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WILLPOWER AND COMPROMISE EFFECT∗

YUSUFCAN MASATLIOGLU§, DAISUKE NAKAJIMA†, AND EMRE OZDENOREN‡

Abstract. This paper provides a behavioral foundation for modeling willpower as a

limited cognitive resource that bridges the standard utility maximization and Strotz

models. Using the agent’s ex ante preferences and ex post choices, we derive a

representation that captures key behavioral traits of willpower-constrained decision

making. We use the model to study the pricing problem of a profit-maximizing

monopolist who faces consumers with limited willpower. We show that the optimal

contract often consists of three alternatives and that the consumer’s choices reflect

a form of the “compromise effect,” which is induced endogenously.

1. Introduction

Standard theories of decision making assume that people choose what they prefer and

prefer what they choose. However, introspection suggests that implementation of choice

may not be automatic, and there is often a wedge between preferences and actual choices.

Recently, psychologists and economists have emphasized the lack of self-control in decision

making as an important reason for this wedge.1 When people face temptation, they make

choices that are in conflict with their commitment preferences.

People do not always succumb to temptation and are sometimes able to overcome tempta-

tions by using cognitive resources. This ability is often called willpower. There is a growing

experimental psychology literature demonstrating that willpower is a limited resource, and it
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1Models of self-control problems include quasi-hyperbolic time discounting (e.g., Laibson [1997], O’Donoghue
and Rabin [1999]), temptation costs (e.g., Gul and Pesendorfer [2001, 2004]), and conflicts between selves or
systems (e.g., Shefrin and Thaler [1988], Bernheim and Rangel [2004], Fudenberg and Levine [2006]).
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is more than a mere metaphor (e.g., Baumeister and Vohs [2003], Faber and Vohs [2004], Mu-

raven et al. [2006]). Motivated by these experiments, economists have used limited willpower

to explain patterns of consumption over time (Ozdenoren et al. [2012], Fudenberg and Levine

[2012]).

Our goal is to characterize a simple and tractable model of limited willpower that is

suitable to study a wide range of economic problems. The characterization uses a novel

data set given by the agent’s ex ante preferences (%) and ex post choices (c).2 Temptation

and self-control have been studied using the preference over menus framework pioneered

by Kreps [1979] and Gul and Pesendorfer [2001], where the agent’s second-period choices

are inferred from his preferences over menus. In contrast, in our framework the modeler

directly observes both components of the data, namely, ex ante preferences and ex post

choices. The menu preferences framework provides a powerful tool to elicit a very rich set of

behaviors at the ex ante stage but also has limitations, as highlighted by Spiegler [2013]. For

example, it assumes that the agent can predict the degree of his future temptations and his

future choices.3 Although it is useful to study the sophisticated benchmark, many interesting

applications with policy-related implications emerge from the assumption of naivety.4 By

relying on directly observed rather than predicted behavior, our model is tailored to study

these applications. This is illustrated in Section 5, where we apply the model to monopolistic

contracting where consumers have limited willpower but are unaware of their willpower

problems.

In Section 2, we propose two models. We refer to the more general of the two as the

limited willpower model. We refer to the second and simpler model as the constant willpower

model, which is based on three ingredients. The first, commitment utility u, represents the

agent’s commitment preferences. The other two ingredients are temptation values v and the

willpower stock w, which jointly determine how actual choices depart from what commitment

utility would dictate. The key to determining the actual choice is the willpower constraint.

This constraint is determined by the most tempting available alternative and the willpower

stock. The agent is able to consider an alternative x in A if he can overcome the temptation,

2Ahn and Sarver [2013] also use two kinds of behavioral data. As opposed to ours, their data include both
the menu preferences and the random ex post choices from menus.
3Ahn et al. [2019] combine menu preferences with data on ex post choice to detect the agent’s degree of
naivety.
4Evidence suggests that consumers who have self-control problems are often, at least partially, naive about
this fact. For example, there are “hot-cold empathy gaps” where individuals are not able to recognize the
intensity of temptation, or other visceral urges, at an ex ante state. Loewenstein and Schkade [1999] review
several studies that find that people tend to underestimate the influence on their behavior of being in a hot
state, such as hunger, drug craving, curiosity, and sexual arousal, among others.
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that is, max
y∈A

v(y)− v(x) ≤ w. Otherwise, he does not have enough willpower to choose this

alternative. He then picks the alternative that maximizes his commitment utility from the

set of alternatives that satisfies the willpower constraint. Formally, the ex post choice from

a set A is the outcome of the following maximization problem:

max
x∈A

u(x) subject to max
y∈A

v(y)− v(x) ≤ w

The more general limited willpower model is similar to the constant willpower model except

that it allows the willpower stock to depend on the chosen alternative.

The constant willpower model bridges the standard utility maximization and Strotz mod-

els. When the willpower stock is very large, the willpower-constrained agent behaves like

a standard agent who chooses the most preferred alternative (according to u). When the

willpower stock is lower, the constraint starts to bind and a wedge between preferences and

choices appears – the agent can only choose alternatives that are close enough, in terms of

temptation, to the most tempting alternative. At the other extreme, when the willpower

stock is very low, the agent behaves like a Strotzian agent who always succumbs to tempta-

tion.5 Note that the agent’s choice will satisfy WARP in the two extreme cases for different

reasons. While in the former, choices reflect only the ex ante preference, in the latter tempta-

tion ranking alone determines the choices. In comparison, in the limited willpower case, the

agent might not have enough willpower to choose the least tempting alternative but might

have enough willpower to choose the moderately tempting alternative. Such choices reflect a

compromise between the ex ante preference and the temptation ranking and violate WARP.

Similar examples of WARP violations feature in Fudenberg and Levine [2006], Dekel et al.

[2009], Noor and Takeoka [2010], Chandrasekher [2010].6 Lipman and Pesendorfer [2013]

note that such behavior can provide a new perspective on the compromise effect.

The costly self-control models in Gul and Pesendorfer [2001], Noor and Takeoka [2010,

2015], Grant et al. [2017] are closely related to the constant willpower model. In the costly

self-control models, the agent experiences a utility cost that can be a convex function of the

difference between the temptation values of the most tempting alternative and the chosen

alternative from a menu.7 One can express a willpower constraint as the limiting case of a

convex cost function that is zero if the temptation difference is less than the willpower stock

5Strotz [1955] proposed a model of changing tastes with consistent planning. In a framework where the agent
has preferences over finite decision trees, Gul and Pesendorfer [2005] provide an axiomatization of the Strotz
model of consistent planning.
6In a menu preference framework, Dillenberger and Sadowski [2012] note that when agents anticipate expe-
riencing guilt or shame when they deviate from a social norm, their choices can also violate WARP.
7The idea that self-control costs can be convex has been introduced by Fudenberg and Levine [2006].
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and infinite otherwise. Hence, just as the Strotz model can be viewed as a limiting case

of costly self-control with linear costs (Gul and Pesendorfer [2001]), the constant willpower

model is a limiting case of costly self-control with convex costs.8 Similar to the Strotz

model, constant willpower is an important case methodologically and for applications, and

its behavioral characterization uses a different domain, primitives, and axioms. In Section 4,

we compare the linear and convex self-control models in terms of their implied second-stage

choice.

In Section 5, we solve the pricing problem of a profit-maximizing monopolist who faces

consumers with constant willpower. Monopolistic contracting is a key application of self-

control models and was first studied by DellaVigna and Malmendier [2004]. Our treatment

is similar to Eliaz and Spiegler [2006] who study unconstrained contracting with dynamically

inconsistent consumers. We consider a two-period model of contracting between a monopolist

and a consumer. In the first period, the monopolist offers the consumer a contract that the

consumer can accept or reject. If the consumer accepts the contract, in the second period,

he chooses an offer from the contract and pays its price to the monopolist. We assume that

both parties are committed to the contract once accepted.

This framework fits into many real world situations, such as signing up for a phone plan,

gym membership, or a credit card, making a hotel reservation, or renting a car, among

others. In all these examples, consumers often agree to a contract that specifies a basic

level of consumption that can be “upgraded” at the time of consumption. It has been noted

that these contracts can be exploitative. The literature has focused on contracts that offer

two alternatives, which we call “indulging contracts.” At the time of signing an indulging

contract, the consumer believes that he will consume a basic and cheap alternative but

ends up choosing the more expensive alternative at the time of consumption. However, in

practice, it is common to see contracts that offer more than one upgrade to the consumer. For

example, when renting a car, consumers often choose a basic car when signing the contract,

but they are offered multiple levels of upgrades when picking up the car. Our analysis shows

that such contracts can be optimal for naive consumers who have limited willpower or convex

self-control costs.

Specifically, we show that the optimal contract consists of three alternatives and that the

consumer’s choices reflect a form of the “compromise effect,” which is induced endogenously

by the contract offered by the monopolist. Interestingly, the optimal contract includes a

tempting alternative that neither the consumer nor the firm believes would be chosen from

8In the remainder of the paper, we refer to the costly self-control models with linear and convex costs as
linear and convex self-control models, respectively.
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an ex ante perspective and is indeed not chosen ex post. When the consumer has limited

willpower, we show that indulging contracts can never be optimal. We also show that for

low levels of willpower, the monopolist exploits the consumer as if he has no willpower. For

high enough willpower, the monopolist sells the efficient alternative at an exploitative price.

When the consumer’s willpower is very high, there is no exploitation and the monopolist

uses a commitment contract. Profits are lower and the consumer is better off if he has more

willpower. In Section 5.3, we compare these results with those obtained under other related

models of self-control.

2. Model

The agent’s ex ante preferences % are over a finite set of alternatives X. These preferences

can be interpreted as the agent’s commitment preferences. The agent’s ex post choices are

captured by a choice correspondence c that assigns a non-empty subset of A to each A ∈ X
where X is the set of all non-empty subsets of X.

We say that (%, c) has a limited willpower representation if there exists (u, v, w) where

u : X → R represents preference % and c is given by

c(A) = argmax
x∈A

u(x) subject to max
y∈A

v(y)− v(x) ≤ w(x)

where v : X → R captures the temptation values and w : X → R+ is the willpower function.

If w is a constant function, we call it a constant willpower representation.

In the standard model in which there is no willpower problem, a decision maker chooses

the alternative that maximizes the commitment utility, u, from any menu. An agent who

has constant willpower also maximizes u but faces a constraint. The willpower requirement

of alternative x is given by the difference between the temptation value of the most tempting

alternative on the menu, max
y∈A

v(y), and the temptation value of x. The agent can choose x

only if its willpower requirement is less than the willpower stock, w. Otherwise, he does not

have enough willpower to choose this alternative. Notice that the willpower requirement is

menu dependent. This is because willpower depletion not only depends on how tempting

the chosen alternative is but also on the most tempting alternative on the menu.

As a simple example, suppose that a consumer is offered three alternatives at rental car

pick-up: an economy car (e), a mid-size sedan (m), and a luxury car (l). Suppose ex ante that

e � m � l, and v (e) = 0, v (m) = 2, v (l) = 4. Table 1 shows the agent’s choices from two
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sets, {e,m, l} and {e,m}, for varying levels of willpower stock.9 When the willpower stock is

high, w = 5, the agent chooses according to his ex ante preferences. When the willpower stock

is low, the agent also behaves like a standard preference maximizer, except that he chooses

the most tempting alternative. When the willpower stock is intermediate, w = 3, then the

model has interesting implications: decisions can be driven by a compromise between the ex

ante preference and temptation. To see this, suppose that all three alternatives are available.

The agent is not able to choose e since v (l) − v (e) = 4 > 3 = w. In this case, he chooses

the compromise alternative m since v (t) − v (b) = 2 < 3. However, when only e and m are

available, there is no need to compromise (since v (m)−v (e) = 2 < 3), and the agent chooses

e.

w = 1 w = 3 w = 5
c(e,m, l) l m e
c(e,m) m e e

Table 1. Choices for different levels of the willpower stock

3. Behavioral Characterization

In this section, we introduce the axioms and provide two representation theorems. Our

first axiom is standard.

