
Vehicle Activity Recognition Using Mapped QTC Trajectories

Keywords: Vehicle Activity Recognition, Qualitative Trajectory Calculus, Trajectory Texture, Transfer Learning, Deep
Convolutional Neural Networks.

Abstract: The automated analysis of interacting objects or vehicles has many uses, including autonomous driving and
security surveillance. In this paper we present a novel method for vehicle activity recognition using Deep
Convolutional Neural Network (DCNN). We use Qualitative Trajectory Calculus (QTC) to represent the rel-
ative motion between pair of vehicles, and encode their interactions as a trajectory of QTC states. We then
use one-hot vectors to map the trajectory into 2D matrix which conserves the essential position information
of each QTC state in the sequence. Specifically, we project QTC sequences into a two dimensional image
texture, and subsequently our method adapt layers trained on the ImageNet dataset and transfer this knowl-
edge to the activity recognition task. We have evaluated our method using two different datasets, and shown
that it out-performs state-of-the-art methods, achieving an error rate of no more than 1.16%. Our motivation
originates from an interest in automated analysis of vehicle movement for the collision avoidance application,
and we present a dataset of vehicle-obstacle interaction, collected from simulator-based experiments.

1 INTRODUCTION

The vehicle activity recognition task aims to iden-
tify the actions of one or more vehicles from a se-
quence of observations. The pair-wise interaction be-
tween vehicle-vehicle or vehicle-obstacle is the build-
ing block of large group interactions. In dynamic traf-
fic a vehicle will share the same roads with different
objects (e.g. vehicles or obstacles), on which unex-
pected interactions can occur anytime and anywhere.
Quite often vehicular collisions are a result of a lack
of situational awareness, and not being able to iden-
tify situations before they become dangerous. There-
fore, understanding the relative interaction between
the vehicle and it is surrounding is crucial for recog-
nizing the behavior that the vehicle is in (or about to
enter) and to avoid any potential collisions (Ohn-Bar
and Trivedi, 2016).

Previous research concerned with vehicle activ-
ity analysis has been mainly focused on quantitative
methods which use sequences of real-valued features
(trajectories) (Xu et al., 2017; Khosroshahi et al.,
2016; Lin et al., 2013; Lin et al., 2010; Ni et al., 2009;
Zhou et al., 2008). However, increasing attention has
been given to the use of qualitative methods, which
use symbolic rather than real-value features, with ap-
plications such as, vehicle interaction and human be-
havior analysis (AlZoubi et al., 2017), and human-
robot interaction (Hanheide et al., 2012). Qualita-
tive methods have shown better performance for ve-
hicles activity analysis (AlZoubi et al., 2017). There
are several motivations for using qualitative methods

such as: qualitative representations are typically more
compact and computationally efficient than quantita-
tive methods, and humans naturally communicate and
reason in qualitative ways rather than by using quanti-
tative measurements, particularly when describing in-
teractions and behaviors (Dodge et al., 2012).

In the context of activity recognition a few pre-
vious studies made their efforts on encoding the tra-
jectory of moving object in a compact and power-
ful representation (e.g. two dimensional matrix (Lin
et al., 2013) or trajectory texture image (Shi et al.,
2015)). These features were used to train the classifier
for the activity recognition task. These methods have
shown to be successful in different application do-
mains varies between human activity recognition (Shi
et al., 2015; Shi et al., 2017) and pair-wise vehicles
activity recognition (Lin et al., 2013). Moreover, rep-
resenting trajectories in two dimensional matrix can
be advantageous when paired with methods of image
recognition (e.g. deep learning). Recently, increasing
attention has been given to the use of methods based
on deep features for object classification from image.
These methods have shown its strong power in fea-
tures (e.g. shape and texture of objects) learning.

In this paper, we present our method for vehi-
cle pair-activity classification (recognition), based on
QTC and DCNN. First, we use QTC to represent
the relative motion between pairs of objects (vehicle-
vehicle or vehicle-obstacle), and encode their inter-
actions as a trajectory of QTC states (or charac-
ters). Then, we use one-hot vectors to represent
QTC sequences as a two dimensional matrix (or im-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by BEAR (Buckingham E-Archive of Research)

https://core.ac.uk/display/224297806?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: Our Proposed Method.

age texture), and subsequently our method adapt lay-
ers from an already trained DCNN on the ImageNet
dataset and transfer this knowledge to the vehicle
pair-activity recognition task. Where each activity
will have a unique image signature (or texture). In
addition, we have developed a dataset of vehicle-
obstacle interactions, which we use in our evalua-
tions. We accordingly present a detailed comparative
work against state-of-the-art quantitative and qual-
itative methods, using different datasets (including
our own). Furthermore, our results show that our
proposed method outperforms current methods for
pair-wise vehicles trajectory classification in different
challenging applications. Figure 1 shows an overview
of the main components of our method. Our novel ap-
proach for recognizing pair-wise vehicle activity uses,
for the first time, QTC with DCNN.
Our work is primarily motivated by our interest in the
automated recognition of vehicles activities. How-
ever, predicting a complete trajectory that the vehi-
cle is in (or about to enter) helps avoiding any po-
tential collisions. In order to gain traction as a main-
stream analysis technique, we present a novel driver
model for predicting a vehicle’s future trajectory from
partially observed one. The key contributions of our
work are as follows: (1) we propose a new CNN
suited for vehicle pair-activity classification, based
on a modified version of AlexNet (Krizhevsky et al.,
2012). (2) a novel method for pair-wise vehicle ac-
tivity recognition is presented, where we integrate a
driver model to estimate likely trajectories, and pre-
dict a vehicle’s future activity. (3) we show experi-
mentally that our proposed CNN out-performs exist-
ing state-of-the-art methods (such as (AlZoubi et al.,
2017; Lin et al., 2013; Lin et al., 2010; Ni et al.,
2009; Zhou et al., 2008)). We also introduce our own,
new, dataset of vehicle-obstacle activities, which is
ground-truthed and consists of 554 scenarios of ve-
hicles (complete and incomplete scenarios) for three

different types of interactions. The dataset is publicly
available for other researchers studying vehicle activ-
ity, and pair-activity analysis in general.

