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Abstract 

Microgrids are becoming a potential solution for combining distributed generation units, such 

as photovoltaic panels, wind turbines and energy storage systems. As a simple and small version 

of a microgrid, a nanogrid is a power distribution system that is suitable for a single node, such 

as a small building or a private house. The nanogrid can be flexibly connected to or 

disconnected from other power entities through a gateway. In most cases, the nanogrid is 

connected to the utility grid to avoid the power outage and to increase the operational 

efficiency. However, the current standalone nanogrid model is not suitable because an 

imbalance between the generated and consumed electrical power might occur. 

The main objective of this research work is to develop a self-sustained and flexible control 

strategy for autonomous direct current (DC) nanogrids in remote and rural areas without the 

need for a communication system. The proposed control strategy for the nanogrids is based 

upon a hierarchical control, in which the primary control manages the power balance inside the 

nanogrids and the secondary control is responsible for removing deviation of the DC bus voltage 

caused by droop operation. The state of charge (SoC) of the battery and the external DC bus 

voltage are taken into account in the proposed control strategy in order to avoid the 

overcharge/deep discharge of the battery as well as the collapse of the external DC bus. The 

control algorithm also ensures a flexible exchange of power inside a nanogrid as well as among 

multiple nanogrids without any extra digital communication link. Bidirectional power flow 

among multiple nanogrids is implemented through a dedicated interconnected bidirectional 

Dual Active Bridge (DAB) DC/DC converter installed inside each nanogrid to ensure a galvanic 

isolation among multiple, interconnected nanogrids. The proposed control strategy is validated 

through both simulations and experiments. Simulation and experimental results are used to 

validate the operation of the proposed control algorithm and prove the resemblance between 

theory and experiments.  

However, in order to implement the proposed control strategy, a model of the DC nanogrid has 

to be developed. For that reason, modeling of every single converter in the system should be 

conducted. The second important contribution of this research is modeling and control for 

converters independently, including a bidirectional buck converter and a dual active bridge 

converter. A small-signal model based on the state-space averaging technique for the 

bidirectional buck converter is developed, in which only the mean value (i.e. “zeroth” harmonic) 

of the state variables is taken into account. On the other hand, the generalized state-space 

averaging-based modeling method is used to obtain the state-space representation of the DAB 
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converter, in which the direct current (DC) component and the fundamental harmonics in the 

Fourier series expansion of state variables are considered. Transfer functions from control-to-

output are determined, which will be used to define two controllers for the current and voltage 

loops in a cascaded control structure. Simulations and experiments will be used to validate the 

operation of the proposed method. 

As aforementioned, modeling and control for each converter in the DC nanogrid is performed 

separately. Nevertheless, when these converters are connected to form a complete DC nanogrid, 

they will affect each other and the stability of the entire system is influenced as well. To 

overcome this problem, a model of the entire system has to be developed and the system 

stability has to be analyzed. For this purpose, the small-signal transfer function of a DC nanogrid 

is synthesized from the small-signal transfer functions of every single converter of the system. 

Using this transfer function, the system stability is analyzed and the secondary controller is 

designed. Simulation and experimental results are used to verify a stable operation of the DC 

nanogrid system. 
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Zusammenfassung 

Microgrids stellen eine Möglichkeit zum Zusammenschluss verteilter Erzeugersysteme, wie z.B. 

Photovoltaikanlagen, Windenergieanlagen sowie Speicherlösungen, dar. Als ein daraus 

abgeleitetes Subsystem mit begrenzter geometrischer Ausdehnung gilt das Nanogrid, das für 

einzelne Netzknoten, wie sie im Bereich von kleineren öffentlichen Gebäuden, oder 

Privathaushalten anzutreffen sind, zum Einsatz kommt. Über eine Schnittstelle kann das 

jeweilige Nanogrid flexibel mit lokalen Erzeuger-, oder Verbrauchereinheiten verbunden 

werden. Für einen verlustminimalen und ausfallsicheren Betrieb arbeiten die Nanogrids 

überwiegend im Parallelbetrieb zum Verbundnetz. Die bislang vorhandenen Strategien zur 

Beherrschung des Inselnetzbetriebs sind aufgrund des etwaigen Ungleichgewichts zwischen 

Erzeugung und Verbrauch jedoch nicht zwangsläufig stabil. 

Das Hauptziel der vorliegenden Forschungsarbeit ist die Entwicklung einer Regelungsstrategie 

für autonome, flexibel erweiterbare DC Nanogridsysteme in abgelegenen, ländlichen Gebieten 

ohne die Notwendigkeit einer zusätzlichen, parallelen Kommunikationsinfrastruktur. Die 

vorgeschlagene Regelung basiert auf einem hierarchischen Ansatz, bei dem eine 

Primärregelung das Leistungsgleichgewicht innerhalb eines Nanogridknotens sicherstellt und 

eine Sekundärregelung stationäre Abweichungen der internen DC Spannung durch eine 

Statikaufschaltung ausregelt. Zusätzlich werden der Ladezustand (SoC) der Batterie sowie die 

externe DC Spannung durch die Regelung berücksichtigt, um ein Überladen/Tiefentladen der 

Batterie zu vermeiden und einem Systemzusammenbruch entgegenzuwirken. Weiterhin stellt 

der Regelalgorithmus einen flexiblen Energieaustausch innerhalb eines und zwischen mehreren 

Nanogrids sicher. Letzteres wird durch den bidirektionalen Betrieb eines DC-DC Wandlers in 

Form einer Dual Active Bridge (DAB) in jeder Einheit ermöglicht, der zusätzlich für die 

galvanische Trennung zwischen den Nanogridknoten sorgt. Zur Koordinierung des 

Energieaustauschs zwischen den Nanogridknoten ist kein zusätzlicher Kommunikationskanal 

notwendig. Die Validierung des gewählten Regelungsansatzes erfolgt auf Basis von 

Simulationen und Laborexperimenten. 

Zur Auslegung der jeweiligen Reglerparameter wird ein Systemmodell des Nanogrids 

entworfen. Die Modellierung und Regelung eines Zweiquadranten-Tiefsetzstellers sowie eines 

DAB Konverters stellt in diesem Zusammenhang den zweiten wichtigen Beitrag der 

vorliegenden Forschungsarbeit dar. Für den Tiefsetzsteller wird ein Kleinsignalmodell auf Basis 

des Mittelwertansatzes im Zustandsraum entworfen. Die Zustandsraumdarstellung der DAB 

erfolgt unter Anwendung des verallgemeinerten Mittelwertmodells, bei dem neben den 
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Gleichgrößen zusätzlich die infolge der Schaltfrequenz erzeugte Grundschwingung (erste 

Oberschwingung) der Zustandsgrößen berücksichtigt wird. Die daraus ermittelten 

Übertragungsfunktionen zwischen Stell- und Ausgangsgrößen dienen anschließend der 

Bestimmung der Reglerparameter der Strom- und Spannungsregelschleifen in einer 

Kaskadenstruktur. Auch hier werden Simulationen und praktische Experimente zur Validierung 

durchgeführt. 