A 1. � is a complete, transitive, and asymmetric binary relation.

The second axiom, Independence from (Unchoosable) Preferred Alternative (IPA), says

that better options that are not chosen can be removed without affecting the actual choice.

A 2. (IPA) If x � y and y ∈ c(A ∪ x) then c(A) = c(A ∪ x).

This axiom can be viewed as a relaxation of WARP. Recall that WARP allows any un-

chosen alternative to be dropped without affecting actual choices. In contrast, IPA allows

only preferred unchosen alternatives to be dropped without affecting actual choices. IPA is

based on the intuitive notion that when a tempting alternative is also the most preferred

available alternative, it should be chosen. Hence, any unchosen alternative that is strictly

preferred to the chosen one must have a relatively low temptation value. IPA states that

dropping such alternatives should not affect the actual choice. Let us revisit the example in

9We will abuse the notation and write c(x, y, . . . ) instead of c({x, y, . . . }). Similarly, we omit braces and
write A ∪ x instead of A ∪ {x}.
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Section 2 with three alternatives, e, m and l with e � m � l. Suppose that a mid-size sedan

is chosen when all three options are available, i.e., m = c(e,m, l). This means that the most

preferred alternative (e) is not chosen, and hence, it is not the most tempting alternative

and is irrelevant in the sense that dropping it from the menu should not affect the choice

behavior of the agent. That is, we must have c(e,m, l) = c(m, l). On the other hand, it is

possible that removing l, the least preferred alternative, might influence the choice. If m is

not as tempting as l, the agent can choose the best alternative e when l is removed, i.e.,

e = c(e,m) 6= c(e,m, l). Hence, WARP is not satisfied in the presence of limited willpower.

Axiom 1 and Axiom 2 together imply that the choice is unique, |c(A)| = 1 for all A. To

see this, assume that x and y are chosen from A. By Axiom 1, assume x � y without loss of

generality. Then, Axiom 2 implies that x /∈ c(A).

The next axiom is Choice Betweenness (CB): the choice from the union of two sets is

“between” the choices made separately from each set with respect to preference.

A 3. (Choice Betweenness) If c(A) % c(B), then c(A) % c(A ∪B) % c(B).

To understand this axiom, take the union of two choice sets A ∪ B, and w.l.o.g., suppose

that A contains one of the chosen alternatives from A ∪ B. Consider two (not necessarily

mutually exclusive) cases. First, suppose that A contains the most tempting item in A∪B.

In this case, the agent should not be able to choose a strictly better alternative from A (since

he needs to overcome the same temptation from A ∪ B as from A) but should still be able

to choose the alternative originally chosen from A∪B, i.e., c(A) ∼ c(A∪B).10 Note that in

this case the axiom is automatically satisfied since c(A ∪ B) must be in between c(A) and

c(B) in terms of preference. As a second case, suppose that B contains the most tempting

item in A ∪ B. In this case, the agent should be able to choose at least as preferred an

alternative from A as he can from A ∪ B since he needs to overcome a weaker temptation

from A. Moreover, the alternative chosen from B cannot be strictly preferred since the most

tempting alternative is contained in B. Thus, the axiom should also be satisfied in this case.

In fact, c(A ∪ B) can be strictly between c(A) and c(B). Continuing with our earlier

example, let A = {e,m} and B = {l}. Recall that both e and m are strictly better than l,

so c(A) � c(B). The choice from all three options, m, is strictly better than l, the worst

alternative, so c(A ∪ B) � c(B). Moreover, from the set A, e is chosen; thus, c(A) �
c(A ∪B) � c(B).

10Implicit in these arguments is that only the most tempting alternatives matter in influencing the agent’s
choices. Clearly, this is also the case in the representation since only the alternative with the highest v value
matters in determining which alternatives are choosable from a choice set.
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Next, we present our first representation theorem.

Theorem 1. (�, c) satisfies A1-A3 if and only if it admits a limited willpower representation.

Theorem 1 provides a characterization of limited willpower with three simple and intuitive

behavioral postulates in a novel domain. Although the axioms are simple, the proof of the

theorem uses a new approach in this literature, which relies on the concept of interval orders,

so we provide a sketch of the proof next. Suppose that P is a binary relation. Let ΓP (A)

be the set of undominated alternatives according to P in A. The key result we use is that a

binary relation P is an interval order (i.e., it is irreflexive and xPb or aPy holds whenever

xPy and aPb) if and only if there exist functions v and w such that

ΓP (A) = {x ∈ A : max
y∈A

v(y)− v(x) ≤ w(x)}.

In our framework, a natural binary relation to consider is B′. We say that x B′ y if y � x =

c(x, y). Whenever this is the case, we say that x “blocks” y. We interpret this situation as

x being much more tempting than y so that x is chosen even though y is better with respect

to the ex ante preference. This relation is not an interval order because it cannot identify

all the blocking pairs. Specifically, there are situations where x is more tempting than y

(and hence should block it), but x is better than y according to the ex ante preference. To

identify these pairs, we introduce a second binary relation B′′. We say that x B′′ y if x � y

and there exist a and b such that a B′ y, x B′ b, and a 7′ b. To see the intuition, assume

that a B′ y and a 7′ b. Then, a is more tempting than y but not tempting enough to block

b. Since x blocks b, it must block y. Since x is better than y, our original relation cannot

identify this. Our new relation B′′ identifies all these cases. Then, the bulk of the proof

shows that B′′ ∪ B′ is an interval order, which characterizes the temptation ranking and

willpower stock. The utility ranking comes from the ex ante preference.

Our next goal is to characterize the constant willpower model. To do this we need one

more assumption. Consider four alternatives x, y, z, t ∈ X. Suppose that y � c(y, z), that

is, the agent prefers y to z but is unable to choose it. Intuitively, this means that z is more

tempting than y. If, in addition, c(t, z) = t, then t must also be more tempting than y;

otherwise, the agent would not be able to choose t. If x � c(x, y), then the agent prefers

x but cannot choose it against y because y is too tempting. Since t is even more tempting

than y, the agent should not be able to choose x against t either. This intuitive conclusion

would hold for the constant willpower model, but it is not implied by IPA and CB. This is

our next axiom, Consistency.

A 4. (Consistency) Let y � c(y, z) and c(t, z) = t. If x � c(x, y), then c(x, t) = t.
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Now, we are ready to state the main representation theorem.

Theorem 2. (�, c) satisfies A1-A4 if and only if it admits a constant willpower representa-

tion.

The proof of Theorem 2 relies on the concept of semiorders (P is a semiorder if it is an

interval order and xPt or tPz for any t whenever xPyPz). The key result we use is that a

binary relation P is a semiorder if and only if there exists a function v and a scalar w such

that

ΓP (A) = {x ∈ A : max
y∈A

v(y)− v(x) ≤ w}.

We use the Consistency axiom to show that one can construct a semiorder by properly

modifying the interval order we created in the proof of Theorem 1.

We now discuss how to identify the utility and temptation ranking in our model. The

utility ranking is ordinally unique. Although the temptation ranking is not, we now discuss

the extent to which it can be identified. As we discussed above, in our model, whenever

y � x = c(x, y) (i.e. x B′ y), we can conclude that x is more tempting than y by at least

the amount w(y), i.e., v(x)− v(y) ≥ w(y) > 0. Hence, in these cases, it is safe to claim that

x is more tempting than y (v(x) > v(y)). This revelation is true for both of our models.

There are in fact more non-trivial revelations about the temptation ranking coming from

B′′. To illustrate this, consider the following data: y = c(y, t) � x = c(x, y) � z � t = c(z, t).

This data immediately reveal that x is more tempting than y and t is more tempting than

z. In addition, in the general model, x must be more tempting than t. To see this, assume

that v(t) ≥ v(x). Then, we have

v(t) ≥ v(x) > v(y) + w(y),

which implies that t = c(y, t), which is a contradiction. Therefore, we can conclude that

v(x) > v(t) > v(z) and v(x) > v(y)

This example also illustrates the limits of what the choice data are able to reveal about the

temptation ranking. Here, we cannot reveal the temptation ranking of y compared to t or z.

In the constant willpower model we can further identify the temptation ranking. For

example, y = c(y, t) � x � z = c(x, z) � t = c(z, t) immediately reveals that t is more

tempting than z, which is more tempting than x. However, in the general model, these data

cannot reveal the temptation ranking of y relative to all other alternatives. Either y is the

most tempting alternative, or y is the least tempting alternative but with high w. On the
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other hand, in the constant willpower model, it is revealed that y is more tempting that both

z and x. To see this, assume that v(z) ≥ v(y). Then, we have

v(t)− w > v(z) ≥ v(y),

which implies that we must have t = c(y, t), which is a contradiction. Therefore, we can

conclude that

v(y), v(t) > v(z) > v(x).

Almost all rankings are identified except the ranking between y and t. While there are 24

different possible temptation rankings in this example, only two of them are consistent with

our data.

4. Related Literature

In this section we compare our model with the models of Gul and Pesendorfer [2001],

Noor and Takeoka [2010, 2015], Grant et al. [2017]. At the methodological level, these

models operate under different domains (lotteries) and primitives (preferences over menus).

We consider a generic set of alternatives, and our primitives consist of ex ante preferences

(%) and ex post choices (c). Avoiding any a priori structure on the set of alternatives and

focusing on ex post choices enhances the potential testability of our model.

Since there is no axiomatic characterization of self-control-driven models in our domain

and primitives, a direct comparison is difficult. To facilitate the comparison, we consider

ex post (i.e., second-stage) choices for models based on menu preferences. Consider the

following general formulation:

(1) c(A) = argmax
x∈A

{
u(x)− ψ

(
max
y∈A

v(y)
)
φ
(

max
y∈A

v(y)− v(x)
)}

where u represents the ex ante preference �, v is the temptation value, φ measures the cost of

temptation, which is an increasing function of temptation frustration, max
y∈A

v(y)−v(x) and ψ

is the level of temptation, which is an increasing function of the highest level of temptation.

To express the limited willpower model in terms of equation (1), we set the cost and level

functions as

φW (a) =

{
0 a ≤ w

∞ a > w
and ψW ≡ constant

Gul and Pesendorfer [2001] provides a characterization for a linear self-control model where

φL(a) = a and ψL ≡ 1. Noor and Takeoka [2010] provides two models of convex self-control.

In their first model, the cost function is more general than the one in equation (1). In this
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formulation, the cost of choosing the product in the choice set is a function of both the

product and the most tempting alternative. They impose other assumptions such that this

function can be interpreted as a cost function. Their second model is in line with equation

(1) where the cost function is strictly increasing and convex with φC(0) = 0 and ψC ≡ 1.

Noor and Takeoka [2015] also consider a similar model in which the cost function is menu

dependent where φM(a) = a and ψM is arbitrary.

Finally, Grant et al. [2017] consider a hybrid model of both costly self-control and limited

willpower. In this model, the cost function is a combination of the cost functions of linear

costly self-control and limited willpower.

φH(a) =

{
a a ≤ w

∞ a > w
and ψW ≡ 1

Next, we compare our model with the implied choices generated by the models of Gul and

Pesendorfer [2001] and Noor and Takeoka [2010]. We impose that u is a one-to-one function

so that Axiom 1 is automatically satisfied by all the models.

In the linear self-control model of Gul and Pesendorfer [2001], the agent’s ex post choices

are given by

c(A) = argmax
x∈A

{
u(x) + v(x)

}
which satisfy WARP. Moreover, Axiom 2 is violated unless u + v is a one-to-one function.