2 Related Work

Qualitative Trajectory Calculus (QTC): Qual-
itative spatial-temporal reasoning is an approach for
dealing with knowledge on which human perception
of relative interactions is based, using symbolic rep-
resentations of relevant information rather than real-
valued measurements (Van de Weghe, 2004). Activ-
ity analysis methods based QTC representation have
shown to be used successfully and outperform quan-
titative methods in different application domains in-
cluding human activity analysis and vehicles interac-
tion recognition (AlZoubi et al., 2017). Given the po-
sitions of two moving objects (k and l), the QTC rep-
resents the relative motion in four features:
• Distance Feature:

S1: distance of k with respect to l: “-” indicates
decrease, “+” indicates increase, “0” indicates no
change.
S2: distance of l with respect to k.

• Speed Feature:
S3: Relative speed of k with respect to l at time
t (which dually represents the relative speed of l
with respect to k).

• Side Feature:
S4: Displacement of k with respect to the refer-
ence line L connecting the objects: “-” if it moves
to the left, “+” if it moves to the right, “0” if it
moves along L or not moving at all.
S5: Displacement of l with respect to L.

• Angle Feature:
S6: The respective angles between the velocity
vectors of the objects and vector L: “-” if θ1 < θ2,

Figure 2: Example of QTC relations between two moving
vehicles: QTCC = (−,+,0,+).

“+” if θ1 > θ2 and “0” if θ1 = θ2

where Si represents the qualitative relations in QTC.
figure 2 shows the concept of qualitative relations
in QTC for two disjoint objects (vehicles); k and
l. Three main calculi were defined (Van de Weghe,
2004): QTCB, QTCC and QTCFull . Where QTCC (S1,
S2, S4 and S5) and the combination of the four codes
results in 34 = 81 different states.

Vehicle Activity Analysis: In regards to activ-
ity analysis many previous works made their efforts
on studying trajectory-based activity analysis, and a
review is provided by (Ahmed et al., 2018). Gener-
ally speaking, activity analysis approaches can be di-
vided into three categories: single-role activities (Xu
et al., 2015); pair-activities (AlZoubi et al., 2017); and
group-activities (Lin et al., 2013). Most of these ap-
proaches were motivated by either an interest in hu-
man behavior recognition (AlZoubi et al., 2017; Lin
et al., 2013; Zhou et al., 2008), human-robot inter-
action (Hanheide et al., 2012), animal behavior clus-
tering (AlZoubi et al., 2017), or vehicles interaction
recognition (AlZoubi et al., 2017; Xu et al., 2017;
Khosroshahi et al., 2016; Lin et al., 2013). Pair-
activities approaches are most closely related to our
work in this paper.
Previous works studying vehicles activity analysis for
understanding traffic behaviors (Lin et al., 2013) and
autonomous driving applications (Xiong et al., 2018)
mainly used quantitative features. (Lin et al., 2013)
presented a heatmap-based algorithm for vehicle pair
activity recognition. The method represents vehicle
trajectory as an activity map (or 2D matrix) and uses
a Surface-Fitting (SF) method to classify the vehicles
activities. More recently, methods based on qualita-
tive features were proposed for traffic activity recog-
nition (AlZoubi et al., 2017). A Normalized Weighted
Sequence Alignment (NWSA) method was developed
to calculate the similarity between QTC sequences.
The method was evaluated on three different datasets
(vehicles interactions, human activities and animal
behaviors), and shown that it is out-performs state-
of-the-art quantitative methods ((Lin et al., 2013; Lin

et al., 2010; Ni et al., 2009; Zhou et al., 2008)).
Those methods are most closely related to our own
work. We therefore use these algorithms, vehicles-
interaction dataset (Lin et al., 2013), and ground truth,
as a benchmark for evaluating our own recognition
method (Section 4.1).

The spatial-temporal representation of motion in-
formation is crucial to activity recognition. Recently,
different techniques have been presented to encode
the sequence of real-valued features in a compact way.
Shi et al. (Shi et al., 2017) proposed a long-term mo-
tion descriptor called sequential deep trajectory de-
scriptor (sDTD). The method first extracts the simpli-
fied dense trajectories of single object and then con-
verts these trajectories into 2D images. Chavoshi et
al. (Chavoshi et al., 2015) proposed a visualization
technique, sequence signature (SESI), to transform
the simplest variant of QTC (QTCB) movement pat-
terns of moving point objects (MPOs) into a 2D in-
dexed rasterized space. The method in (Lin et al.,
2013) represents trajectories of pair-vehicles as a se-
ries of heat sources; then, a thermal diffusion process
creates an activity map (or 2D matrix). These meth-
ods either encode trajectories of a single object, or
rely only on traditional similarity methods (e.g. Eu-
clidean distance) which can not optimally deal with
varying lengths trajectories and compound behaviors.
The qualitative (AlZoubi et al., 2017) and the quan-
titative (Lin et al., 2013) methods have been shown
experimentally as the most effective methods for rep-
resenting vehicle pair-wise activity. We thus adopt it
as a benchmark methods, against which we evaluate
our own work.

