3702(01)00159-X).

SP Group (2018). Singapore billing structure. Report. URL: https://bit.ly/2nIv0sH.
Srinivasan, D., Rajgarhia, S., Radhakrishnan, B. M., Sharma, A., and Khincha, H. (2016).

Game-theory based dynamic pricing strategies for demand side management in smart
grids. Energy 126, 132–143 (https://doi.org/10.1016/j.energy.2016.11.142).

Triki, C., and Violi, A. (2007). Dynamic Pricing of Electricity in Retail Markets. Springer
(https://doi.org/10.1007/s10288-007-0056-2).

Urban Redevelopment Authority (2016). Master plan: introduction to master plan. Report.
URL: https://bit.ly/1w3ezRQ.

Wouters, C. (2015). Towards a regulatory framework for microgrids: the Singapore expe-
rience (2015). Sustainable Cities and Society 15, 22–32 (https://doi.org/10.1016/j.scs
.2014.10.007).

Journal of Energy Markets www.risk.net/journals



Community energy retail tariffs in Singapore 99

Yang, W., Ho, T. C. T., Xiang, L., Chai, C. C., and Yu, R. (2014). An overview and evaluation
on demand response program in Singapore electricity market. In 2014 IEEE Conference
on Energy Conversion (CENCON), pp. 61–66. IEEE (https://doi.org/10.1109/CENCON
.2014.6967477).

Yoon, Y., Chan, D., and Cameron, M. (2017). Key success factors for global application of
micro energy grid model. Sustainable Cities and Society 28, 209–224 (https://doi.org/
10.1016/j.scs.2016.08.030).

Zhang, C., Cheng, J. W. M., Zhou, Y., and Long, C. (2016). A bidding system for peer-
to-peer energy trading in a grid-connected microgrid. Energy Procedia 103, 147–152
(https://doi.org/10.1016/j.egypro.2016.11.264).

Zheng, Z., Xie, S., Dai, H., Chen, X., and Wang, H. (2017). An overview of blockchain
technology: architecture, consensus, and future trends. In 2017 IEEE International
Congress on Big Data (BigData Congress), pp. 557–564. IEEE (https://doi.org/10.1109/
BigDataCongress.2017.85).

www.risk.net/journals Journal of Energy Markets