To see this, consider A = {x, y} such that u(x) > u(y) and u(x) + v(x) = u(y) + v(y),

implying that x � y and c(A) = A. Hence, c(A) cannot be equal to c(y), violating Axiom

2. Once we assume that u+ v is a one-to-one function, it is routine to show that the linear

self-control model satisfies Axioms 3 and 4, and hence, it is a special case of the constant

willpower model. We can also establish this fact directly from the representations. Take a

pair of real functions (u, v) defined on X, where both u and u+ v are one-to-one. Then the

constant willpower model (u, u+ v, w = 0) yields the same second-stage choices as the linear

self-control model (u, v).

We next consider the convex self-control model of Noor and Takeoka [2010]. In this model,

ex post choices are given by

c(A) = argmax
x∈A

{
u(x)− φ

(
max
y∈A

v(y)− v(x)
)}

Like the linear model, this model violates Axiom 2 unless u(x)− φ
(

max
y∈A

v(y)− v(x)
)

has a

unique maximizer. In the discussion below, we impose this assumption.
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We first illustrate with a simple example that the convex self-control model violates Axiom

3. Suppose that φ(a) = a2, and consider the following table:

x y z t
Utility values (u) 5.5 2.5 1 0
Temptation value (v) 0 1 2 2.5

Table 2. Utility and Temptation Values of {x, y, z, t} ⊆ X.

It is straightforward to check that c(x, z) = x, c(y, t) = y but c(x, y, z, t) = z, violating

Axiom 3. Note that, in this example, the most tempting alternative is t. When alternatives

y and z are compared with t, they are both ex post ranked above t, but their ex ante and ex

post rankings do not agree: y is ranked above z according to u but ex post z is ranked above

y when t is in the choice set. This type of reversal does not occur in the willpower model

because the DM always ranks feasible alternatives, which are ex post ranked above the most

tempting alternative, according to the ex ante ranking u. However, such reversals can occur

in the costly self-control model when the DM experiences a utility cost due to temptation.

Note also that violations of Axiom 3 by the convex self-control model require at least four

distinct alternatives.

The next proposition generalizes this example to show that such examples can be generated

for any convex self-control model with a non-linear cost function.

Proposition 1. Fix a convex self-control model (u, v, φ) where u : X → [0, ū], v : X → [0, v̄],

φ : [0, v̄]→ R and ū ≥ φ(v̄). Assume φ is not linear and the set of alternatives X is rich in

the sense that for every a ∈ [0, ū] and b ∈ [0, v̄] there exists an alternative x ∈ X such that

u(x) = a and v(x) = b. Then, (u, v, φ) violates Axiom 3.

De Clippel and Rozen (2018) note an “overfitting problem” that arises in modeling bound-

edly rational decision making and show that with a limited data set, observed choices may be

incorrectly attributed to a particular model. In Appendix B, we show that for a fixed finite

set of alternatives, choices generated by the constant willpower model can be attributed to

the convex self-control model.11 Proposition 1 shows that this attribution is due to a similar

overfitting problem that arises when the set of alternatives is not rich enough.

11Axiomatic characterization of the finite version of the costly self-control model is still an open question.
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5. Monopoly Pricing

In this section, we apply our representation to the pricing problem of a profit-maximizing

monopolist who faces consumers with limited willpower. Our results extend the existing liter-

ature on contracting with consumers with self-control problems (DellaVigna and Malmendier

[2004], Eliaz and Spiegler [2006], Heidhues and Koszegi [2010]). The previous literature has

highlighted that the monopolist can exploit naive consumers by offering them indulging con-

tracts with two alternatives. One of the alternatives serves as a bait that the consumer

believes he will choose at the time of signing the contract. At the time of consumption, the

consumer ends up choosing the other more indulging alternative.

Our analysis extends these results in two ways. First, for limited willpower preferences, we

show that the optimal contract may require three alternatives, which we call compromising.

The consumer believes he will choose the bait, but at the time of consumption is unable to do

so due to the existence of a tempting alternative. Instead, he chooses the third, compromise

alternative. Hence, consumers’ choices reflect a form of the “compromise effect,” which

is induced endogenously by the contract offered by the monopolist. To our knowledge,

exploitation of the compromise effect by the monopolist has not been studied previously.

Second, we show that for limited willpower preferences, indulging contracts are never optimal

and are dominated by compromising contracts. Third, we show that when the consumer has

sufficient willpower, exploitation and efficiency can go hand in hand. The monopolist uses a

compromising contract to sell the product that would be sold under a commitment contract

at an exploitative price. Finally, this application shows how willpower stock can be used as a

natural comparative static for the consumer’s level of self-control. We provide a comparison

with related models of self-control in Section 5.3, where we further discuss this point.

Following the previous literature, we focus on naive consumers who do not necessarily

recognize the extent of their self-control problem. In our model, this means that consumers

believe that they have more willpower than they actually do. We assume that the monopolist

knows that consumers have limited willpower and devises the contract that best exploits the

consumers’ naivety about their willpower limitation.

Let us denote the finite set of alternatives available to the monopolist by X. A contract

C is a menu of offers, where each offer is an alternative with an associated price, i.e., C =

{(s, p(s)) : s ∈ S ⊂ X}. We assume that a contract cannot offer the same alternative with

two different prices. That is, if (x, p) and (x, p′) are both in C, then p must be equal to

p′. We consider a two-period model of contracting between a monopolist and a consumer.

In the first period, the monopolist offers the consumer a contract C. The consumer can
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accept or reject the contract. If the consumer accepts the contract, in the second period,

he chooses an offer from the contract and pays its price to the monopolist. If the consumer

rejects the contract, then he receives his outside option normalized to zero. We assume that

both parties are committed to the contract once accepted.

We denote the cost to the monopolist of providing alternative s by c (s), its utility to

the consumer by u (s) , and its temptation value by v (s) . We assume that the consumer’s

utility and temptation values are both quasilinear in prices. Broadly speaking, the idea that

temptation would decrease in price seems reasonable in many situations. When the price

of a good increases, the consumer must forego other potentially tempting goods. Moreover,

when the price is sufficiently high, the good might become unaffordable. Quasilinearity of

temptation values in prices is clearly a partial equilibrium way of capturing the impact of

prices on temptation and a restrictive assumption. However, it provides tractability and is

implicitly invoked in the literature on changing tastes, where it is usually assumed that both

the present and future utilities are quasilinear in prices.

The monopolist’s profit from selling alternative s at price p(s) is p(s)− c (s) . The produc-

tion cost is incurred only for the service that the consumer chooses from the menu. Following

Eliaz and Spiegler [2006] and Spiegler [2011], we assume that the consumer is naive in the

sense that he believes he has no self-control problem, i.e., he believes that from a contract

C, he will choose the offer (s, p(s)) that maximizes u (s) − p(s). In reality, the consumer

might be tempted by the other offers in the contract C, and his second-period choices are

governed by the limited willpower model. This means that from C, the consumer chooses

the offer (s, p(s)) that maximizes u (s)− p(s) subject to

max
(s′,p(s′))∈C

(v (s′)− p(s′))− (v (s)− p(s)) ≤ w

where w is the consumer’s willpower stock. We assume that the monopolist knows that

the consumer has limited willpower and can perfectly predict the consumer’s second-period

choices.12

To simplify the analysis, we assume that u−c and v−c have unique maximizers xu and xv

in A. In other words, xu and xv are the most efficient alternatives with respect to u and v.

To make the problem interesting, we assume that xu 6= xv. We define the difference between

the temptation value and the utility value of an alternative s as its excess temptation and

denote it by e (s) ≡ v (s)− u (s) . We further assume that e has a unique maximizer, z∗, and

12More precisely, we solve for the optimal contract for the monopolist given its beliefs about the consumer’s
behavior. To do this, we do not need to know whether the monopolist (or the consumer) holds correct beliefs
about the consumer’s second-period behavior.
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a unique minimizer, y∗, in A. Then, it is easy to see that

e(xv) = v(xv)− u(xv) = v(xv)− c(xv)− [u(xv)− c(xv)]

> v(xu)− c(xu)− [u(xv)− c(xv)]

> v(xu)− c(xu)− [u(xu)− c(xu)] = v(xu)− u(xu) = e(xu).

Therefore, we have

e(z∗) ≥ e(xv) > e(xu) ≥ e(y∗).

v

p

e(z∗)e(y∗) e(xu) e(x) e(xv)e(x)−∆(p)

∆(p)

Figure 1. Iso-e and iso-profit lines

Figure 1 illustrates the model graphically, which we use below to provide intuition for

our results. In the figure, the vertical axes measure price and the horizontal axes measure

the temptation value v. On the horizontal axes, we indicated the excess temptation values

e(z∗), e(xv), e(xu), and e(y∗). Any other alternative, x, corresponds to a point between

these values on the horizontal axes in terms of its excess temptation e(x). We call the

dotted lines with slope −1, iso-e lines where e refers to excess temptation. Consider an

alternative x with excess temptation e(x) and price p = u(x) + ∆(p). In the figure, the

point (∆(p), e(x) − ∆(p)) corresponds to this alternative. By moving down the iso-e line,

we can read its excess temptation value e(x). In other words, excess temptation is given by

the sum of the two coordinates. Its y-coordinate, ∆(p), captures the difference between its

price p = u(x) + ∆(p) and its utility value u(x). Its x-coordinate, e(x)−∆(p), captures its

temptation value at price p.
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In the figure, we also illustrate two iso-profit lines for the firm. As we described above, any

point (b, a) corresponds to an alternative e−1(a+b) with price u(e−1(a+b))+a.13 Hence, the

corresponding profit is given by u(e−1(a+b))+a−c(e−1(a+b)). The red iso-profit line traces

all points with constant profit. Profits increase as the iso-profit lines move northwest. The

iso-profit lines have two important properties. First, on the iso-e line for xu, the iso-profit

lines have zero slope. Second, on the iso-e line for xv, the iso-profit lines have an infinite

slope. These properties are illustrated in Figure 1. To see the intuition for the first property,

suppose the monopolist maximizes profit subject to the consumer achieving a certain utility

level. If the agent is a u maximizer, then indifference curves are horizontal lines. At the

optimum, iso-profit line and the indifference curve must be tangent. At the point of tangency,

u−c must be maximized, which occurs at x = xu. In the figure, this corresponds to the iso-e

line for xu, implying that the iso-profit lines have zero slope on the iso-e line for xu. If the

agent is a v maximizer then indifference curves are vertical lines, and the second property

follows from similar steps.

Optimal Contract with Sophisticated Consumers. As a benchmark case, consider a

consumer who perfectly understands what he chooses once he accepts the contract. In this

case, the monopolist’s maximization problem is

max
s∈A,p(s)≥0

p(s)− c(s)

subject to

(2) u(s)− p(s) ≥ 0.

Clearly, due to the participation constraint, the firm sets the price of s equal to u(s). In

other words, the monopolist extracts the entire surplus (in terms of u.) Then the optimal

contract offers only the efficient alternative xu = argmaxu(s)− c(s) at price u(xu).

Optimal Contract with Naive Consumers. Next, we solve for the optimal contract

with a naive consumer. We perform this in three steps. First, we show that, without loss of

generality, we can restrict attention to contracts that offer at most three alternatives. That

is, for any contract that sells x at price p(x), there is another contract that sells x at the

same price that contains at most three of the alternatives from the original contract. Second,

for each alternative x, we find a contract that sells x at the highest possible price. Third,

13We assume that the excess temptation function is invertible. This is without loss of generality because we
can restrict attention to alternatives with the largest excess temptation.
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we identify the profit-maximizing alternative and the associated optimal contract that sells

this alternative.