Deep Learning Models: Recently, convolu-
tional neural networks have shown outstanding ob-
ject recognition performance especially for the large-
scale visual recognition tasks (Russakovsky et al.,
2015). It has shown a strong power in feature
learning and the ability to learn discriminative and
robust object features (e.g. shapes and textures)
from images (Oquab et al., 2014). CNN models
for the object classification problem have been de-
veloped such as AlexNet (Krizhevsky et al., 2012)
and GoogLeNet (Szegedy et al., 2015), which were
designed in the context of the “Large Scale Visual
Recognition Challenge” (ILSVRC) (Russakovsky
et al., 2015) for the ImageNet dataset (Deng et al.,
2009). A review of deep neural network architectures
and their applications for object recognition is pro-
vided by (Liu et al., 2017). Here we give an overview
of AlexNet, which we adapt for our vehicle interac-
tion recognition task.
The AlextNet model is a DCNN trained on ap-
proximately 1.2 million labeled images, and it con-

tains 1,000 different categories from the ILSVRC
dataset (Russakovsky et al., 2015). Where each im-
age in this dataset contains single object located in the
centre, occupies significant portion of the image, and
limited background clutter. AlextNet model takes the
entire image as an input and predict the object class la-
bel. The architecture of this network comprises about
650,000 neurons and 60 million parameters. It in-
cludes five convolutional layers (CL), two normali-
sation layers (NL), three max-pooling layers (MP),
three fully-connected layers (FL), and a linear layer
with softmax activation (SL) in the output layer (OL).
The dropout regularization (DR) method (Srivastava
et al., 2014) is used to reduce overfitting in the fully
connected layers and Rectified Linear Units (ReLU)
is applied for the activation of the layers. We have
tuned and evaluated the performance of this power-
ful architecture of DCNN for the vehicle interactions
recognition task.

3 Proposed Method

Our proposed method comprises of four main
components:

• We represent vehicles’ relative movements using
sequences of QTC states.

• A method to represent QTC sequences into a 2D
matrix (image texture) using one-hot vector rep-
resentation is introduced.

• We propose a novel and updated CNN model, uti-
lizing AlexNet and the ImageNet dataset, for ve-
hicles pair-activity recognition task. This results
in our new network TrajNet.

• For predicting a complete trajectory from partially
observed one, a human driver model is proposed.

Figure 1 shows the main components of our recogni-
tion method. Our method extracts QTC trajectories
from multiple consecutive observations (x,y positions
of moving vehicles) and then project them onto 2D
matrices. This results in a “trajectory texture” image
which can effectively characterize the relative mo-
tion between pairs of vehicles during a time interval
[t1, tN]. Along with the updated structure of TrajNet,
we perform transfer learning using a set of “trajectory
texture” images, for different vehicles activities. As
we will show in the experimental results, our method
generalizes across different data contexts, complete
and predicted trajectories, and enables us to consis-
tently out-perform state-of-the-art methods. We also
present our model for predicting vehicles trajectories
from incomplete ones.

3.1 Vehicle Activity Representation
Using QTC

We extract QTC features from x,y data points (2D po-
sitions) to represent the relative motion between two
vehicles, and encode their interactions as a trajectory
of QTC states. For our experiments we have used the
common QTC variant (QTCC) which provides a qual-
itative representation of the two-dimensional move-
ment of a pair of vehicles.
Definition: Given two interacting vehicles (or
vehicle-obstacle) with their x,y coordinates (centroid
positions), we define:
V 1i = {(x1,y1), ...,(xt ,yt), ...,(xN ,yN)},
V 2i = {(x′1,y′1), ...,(x′t ,y′t), ...,(x′N ,y′N)},
where (xt ,yt) is the centroid of the first interacting
vehicle at time t and (x′t ,y

′
t) is the centroid of the

second. The pair-wise trajectory is then defined as
a sequence of corresponding QTCC states: T vi =
{S1, ...,St , ...,SN}, where St is the QTCC state repre-
sentation of the relative movement of the two vehicles
(xt ,yt) and (x′t ,y

′
t) at time t in trajectory T vi; and N is

the number of observations in T vi.

3.2 Mapping QTC Trajectory into
Image Texture

The QTCC trajectory generated in Section 3.1 is a
one-dimensional sequence of successive QTCC states.
Comparing to the text data, there is no space between
QTCC states and there is no term of word. There-
fore, we translate QTCC trajectories into sequences
of characters in order to apply the same representation
technique for text data without losing position infor-
mation of each QTCC state in the sequence. Then, we
represent this sequence into numerical values so that
it could be used as an input for our CNN presented in
Section 3.3.
Our method first represents the QTCC states us-
ing the characters Cr: cr1, cr2, ..., cr81. Then, it
maps the one-dimensional sequence of characters (or
QTCC trajectory) into a two-dimensional matrix (im-
age texture) using one-hot-vector representation to ef-
ficiently evaluate the similarity of relative movement.
This results in images texture which we use as an in-
put to train our network (Tra jNet) to learn different
vehicles activities.
Definition: Given a set of trajectories ζ =
{T v1, ...,T vi, ...T vn} where n is the number of trajec-
tories in ζ. We convert each QTC trajectories in ζ into
sequences of characters ζC = {Cv1, ...,Cvi, ...Cvn}.
Then, we represent each sequence Cvi in ζC into an
image texture Ii using one-hot vector representation,
where the columns represent Cr (or QTCC states)

Algorithm 1 Image Representation of QTC Trajec-
tory

1: Input: set of trajectories ζ =
{T v1, ...,T vi, ...T vn} where n is the number
of trajectories in ζ

2: Input: QTCC states Cr: cr1(− −
− −), ...,cr81(+ + + +)

3: Output: n 2D matrices (images I) of movement
pattern

4: Extract: sequences of characters ζC =
{Cv1, ...,Cvi, ...Cvn} from QTCC trajectories
ζ

5: Define: a 2D matrix (Ii) with size (N × 81) for
each sequence in ζC, where 81 is the number of
characters in Cr and N is the length of Cvi

6: Initialise: set all the elements of Ii into zero
7: Update: each matrix in I:
8: for i = 1 to n do
9: for j = 1 to N do

10: Ii(j,Cvi(j)) = 1
11: end for
12: end for
13: return I

and the rows indicate the present of the character (or
QTCC state) at the given time-stamp. Algorithm 1
describes representing QTCC trajectories into image
texture. For example, in the movement between two
vehicles in figure 6(a): one vehicle is passing by the
other vehicle (or obstacle) into the left during the time
interval t1 to te. This interaction is described us-
ing QTCC: (0 − 0 0,0 − 0 0, ...,0 − 0 −,0 −
0 −, ...)t1−te or (cr32 cr32 ... cr31 cr31 ...)t1−te . This
trajectory can be represented in an image texture Ii
using our Algorithm 1.