Wie beschrieben, erfolgt die Modellierung und Regelung der einzelnen Wandlerstufen zunächst 

isoliert. Die Überlagerung der Einzelübertragungsfunktionen zur Beschreibung des gesamten 

Nanogrids führt dabei zu Wechselwirkungen, die die Stabilität des Gesamtsystems beeinflussen 

können. Für die Stabilitätsbetrachtung wird daher die Gesamtübertragungsfunktion 

herangezogen, die als Kleinsignaldarstellung aus der Summe der Kleinsignaldarstellungen der 

einzelnen Wandlerstufen hervorgeht. Sie dient der Auslegung der Parameter für die 

Sekundärregelung. Simulation und praktische Untersuchungen zeigen, dass unter Anwendung 

dieser Methodik ein stabiler Inselbetrieb des Nanogrids sichergestellt ist. 
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1 Introduction 

1.1 Motivation  

Electrical energy is a critical factor for solving many issues, including poverty, lack of education 

and unsustainable environment [1]. However, supplying electricity to off-grid areas is still 

limited due to economic issues, accessibility, lack of resources or a scattered population 

[2]– [4]. According to the latest survey conducted by the International Energy Agency (IEA), 

around 1.2 billion people living in rural areas of developing countries still do not have access 

to electricity [5]. For example, in a recent study carried out in six states of India by the Council 

for Energy, Environment and Water, around 50% of the households have no electricity even 

though a grid connection is available [6]. Expansion of the utility grid is one option for 

providing electricity to rural areas [1]. However, it is not a quickly realizable solution in 

developing countries as expansion of the utility grid demands a very high cost of investment 

[7], [8]. For this reason, off-grid is considered as a promising solution for providing electricity 

in such rural areas. 

In the past, electricity in off-grid areas was often generated by using generators equipped with 

combustion engines. Yet, the fossil fuel consumed by the engine is expensive because of the 

high cost for transportation to remote areas, resulting in a high price of electricity. In addition, 

engines are unfriendly to the environment as they emit carbon dioxide during operation. An 

alternative is to use renewable energy sources (RESs) locally, such as solar or wind energy 

[9], [10]. This solution provides a clean, reliable and renewable electricity. Compared to fossil 

fuels, RESs have advantages in transmission, transportation, grid extension and environmental 

protection. For instance, a solar or wind farm can be located close to the consumers, resulting 

in a shorter transmission distance [11]. However, power generated by RESs is intermittent due 

to changes in the weather conditions, leading to a mismatch between power generation and 

consumption [11], [12]. One solution for this problem is to combine several RESs with storages 

to form a microgrid [13]–[15]. The concept of the microgrid was proposed based on the idea 

of integrating a number of microsources and loads into one system, which could be explained 

as a single prosumer according to power system perspective [16].  

The concept of nanogrids was introduced in [9], [11], [17] to indicate simple and small scale 

microgrids. By its definition, a nanogrid is a power distribution system that is suitable for a 

single node, such as a household or a small building. It can be easily connected to or 

disconnected from other power entities through a gateway.  
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In remote and rural areas, where the main electricity grid is not reliable or does not even exist, 

micro/nanogrids, especially low-cost systems, are the first choice for providing energy. For 

example, in Africa and India, microgrids were installed for the purpose of rural electrification 

and economic development [18]. Normally, nanogrids are connected to the utility grid to avoid 

power outage and increase the operational efficiency [19], [20]. Otherwise, the nanogrids may 

suffer from an imbalance between the generated and consumed electrical power. 

Based on the aforementioned motivation, this research work aims to develop a stable isolated 

direct current (DC) nanogrid to supply regions that are inaccessible to the utility grid. The 

application of the proposed DC nanogrid system is intended for geographical islands or rural 

electrification. The islanded DC nanogrid proposed for these regions are able to provide reliable, 

flexible and sustainable solutions to the off-grid systems. 

 

1.2 State of the art 

1.2.1 Architecture of DC micro/nanogrids 

Hardware architectures of DC micro/nanogrids have been proposed based on primary criteria 

of control flexibility, robustness and reliability [16]. Those criteria are often incompatible with 

each other. Therefore, tradeoffs have to be considered to choose the most suitable configuration 

for a given application. From architectural point of view, topologies of micro/nanogrids can be 

classified into two types, including a radial configuration and a ring configuration [21]. Each 

of these configurations owns both advantages and disadvantages.  

Radial topology is commonly used for DC microgrids, where all sources and loads are connected 

to a single DC bus. In this topology, energy storage system (ESS) can be directly connected to 

the common DC bus or through a controllable DC/DC converter. Each architecture has its own 

benefits and drawbacks depending on the applications and their requirements. Authors in [22] 

introduces a hybrid system, including a wind generation module, a solar module, a battery bank 

and an alternating current (AC) load, where the battery bank is directly connected to the 

common DC bus to achieve high reliability of the system. This topology offers some advantages 

as it enables simple and low-cost designs as well as low power losses due to the absence of the 

power electronic converter between the battery and the common DC bus. Although this 

architecture is robust and reliable, it has some limitations regarding control flexibility as the 

battery cannot participate in regulating the common DC bus voltage. Besides, the charging 
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control strategy cannot be applied for this approach, leading to fast charge/discharge action 

and lifetime reduction of the battery. 

To increase the efficient use of the battery, a regulated DC/DC converter is recommended to be 

used as an interface between the battery and the common DC bus [19], [23], [24]. This 

approach allows the implementation of an optimal charge/discharge operational mode. 

Moreover, the use of interface converter can provide a flexible control as it allows the regulation 

of the common DC bus. In addition, the topology equipped with multiple battery banks are 

employed to improve the reliability of the system [25].  

The same architecture can be extended to multiple DC microgrid systems in order to obtain 

higher reliability and availability [26], [27]. In such systems, the DC bus of each microgrid 

might be directly interconnected to form a cluster of the microgrids. In this way, each microgrid 

is able to absorb power from or inject power to its neighboring microgrids.  

The radial topology-based DC microgrid systems have some benefits such as simplicity and 

ability to share the power between multiple buses. Nevertheless, this architecture is not flexible 

during fault conditions. For instance, all nodes that are connected to a single bus system could 

be affected by a single fault [21].  