To establish the first step, let C = {(s, p(s)) : s ∈ S ⊂ X} be an arbitrary contract that

sells x at price p(x). This means that (i) (x, p(x)) is offered in C, (ii) the consumer accepts

the contract, i.e., there exists an offer (s∗, p(s∗)) in C such that u(s∗)− p(s∗) ≥ 0, and (iii)

(x, p(x)) is the best offer for the consumer given his willpower constraint. Now, identify two

offers from the contract C such that

y = argmax
(s,p(s))∈C

u(s)− p(s) and z = argmax
(s,p(s))∈C

v(s)− p(s)

We illustrate that the contract C ′ = {(x, p(x)), (y, p(y)), (z, p(z))} sells x at price p(x). First,

this contract is a subset of C and (x, p(x)) is offered. The consumer accepts this contract

since u(y) − p(y) ≥ u(s∗) − p(s∗) ≥ 0. Finally, because the most tempting offer is the

same, the constraint he faces is unaffected. Therefore, (x, p(x)) is still the best offer for the

consumer.

When x, y, and z are distinct, the consumer believes that he will choose (y, p(y)) but

cannot because he does not have enough willpower to choose (y, p(y)) when (z, p(z)) is

available. However, rather than completely indulging in (z, p(z)), the consumer chooses

the second-best (x, p(x)) in terms of U . We refer to a contract with these features as a

compromising contract. If x is equal to y, then the contract could be simpler. Indeed,

the contract {(x, p(x))} sells x.14 We refer to a contract that includes a single offer as a

commitment contract. If x is equal to z, then the contract reduces to {(x, p(x)), (y, p(y))}.
In this case, the consumer believes that he will choose (y, p(y)), which provides the highest

utility. However, he actually chooses (x, p(x)) because the consumer does not have enough

willpower to choose (y, p(y)) when (x, p(x)) is available. We refer to this type of contract as

an indulging contract.

We now investigate the revenue-maximizing contract that sells x by focusing on the three

types of contracts we identified.

The Commitment Contract: The monopolist’s problem is to maximize p(x) subject

to u(x) ≥ p(x). Then the monopolist sets the price p(x) equal to u(x). Hence the highest

revenue from selling x using a commitment contract is u(x).

14Note that the contract {(x, p(x))} does not always sell x because it may not be acceptable to the consumer
at time 0. However, when x is equal to y, provided that the original contract is acceptable, {(x, p(x))} is
also acceptable.



18

The Indulging Contract: The monopolist’s problem is to choose p(x), y, and p(y) to

maximize p(x) subject to

u(y)− p(y) ≥ 0(3)

v(x)− p(x) ≥ v(y)− p(y) + w(4)

Constraint (3) guarantees that the naive consumer is willing to accept the contract. Con-

straint (4) implies that the consumer does not have enough willpower to resist the temptation

to choose (x, p(x)). Clearly, both constraints are binding, so the maximization problem is

equivalent to choosing p(x), y, and p(y) to maximize v(x)− e(y)− w. The monopolist sets

y = y∗ to minimize e(y)+w, which implies p(y∗) = u(y∗) by constraint (3). Then, constraint

(4) implies that the optimal price for selling x with an indulging contract is

(5) pind(x) = v(x)− e(y∗)− w.

The Compromising Contract: The monopolist’s problem is now to choose p(x), y, p(y),

z, and p(z) to maximize p(x) subject to

u(y)− p(y) ≥ 0(6)

v(z)− p(z) ≥ v(y)− p(y) + w(7)

v(x)− p(x) + w ≥ v(z)− p(z)(8)

u(x)− p(x) ≥ u(z)− p(z)(9)

Constraints (6) and (7) guarantee that the consumer signs the contract believing that he

will choose y but does not actually do so. Constraint (8) implies that the consumer has

enough willpower to choose x over z, and constraint (9) means that choosing x over z is also

desirable. The first two constraints (6) and (7) are clearly binding, which implies

p(y) = u(y) and p(z) = v(z)− e(y)− w

The remaining two constraints become

p(x) ≤ v(x)− e (y) and p(x) ≤ u(x)− e (y) + e (z)− w

Both constraints can be relaxed by choosing y = y∗, and the second constraint can be

relaxed by choosing z = z∗.15 Thus, the optimal price for selling x with a compromising

15When the second constraint is not binding it may not be necessary to set z = z∗ in the contract. In this
case, the monopolist can choose any z that satisfies e (z) ≥ e (x) + w.
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contract is

(10) pcomp(x) = min {v(x)− e(y∗), u(x)− e(y∗) + e(z∗)− w} .

v

p

e(z∗)e(y∗) e(xu) e(xv)e(x)

(8)

(9)

(4)

C

B

A

w

pcomp − u(x)

pind − u(x)

Figure 2. Revenue-maximizing commitment (A), indulging (B) and com-
promising (C) contracts for selling x.

Figure 2 illustrates the revenue-maximizing commitment, indulging, and compromising

contracts for selling x for relatively low willpower stock w such that e(x)− e(y∗) > w. The

commitment contract sells the alternative (x, u(x)) (x at price u(x)). This is represented by

point A in the figure. In the indulging contract, the firm chooses the price of x in a way

that the consumer does not have the willpower to choose (y∗, u(y∗)) over (x, pind). Hence,

the monopolist increases the price of x, moving up its iso-e line until its temptation value

reaches the vertical dashed line on the right, which corresponds to constraint (4). Hence,

the indulging contract contains y∗ at price u(y∗) and x at price pind, which is represented by

point B. Finally, in the compromising contract, the firm uses a third alternative, (z∗, p(z∗)),

to eliminate alternative (y∗, p(y∗)). Hence, the monopolist increases the price of z∗, moving

up its iso-e line until its temptation value reaches the vertical dashed line on the right. The

consumer can choose all the points on the iso-e line of x to the right of the dashed vertical

line on the left, which corresponds to constraint (8). Moreover, only the alternatives below

the horizontal dashed line can be chosen because the consumer prefers (z∗, p(z∗)) to any

alternative above this line, which corresponds to constraint (9) (notice that this constraint

does not bind for this particular x). Hence, the compromising contract contains y∗ at price

u(y∗), z∗ at price p(z∗), and x at price pcomp, which is represented by point C.
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Figure 2 makes it clear that either constraint (8) or constraint (9) binds. If e(z∗)−e (x) ≥
w, then constraint (8) is binding and the revenue is v(x)− e(y∗). If e(z∗)− e (x) ≤ w, then

constraint (9) is binding, and the revenue is u(x) − e(y∗) + e(z∗) − w. Hence, the highest

revenue from selling x using a compromising contract is

v(x)− e(y∗) if e(z∗)− e (x) ≥ w

u(x) + e(z∗)− e(y∗)− w if e(z∗)− e (x) ≤ w

From Figure 2, when e(z∗)− e(x) ≥ w, comparing the price of x under different contracts,

we see that the compromising contract generates the highest revenue and that the commit-

ment contract generates the least revenue. When e(z∗) − e(x) ≤ w, then constraint (4)

implies that the price of x must be lower than u(x) so that the consumer does not have the

willpower to choose (y∗, u(y∗)). Hence, the commitment contract dominates the indulging

contract. Nevertheless, as long as w ≤ e(z∗)− e(y∗), the compromising contract still gener-

ates strictly higher revenue than the commitment contract. Finally, when w > e(z∗)− e(y∗),
constraint (9) becomes very stringent and is violated as soon as the price of x goes above

u(x). In this case, the commitment contract {(x, u(x))} becomes weakly better than the

compromising contract.

The next proposition summarizes the discussion above.

Proposition 2. If e(z∗) − e(y∗) < w, the revenue-maximizing contract is the commitment

contract {(x, u(x))}. If e(z∗) − e(y∗) ≥ w, the revenue-maximizing contract is the compro-

mising contract {(x, pcomp), (y∗, u(y∗)), (z∗, v(z∗)− e(y∗)− w)}.

Note that when the compromising contract is optimal, consumer’s choices violate WARP

because c((x, pcomp), (y∗, u(y∗)), (z∗, v(z∗)−e(y∗)−w)) = (x, pcomp) and c((x, pcomp), (y∗, u(y∗))) =

(y∗, u(y∗)). These WARP violations play a key role in delivering the endogenous compromise

effect in Proposition 2. They allow the monopolist to block the bait y∗ by a third tempting

alternative z∗ and increase the price of the “middle” alternative x above the price that the

monopolist could charge by using the indulging contract.

5.1. The Optimal Contract. Now that we have identified the revenue-maximizing con-

tract for each alternative, the remaining task is to find which alternative the monopolist

should sell to maximize its profit. From Proposition 2, we know that if e(z∗) − e(x) ≤ w,

then the monopolist’s revenue is either u(x) or u(x) + e(z∗)− e(y∗)−w. Hence, from the set

{x : e(z∗)−e(x) ≤ w}, it is optimal to sell the maximizer of u(x)− c(x). If e(z∗)−e(x) ≥ w,

the monopolist’s revenue is v(x) − e(y∗). Hence, from the set {x : e(z∗) − e(x) ≥ w}, it is
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optimal to sell the maximizer of v(x)− c(x). Combining the two cases, the optimal contract

sells either

argmax
x:e(z∗)−e(x)≤w

u(x)− c(x) or argmax
x:e(z∗)−e(x)≥w

v(x)− c(x),

whichever generates the higher profit shown by Proposition 2. These observations lead to

the following proposition.

Proposition 3. (1) If e(z∗) − e(xv) ≥ w, then the optimal contract is the best compro-

mising contract selling xv at v(xv) − e(y∗). The consumer’s welfare is the same as

when he had no willpower at all.

(2) If e(z∗)−e(xv) < w < e(z∗)−e(xu), then the optimal contract is the best compromising

contract, which sells an alternative other than xu or xv.

(3) If e(z∗)−e(xu) ≤ w < e(z∗)−e(y∗), then the optimal contract is the best compromising

contract that includes y∗ and z∗ but actually sells the efficient service xu at a price

exceeding u(xu). The consumer is exploited, but the degree of the exploitation declines

as his willpower increases.

(4) If e(z∗) − e(y∗) ≤ w, then the optimal contract is the commitment contract selling

the efficient service xu at price u(xu). The consumer is not exploited even though he

is naive.

Figure 3 illustrates the optimal contract in each of the four cases of Proposition 3, which

characterizes the optimal contract as the willpower stock w increases. The dashed lines in

each case correspond to constraints (8) and (9). Figure 3a is when only (8) is binding and

the optimal contract sells xv. Figure 3b is when both constraints are binding and the optimal

contract sells a product with excess temptation between e(xu) and e(xv). Figure 3c is when

only (9) is binding and the optimal contract sells xu at an exploitative price. Finally, Figure

3d shows that when the willpower stock is high enough, both constraints disappear, and the

optimal contract is the commitment contract that sells xu without exploitation.

Next, we will consider how the optimal contract, the profit, and the naive consumer’s

welfare (measured with respect to his ex ante preference u) varies with the consumer’s

willpower stock. To do this, we use Figure 4, which contains information about the optimal

contract, the monopolist’s profit, and the consumer’s welfare as w varies. Starting from

the red dot in the upper-left corner, the thick red line, which we call the contract curve,

traces the product sold and its price as w increases. For any point on the contract curve,

by moving down the iso-e line, we can determine the product sold to the consumer by the

optimal contract. The y-coordinate of the point gives us the price of this product in excess
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(a) e(z∗)− e(xv) ≥ w
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(b) e(z∗) − e(xv) < w < e(z∗) −
e(xu)
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e(z∗)e(y∗) e(xu) e(xv)

(c) e(z∗) − e(xu) ≤ w < e(z∗) −
e(y∗)

v

p

e(z∗)e(y∗) e(xu) e(xv)

(d) e(z∗)− e(y∗) ≤ w

Figure 3. Optimal contracts for different levels of willpower stock

of its utility value. Hence, as we move down the contract curve, the monopolist’s profit

declines and the consumer’s welfare increases.