3.3 Vehicle Activity Recognition

Our trajectory representation (section 3.2) results
in two-dimensional numerical matrices (or images).
Where each activity is represented in a unique image
texture which can be used as an input to train our pro-
posed CNN. Our vehicle trajectory images represen-
tation can be challenging, where trajectory encoding
have variations based on the differences in vehicles’
behaviors —although the overall activity is the same.
This variation has motivated us to use a CNN based
approach for our classification problem.

Gaining inspiration from AlexNet we aim to take
advantage of its structure; which is robust in classi-
fying many images with complex structures and fea-
tures. However, directly learning the parameters of
this network using relatively small images texture of

QTC trajectories dataset is not effective. We adapt the
architecture of the CNN model (AlexNet) by replac-
ing and fine-tuning the last convolutional layer (CL5),
the last three fully connected layers (FL6, FL7 and
FL8), softmax (SL) and the output layer (OL) which
result in our new network TrajNet (figure 1). We
replace the last CL5 layer with a smaller layer CLn
where we now use 81 convolutional kernels. This was
followed by ReLU and max pooling layers (same pa-
rameters as in (Krizhevsky et al., 2012)). We then in-
clude one FLn1, with 81 nodes. This replaces the last
two fully connected layers (FL6 and FL7), of 4096
nodes each. The reduced number of nodes is corre-
lated to the reduction in higher level features in our
trajectory texture images (as opposed to (Deng et al.,
2009)), enabling more tightly coupled responses. Af-
ter our new FLn1 we include a ReLU and dropout
layer (50%). According to the number of vehicle ac-
tivities (a) defined in the dataset, we add a final new
fully connected layer (FLn2) for a classes, a softmax
layer (SLn), and a classification output layer (OLn).
Where the output of the last fully-connected layer is
fed to an a-way softmax (or normalized exponential
function) which produces a distribution over the a
class labels. Then, we develop training and testing
procedures based on our images texture I. Each image
texture (Ii) is used as input for the data layer data for
the network. Finally, we set the network parameters
as follow: the iteration number set to 104; the initial
learn rate 10−4; and mini batch size 4. These con-
figurations are to ensure that the parameters are fine
tuned for the activity recognition task. The other net-
work parameters are set as default values (Krizhevsky
et al., 2012).

3.4 Trajectory Prediction Model

Trajectory prediction is an important precursor to cap-
ture the full vehicle scenario and as a pre-processing
step for vehicle activity classification. To be able to
do this human driver models are typically used to pre-
dict vehicles trajectories given a specific situation.
We propose a Feed Forward Neural Network (FFNN)
as a driver model to predict complete vehicles tra-
jectories using partially observed (or incomplete tra-
jectories). Figure 3 shows our FFNN architec-
ture. It consists of 9 hidden layers, and each
hidden layer has z nodes, were {z ∈ Z : Z =
[10,10,20,20,50,20,20,20,15]}. Given a hidden
layer H i with z nodes, z=̂ith element in Z. This con-
figuration was set empirically, and was well suited to
capture the complex driving behaviors a human can
make. Our FFNN passes information in one direction,
first through the input layer, then modified in hidden

...

...
...

P1

P2

P3

P4

H1
1

H1
2

H1
3

H1
z

H9
1

H9
2

H9
3

H9
z

O1

O2

Input
layer

Hidden
layer

Hidden
layer

Output
layer

. . .

Figure 3: Driver model neural network architecture, show-
ing layers and associated nodes. With inputs, outputs and
hidden states, P,O and H, respectively. Note that we use 9
hidden layers, each with z hidden states.

layers and finally passed to the output layers. Layers
are comprised of nodes, these nodes have weights as-
sociated with each input to the node. To generate an
output for a node the sum of the weighted inputs and
a bias value are calculated and then passed through
an activation function, here we use a hyperbolic tan-
gent function. It can be seen as a way to approxi-
mate a function, where the values of the node weights
and biases are learned through training. Here training
data includes the inputs with their correct or desired
outputs/targets. Training is done through Levenberg-
Marquardt backpropagation with a mean squared nor-
malized error loss function.
Definition: Given x,y and x′,y′ as centroid positions

of the ego-vehicle and obstacle, respectively. Relative
changes in heading angle and translation of the ego-
vehicle between times (t− 1) and t are calculated as
follow:

θ(t) = tan−1(
(yt − yt−1)

(xt − xt−1)
, (1)

∇(t) =
√
(xt − xt−1)2 +(yt − yt−1)2, (2)

Where θ(t) is the heading angle and ∇(t) is the mag-
nitude of the change in the ego-vehicle’s position.
Both features (θ(t) and ∇(t)) were used as primary
data to train our FFNN. To remove noise, from small
changes in driver heading angles, we average the
heading angle and translation over the previous 0.5s.

From this we can define the inputs to our FFNN as:

Θ(t) = 1/5
t

∑
i=(t−5)

θ(i), (3)

R (t) = 1/5
t

∑
i=(t−5)

∇(i), (4)

β(t) =
t

∑
j=1

(
∇(j)sin

(j

∑
i=1

θ(i)
))

, (5)

λ(t) =
√
(xt − x′t)2 +(yt − y′t)2. (6)

Where λ(t) is the distance between the ego-vehicle
and the object and β(t) represent the lateral shift
from the centre of the road. This was included to
bound the driver model from going off the road when
avoiding the obstacle. Θ and R are directly related
the vehicle movement, β relates the vehicle posi-
tion to the road, and λ relates the vehicle to the ob-
stacle. These inputs are shown in figure 3, where
[P1,P2,P3,P4] ≡ [Θ(t),R (t),β(t),λ(t)] and outputs
are [O1,O2] = [θ(t +1),∇(t +1)]. The predicted tra-
jectory is determined iteratively, at each time-step;
this is described in Algorithm 2.