In order to overcome the previous drawbacks of the radial topology, a ring configuration was 

introduced as an alternative [28]. In this topology, each node and link are connected with 

others by the use of a ring bus. Intelligent electronic devices (IEDs) are used to control nodes 

and links with their neighbors. This configuration enhances reliability and redundancy. For 

example, when a fault occurs in any node, the IED will detect and isolate the faulty node from 

the system. Then the IED will provide the alternative path to supply the customers since the 

load connected to the common DC bus can be fed in both directions.  

 

1.2.2 Control of DC micro/nanogrids 

The goal of micro/nanogrid control is to optimize power generation and consumption to make 

the system more efficient. In DC micro/nanogrids, two main issues regarding the control are 

the voltage regulation and current sharing. In order to attain these objectives, a suitable control 

architecture is required.  

Many researches have been carried out on the control and energy management of a 

micro/nanogrid. One practical approach for small-sized microgrids  is to use a centralized 

control [29]–[31]. According to the centralized control topology, a central controller collects 
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and processes all system related information. A high observability and controllability of the 

whole system can be realized in the centralized method, however, it has some drawbacks that 

are linked with a single point of failure and the reduced flexibility and expandability [32]. 

A decentralized control architecture is another well-known approach. This method is commonly 

realized by the droop control for both AC and DC grids for current sharing [15], [33]–[35]. The 

droop control-based approach utilizes only the local measurements without the need for any 

extra communication links that makes the system simple and reliable. Even though the classical 

droop control has no requirement for the communication network and provides plug-and-play 

functionality, it has a side effect as the droop control introduces a (small) voltage excursion in 

the DC grid along with an inefficient current-sharing performance [36]. For these reasons, many 

studies have been conducted to enhance the performance of the classical droop control at the 

primary level [25], [37]–[39].  

Another decentralized method that can be used for coordinated control is power line 

signaling [40]. In this approach, the power line signal is utilized as a main communication 

carrier, and in order to communicate with others, each power unit injects a sinusoidal signal 

with specific-frequency pattern into the common DC bus. However, distortion of the common 

DC bus voltage is observed due to the presence of the sinusoidal signals with different 

frequencies. Besides, this approach is used only for changing the operation modes of the system 

and therefore it is not appropriate for power sharing. 

DC bus signaling is another alternative decentralized approach. The DC bus is used as a 

communication carrier between the sources in the DC bus signaling method, as presented in 

[19], [23], [41]. The control strategy allows communication among various sources/storages 

through local information without requiring any other component, except the interface 

converters. For optimization of the microgrid operation, a set of various modes are defined as 

a function of the DC bus voltage levels. According to the value of the DC bus voltage within the 

corresponding range, the particular operation mode would be selected. Nonetheless, this 

method requires a pre-definition of different operation modes based on the DC bus voltage 

levels. If the voltage difference between the adjacent levels is too large, the fluctuation of the 

DC bus voltage cannot be guaranteed within an acceptable range. By contrast, if this value is 

too small, it is sensitive to realize the exact operating mode, making the system unreliable. 

On the other hand, the authors in [42] proposed a DC bus signaling-based method to obtain 

autonomous coordinated performance of the system, in which the change in the operational 

modes is unnecessary. In this scenario, the ESS is employed as a master unit to regulate the DC 
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bus voltage in correspondence to its state of charge (SoC) while the RESs function as slave units 

to adjust the generated power according to the DC bus voltage signal. This method ensures 

current sharing and the control of the DC bus voltage without the selection of the operation 

modes. However, in case of disconnection or failure of the ESS, the system will not be able to 

operate. 

Another control architecture is a distributed control that is based on both local measurement 

and neighboring communication [43]. In this topology, there is no central controller and 

therefore less computational burden. Single point of failure can be avoided when all local 

controllers communicate with each other through a dedicated digital communication link, 

improving the reliability of the system. Recently, the distributed control architecture has been 

extensively investigated for DC microgrid applications [44]–[47]. Authors in [45] developed 

distributed controllers that can exchange the information of the supplying current with other 

distributed controllers via CAN communication to determine the total average current supplied 

by the sources. As a result, the voltage mismatch between converters can be compensated. 

However, the distributed control also requires a proper communication network like the 

centralized control. 

All of the abovementioned approaches emphasize on ensuring a reliable and robust operation 

of a single micro/nanogrid. An alternative method is to integrate multiple micro/nanogrids in 

order to share the electrical power and improve reliability and stability of the whole system 

[17], [27]. A hierarchical control structure presented in [27] allows a coordinated operation 

inside a local microgrid to be controlled and power to be shared among multiple microgrids, 

which can form a microgrid cluster1. In this topology, the power flow is regulated by changing 

the voltage levels inside each microgrid, which is considered as a node. Multiple nodes are 

connected to the same common DC bus and low-bandwidth communication is employed to 

exchange information among nodes. However, the integration of multiple microgrids 

sometimes tends to destabilize the system, since microgrids are connected to the same common 

DC bus.  

As presented in [17], the authors propose a nanogrid network based on the concept of Open 

Energy System (OES). The system allows exchange of power within a local community by using 

a bidirectional DC/DC converter and a communication line. In each nanogrid, a distributed 

                                                

1 In this dissertation the term “microgrid” will be used differently in order to describe a cluster of multiple 

nanogrids. 
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network controller based on digital communication is also employed that allows the nanogrid 

to communicate and exchange power with others. Nevertheless, this approach still relies on the 

digital communication infrastructure. 

Despite lots of effort spent in the field of micro/nanogrids, control of these systems and control 

of power flow among multiple micro/nanogrids are still an open topic for researchers. 

 

1.2.3 Modeling and stability analysis of DC micro/nanogrids 

Modelling of micro/nanogrids is a key step in order to achieve a suitable control. In addition, 

stability is one of the main concerns of power systems. Consideration of the dynamics and the 

use of suitable modeling methodologies are important issues for control synthesis and stability 

analysis of the micro/nanogrids. Depending on the configuration, type and components of the 

micro/nanogrids, their dynamics might change. Different modeling methodologies can be 

employed for different applications. A number of approaches for the modeling and control for 

AC micro/nanogrids were listed in [48], [49]. Although interest in DC nanogrids has been 

increasing significantly, there are only little research activities pertaining to the modeling of DC 

micro/nanogrid systems.  

The common method for modeling of switching power converters in DC micro/nanogrids is 

averaging. State-space averaging is the most popular method, which has been applied in many 

applications since it introduces some advantages, such as simplicity and good performance 

[50]–[53]. However, there are some constraints that can limit this method. The first constraint 

is that the switching frequency is required to be much higher than the frequencies of interest. 