We highlight an interesting feature of our model. When the willpower stock is below a

certain level, the product sold under the optimal contract and its price remain the same,

which indicates that a small amount of willpower does not help the consumer at all. This

occurs in the upper-left corner of the contract curve in Figure 4, which corresponds to

w ∈ [0, e(z∗) − e(xv)). In this range, since the monopolist sells xv at the same price, both

the monopolist’s profit and the consumer’s welfare do not change.
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e(z∗)e(y∗) e(xu) e(xv)

w ∈ [0, e(z∗)− e(xv))

w ∈ [e(z∗)− e(y∗),∞)

Figure 4. Profit for different levels of willpower stock

As w increases, we enter the range [e(z∗)− e(xv), e(z∗)− e(xu)), which corresponds to the

vertical portion of the contract curve. In this range the excess temptation of the product sold

decreases from e(xv) to e(xu), its price and the monopolist’s profit drop, and the consumer’s

welfare increases.

The next range [e(z∗)− e(xu), e(z∗)− e(y∗)) corresponds to the linear, decreasing portion

of the contract curve. Here, efficiency and exploitation go hand in hand since the optimal

contract sells the efficient alternative xu at an exploitative price exceeding its utility value.

In this range, the excess temptation of the product remains constant at e(xu), its price and

the monopolist’s profit decline, and the consumer’s welfare increases.

Finally, in the lower-right corner of the contract curve [e(z∗) − e(y∗),∞), the nature

of the optimal contract changes since the monopolist sells the efficient alternative using a

commitment contract and there is no exploitation. When the consumer’s willpower stock

exceeds a certain level, naivety does not hurt the consumer at all.

The next proposition summarizes the key points of above discussion.

Proposition 4. (1) The monopolist’s profit is weakly decreasing (strictly decreasing if

w ∈ (e(z∗)− e(xv), e(z∗)− e(y∗))) in the consumer’s willpower.

(2) The consumer’s welfare is weakly increasing (strictly increasing if w ∈ (e(z∗) −
e(xv), e(z∗)− e(y∗))) in his willpower.

(3) If the consumer’s willpower is below a threshold (w ∈ [0, e(z∗)−e(xv)]), the monopolist

can earn the same profit as when the consumer has no willpower at all.
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(4) For relatively high willpower, the monopolist sells the efficient product with an ex-

ploitative price.

(5) When the consumer has high enough willpower, there is no exploitation despite the

consumer’s naivety.

5.2. Partial Naivety About the Willpower Stock. In this section, we briefly consider

the case in which the consumer is partially naive about his future behavior. Our approach

is analogous to that in the Strotzian case, where a partially naive consumer understands

that his preferences change but underestimates the extent of the change (see Chapter 4, in

Spiegler [2011]). Similarly, our consumer understands that he needs willpower to resist the

offers that are more tempting than the one he initially plans to choose but overestimates his

willpower stock. We assume that the firm knows the true willpower stock. It turns out that

in our model, as in the Strotzian case, the optimal contract with a partially naive consumer

is the same as that with a fully naive consumer. The key observation is that partial naivety

does not affect how the consumer behaves after signing the contract because his behavior is

determined by the true willpower stock. However, it will affect how the consumer evaluates

a contract before signing it, which depends on how much willpower he believes he has. The

optimal contract for fully naive consumers set prices such that y∗ is marginally not choosable

over z∗. Thus, anyone who overestimates his amount of willpower still believes that he can

choose y∗. Thus, he is willing to sign the contract, the optimal contract does not change,

and all previous results carry through as long as consumer overestimates his willpower.

5.3. Optimal Contracting under Related Models. In this section, we compare our

results with those obtained when consumers have convex self-control preferences. We refer

the interested reader to Masatlioglu et al. [2019] for a more complete analysis.

Under convex self-control preferences, compromising contracts are always strictly optimal

(i.e., strictly better than both the commitment and the indulging contracts). This result

shows that the optimality of indulging contracts with linear self-control preferences is a knife-

edge case. Second, with costly self-control, exploitation always sacrifices efficiency. This is

because in costly self-control models, in contrast to limited willpower models, consumers

never become u-maximizers in the second stage.

The general version of the costly convex self-control model does not have an obvious ana-

logue for the willpower parameter that controls the consumer’s level of self-control. However,
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it has the following intuitive special case:

(11) ϕ(x) =

lx if x ≤ ŵ

k(x− ŵ) + lŵ if x > ŵ

where k > 1 > l > 0. In this specification, ŵ can be interpreted as the analogue of the

willpower stock in the constant willpower model. As one would expect, when l goes to zero

and k goes to ∞, the solution to the contracting problem approaches the solution given in

Proposition 3.

v

p

e(z∗)e(y∗) e(xu) e(xv)e(xk)e(xl)

Figure 5. Contract Curves for Different Models

In Figure 5, the thick blue line is the contract curve for the piece-wise linear model. For

comparison, the figure also shows the contract curve for the constant willpower model (thick

red line). The two curves show that optimal contracts share some properties.16 For example,

when ŵ is below a certain level, the product sold under the optimal contract and its price

remain the same. As ŵ increases, the monopolist’s profits decrease and the consumer’s

welfare increases. However, there are key differences. For example, in the piece-wise linear

model, the indulging contract can be optimal when ŵ is large enough (represented by the

blue dot at the bottom of the contract curve.) In contrast, in the constant willpower model,

the indulging contact is never optimal. (Instead, when the consumer has enough willpower,

the commitment contract becomes optimal.) We also see that the optimal contract in the

piece-wise linear model never sells the u-efficient or v-efficient alternative.

16Figure 5 also displays the contract curve for the Grant et al. [2017] (thick yellow line), which provides a
hybrid solution.
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6. Conclusion

Since, Kreps [1979], researchers have studied a two-period choice model in which an agent

selects one of several menus in the planning period under the assumption that the agent

will make a choice from each menu in the consumption period. This new and rich data set

has allowed researchers to study phenomena such as temptation, guilt, and shame, among

others.

In this paper, to derive the limited willpower representation, we use ex ante preferences and

ex post choices as our data. Revealing the ex ante preferences over alternatives is a simpler

and more natural task than revealing ex ante preferences over all menus of alternatives. More

important, our data set allows us to remain agnostic about whether the agent is sophisticated

or naive about anticipating his ex post choices. To derive the representation, we introduce

a new axiom called Choice Betweenness. We show that this axiom is independent of the Set

Betweenness axiom that is commonly invoked in the menu preferences domain.

Although the model is simple and tractable, it is rich enough to generate new insights in

applications. We demonstrate this in an application to monopolistic contracting. Finally,

we would like to highlight an important avenue for exploration in future work which is the

implications of limited willpower in a dynamic setting with multiple tasks. In the current

manuscript, we consider a model in which willpower is needed in a single choice task. In fact,

people often use willpower in multiple tasks, and using more willpower in one task might

mean less willpower is left for another. Moreover, the model is static. In reality, there are

dynamic effects in the sense that the amount of willpower used in one period can affect the

willpower stock in the next period. Incorporating these considerations into an axiomatic

framework could lead to new insights about behavior and a rich set of testable implications.
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Appendix A. Proofs

Proofs of Theorem 1 and 2. Before we provide the proofs of Theorem 1 and 2, we provide

a brief sketch. To prove Theorem 1, we first define a binary relation B′. We say that x B′ y

if y � x = c(xy). In words, x blocks y if x is worse than y but agent cannot choose y when

x is available. Next, we define a second binary relation B′′. We say that x B′′ y if x % y

and there exist a and b such that a B′ y, x B′ b, and a 7′ b. We say that x B y if x B′ y

or x B′′ y. Next we show that B is an interval order, i.e. it is irreflexive and x B b or a B y

holds whenever x B y and a B b. The binary relation B is an interval order if and only if

there exist functions v and w such that

ΓB(S) = {x ∈ S : max v(y)− v(x) ≤ w}.

Finally, to complete the proof of the first step, we show that S is indifferent to the %-best

element in ΓB(S).

In the proof of Theorem 2 we use consistency to show that we can construct a semi order

B (i.e., B is an interval order and if xByBz then xBt or tBz for any t) by properly modifying

B such that S is indifferent to the %-best element in ΓB(S). To complete the proof we note

that the binary relation B is a semi order if and only if there exist a function v and a scalar

w such that

ΓB(S) = {x ∈ S : max v(y)− v(x) ≤ w}.

Proof of Theorem 1. We first show that Axiom 1-3 imply an important implication of

our model.

Claim 1. Suppose (�, c) satisfies Axiom 1-3. Then, If x � c(A ∪ x) then c(B) = c(B ∪ x)

for all B ⊃ A.

Proof. Let L(n) stand for the statement of Claim 1 that is restricted to when |B − A| ≤ n.

Notice that Axiom 2 is L(0). First, we shall show L(1). That is, x � c(A ∪ x) (so c(A) =

c(A ∪ x) by Axiom 2) implies c(A ∪ y) = c(A ∪ x ∪ y) for any y.

Case 1: y � c(A∪ x∪ y): By Axiom 2, c(A∪ x) = c(A∪ x∪ y). By the assumption, we

have x � c(A ∪ x) = c(A ∪ x ∪ y). By applying Axiom 2, we get c(A ∪ y) = c(A ∪ x ∪ y).

Case 2: y ≺ c(A∪x∪ y): By Axiom 3, y ≺ c(A∪x∪ y) - c(A∪x) ≺ x. By Axiom 1 we

get c(A ∪ x ∪ y) ≺ x. Then by Axiom 2, we get the desired result, c(A ∪ y) = c(A ∪ x ∪ y).

Case 3: y ∼ c(A ∪ x ∪ y): We have three sub-cases:

• If y = c(A ∪ y), then c(A ∪ y) = c(A ∪ x ∪ y).
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• If y � c(A∪ y), then Axiom 2 implies c(A∪ y) = c(A)(= c(A∪ x)). Applying Axiom

3, we get c(A ∪ x ∪ y) = c(A ∪ y), which is a contradiction because c(A ∪ x ∪ y) =

y � c(A ∪ y).

• If y ≺ c(A∪ y), then Axiom 3 implies (c(A∪ x) =)c(A) % c(A∪ y). Applying Axiom

3 again, it must be c(A ∪ x ∪ y) % c(A ∪ y) � y, which is a contradiction because

c(A ∪ x ∪ y) = y.

Now suppose that L(k) is true up when 1 ≤ k ≤ n − 1. We shall prove L(n). Assume

x � c(A∪x) and let B = A∪{y1, y2, . . . , yn} where all of yi’s are distinct and excluded from A.

Our goal is to show c(B) = c(B ∪ x). Without loss of generality, assume y1 � y2 � · · · � yn.

Case 1: y � c(A ∪ x ∪ y) for some y ∈ {y1, y2, . . . , yn}: Since (B \ y) ∪ x ⊃ A ∪ x
and the difference of their cardinality is n − 1, we can utilize L(n − 1). Then we get

c((B \ y) ∪ x) = c((B \ y) ∪ x ∪ y)(= c(B ∪ x)). Applying L(1) to x � A ∪ x, we have

(y �)c(A∪x∪y) = c(A∪y). Applying L(n−1) to this yields c(B\y) = c((B\y)∪y) = c(B).

Notice that c(B\y) = c((B\y)∪x) because x � c(A∪x) and L(n−1). These three equalities

imply c(B) = c(B ∪ x).

Case 2: y ≺ c(A ∪ x ∪ y) for some y ∈ {y1, y2, . . . , yn}: By Axiom 3 we have c(A ∪ x) %

c(A ∪ x ∪ y) � y. Since x � c(A ∪ x) and Axiom 1, we have x � c(A ∪ x ∪ y). Because

|B \ (A ∪ y)| = n− 1, by applying L(n− 1) we have c(B) = c(B ∪ x).