Algorithm 2 Vehicle Trajectory Prediction
. A distance of ε meters between the vehicle and the

obstacle was chosen to start prediction.
1: if (λ(t)< ε) then
2: while ((xt < x′t)∧ (yt < y′t)) do
3: Inputs: [Θ(t),R (t),β(t),λ(t)], using (3)-

(6), respectively;
4: Outputs: [θ(t +1),∇(t +1)];
5: Update Trajectory:{

xt+1 = ∇(t +1)cos(∑t+1
i=1 θ(i))+ xt ,

yt+1 = ∇(t +1)sin(∑t+1
i=1 θ(i))+ yt .

6: Increment time-step: t = t +1;
7: end while
8: end if

4 Experiments

We have performed comparative experiments in
order to evaluate the effectiveness of our method, us-
ing two publicly available datasets. These datasets
represent different application domains, namely, vehi-
cle traffic movement from surveillance cameras (Lin
et al., 2013) and vehicle-obstacle interaction for col-
lision avoidance application (VOI, 2018).

Figure 4: Sample of Traffic Dataset (Lin et al., 2013).

• We first directly compare the performance of our
classification method (described in Section 3.3)
against state-of-the-art quantitative and qualita-
tive methods (AlZoubi et al., 2017; Lin et al.,
2013; Lin et al., 2010; Ni et al., 2009; Zhou et al.,
2008) using the traffic dataset presented in (Lin
et al., 2013).

• Then, we evaluate the performance of our super-
vised method on our dataset for vehicle-obstacle
interaction (VOI, 2018) using complete and pre-
dict trajectories.

All experiments were run on an Intel Core i7 desktop,
CPU@3.40GHz with 16.0GB RAM.

4.1 Experiment 1: Classification of
Vehicle Activities

The state of the art pair-activity classification meth-
ods (AlZoubi et al., 2017; Lin et al., 2013) were
shown to outperform a number of other methods
(Zhou et al., 2008; Ni et al., 2009; Lin et al., 2010),
using the traffic dataset presented in (Lin et al., 2013).
We therefore use these algorithms, traffic dataset, and
ground truth, as a benchmark for evaluating our own
classification method.

4.1.1 The Traffic Dataset

The traffic dataset was extracted from 20 surveillance
videos. Five different vehicles-activities, {Turn, Fol-
low, Pass, BothTurn, and Overtake} are represented
and corresponding annotations are provided. In total
there are 175 clips; 35 clips for each activity. The
dataset includes x,y coordinates for the centroid of
each vehicle in each frame, a time-stamp t, and each
clip contains 20 frames. Figure 4 shows example
frames from the dataset, and Table 1 shows the def-
initions of each activity in the dataset. To best of our
knowledge this is the only pair-wise traffic surveil-
lance dataset publicly available.

4.1.2 Results for Vehicle Activity Classification

We used the provided x,y coordinate pairs for each ve-
hicle as inputs, and constructed corresponding QTCC
trajectories for each video clip. Then, we constructed

Table 1: Definition of vehicles pair-activities.

Activity Description
Turn One vehicle moves straight and an-

other vehicle in another lane turns
right.

Follow One vehicle followed by another
vehicle on the same lane.

Pass One vehicle passes the crossroad
and another vehicle in the other di-
rection waits for green light.

Bothturn Two vehicles move in opposite di-
rections and turn right at same time.

Overtake A vehicle is overtaken by another
vehicle.

corresponding image texture (Ii) for each QTCC tra-
jectory using Algorithm 1. Figure 5 shows images
texture for five different interactions for the samples
in figure 4.
To determine the classification rates using our
method, we used 5-fold cross validation. On each iter-
ation, we split the images texture (I) into training and
testing sets at ratio of 80% to 20%, for each class. The
training sets were used to parametrize our network
(Tra jNet). The test images texture were then classi-
fied by our trained Tra jNet. Our results are shown in
Table 2, which includes comparative results obtained
by (AlZoubi et al., 2017), (Lin et al., 2013), and three
other algorithms (Zhou et al., 2008; Ni et al., 2009;
Lin et al., 2010).The average error (AVG Error) is cal-
culated as the total number of incorrect classifications
(compared with the ground truth labeling) divided by
the total number of activity sequences in the test set.
Table 2 shows that our method outperforms the other
five, and is able to classify the dataset with errors rate
1.16% and with a standard deviation 0.015.

4.2 Experiment 2: Classification of
Vehicle-Obstacle Interaction

We are primarily interested in the supervised recog-
nition of the relative interaction between the ego-
vehicle and its surroundings, which can help in the
decision making and predicting any potential colli-

Figure 5: Images Texture Representation of Traffic Dataset.

Table 2: Misclassification error for Different Algorithms on the Traffic Dataset.

Type Tra jNet NWSA (Al-
Zoubi et al.,
2017)

Heat-Map
(Lin et al.,
2013)

WF-SVM
(Zhou et al.,
2008)

LC-SVM
(Ni et al.,
2009)

GRAD (Lin
et al., 2010)

Turn 2.9% 2.9% 2.9% 2.0% 16.9% 10.7%
Follow 0.0% 5.7% 11.4 % 22.9% 38.1% 15.4%
Pass 0.0% 0.0% 0.0% 11.7% 17.6% 15.5%
Bothturn 0.0% 2.9% 2.9% 1.2% 2.9% 4.2%
Overtake 2.9% 5.7% 5.7% 47.1% 61.7% 36.6%
AVG Error 1.16% 3.44% 4.58% 16.98% 27.24% 16.48

Table 3: Definition of Vehicle-Obstacle Interactions.