The second one is that the ripple of the state variables must be insignificant [54]. Because of 

these reasons, this method is not suitable for modeling some converters such as resonant 

converters and dual active bridge converters. For example, the dual active bridge converters do 

not satisfy the second condition as transformer current has to be purely AC in order to avoid 

saturation [55]. In order to cope with this problem, a generalized state-space method is 

employed [55]–[57]. In this method, more terms in the Fourier series of the state variables are 

taken into account rather than just the DC component. As a result, the accuracy of the 

mathematical model is improved. Yet, the generalized state-space method has a disadvantage 

associated with the high demand of computation due to the complexity of the model. A tradeoff 

between the accuracy and complexity has to be considered when selecting the number of state-

space variables. 
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Depending on the averaging method, different techniques for modeling and stability analysis, 

including small and large signal, have been proposed [54]. In some cases, the large-signal 

averaged models can be used to analyze the stability of the nonlinear system [58]. However, 

this technique requires a nonlinear tool for studying the system stability, making it less 

attractive.  

On the other hand, small-signal modeling method is also a promising solution for modeling and 

stability analysis of the DC micro/nanogrids [56], [59]–[61]. By linearizing the system around 

a certain operating point, a linear model can be obtained. From the linearized model, it is easy 

to design the controller and analyze the stability of the system. For example, for the case of 

using a conventional Proportional-Integral (PI) controller, the selection of the controller 

parameters and the system analysis can be carried out by means of the well-known Bode 

diagram, Nyquist diagram or Routh-Hurwitz criterion [62]. 

Small-signal modeling and stability issues of DC microgrid clusters was also presented in [63]. 

This work develops a small-signal model for DC microgrids in order to design and synthesize 

control loops, to deal with stability analysis and to study the impact of different parameters of 

the systems as well as loads. The outcomes of [63] showed that the instability of the system 

was caused due to the increase in negative resistance of constant power load and line 

inductance. 

Also, small-signal stability analysis of low voltage DC microgrids was introduced in [60]. Three 

main components of a DC microgrid, including sources, loads and distribution cables are 

considered and modeled by differential equations. The effects of variation in inductances and 

resistances of the cable on the system stability were studied. It indicated that any increase in 

the cable resistance would lead to the increase in the transmission losses. Therefore, a tradeoff 

between the system stability and transmission losses should be taken into consideration. Based 

on the same approach, the authors in [64] analyze the system stability under different 

compensation schemes.  

   

1.3 Objectives of the work 

This research work deals with modeling, control and stability analysis of DC nanogrid systems, 

which is operated in a standalone mode. The main objective is to develop a self-sustained and 

flexible, decentralized control strategy based on hierarchical control for islanded DC nanogrids 

without the need for an extra communication network. The flexible DC nanogrid has to be able 



 

 

1.4  Publications  8 

to inject/absorb energy to/from other nanogrids, control the power flow and manage the 

connected energy storage. The architecture of the DC nanogrid is based on the integration of 

RESs and storage devices. The nanogrid is established to obtain some characteristics, including 

modularity, self-sustained capability, scalability, simplicity and ease of commission so that it 

does not require any manual configuration in terms of installation and operation. The proposed 

control strategy manages the power of the photovoltaic (PV) panel, of the interconnections and 

of the battery in such a way that renewable energy can be harvested as much as possible. The 

exchange of power inside a nanogrid and among multiple nanogrids is also regulated based on 

the SoC of the battery and the variation of the external DC bus voltage in order to prevent the 

battery from overcharge or deep discharge situations and to avoid the disruption of the external 

DC bus. 

The second objective of the work addresses the modeling of power electronic converters 

employed in the proposed DC nanogrid. There are two types of power electronic converters 

being used in the nanogrid: a bidirectional buck converter and a dual active bridge converter. 

Based on the state-space averaging method, a small-signal model is obtained for the 

bidirectional buck converter. On the other hand, a full-order small-signal model of the dual 

active bridge converter is developed based on a generalized state-space averaging method. A 

cascaded control structure is utilized for both output current and output voltage control loops 

in order to provide a flexible power exchange inside each nanogrid as well as among multiple 

nanogrids. 

The last objective of the work concerns the modeling and stability analysis of the DC nanogrid. 

A model of the entire system is derived from the mathematical models of three single converters. 

Based on this approach, a small-signal transfer function of the DC nanogrid integrated with two 

buck converters and one dual active bridge converter can be synthesized. The obtained transfer 

function is eventually used to design the secondary controller and to analyze the stability of the 

entire system. 

 

1.4 Publications 

This thesis is synthesized and developed from some previous publications, which were 

published in IEEE conferences and IEEE journal. In these publications, the author of this thesis 

is the first author. The author has proposed approaches for modeling and control for the DC 

nanogrid, implemented the proposed control strategy by simulations as well as experiments and 

was mainly responsible for writing this complete thesis. Parts of Chapter 1 are based on [65]–
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[67]. Chapter 2 slightly relies on [65], [67]. The main content of Chapter 3 is a combination of 

both [56] and [66]. Chapter 4 is mainly based on [65]–[67]. 

 

1.5 Thesis outline 

The structure of this thesis is organized as follows: The motivation and the objectives of the 

work are described in Chapter 1. In Chapter 2, an overview of micro/nanogrids regarding 

components, technologies and control topologies is introduced. Afterwards, the appropriate 

configuration of a nanogrid is chosen for this research work. Chapter 3 is dedicated to the 

modeling and control of power electronic converters. First, modeling and control of a 

bidirectional buck converter based on state-space averaging method is presented. Second, the 

same procedure of modeling and control of a dual active bridge converter is proposed but it is 

based on generalized stage-space averaging technique. Chapter 4 focuses on the control strategy 

for self-sustained and flexible DC nanogrids. Modeling, control and stability analysis for an 

entire system is also mentioned. The effectiveness of the proposed control strategy for a single 

DC nanogrid is verified by both simulation and experimental results. Finally, simulation results 

are presented to show the feasibility of interconnection of multiple DC nanogrids. 
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2 Overview of micro/nanogrids: components, technologies and 
control topologies 

2.1 Introduction 

A microgrid is a flexible and independent system which might be operated in either grid-

connected [68]–[70] or island modes [42], [71], [72]. The operation modes are defined by a 

control system according to the objectives of the system. In the grid-connected mode, the 

microgrids are able to exchange power with the utility, while in the autonomous mode, the 

microgrids are operated independently without an interconnection with the main grid. 

However, some microgrids that are capable of operating in both grid-connected and island 

modes, have been deployed to increase the flexibility of the microgrid systems [73]–[75].  