Case 3: yi = c(A ∪ yi ∪ x) for all i = 1, . . . , n: In this case, we have

y1 = c(A ∪ y1 ∪ x) � y2 = c(A ∪ y2 ∪ x) � · · · � yn = c(A ∪ yn ∪ x)

Since c(A ∪ yi ∪ x) = c(A ∪ yi) by L(1), the above relations still hold when x is removed:

y1 = c(A ∪ y1) � y2 = c(A ∪ y2) � · · · � yn = c(A ∪ yn)

Recursively applying Axiom 3 implies

(c(A ∪ y1 ∪ x) =)y1 % c(A ∪ {y1, y2, . . . , yn})(= c(B)) % yn(= c(A ∪ yn ∪ x))

In other words,

c(A ∪ y1 ∪ x) % c(B) % c(A ∪ yn ∪ x)

Since (A ∪ y1 ∪ x) ∪ B = B ∪ x, Axiom 3 implies c(B ∪ x) % c(B). Similarly, since

(A ∪ yn ∪ x) ∪ B = B ∪ x, Axiom 3 implies c(B) % c(B ∪ x). Therefore, by Axiom 1,

c(B) = c(B ∪ x). �

For any binary relation R, let ΓR(S) be the set of R-undominated elements in S, that is,
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ΓR(S) = {x ∈ S : there exists no y ∈ S such that yRx}

Instead of constructing v and w, we shall construct a binary relation over X, denoted by

B such that c(S) is the �-best element in ΓB(S).17 It is known (Fishburn [1970]) that, if

(and only if) B is an interval order18, there exist functions v and ε such that

ΓB(S) = {x ∈ S : v(y)− v(x) ≤ w∀y ∈ S} = {x ∈ S : max
y∈S

v(y)− v(x) ≤ w}

so that we can get the desired representation.

Now, for any x 6= y, we define x B y when either x B′ y or x B′′ y where B′ and B′′ are

defined as follow:

(1) x B′ y if y � x = c(xy)

(2) x B′′ y if x � y and there exist a and b such that a B′ y, x B′ b, and a 7′ b.

x

b
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t b

x s

t y
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Figure 1: Case 3.

1

Figure 6. Black and Red arrows represent B′ and B′′, respectively. Solid
and dashed arrows indicate the existence and non-existence of relations, re-
spectively.

Note that x B′ y and x B′′ y cannot happen at the same time. In addition, B′ and B′′ are

both irreflexive.

We need to show that (i) B is an interval order and (ii) the �-best element in ΓB(S) is

equal to c(S).

Claim 2. B′ is asymmetric and transitive.

Proof. By construction, x B′ y and y B′ x cannot happen at the same time. Suppose x B′ y

and y B′ z, i.e., z � c(yz) = y � c(xy) = x. Then by Claim 1, c(xyz) = c(xz) because

y � c(xy). By Axiom 3, (z �)c(yz) % c(xyz) % c(xy). Hence, we have z � c(xyz) = c(xz).

Hence we have z � x = c(xz), so x B′ z. �

Claim 3. If x B′ y and a B′ b but neither x B′ b or a B′ y, then it must be x B′′ b or a B′′ y

but not both.
17In our framework, the �-best element is equal to the %-best element.
18B is called an interval order if it is irreflexive and x B b or a B y holds whenever x B y and a B b.



32

Proof. First we shall show that x B′′ b and a B′′ y cannot happen at the same time. Suppose

it does. Then by definition of B′ and B′′, we have y � x � b � a � y. Axiom 1 is violated.

Now, we shall show that either x B′′ b or a B′′ y must be defined. Suppose not. Then,

along with the definition of B′, we have b � x = c(xy), and y � a = c(ab). Therefore,

c(xyab) must be weakly worse than x or a because it must be weakly worse than c(xy) or

c(ab) by Axiom 3.

Since neither (x, b) nor (a, y) belongs to B′ or B′′, we have c(xb) = b � x, and c(ay) =

y � a. By Axiom 3, c(xyab) must be weakly better than c(xb) or c(ay) so it must be weakly

better than y or b.

Hence, either x or a must be weakly better than either y or b. Since we have already seen

b � x and y � a, the only possibilities are a % b or x % y, neither of which is possible

because a B′ b and x B′ y. �

Claim 4. B is an interval order.

Proof. We need to show that B is irreflexive. By definition, we cannot have (i) x B′ y and

y B′ x, (ii) x B′ y and y B′′ x, or (iii) x B′′ y and y B′′ x. Hence B is irreflexive.

Next we show that x B b or a B y holds whenever x B y and a B b. We shall prove this

case by case:

Case 1: x B′ y and a B′ b: If we have x B′ b or a B′ y, then we are done. Assume not,

then Claim 3 implies we must have x B′′ b or a B′′ y (not both). Then x B b or a B y.

Case 2: x B′ y and a B′′ b: In this case, by definition of B′′ and Claim 3, there exist

s and t such that a B′ t and s B′ b but not s B t. Focus on x B′ y and a B′ t, we must

have either a B y (it is done in this case) or x B t (so either x B′ t or x B′′ t). If x B′ t,

then by looking at x B′ t and s B′ b Claim requires x B b because it is not s B t. Thus, we

consider the final sub-case: x B′′ t. If so, we have x B′ y and s B′ b so it must be either

x B b (then done) or s B y. If s B y, then it must be s B′ y (i.e. not s B′′ y) because

y � x % t � a % b � s. Therefore, we have s B′ y and a B′ t with not s B t. Hence it must

be a B y.

Case 3: x B′′ y and a B′′ b: By definition of B′′, there exist s and t such that x B′ t and

s B′ y with not s B t. Then by focusing on x B′ t and a B′′ b, we must have either x B b

(done) or a B t. Suppose the latter. Then we have s B′ y and “a B′ t or a B′′ t,” so the

previous two cases are applicable so we conclude a B y because it is not s B t.

�
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(b) Case 3

Figure 7. The Proof of Claim 4

Claim 5. c(S) is equal to the �-best element in ΓB′(S).

Proof. First, we prove that ΓB′(S) does not include any element that is strictly better than

c(S). Suppose x ∈ ΓB′(S). Let S ′ and S ′′ be the subsets of S \ x consisting of elements that

are better than x and strictly worse than x, respectively. That is,

S ′ := {y ∈ S : y � x} and S ′′ := {y ∈ S : x � y}.

Then, we have c(S ′ ∪ x) � x by definition of c and x = c(xy) � y for all y ∈ S ′′ by the

definition of B′. Then by applying Axiom 3 we get c(S ′′∪x) = x. Thus, c(S ′∪x) � c(S ′′∪x)

implies c((S ′ ∪ x) ∪ (S ′′ ∪ x)) = c(S) % x again by Axiom 3.

Next, we shall show that c(S) ∈ ΓB′(S). Suppose not. Then, there exists y ∈ ΓB′(S) such

that y B′ c(S) by Claim 2 (especially B′ is transitive). That is c(S) � c({c(S), y}) = y.

Thus, by Claim 1, we have c(S \ c(S)) = c((S \ c(S)) ∪ c(S)) = c(S), a contradiction.

Combining the first and second results, the �-best element in ΓB′(S) is equal to c(S). �

Claim 6. c(S) is equal to the �-best element in ΓB(S).

Proof. Since B⊇B′ by construction, we have ΓB(S) ⊆ ΓB′(S). Therefore, by Claim 5, it is

enough to show is that the �-best elements in ΓB′(S) (which is c(S)) is included in ΓB(S).

Suppose c(S) /∈ ΓB(S). Since B is an interval order, it is automatically transitive. Therefore,

there exists y ∈ ΓB(S) such that y B c(S) but not y B′ c(S). Therefore, it must be y B′′ x

so y � c(S). Since y ∈ ΓB′(S), y cannot be strictly better than c(S) (see the proof of Claim

5). �

(The Representation ⇒ The Axioms)

Showing that the first axiom is necessary is straightforward. For the second axiom, if

x � c(A ∪ x) then A must have an element y with v (y) > v (x) + w (x), so its superset B

also includes y so Γ (A) = Γ (B), so c (A) = c (B).
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The third axiom: Let x∗ be the u-best element in Γ (A ∪B). Then it must be in Γ (A)

or Γ (B) as well so it is not possible that A ∪ B is strictly preferred to both A and B. Now

we show that the union cannot be strictly worse than both. Let xA and xB be the u-best

elements in A and B, respectively, and take vA and vB be the maximum values of v in A

and in B, respectively. Then we have

vA ≤ u (xA) + ε (xA) and vB ≤ u (xB) + ε (xB)

Therefore the maximum value of v in A ∪B is the higher one between vA and vB, either xA

or xB must be in Γ (A ∪B) so c(A ∪B) must be weakly better than either c(A) or c(B).

Proof of Theorem 2. We are now done proving the sufficiency of the axioms for the repre-

sentation in Theorem 1. Next, we show the sufficiency of Axioms 1-4 for the representation

in Theorem 2.

Claim 7. If x � c(xy) � c(yz) then, for all t, c(xyzt) is either c(xt) or c(yz).

Proof. Assume x � c(xy) � c(yz), then it must be x � y � z. Consider c(zt). If c(zt) = t

then by Axiom 4 we get c(xt) = t. Since y � c(yz), by Claim 1, we have c(zt) = c(yzt). By

Axiom 3 we have c(xt) = c(xyzt) = c(yzt). Hence c(xyzt) = c(xt).

Now assume c(zt) = z. Since x � c(xy), by Claim 1, we have (z =)c(yz) = c(xyz). By

Axiom 3, we have c(zt) = c(xyzt) = c(xyz)(= c(yz)). Hence c(xyzt) = c(yz). �

Again as in the proof of Theorem 1, instead of defining v(.) and w > 0, we shall construct

a binary relation over X, denoted by B such that c(S) is equal to the �-best element in

ΓB(S) (i.e. the set of B-undominated elements in S). It is known (Fishburn [1970]) that

if (and only if) B is a semi order19, which is a special type of an interval order, there exist

function v and positive number w such that

ΓB(S) = {x ∈ S : max
y∈S

v(y)− v(x) ≤ w}

so we get the desired representation.

Next we define (i, j)-representation of an arbitrary binary relation P.

Definition 1. Two functions i : X → N and j : X → N where i(x) ≥ j (x) for all x ∈ X
represents a binary relation P if xPy if and only if i(x) < j(y).

19B is a semi order if it is an interval order and if xByBz then xBt or tBz for any t.
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Let B be the interval order that is defined in the proof of Theorem 1. First, we argue that

B has an (i, j)-representation without any gaps as described in the following claim.

Claim 8. Any interval order, P , has an (i, j)-representation (see Figure 8) if there exist two

functions i : X → N and j : X → N such that

i) For all x ∈ X, i (x) ≥ j (x),

ii) The ranges of i and j have no gap: That is if there exist x and y such that i (x) > i (y)

then for any integer n between i (x) and i (y) there is z with i (z) = n. Similarly for

j(·),

iii) xPy if and only if i (x) < j (y).

Proof. The following proof is based on Mirkin [1979]. Given an interval order, P , (xPy and

zPw imply xPw or zPy) we can show that, for all x and y in X, L(x) ⊆ L(y) or L(y) ⊆ L(x),

and, U(x) ⊆ U(y) or U(y) ⊆ U(x), where L(x) and U(x) are lower and upper contour sets of x

with respect to P, respectively. That is, L(x) = {y ∈ X : xPy} and U(x) = {y ∈ X : yPx}.
Irreflexivity indicates that there is a chain with respect to lower contour sets (this is also

true for upper contour sets), i.e., relabel elements of X, |X| = n such that L(xj) ⊆ L(xi)

for all 1 ≤ i ≤ j ≤ n. Moreover, we can include strict inclusions such as there exists s ≤ n

such that ∅ = L(xs) ⊂ L(xs−1) . . . L(x2) ⊂ L(x1) where {x1, x2, . . . , xs} ⊆ X. For all k ≤ s,

Define

Ik = {x ∈ X : L(xk) = L(x)}

Ik is not empty for any k since xk ∈ Ik by construction. Clearly, the system {Ik}s1 is a

partition of the set X, i.e.
s
∪
k=1

Ik = X, Ik ∩ Il = ∅ when k 6= l. Define

i(x) := k if L(x) = L(xk) for some xk in X.