Scenario Description
Left-Pass The ego-vehicle successfully passes

the object one the left.
Right-
Pass

The ego-vehicle successfully passes
the object one the right.

Crash The ego-vehicle and the obstacle
collide.

sions. We have constructed an extensive and expert-
annotated dataset of vehicle-obstacle interactions,
collected in a simulation environment. This presents
a new challenging datasets, and therefore a new clas-
sification problem. In this section we evaluate the ef-
fectiveness and the accuracy of our supervised recog-
nition method and our driver model for trajectory pre-
diction.

4.2.1 Setup

For our pair-wise vehicle-obstacle interactions and
our trajectory prediction model we collected data
through simulation. As we have focused on near col-
lision scenarios, there is not much available data, and
real testing would not be possible for the crash sce-
nario. Data was gathered using a simulation environ-
ment developed in Virtual Battlespace 3 (VBS3), with
the Logitech G29 Driving Force Racing Wheel and
pedals. Here a model of Dubai highway was used. We
consider a six lane road with an obstacle in the cen-
ter lane. The experiment consisted of 40 participants,

all of varying ages, genders and driving experiences.
Participants were asked to use their driving experi-
ence to avoid the obstacle. A Škoda Octavia was used
in all trails, and with maximum speed 50KPH. We
recorded the obstacle and ego-vehicle’s coordinates
(the x,y center position), velocity, heading angle, and
distance from each other. The generated trajectories
were recorded at 10Hz.

4.2.2 Simulator Dataset

We have developed a new dataset for vehicle-obstacle
interaction recognition task (VOI, 2018). The dataset
includes three subsets: the first (SS1) contains of 122
vehicle-obstacle trajectories of about 600 meters each
(43,660 samples) for training our trajectory predic-
tion model. The second subset (SS2) contains of 277
complete trajectories of three different scenarios (67
crash, 106 left-pass, and 104 right-pass trajectories);
which we consider to be ground truth to evaluate the
accuracy of our recognition method and our trajec-
tory prediction model. Where the distance between
the vehicle and the obstacle (length of the trajectory)
is 50 meters. Here each scenario was observed and
manually labelled by two experts. Table 3 shows the
definitions of each scenario in the dataset. Figure 6
(a)-(c) shows samples of three different complete tra-
jectories for Left-Pass, Right-Pass and Crash, respec-
tively. Finally, the third subset (SS3) contains of 277
incomplete trajectories. This subset is derived from
the complete trajectories (SS2) and used to evaluate
our recognition method and our trajectory prediction

(a) Left-Pass (b) Right-Pass (c) Crash (d) Driver Model
Figure 6: Examples of scenarios from VBS3 with trajectory overlaid in red (a-c). The ego-vehicle is the green car and the
obstacle is the white car. (d) shows an example of the driver model, where the solid red line is the real trajectory and the
dashed line is the predicted trajectory.

0 10 20 30 40 50 60 70 80 90 100

101 Epochs

10-2

10-1

100

101

102

M
ea

n
 S

q
u

ar
ed

 E
rr

o
r

(m
se

)

Best Validation Performance is 0.014661 at epoch 95

Train
Validation
Test
Best

Figure 7: Training performance of driver model, and num-
ber of training iterations.

model. For trajectory prediction we considered a dis-
tance of ε = 25 meters between the ego-vehicle and
the obstacle. This distance represented 50% of the
complete trajectories. Figure 6 (d) shows an exam-
ple of the incomplete trajectory for Right-Pass sce-
nario, where the solid red line is the real trajectory
(25 meters) and the dashed line is the predicted tra-
jectory. Similarly, the third subset contains 67 crash,
106 left-pass, and 104 right-pass of incomplete trajec-
tories with length 25 meters each.

4.2.3 Evaluating Trajectory Prediction Model

We evaluated the accuracy of our driver model for tra-
jectory predictions. First, we train our FFNN (Sec-
tion 3.4) using SS1, containing 43,660 samples. We
split the samples in SS1 into training, validation and
test subsets, 70%, 15% and 15%, respectively. The
training subset is used to calculate network weights,
the validation subset to obtain unbiased network pa-
rameters for training, and the test subset is used to

evaluate performance. Figure 7 shows the perfor-
mance of our network.

We evaluated the performance of our trajectory
prediction algorithm on SS3, consisting of 277 incom-
plete trajectories; we considered complete trajectories
(SS2) as the ground truth. Our test set contains 67
crash, 106 left-pass, and 104 right-pass trajectories.
Three examples from each scenario of the generated
trajectories are shown in figure 8. Here the trajec-
tory starts closest to the origin and travels diagonally,
from left to right. Human generated trajectories are
in green and red (where red is the ground truth), the
predicted trajectories are in blue. We calculate the tra-
jectory prediction error using the Modified Hausdorff
Distance (MHD) (Dubuisson and Jain, 1994). We se-
lected the MHD because its value increases monoton-
ically as the amount of difference between the two
sets of edge points increases, and it is robust to out-
lier points. Given the predicted trajectory Tv and the
ground-truth trajectory as Tv

gt , we calculate our error
measure as:

M H D = min(d(Tv,Tv
gt),d(Tv

gt ,Tv)). (7)

where d(∗) is the average minimum Euclidean dis-
tances between points of predicted and ground-truth
trajectories. The error across the entire test set is
shown in figure 9. Here the red line represents the
mean error and the bottom and top edges of the box
indicate the 25th and 75th percentiles, respectively.
The whiskers extend to cover 99.3% of the data and
the red pluses represent outliers. Across all scenarios
an average error of 0.4m was observed, this amount of
error is tolerable because the overall characteristic of
the trajectory is still captured, also, a typical highway
lane can be up to 3m, therefore variations can still be
within lane.