In terms of classification, microgrids can be divided into two main types: AC and DC microgrids 

[76]. To date, many researches have been carried out and focused on AC microgrids [77]–[81]. 

Recently, however, the interest in the DC microgrids has been significantly increased as they 

could offer several benefits regarding efficiency, simplicity, reliability and cost reduction 

[82], [83]. For instance, in some DC microgrids, DC/AC and AC/DC converters are unnecessary 

as most of the renewable energy generators are DC sources, such as solar panels or fuel cells 

[16], [45], [83], [84]. As a result, reduction of power loss can be achieved due to reduction of 

the power conversion. The use of such DC microgrids is feasible and reliable as their control 

and management are much simpler than those of the AC microgrids [32]. Besides, the advanced 

development of new DC power technologies, ongoing standards and initiatives make it possible 

to develop future DC applications for homes, offices, buildings and other electrical power 

systems [85]. 

Microgrids and nanogrids are different in scale. A nanogrid can be seen as a small and 

technologically simple microgrid, and it is confined to a single home or building [11], [17], 

while a microgrid can be formed by connecting multiple nanogrids, in case electrical power 

needs to be shared among multiple houses or buildings. Nanogrids can offer a power structure 

with a lower cost compared to microgrids and customers can have a flexibility to choose a small 

or a large system. According to the grid hierarchy, nanogrids and microgrids are the electrical 

grids corresponding to households/buildings and small communities, respectively. They are 

able to connect to the utility grid or to other micro/nanogrids. 

For the sake of clarity of the nanogrid concept, a definition of nanogrids was introduced in [11]: 

“A nanogrid is a power distribution system for a single house/small building, with the capability 
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of connecting or disconnecting from other power entities via a gateway. It consists of local 

power production powering local loads, with the option of utilizing energy storage and/or a 

control system”.  

In this chapter, a brief overview of nanogrids is introduced. Then the basic issues of 

components, technologies and control topologies of micro/nanogrids are addressed. The 

comparison between AC and DC micro/nanogrids is also highlighted. Finally, a suitable 

topology of a nanogrid selected for this research is presented. 

 

2.2 Components of a nanogrid 

In the conventional AC systems, such as hydro power or thermal power stations, power is 

generated by synchronous generators. The generators are normally operated at a constant speed 

to generate a 50 or 60 Hz current while the generated reactive and active powers are controlled 

via the flux-producing current and the angle between rotor and flux linkage, respectively. 

Nevertheless, in a nanogrid system, the output power of the RESs is uncontrollable due to the 

intermittent nature of these sources [86]. In this case, the generated power is only dependent 

on the availability of the primary sources, irrespective of the control of the interfaced converters. 

Typical examples of these non-dispatchable sources are the solar and wind, which produce an 

intermittent output power. In order to cope with the fluctuation problem of power, an ESS is 

required to ensure the generation adequacy of the system. Thus, the nanogrid system is an 

integration of different distributed generation (DG) sources (e.g., solar and wind), ESSs and a 

large variety of loads [76], [87], [88]. This approach allows the system to exploit and harvest 

such energy sources locally. The typical RESs are solar and wind, which will be introduced in 

this section. 

 

2.2.1 Photovoltaic panel 

Photovoltaic (PV) power is one of the most promising renewable energy sources, because such 

systems are reliable, require low maintenance costs and do not produce pollution, emission or 

noise. However, solar power systems have high initial costs for material and installation.  

PV cells are devices which can be used to convert solar energy into electrical energy by using 

semiconducting materials based on the photovoltaic effect. A single PV cell is rarely used in an 

application as it only produces a voltage of around 0.5 V. Therefore, a PV module consisting of 

a number of PV cells is needed in order to generate higher voltages and currents. Multiple cells 
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can be connected in series to increase the voltage or in parallel to increase the current [89]. For 

even higher voltages, a PV panel composed of several PV modules can be employed. Multiple 

PV panels can also be connected together to form a PV array with a very high range of generated 

voltage.  

A simple equivalent circuit of an ideal PV cell is composed of an ideal current source connected 

in parallel with a real diode as shown in Figure 2.1. 

+

Ipv,cell

Id

I

V

 

Figure 2.1: The simple equivalent circuit of an ideal PV cell 

From Figure 2.1, the output current of the ideal PV cell is given by [90] 

 � = ���,���� − �� (2.1)

where ���,���� is the magnitude of the ideal current source generated by the incident light, which 

is proportional to the solar radiation, �� is the diode current which is defined by 

 �� = ��,���� �exp �
��

���
� − 1� (2.2)

where ��,���� is the reverse saturation current (A), � is the output voltage (V), � is the electron 

charge (1.602 ×  10���C), � is the Boltzmann constant (1.381 ×  10���J/K), � is the diode 

ideality constant and � is the junction temperature of the � − � junction (K). 

Substituting (2.2) into (2.1), the mathematical description of the I-V characteristics of the ideal 

PV cell is as follows 

 � = ���,���� − ��,���� �exp �
��

���
� − 1� (2.3)

However, a practical PV device consists of a number of PV cells connected in series or in parallel 

to obtain the required voltage. The equivalent circuit including both series and parallel 

resistances is depicted in Figure 2.2. The mathematical equation describing the I-V 

characteristics of the practical PV device is as follows [90]: 
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 � = ��� − �� �exp �
� + ���

���
� − 1� −

� + ���

��
 (2.4)

where ��� = ���,���� ∙ ��  and �� = ��,���� ∙ ��  are the PV current and saturation current of the PV 

device, respectively, �� is the number of parallel PV cells, �� and �� are the equivalent series 

and parallel resistances, respectively, �� = ����/� is the thermal voltage of the PV device with 

�� being the number of the PV cells wired in series.  
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Figure 2.2: The equivalent circuit of a practical PV device 

From equation (2.4), the I-V curve can be highlighted as shown in Figure 2.3 where three 

remarkable points are taken into account: short circuit (0,���), MPP �����,����� and open 

circuit (���,0). The practical PV device behaves either as a current source or as a voltage source 

depending on the operating point. In the current source region, the influence of the parallel 

resistance �� is dominant while the series resistance �� takes effects in the voltage source 

region  [90].   
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Figure 2.3: The I-V curve of the practical PV device 

The I-V characteristics of the PV module depends on the internal parameters (e.g. ��,��) and 

on the external impacts, such as solar radiation and temperature of PV cells [90]. As a result, 
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the maximum power point (MPP) of a PV panel changes accordingly to the solar radiation and 

the temperature of PV cell as well. The P-V characteristics associated with the radiations of 

600 W/m� and 1000 W/m� are given in Figure 2.4. It is observed that an increase in solar 

radiation leads to a significantly increase in the maximum power. Similarly, the P-V curve for 

the changes in the temperature of 25�C and 50�C is shown in Figure 2.5. It can be seen that the 

maximum power decreases considerably as cell temperature increases [89].  
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Figure 2.4: Typical P-V Characteristics of a PV module for changes in solar radiation 
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Figure 2.5: Typical P-V Characteristics of a PV module for changes in PV cell temperature. 
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2.2.2 Wind turbine 

Similarly to solar power, wind power is one of the most widely used renewable source of energy. 