Now construct another family of non-empty sets {Jm}s1, as follows

Js = L(xs−1) \ L(xs), · · · , J2 = L(x1) \ L(x2), J1 = X\L(x1)

Clearly, the system {Jm}s1 is another partition of the set X. Most importantly, we have

∅ = U(y1) ⊂ U(y2) . . . U(ys−1) ⊂ U(ys) where yi ∈ Ji for all i ≤ s. Define

j(x) := k if x ∈ Jk.

To see Condition i) holds, let i(x) = i. That means x ∈ Ii. If there exists no element z

such that zPx, i.e. U(x) = ∅, then j(x) = 1 ≤ i(x). Otherwise find the largest integer j such

that x ∈ L(xj). Note that j must be strictly less than i. Then by definition, j(x) = j + 1,

which is less than i = i(x).
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Figure 8. The graph of the (i, j)-representation. Condition ii) implies every
row and column (not every cell) includes at least one alternative. Condition
iii) implies (x, y) ∈ P but (x, z) /∈ P .

Since both {Ik}s1 and {Jk}s1 are partitions of X, there is no gap (Condition ii)). Finally,

we have Condition iii) since xPy ⇔ y ∈ L(x)⇔ j(y) ≥ i(x) + 1 > i(x). �

Let B be the interval order that is defined in the proof of Theorem 1. By Claim 8, it has

an (i, j)-representation. We now modify the (i, j)-representation of B so that the resulting

binary relation is a semiorder, say B, such that c(S) is equal to the �-best element in

ΓB(S). In other words, we construct a semiorder based on the interval order we created

without affecting the representation. To do this, we prove several claims relating the (i, j)-

representation with the preference �.

Claim 9. If i(x) = j(y)− 1, it must be y � x.

Proof. Since i(x) < j(y) we know that x B y. If x B′ y then we are done since in that case

y � x = c(xy). So suppose that x B′′ y. Then by definition of B′′, there exist α and β such

that α B′ y and x B′ β and α 7′ β. Moreover, by Claim 3 α 7′′ β. So α 7 β. Since α B y

and x B β, i(α) < j(y) and i(x) < j(β). Since α 7 β, i(α) ≥ j(β). Therefore it must be

i(x) ≤ j(y)− 2, a contradiction. �

Definition 2. (i, j) is called a prohibited cell if there exists z such that i(z) < i and j(z) > j.

Otherwise, it is called a safe cell (see Figure 9a).

To obtain a semi-order representation, we need to move each alternative that is in a

prohibited cell to a safe cell and still the representation holds. The next definition describes

a way in which alternatives can be moved.
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(a) Prohibited cells because of z
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(b) Movable cells for x

Figure 9. Prohibited and movable cells

Definition 3. An alternative x can be moved to the cell (i, j) where i ≥ j if (a) i ≤ i(x) and

j ≥ j(x), (b) x � y for all y with i < j(y) ≤ i(x), (c) z � x for all z with j(x) ≤ i(z) < j.

Definition requires that the alternatives in prohibited cells must move up and right (Con-

dition (a)). As an outcome x is moved a new cell, (i, j), it is possible that there exists y

such that i(x) ≥ j(y) but i < j(y). Condition (b) requires that in this case x % y. Suppose

to the contrary that y � x. Since i < j(y), in the new representation x B′ y. But in the

original representation we have x 7 y. So the two representations must represent different

preferences. Condition (c) can be understood similarly.
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(a) Movable cells if x � z, y
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(b) Movable cells if y, z � x

i 

1 

2 

3 z 
4 

5 

6 x 
7 

8 y 
1 2 3 4 5 6 7 8 

j 

(c) Movable cells if y � x � z

Figure 10. Examples of movable cells with different preferences

To understand this definition, we provide three examples (Figure 10). In Figure 10a, we

have x � y, z. Since we have z 7 x and x � z, x cannot be moved a cell where z will

eliminate x (Condition (c)). That is, j ≤ i(z) = 3. On the other hand, since x � y, there

is no restriction on movement on i. In Figure 10b, we have completely opposite situation

y, z � x. Since we have x 7 y and y � x, x cannot be moved a cell where x will eliminate

y (Condition (b)). That is, i ≥ j(y) = 5. On the other hand, since z � x, there is no
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restriction on movement on j. Finally, we provide an example where both Condition (b) and

(c) induce restrictions because we have y � x � z.

Claim 10. Suppose β � y � α and α B y B β. If there exists x such that x 7 β and α 7 x,

then x � β or α � x.

Proof. Suppose β � x � α and we shall get a contradiction. Then we have β = c(βx) and

c(xα) = x because x 7 β and α 7 x. By the assumption, we have β � c(βy) � c(αy).

By Claim 7, αβxy must be equal to either c(βx) = β or c(αy) = α. Consider c(βy) and

c(xα), both of which are strictly worse than β and strictly better than α. Axiom 3 dictates

that β � βy % c(αβxy) % xα � α. Hence, c(αβxy) cannot be equal to β or α, which is a

contradiction. �

Given the assumptions of Claim 10, we have j(x) ≤ i(α) < j(y) and i(y) < j(β) ≤ i(x).

This means that (i(x), j(x)) is a prohibited cell because of y. This means that x needs to be

moved. Claim 10 illustrate that x can be moved because x � β or α � x. The next claim

shows that there is a unique way to move x. That is, x can be moved to either (i(y), j(x))

or (i(x), j(y)) but not to both.
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(a) Claim 10
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(b) Claim 11

Figure 11

Claim 11. Let exist two alternatives x and y such that i(x) > i(y) and j(x) < j(y). Then

x can be moved to either (i(y), j(x)) or (i(x), j(y)) but not to both.

Proof. There exist two alternatives α and β such that i(α) = j(y)− 1 and j(β) = i(y) + 1.20

By Claim 8 and 9, we have β � y � α and α B y B β. Since j(β) ≤ i(x) and j(x) ≤ i(α),

x 7 β and α 7 x by Claim 8. Thus, by Claim 10, we have x � β � α (so x cannot be moved

to (i(x), j(y)) because of α) or β � α � x (so x cannot be moved to (i(y), j(x)) because of

β). Therefore, all we need to show is that x can be moved to either of them.

20This is because since neither i(y) is the smallest nor i(y) is the largest integer within the range of i.
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Case I: x � β. We show that x can be moved to (i(y), j(x)). First, Condition (a) holds

trivially: i(y) ≤ i(x) and j(x) ≥ j(x). For Condition (b), take an element z such that

i(y) < j(z) ≤ i(x) (so y B z but x 7 z). Then, it must be either y � z (which implies

x � z) or z � y = c(yz) in which case we have z � y � α and α B y B z (with x 7 z and

α 7 x). By Claim 10, we should have x � z or α � x. Since we are considering the case

x � β(� α), it must be x � z. Condition (c) is trivially satisfied because j = j(x).

Case II: α � x: Condition (a) and (b) will be now trivial while Condition (c) can be

proven in the same way how we prove Condition (b) in case I. �

Claim 12. Let

Ux = {y : i(x) > i(y), j(x) < j(y) and x can be moved to (i(y), j(x))} ∪ {x}

Rx = {y : i(x) > i(y), j(x) < j(y) and x can be moved to (i(x), j(y))} ∪ {x}

and let

ix = min
y∈Ux

i(y) and jx = max
y∈Rx

j(y)

Then (i) x can be moved to (ix, jx), and (ii) (ix, jx) is a safe cell. That is, there is no z with

i(z) < ix and j(z) > jx.

Proof. Notice that by the definitions of movability, ix ≤ i(x) and jx ≥ j(x).

(i) Clearly, ix ≤ i(x) and jx ≥ j(x) as x ∈ Ux, Rx. First, we show that ix ≥ jx. Take an

alternative y ∈ Ux such that i(y) = ix. Since y ∈ Ux, x cannot be moved to (i(x), j(y)) by

Claim 11. By the definition of movability, x cannot be moved to (i(x), j) if j ≥ j(y). Hence

for all z ∈ Rx \ {x}, j(z) < j(y), which means jx = max
z∈Rx

j(z) ≤ j(y). Since i(y) ≥ j(y), we

have jx ≤ j(y) ≤ i(y) = ix.

Since x can be moved to (ix, j(x)), then the second condition of the movability is satisfied.

Similarly, we can prove the third requirement as well. Therefore, x can be moved to (ix, jx)

(ii) If z /∈ Ux, Rx, then by Claim 11, it must be (ix ≤)i(x) ≤ i(z) or j(z) ≤ j(x)(≤ jx). If

z ∈ Ux, then i(z) ≥ ix. If z ∈ Rz then j(z) ≤ jx. �

Now, define xB̄y if and only if jy > ix.

Claim 13. B̄ is a semi-order.

Proof. Since ix ≥ jx by Claim 12 for all x, B̄ is an interval order.
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Next, we shall show that if (i, j) is a safe cell, there is no element x such that ix < i and

jx > j. Suppose there is such x. Notice that it must be i ≤ i(x) or j ≥ j(x) because (i, j) is

a safe cell so it must be ix < i(x) or j > j(x). Suppose ix < i(x). Then there exists y such

that i(y) = ix and j(x) < j(y) such that x can be moved to (i(y), j(x)). By Claim 11, x

cannot be moved to (i(x), j(y)), so it cannot be moved to (i(x), j′) for any j′ ≥ j(y). Since

(i, j) is a safe cell and i(y) = ix < i, it must be j(y) ≤ j(< jx). Hence, x cannot be moved

to (i(x), jx), which contradicts the definition of jx unless jx = j(x). But if so, j(y) > jx > j

but this contradicts that (i, j) is a safe cell. Analogously, we can show a contradiction if

j > j(x).

By Claim 12, all elements have been moved to safe cells, so there is no pair of elements x

and y such that ix < iy and jx > jy. Therefore, if ix < jy ≤ iy < jz (i.e. xB̄yB̄z) then for

any w, it must be either jw > jy or iw ≤ iy, which implies jw > ix or iw < jz (i.e. xB̄w or

wB̄z). Therefore, B̄ is a semiorder. �

Claim 14. If x B y then xB̄y.

Proof. By definitions of i′ and j′, ix ≤ i(x) and jx ≥ j(x) for all x. Therefore, if x B y, then

ix ≤ i(x) < j(y) ≤ jy so we have xB̄y. �

Claim 15. If xB̄y but not x B y, then x � y.

Proof. First, we shall note that both x and y must be in prohibited cells. If neither of them

is in, ix = i(x) and jy = j(y) so xBy and not x B y cannot happen at the same time. If only

x is in a prohibited cell, then ix < j(y) ≤ i(x) so x cannot be moved to (ix, jx). Similarly

we can prove that it is not possible that only y is in a prohibited cell.

Next we shall show that ix < i(x) and jx > j(x). Since x can be moved to (ix, jx) while

y � x, it must be ix ≥ j(y) because j(y) ≤ i(x) (i.e. not x B y). Combined with xBy, we

get jy > j(y). Flipping x and y, one can prove ix < i(x).

Therefore, there must exist z and z′ with i(z) ∈ [j(y), jy − 1] and j(z′) ∈ [ix − 1, i(x)]

(notice that these intervals are non-empty). Furthermore, we can take such z and z′ so that

i(z) = j(z′) − 1 because ix − 1 < jy − 1 and i(x) > j(y). Thus, z′ � z by Claim 9. Since

x is movable to (ix, jx), we have x � z′. Similarly, we have z � y. Therefore, we conclude

x � y. �

Claim 16. c(S) is equal to the �-best element in ΓB̄(S).
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Proof. We know B̄ is transitive, B̄ ⊇B and x � y whenever xB̄y but not x B y. It is easy

to see that this claim can be proven in the exactly same way as Claim 6. �

(Representation ⇒ Axioms 1-4) Showing that the first axiom is necessary is straight-

forward. Let

Γ(A) = {x ∈ A : max
y∈A

v(y)− v(x) ≤ w}

For Axiom 2, if x � c(A ∪ x) then A must have an element y with v(y) > v(x) + w, so it is

clear that Γ(A) = Γ(A ∪ x) so c(A) = c(A ∪ x).