120 125 130 135 140 145 150 155

x-axis (m)

185

190

195

200

205

210

215

220

225

230

y-
ax

is
(m

)

Obstacle
Previous Trajectory
Predicted
Ground Truth

(a) Left-Pass–0.20m

130 135 140 145 150 155

x-axis (m)

185

190

195

200

205

210

215

220

225

y-
ax

is
(m

)

Obstacle
Previous Trajectory
Predicted
Ground Truth

(b) Right-Pass–0.18m

50 55 60 65 70 75 80 85

x-axis (m)

70

75

80

85

90

95

100

105

110

115

120

y-
ax

is
(m

)

Obstacle
Previous Trajectory
Predicted
Ground Truth

(c) Crash–0.02m

115 120 125 130 135 140 145 150 155

x-axis (m)

185

190

195

200

205

210

215

220

225

230

y-
ax

is
(m

)

Obstacle
Previous Trajectory
Predicted
Ground Truth

(d) Left-Pass–0.69m

220 225 230 235 240 245 250 255

x-axis (m)

310

315

320

325

330

335

340

345

350

355

y-
ax

is
(m

)

Obstacle
Previous Trajectory
Predicted
Ground Truth

(e) Right-Pass–0.14m

50 55 60 65 70 75 80 85

x-axis (m)

75

80

85

90

95

100

105

110

115

120

y-
ax

is
(m

)

Obstacle
Previous Trajectory
Predicted
Ground Truth

(f) Crash–0.29m
Figure 8: Sample trajectories with associated errors, M H D. Two sets of example trajectories (top and bottom rows), covering
all three scenarios. (a)-(c) and (d)-(f) represent left-pass, right-pass, and, crash scenarios, respectively.

Left-Pass Right-Pass Crash

Scenario

0

0.5

1

1.5

2

2.5

E
rr

or
 fr

om
 g

ro
un

d
tr

ut
h

(m
)

Figure 9: Errors (M H D) from scenarios, across SS3.

4.2.4 Results for Vehicle-Obstacle Interaction
Classification

We evaluated our recognition method on both com-
plete (SS2) and incomplete trajectories (SS3). First,
we used the x,y coordinate pairs for both the vehicle
and the obstacle from SS2 as inputs, and constructed
corresponding QTCC trajectories for each scenario.
Then, we constructed the corresponding image tex-
ture (Ii) for each QTCC trajectory using Algorithm 1.
To determine the classification rates using our method
on SS2 dataset, we used 5-fold cross validation. On
each iteration, we split the images texture in SS2 into
training and testing sets at ratio of 80% to 20% re-
spectively, for each class. The training sets were used
to parameterise our network (Tra jNet). The test data
was then classified by our trained Tra jNet. Our re-
sults are shown in Table 4, which includes results of

complete trajectories (Complete Traj). The average
error (AVG Error) is calculated as the total number
of incorrect classifications (compared with the ground
truth labeling) divided by the total number of activity
sequences in the test set.

For incomplete trajectories, we first trained and
parametrized our FFNN (figure 3) using SS1. Then,
we used our driver model (Section 3.4) to predict the
complete trajectory for each scenario which resulted
in a new subset (SS4). Similarly, we used the x;y co-
ordinate pairs for both the vehicle and the obstacle
from SS4 as inputs, and constructed QTCC trajecto-
ries and their corresponding images texture (I) for all
scenarios. Figure 6 (d) shows a sample of predicted
trajectory. Again, to determine the classification rates
using our method on SS4, we used 5-fold cross vali-
dation. On each iteration, we split the images texture
in SS4 into training and testing sets at ratio of 80% to
20%, for each class. The training sets were used to pa-
rameterise our network (Tra jNet). The test data was
then classified by our trained Tra jNet. Our results are
shown in Table 4, which includes results of predicted
trajectories (Predicted Traj). The results show that
our method has high classification accuracy for both
complete and predicted trajectories. The total compu-
tation time of predicting and recognizing the scenario
that the vehicle is about to enter is 28 millisecond.

5 Conclusion and Discussion

In this paper we have presented a new method for
predicting and classifying pair-activities of vehicles

Table 4: Misclassification error for Complete and Predicted
Trajectories of Vehicle-Obstacle Interaction Dataset.

Type Complete
Traj (SS2)

Predicted
Traj (SS4)

Crash 0.0% 0.0%
Left-Pass 0.0% 0.0%
Right-Pass 0.0% 1.0%
AVG Error 0.0% 0.3%

using a new deep learning framework. Our method
uses the QTC representation, and we have constructed
corresponding image textures for each QTC trajec-
tory using one-hot vector. Our trajectory represen-
tation, successfully encodes different types of vehi-
cles activities, and is used as an input for Tra jNet.
Tra jNet offers a compact network for classifying
pair-wise vehicle interactions. We also demonstrate
how we efficiently used limited amount of dataset to
train Tra jNet, and achieved high accuracy classifica-
tion rates across different and challenging datasets.
We have conducted direct comparisons against the
state-of-the-art qualitative (AlZoubi et al., 2017) and
quantitative (Lin et al., 2013) methods, which have it-
self been shown to outperform other recent methods.
We have shown that our classification method outper-
forms that developed by (Lin et al., 2013) and (Al-
Zoubi et al., 2017); for the classification of traf-
fic data, we achieved 1.16% error rate, compared to
3.44%, 4.58%, 16.98%, 27.24%, and 16.48% of (Al-
Zoubi et al., 2017), (Lin et al., 2013), (Zhou et al.,
2008), (Ni et al., 2009) and (Lin et al., 2010), respec-
tively.
We have also presented our vehicle-obstacle interac-
tion dataset for complete and incomplete scenarios,
which provides a detailed and useful resource for re-
searchers studying vehicle-obstacle behaviors, and is
publicly available for download. We evaluated our
classification method on this dataset, we achieved
0.0% and 0.3% for both complete and predicted sce-
narios datasets, respectively. This again demonstrates
the effectiveness of our activity recognition method.
To predict a full scenario from partial-observed one
we have presented a FFNN. We evaluated our trajec-
tory prediction method on the same vehicle-obstacle
dataset and we achieved average error of 0.4m.