Wind power offers many advantages, including high efficiency, low maintenance and low 

operational costs. It is also a clean, sustainable and renewable energy source [91]. Wind power 

based technologies and wind turbines can be installed in both on-shore and off-shore [92] and 

they can produce high power for small land footprints. Nevertheless, wind power systems have 

a number of drawbacks such as high initial costs, technology immaturity, noise and visual 

pollution. 

Wind turbine systems are used to convert the air kinetic energy into electrical energy. The air 

kinetic energy is converted into rotational mechanical energy due to the rotation of the turbine 

rotor blades. The rotor is connected to the main shaft to spin a generator, which generates 

electrical energy. The output from the wind turbine depends on the wind speed, which varies 

over time. The aerodynamic power output from the wind turbine is modeled as follows [93] 

 � = 0.5 ∙ � ∙ � ∙ ��(�,�)∙ �
� (2.5)

where � is the air density (approximately 1.225 kg/m�), � is the area swept by the wind turbine 

rotor (m�), � is the wind velocity (m/s), �� is the power coefficient of the turbine, � is the blade 

pitch angle of the wind turbine rotor (o), � is the tip speed ratio which is given by 

 � =
� ∙ �

�
 (2.6)

where � is the rotational speed of the turbine rotor (rad/s), � is the turbine radius (m). Figure 

2.6 shows the relationship between the power coefficient (��) and the tip speed ratio (�) of a 

wind turbine with the blade pitch angle (�) being equal to zero [91]. It can be observed from 

Figure 2.6 that the maximum power coefficient �� can be obtained by adjusting the tip speed 

ratio. In theory, the maximum value of power coefficient is defined by the Betz’s law, by which 

the maximum theoretical efficiency of a rotor is 59.3% [94]. In reality, however, wind turbine 

rotors just obtain the maximum values of �� in the range of 25− 45% [93]. In order to attain 

the maximum value of ��, the wind turbine needs to be operated at a variable speed to maintain 

the optimal tip speed ratio when the wind speed changes. For instance, if the wind speed 

increases, the rotational speed of the wind turbine must be increased as well to retain the 

optimal tip speed ratio.  
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Figure 2.6: Typical power coefficient characteristic of a wind turbine 

 

2.2.3 Energy storage 

Micro/nanogrid systems, based on the integration of RESs, generate power in an intermittent 

characteristic. The ESSs is therefore necessary to be included to smooth out the intermittent 

phenomenon and to balance supply and demand. In addition, the use of the ESSs can enhance 

the utilization of the RESs [95]. For example, the ESSs can charge any excess power or 

discharge stored power under variation of solar radiation or wind speed. The ESSs is 

indispensable in standalone systems, which are not connected to the main grid, as they can 

provide a continuous operation of critical loads. 

Various forms of energy storage technology are introduced in [96]. The commonly used 

technologies in micro/nanogrid systems include supercapacitors, flywheel and batteries. The 

selection of the ESS is according to practical applications of the micro/nanogrids. For instance, 

a battery is the most suitable for micro/nanogrids due to its capacity and residential location 

[11]. The lead-acid battery is a typical example of an affordable battery energy storage. 

Various models for lead-acid battery have been proposed [97], [98]. In this research, a simple 

model is presented for simulation purposes. The equivalent circuit model as depicted in Figure 

2.7 consists of an ideal voltage source connected in series with an internal resistance [99]. This 

model is assumed to have the same charging and discharging characteristics. As shown in Figure 

2.7, �� and ��� indicate the output voltage and the open-circuit voltage of the battery, 

respectively, �� is the current of the battery, ���� is the internal resistance. ���� is supposed to 
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be constant, but in fact, it is slightly changed when the load is connected to the battery or when 

temperature changes. Therefore, the model is only suitable for applications where the energy 

of the battery is considered as infinite and where the transient behavior is ignored [98]. The 

output voltage of the battery can be calculated as follows 

 �� = ��� − ���� ∙ �� (2.7)

During charging time, the voltage (��) applied to the terminals of the battery is higher than the 

open-circuit voltage (���) as the sign of the battery current (��) is negative. On the other hand, 

when the battery is discharging, the value of the output voltage is less than that of the open-

circuit voltage.  
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Figure 2.7: The simple equivalent circuit model of a battery 

 

2.3 The role of power electronics in renewable energy systems  

Power electronic converters play an important role in renewable energy systems as the control 

and conversion of electrical energy is a key issue. They are considered as a flexible and 

controllable power link of the systems which are mandatorily used as an interface between the 

electrical generation sources and the loads or between the generators/loads and the grid. These 

converters are commonly used to control the power flow and convert it into suitable form, 

which can be AC or DC. The converter consists of semiconductor switches such as IGBTs, 

MOSFETs and diodes, along with passive elements such as inductors, capacitors and resistors 

and current and voltage sources [100]. The power flow can be unidirectional or bidirectional 

based on topology and applications. 

Overviews on the configurations and control strategies for power electronics in microgrids and 

in renewable energy systems are introduced in detail in [101] and [102], respectively, but these 

are out of the scope of this thesis. The applications of power electronic converters for both AC 

and DC systems are highlighted in the next section. 
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2.4 Types of nanogrid technology  

A suitable type of the micro/nanogrids is mainly selected based on some aspects such as costs 

for investment, operation and maintenance [82], the use of power converters, the availability 

of energy sources and their integration [103]. Nanogrids can be identified according to the used 

voltage and current from which two types of nanogrids can be considered 1) AC and 2) DC [82]. 

The selection of those systems is still a controversial issue. Each has different advantages and 

disadvantages in terms of control, protection and power losses [88]. AC systems are thought to 

be dominant, mainly due to the limitation of technology issues at the time the grid was installed. 

On the other hand, DC systems were recognized as a natural and simple solution for electric 

power systems in the past; however, they were not commonly used due to difficulties in voltage 

level conversion because it was hard to transmit DC power with low voltage for long distance. 

This section presents both of these technologies, but only focusing on technical issues regarding 

configurations and architectures implemented in a nanogrid. These configurations are discussed 

to provide suitable selections for appropriate control strategies and potential applications of 

DGs in remote and rural areas. 