Axiom 3: Let x∗ be the u-best element in Γ(A ∪B). Then it must be in Γ(A) or Γ(B) so

it is not possible that c(A ∪ B) is strictly preferred to both c(A) and c(B). Now we show

that the union cannot be strictly worse than both. Let xA and xB be the u-best elements in

Γ(A) and Γ(B), respectively, and take vA and vB be the maximum values of v in A and in

B, respectively. Then we have

vA ≤ v(xA) + w and vB ≤ v(xB) + w

Therefore the maximum value of v in A∪B is the higher one between vA and vB, either xA

or xB must be in Γ(A ∪B) so c(A ∪B) must be weakly better than either c(A) or c(B).

Finally we show that the representation implies Axiom 4. Suppose x � c(xy) � c(yz),

then it must be x � y � z, v(y)−v(x) > w and v(z)−v(y) > w. Therefore, v(z)−v(x) > 2w.

Since c(tz) = t, we must either “z � t and v(t)−v(z) > w” or “t � z and v(z)−v(t) ≤ w.”

In both cases, we have v(t)− v(x) > w, hence we have c(xt) = t.

Proof of Proposition 1. We know that φ is convex, increasing and not linear, i.e., φ′ is

not constant. Since φ is convex φ(δ) ≤ φ(v̄)− φ(v̄ − δ) for all v̄ > δ > 0. There must exists

δ > 0 such that the inequality is strict since otherwise

φ(δ)

δ
=
φ(v̄)− φ(v̄ − δ)

δ
.

Taking δ to zero this implies that φ′(0) = φ′(v̄), and φ must be linear, a contradiction.

Fix δ > 0 such that the inequality is strict, and given δ choose ε > 0 such that φ(v̄− δ) +

φ(δ) + ε < φ(v̄). Let φ̂(a) = φ(a− δ) +φ(δ) + ε for all a ∈ [δ, v̄]. Note by construction φ̂(δ) >

φ(δ) and φ̂(v̄) < φ(v̄). Hence there exists v̂ ∈ (δ, v̄) such that φ̂(v̂) = φ(v̂). Next we define

four alternatives, x, y, z and t in terms of their u and v values. The richness of X guarantees

that the four alternatives exist. Let t ≡ (ut, vt) = (0, v̄) and z ≡ (uz, vz) = (φ(δ) + ε, v̄ − δ).
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Let ε̂ ∈ (0, ε) and define y ≡ (uy, vy) = (φ(v̂) + ε̂, v̄ − v̂). Let ε̄ ∈ (0, φ(v̄)− φ̂(v̄)) and define

x ≡ (ux, vx) = (φ(v̄) + ε̄, 0). See Figure 12 for the construction of the four alternatives.

Figure 12. Construction of the four alternatives in Proposition 1.

By construction ux > uy > uz > ut. It is easy to see that c(x, z) = x, c(y, t) = y and

c(x, y, z, t) = z and (u, v, φ) violates Axiom 3.

Proof of Proposition 2.

Proof. We first show that, for any x, the best compromising contract is strictly better than

the best indulging contract as long as w > 0 and x 6= z∗. Indeed, it is easy to see that, if

w = 0 then the two contracts generate the same revenue and if x = z∗, the compromising

contract reduces to an indulging contract. Now suppose w > 0 and x 6= z∗. If the revenue

from the compromising contract is v(x)−e(y∗), the result is immediate. Suppose the revenue

from the best compromising contract is u(x) + e(z∗)− e(y∗)− w. Since, by definition of z∗,

u(x) + e(z∗) ≥ v(x), it exceeds v(x)− e(y∗)−w which is the revenue from the best indulging

contract.

Now, let us compare the best commitment contract and the best compromising contract.

If e(z∗) − e(x) > w, then the best compromising contract yields v(x) − e(y∗), which is

weakly greater than u(x) since e(x) ≥ e(y∗). If e(z∗) − e(y∗) > w ≥ e(z∗) − e(x), the best

compromising contract yields u(x) + e(z∗)− e(y∗)−w. Since e(z∗)− e(y∗)−w > 0, the best

compromising contract is strictly better than the best commitment contract.

If e(z∗) − e(y∗) ≤ w, then e(z∗) − e(x) ≤ e(z∗) − e(y∗) ≤ w. This means the best

compromising contract yields u(x) + e(z∗)− e(y∗)−w. Since e(z∗)− e(y∗)−w ≤ 0, the best

commitment contract is better. �
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Proof of Proposition 3.

Proof. (1) Assume e(z∗) − e(xv) ≥ w. By Proposition 2, the optimal contract must be

a compromising contract. Since e(z∗) − e(xv) ≥ w, xv provides the highest revenue

among the alternative satisfying e(z∗)− e(x) ≥ w. Now consider x such that e(z∗)−
e(x) < w. Then we have e(z∗)− v(x) + u(x) < w. This implies that u(x) + e(z∗)−
e(y∗) − w < v(x) − e(y∗). By definition, u(x) + e(z∗) − e(y∗) − w < v(x) − e(y∗) ≤
v(xv) − e(y∗) for all x such that e(z∗) − e(x) < w. This establishes the fact that xv

provides the highest revenue overall.

(2) Assume e(z∗) − e(xv) < w < e(z∗) − e(xu). By Proposition 2, the optimal contract

must be a compromising contract.

(3) Assume e(z∗) − e(xu) ≤ w < e(z∗) − e(y∗). By Proposition 2, the optimal contract

must be a compromising contract. Since e(z∗)− e(xu) ≤ w, xu provides the highest

revenue among the alternative satisfying e(z∗) − e(x) ≤ w. Now consider x such

that e(z∗) − e(x) > w. Then we have e(z∗) − v(x) + u(x) > w. This implies that

u(x) + e(z∗)− e(y∗)− w > v(x)− e(y∗). By definition, u(xu) + e(z∗)− e(y∗)− w >

u(x) + e(z∗) − e(y∗) − w > v(x) − e(y∗) for all x such that e(z∗) − e(x) > w. This

establishes the fact that xu provides the highest revenue overall. The price, which

is u(xu) + e(z∗) − e(y∗) − w, is strictly higher than u(xu) since w < e(z∗) − e(y∗).
Therefore, the efficient service xu is sold at a price exceeding u(xu).

(4) Assume e(z∗)−e(y∗) ≤ w. By Proposition 2 the optimal contract is the commitment

contract selling the efficient service xu at price u(xu).

�

Proof of Proposition 4.

Proof. To see part (i), recall that, by Equation 10, the maximum revenue for selling x is

min[v(x)− e(z∗), u(x)− e(y∗) + e(z∗)− w]. Hence, the monopolist’s revenue for selling any

alternative is weakly decreasing in w. This implies that the monopolist’s optimal profit is

weakly decreasing in w.

Next we show part (ii). That is, we show total surplus is weakly increasing in w. Suppose

w > w′. If w ≥ e(z∗) − e(y∗), the optimal contract sells xu at price u(xu). This maximizes

the total surplus (u − c) and gives 0 to the consumer. Clearly, the optimal contract under

w′ does not generate more total surplus or consumer’s ex ante welfare. Thus, we focus on
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the case where w < e(z∗)− e(y∗). Let

E1 = {s : v(s)− e(y∗)− c(s) ≤ u(s)− e(y∗) + e(z∗)− w − c(s)}

E2 = {s : u(s)−e(y∗)+e(z∗)−w−c(s) ≤ v(s)−e(y∗)−c(s) ≤ u(s)−e(y∗)+e(z∗)−w′−c(s)}

E3 = {s : u(s)− e(y∗) + e(z∗)− w′ − c(s) ≤ v(s)− e(y∗)− c(s)}

Clearly, these there sets cover the entire alternative set. With this definition, notice that the

monopolist’s highest profits from selling s is given by

when the willpower is w:

v(s)− e(y∗)− c(s) when s ∈ E1 u(s)− e(y∗) + e(z∗)− w − c(s) when s ∈ E2 ∪ E3

and when the willpower is w′:

v(s)− e(y∗)− c(s) when s ∈ E1 ∪ E2 u(s)− e(y∗) + e(z∗)− w′ − c(s) when s ∈ E3

Let x and x′ be the alternative sold in the optimal contract and π and π′ the profit

generated by the optimal contract under w and w′, respectively.

Case 1: x, x′ ∈ E1

In this case, the both of them maximize v(s)−e(y∗)−c(s). By the assumption (the uniqueness

of the optimal alternative), x = x′. Thus the total surplus must be equal.

Case 2: x ∈ E1, x
′ ∈ E2

In this case, x maximizes v− e(y∗)− c in E1 while x′ maximizes the same object in E1 ∪E2.

Thus, π ≤ π′. By Proposition 3 (1), it must be π = π′. Since the monopolist can earn the

same profit by selling x under w′, it must be x = x′ (so x, x′ ∈ E1 ∩E2) by the assumption.

Case 3: x ∈ E1, x
′ ∈ E3

Since x ∈ E1, π = v(x)− e(z∗)− c(x) ≤ u(x)− e(y∗) + e(z∗)−w− c(x). If x′ was sold under

w, it would generate u(x′)− e(y∗) + e(z∗)− w − c(x′), which must be smaller than π. Thus

u(x)− c(x) > u(x′)− c(x′).

Case 4: x ∈ E2 ∪ E3, x
′ ∈ E1

In this case, π = u(x) − e(y∗) − e(z∗) − w − c(x) ≤ v(x) − e(y∗) − c(x) and π′ = v(x′) −
e(y∗)− c(x′). However, the monopolist could have got the profit π′ by selling x′ even under

w so π ≥ π′. By proposition 3 1, π = π′. By the assumption, x = x′.

Case 5: x, x′ ∈ E2 ∪ E3

In this case, π = u(x)−e(y∗)+e(z∗)−w−c(x). By selling x′ under w, the monopolist’s profit
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would be u(x′)− e(y∗) + e(z∗)− c(x′)−w, which cannot be greater than π so u(x)− c(x) ≥
u(x′)− c(x′).

Finally, to see part (iii), note that consumer’s welfare is total surplus minus monopolist’s

profit. Since total surplus is weakly increasing and profit is weakly decreasing, consumer’s

welfare is weakly increasing in w.

�

Appendix B

Suppose c defined on a fixed finite set of alternatives A is generated by the limited willpower

(u, v, w). We now demonstrate that c can be generated by the convex self-control model.

For any x, y ∈ A such that 0 ≤ v(y) − v(x) ≤ w, choose l > 0 such that u(x) − l(v(y) −
v(x)) > u(y) if u(x) > u(y), otherwise u(x)− l(v(y)− v(x)) < u(y). The second inequality

holds for any l > 0. If the first inequality holds for l, it also holds for any l′ such that

0 < l′ < l. Since we have finitely many inequalities (hence finitely many l’s), let l∗ > 0 be

small enough so that all the inequalities hold for l∗.

Similarly, for any x, y such that v(y)− v(x) > w, choose k > 0 such that u(x)− k(v(y)−
v(x)−w) + l∗w < u(y). If the inequality holds for k, it also holds for k′ > k. Since we have

finitely many inequalities (hence finitely many k’s), let k∗ > 0 be large enough so that all

the inequalities hold for k∗.

Finally, define the cost function as

φ(l∗,k∗,w)(x) =

l∗x if x ≤ w

k∗(x− w) + l∗w if x > w.

By construction the convex self-control model (u, v, φ(l∗,k∗,w)) generates c.