Encouraged by our results, we plan to extend our
work by integrating our vehicles activity recognition
method with our ongoing project of autonomous vehi-
cle system to provide valuable information about the
type of the scenario the vehicle is in (or about to enter)
to increase the safety and to help in decision making
processes.

REFERENCES

(2018). Voidataset.
Ahmed, S. A., Dogra, D. P., Kar, S., and Roy, P. P.

(2018). Trajectory-based surveillance analysis: A sur-
vey. IEEE Transactions on Circuits and Systems for
Video Technology.

AlZoubi, A., Al-Diri, B., Pike, T., Kleinhappel, T., and
Dickinson, P. (2017). Pair-activity analysis from video
using qualitative trajectory calculus. IEEE Transac-
tions on Circuits and Systems for Video Technology.

Chavoshi, S. H., De Baets, B., Neutens, T., Delafontaine,
M., De Tré, G., and de Weghe, N. V. (2015). Move-
ment pattern analysis based on sequence signatures.
ISPRS International Journal of Geo-Information,
4(3):1605–1626.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. (2009). Imagenet: A large-scale hierarchical image
database. In Computer Vision and Pattern Recogni-
tion, 2009. CVPR 2009. IEEE Conference on, pages
248–255. IEEE.

Dodge, S., Laube, P., and Weibel, R. (2012). Movement
similarity assessment using symbolic representation
of trajectories. International Journal of Geographical
Information Science, 26(9):1563–1588.

Dubuisson, M.-P. and Jain, A. K. (1994). A modified haus-
dorff distance for object matching. In Proceedings of
12th international conference on pattern recognition,
pages 566–568. IEEE.

Hanheide, M., Peters, A., and Bellotto, N. (2012). Analy-
sis of human-robot spatial behaviour applying a qual-
itative trajectory calculus. In RO-MAN, 2012 IEEE,
pages 689–694. IEEE.

Khosroshahi, A., Ohn-Bar, E., and Trivedi, M. M. (2016).
Surround vehicles trajectory analysis with recurrent
neural networks. In Intelligent Transportation Systems
(ITSC), 2016 IEEE 19th International Conference on,
pages 2267–2272. IEEE.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Advances in neural information process-
ing systems, pages 1097–1105.

Lin, W., Chu, H., Wu, J., Sheng, B., and Chen, Z. (2013). A
heat-map-based algorithm for recognizing group ac-
tivities in videos. IEEE Transactions on Circuits and
Systems for Video Technology, 23(11):1980–1992.

Lin, W., Sun, M.-T., Poovendran, R., and Zhang, Z. (2010).
Group event detection with a varying number of group
members for video surveillance. IEEE Transac-
tions on Circuits and Systems for Video Technology,
20(8):1057–1067.

Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., and Alsaadi,
F. E. (2017). A survey of deep neural network ar-
chitectures and their applications. Neurocomputing,
234:11–26.

Ni, B., Yan, S., and Kassim, A. (2009). Recognizing human
group activities with localized causalities. In Com-
puter Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pages 1470–1477. IEEE.

Ohn-Bar, E. and Trivedi, M. M. (2016). Looking at hu-
mans in the age of self-driving and highly automated
vehicles. IEEE Transactions on Intelligent Vehicles,
1(1):90–104.

Oquab, M., Bottou, L., Laptev, I., and Sivic, J. (2014).
Learning and transferring mid-level image represen-
tations using convolutional neural networks. In Com-
puter Vision and Pattern Recognition (CVPR), 2014
IEEE Conference on, pages 1717–1724. IEEE.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., et al. (2015). Imagenet large scale visual
recognition challenge. International Journal of Com-
puter Vision, 115(3):211–252.

Shi, Y., Tian, Y., Wang, Y., and Huang, T. (2017). Sequen-
tial deep trajectory descriptor for action recognition
with three-stream cnn. IEEE Transactions on Multi-
media, 19(7):1510–1520.

Shi, Y., Zeng, W., Huang, T., and Wang, Y. (2015). Learn-
ing deep trajectory descriptor for action recognition
in videos using deep neural networks. In Multimedia
and Expo (ICME), 2015 IEEE International Confer-
ence on, pages 1–6. IEEE.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. (2014). Dropout: a simple way
to prevent neural networks from overfitting. The Jour-
nal of Machine Learning Research, 15(1):1929–1958.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. (2015). Going deeper with convolutions.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1–9.

Van de Weghe, N. (2004). Representing and reasoning
about moving objects: A qualitative approach. PhD
thesis, Ghent University.

Xiong, X., Chen, L., and Liang, J. (2018). A new frame-
work of vehicle collision prediction by combining
svm and hmm. IEEE Transactions on Intelligent
Transportation Systems, 19(3):699–710.

Xu, D., He, X., Zhao, H., Cui, J., Zha, H., Guillemard,
F., Geronimi, S., and Aioun, F. (2017). Ego-centric
traffic behavior understanding through multi-level ve-
hicle trajectory analysis. In Robotics and Automa-
tion (ICRA), 2017 IEEE International Conference on,
pages 211–218. IEEE.

Xu, H., Zhou, Y., Lin, W., and Zha, H. (2015). Unsuper-
vised trajectory clustering via adaptive multi-kernel-
based shrinkage. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 4328–
4336.

Zhou, Y., Yan, S., and Huang, T. S. (2008). Pair-activity
classification by bi-trajectories analysis. In Computer
Vision and Pattern Recognition, 2008. CVPR 2008.
IEEE Conference on, pages 1–8. IEEE.