 

2.4.1 AC micro/nanogrids 

A typical configuration of AC nanogrids is illustrated in Figure 2.8 where all DGs and loads are 

connected to the common AC bus through power electronic interfaces. DC sources such as PV 

panels and ESSs need a DC/DC conversion stage before being converted to AC by using DC/AC 

inverters in order to connect to the common AC bus. On the other hand, AC/DC and DC/AC 

converters are employed to interface the common AC bus with AC sources such as wind 

turbines. Similarly, two power conversion stages are required to connect the common AC bus 

to both AC and DC loads as shown in Figure 2.8 [83]. A rectifier and an inverter are needed for 

supplying the AC loads, while a combination of a rectifier and a DC/DC converter is required 

to connect the common AC bus to the DC loads. The utility grid can be connected directly to 

the common AC bus or through a transformer according to the voltage level of the AC bus.  
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Figure 2.8: Typical configuration of an AC nanogrid 

During normal operating conditions, the loads are supplied from the local DGs (e.g., 

photovoltaic panels, wind turbines and ESSs). If load demand power is higher than the power 

produced by DGs, power deficit can be compensated by importing from the utility grid. On the 

contrary, excess power can be exported to the main grid when power consumption is less than 

power generation. In most cases, the operation of the AC nanogrid system must be adapted 

with the voltage and frequency standards applied for the conventional distribution 

systems [84]. 

2.4.2 DC micro/nanogrids 

Figure 2.9 depicts a typical configuration of the DC nanogrids where all DGs and loads are 

connected to the common DC bus. In the DC nanogrids, a rectifier is needed to connect AC 

sources to the common DC bus while an inverter is employed for supplying the AC loads [83]. 

For DC sources and DC loads, a DC/DC converter is equipped to interface with the common DC 

bus. Differently from AC nanogrids, a bidirectional DC/AC converter is required to connect the 

common DC bus to the main AC grid. Depending on requirements for converters and 

applications of the DC nanogrid topologies such as low inrush current, low switching stress, low 

weight and size, isolated or non-isolated converters might be used [104]. The operation of the 

DC nanogrids is similar to that of the AC counterparts while the import/export of power to/from 

the utility grid depends on the imbalance of power inside the DC nanogrids. 
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Both the AC and DC nanogrids can function either as a power source or as a load. When the 

power of the nanogrid is in surplus it can be used to feed the utility. Otherwise the nanogrid 

will absorb power from the utility when its power is insufficient for supplying the loads.  
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Figure 2.9: Typical configuration of a DC nanogrid 

 

2.4.3 DC nanogrids versus AC nanogrids 

There are a number of considerations when comparing the topology of AC and DC nanogrids. 

The selection of a suitable nanogrid is dependent on its applications. For example, if the 

nanogrid is in need of being connected to AC-based main grid, then AC nanogrids is the suitable 

option as it is easier to integrate AC nanogrids with conventional utility grid than the DC ones. 

By contrast, DC nanogrids are a suitable candidate when they are developed and applied to 

isolated areas. The DC nanogrids are also cost-effective pertaining installation for offices and 

data centers where a lot of DC loads are equipped. AC microgrids, on the other hand, are 

applicable to factories and plants with a variety of AC loads [88]. This section focuses on 

highlighting the advantages and drawbacks of both DC and AC technologies with respect to 

integration of RESs, such as solar and wind power. 

Based on the historical perspectives, AC nanogrids have been the standard selection for 

commercial and residential electrical systems as a large number of electrical devices have been 

manufactured to be suitable for AC systems. Besides, the AC networks have existed for more 

than one century along with the manufacture dedicated for the AC electrical equipment and 
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loads [84]. Because of this reason, currently most electrical devices in homes, buildings, 

companies, factories and retail stores are still AC electric appliances.  

On the other hand, the DC nanogrids might offer several advantages in comparison with the AC 

nanogrids, such as higher efficiency, more natural interface with DGs, more suitable to modern 

electronic loads and no requirement for synchronization [16]. First, when the efficiency is taken 

into account as the main factor, the DC nanogrids are advantageous. It can be clearly seen from 

Figure 2.8 and Figure 2.9 that a number of power electronic converters are reduced for the DC 

nanogrid system. During each stage of the conversion, some power is lost. Therefore, the 

reduction of the power conversion stages results in the decrease in power losses. 

Second, the DC systems provide an ease of integration of various DC DGs, storage systems and 

modern electronic loads. Most RESs including PV panels and fuel cells are DC sources. Even for 

AC renewable sources, such as wind turbines, the double conversion can be avoided by using 

only one AC/DC converter in order to connect to the DC bus. The similarity can also be seen for 

ESSs, such as batteries, flywheels and super capacitors as they store and deliver DC power. In 

addition, many electrical appliances, such as TV sets, chargers for mobiles, computers and light-

emitting diode (LED) lights use DC. Furthermore, for AC loads, e.g., air conditioners, 

refrigerators, washing machines, AC/DC conversion stages are eliminated as only one DC/AC 

conversion is necessary to interface the DC bus with these loads [83]. Moreover, the use of 

electrical vehicles (EVs) where the batteries are equipped is the future trend as the number of 

EVs is predicted to be 30 million by 2025 and exceed 150 million in 2040 according to the 

survey conducted by IEA in 2016 [5]. Last but not least, there is no need for synchronization as 

well as there are no issues with reactive power flow in the DC systems. As a result, the systems 

can provide less complexity, simpler configuration, higher efficiency and higher reliability [76]. 

Hence, the DC systems introduce a high potential for future applications in homes, buildings, 

data centers and plug-in electrical vehicles. 

However, there are several challenges for DC systems, including the lack of commercially 

available products, standards, codes and regulations. As aforementioned, most electrical 

devices, such as power converters, protection devices, connectors are currently manufactured 

for the AC systems, leading to fewer choices of the electrical equipment when installing any DC 

systems [83]. In addition, the appliances and devices that are compatible to DC sources are still 

limited. 

Another challenge of the DC systems is the protection problem. For instance, an arc voltage 

appearing when breaking DC current cannot be extinguished naturally due to no zero-current 
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crossing. The standard current interruption technique is mainly based on the natural zero 

crossing of the AC current that is not the case in the DC systems [21]. Recently, protection 

devices and circuit breakers designed for DC systems are available but they are still more 

expensive than those installed in AC systems.  

The comparison of AC and DC micro/nanogrids is summarized in Table 2.1. 

Table 2.1: Comparison between AC and DC micro/nanogrids [84], [88] 

Issues AC micro/nanogrids DC micro/nanogrids 

Control - Active and reactive power control 

- Voltage and frequency regulation 

- Active power control 

- Voltage regulation 

Costs - Higher investment costs 

- Higher operation costs 

- Lower investment costs 

- Lower operation costs 

Transmission - More conductors (three or four 

lines) leads to high resistance 

- Have reactance in the line 

- Have skin effect in AC current flow 

- Less efficiency due to high 

transmission losses 

- Need for compensation 

- Less conductors (two lines) leads 

to low resistance 

- No reactance in the line 

- No skin effect in DC current flow 

- High efficiency due to low 

transmission losses 

- No need for compensation 

Power Analysis - Require power analysis for reactive 

power 

- Require analysis for magnitude and 

phase of the voltage and current 

- Complicated analysis due to 

complex number 

- No power analysis for reactive 

power 

- Only analysis for magnitude of the 

voltage and current 

- Simple analysis due to only real 

number 

Integration - Require synchronization 

- Less natural with DC DGs, ESSs and 

modern electronic devices 

- More conversion stages are used 

- No synchronization 

- More natural with DC DGs, ESSs 

and modern electronic devices 

- Less conversion stages are used 
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Protection - Short-circuit current interruption is 

easy due to natural zero current 

crossing 

- Short-circuit current interruption 

is difficult due to no natural zero 

current crossing 

 

For regulation issues, there are no specific standards for regulating the operation of the DC 

systems at the moment. One problem in control of DC micro/nanogrids is that the integration 

of multiple DGs and ESSs might cause unexpected current circulation [36]. The current 

circulation leads to the bus voltage deviation and the instability of the systems. Therefore, the 

key control issue in a micro/nanogrid system is to coordinate all DGs and ESSs to ensure the 

current sharing and stability of the DC bus voltage. In other words, the objective of the control 

in DC micro/nanogrids is to maintain the power balance between generation and consumption 

of the system. In order to obtain these objectives, a suitable control topology of the system has 

to be developed. The next section will provide an overview of typical control approaches, 

including centralized, decentralized and distributed controls. 

 

2.5 Control topologies of nanogrids 

As already presented in Section 1.2.2, there are different control topologies proposed for DC 

nanogrids. In this section, a close look on the most commonly used topologies, including droop 

control, centralized control, decentralized control and distributed control, is presented. After 

the consideration of benefits and drawbacks of the control topologies, the most suitable one 

will be selected for the DC nanogrid. 

 

2.5.1 Droop control 

The droop control has been presented as a well-known approach for both AC and DC grids [33]. 

The droop control method is commonly used in order to obtain coordinated control among 

distributed units without the need for communication links [76]. The basic idea behind this 

method is adding a control loop with a droop coefficient so-called virtual resistance on top of 

the voltage controller of the converter, allowing current sharing among parallel converters. In 

DC systems, the DC bus voltage is measured at each converter and all converters participate to 

balance the power between generation and consumption of the system. In contrast to physical 

resistance, the virtual resistance has no power losses. Moreover, this approach offers a plug-

and-play capability that is suitable for modular structures [101]. Also, the droop control 
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provides active damping to the system since the virtual resistance is connected in series with 

the output filter of the converter [105]. In addition, the absence of digital communication links 

makes this method significantly enhanced in flexibility and reliability [106]. The operating 

principle of the droop control is to linearly decrease the reference voltage of the voltage control 

loop as the output power increases. By this way, the output power of the converter is inversely 

proportional to the droop coefficient.  
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Figure 2.10: A typical control structure with droop control for DC nanogrids 
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Figure 2.11: Thévenin equivalent circuit for a DG 

The typical droop control structure is demonstrated in Figure 2.10, in which the interface 

converter with droop control can be modeled as a Thévenin equivalent circuit in Figure 2.11 

[107]. It shows that the desired current sharing depends on the value of the droop coefficient 

and the voltage deviation. The reference voltage of the voltage control loop is given by 

 ���� = �� − �� ∙ �� (2.8)

where �� is the voltage threshold of the converter, �� is the output current and �� is the droop 

coefficient which represents the relationship between the output voltage and current. It can be 

seen from Figure 2.12 that with higher droop coefficient a better accuracy of current sharing 

can be achieved, but on the cost of higher voltage deviation [108].  
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Figure 2.12: Load regulation characteristic of the droop method 

In AC systems, another type of droop control is used to regulate the instantaneous sharing of 

active and reactive power between parallel inverters. Such a type of the droop control is shown 

in Figure 2.13. In this case, the active power versus frequency droop (P –f droop) is used to 

share real power, while the reactive power sharing is performed by using the reactive power 

versus voltage droop (Q –V droop) [109]. Since AC systems are out of the scope of this work, 

(P –f droop) and (Q –V droop) are not considered here. 
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Figure 2.13: Droop control for AC systems: (a) P-f droop; (b) Q-V droop 

Although the droop control method offers some benefits, this technique also has several 

drawbacks that limit its applicability. One of the disadvantages of this method is an inherent 

trade-off between voltage regulation and current sharing, since the better current sharing 

results in the higher voltage deviation. In this case, a secondary controller based on centralized 

or distributed approach needs to be implemented in order to eliminate the voltage deviation of 

the bus voltage. Another problem with the basic droop method is a poor coordinated 

performance with renewable energy sources since the maximum power point tracking (MPPT) 

algorithms needs to be used in order to generate as much power as possible. In this situation, 
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the selection of operational modes is realized by implementing either a centralized, 

decentralized or distributed supervisory control. By this way, the supervisory control will decide 

whether the converter is operated in the droop control mode or in other special control modes, 

e.g., MPPT for renewable energy sources [110], [111] or regulated charging mode for the 

battery [25].  

Along with the droop control, a suitable control topology need to be implemented to achieve 

advanced power management. According to the communication point of view, the control 

topologies can be classified into three types including centralized, decentralized and distributed 

controls that can be introduced hereafter. 

 

2.5.2 Centralized control 

The centralized control consists of a central controller and a digital communication network as 

highlighted in Figure 2.14. The central controller is responsible for managing and controlling 

the operation of all local sources based on the collected information. The high-bandwidth 

communication network is needed to gather information with minimum delay as all execution 

and control are performed in the central controller.  

The centralized control structure offers several advantages, such as high observability, 

controllability and an ease of implementation [32]. The advanced control functionalities can be 

easily implemented in the central controller which is aware of each node in the system. In 

addition, the central controller can effectively manage the power of distributed sources to meet 

the demand of the load. 

One of the main drawbacks of this control topology is associated with a risky single point of 

failure, which degrades the reliability of the system [76]. If either the central controller or 

communication link fails, the system will not be able to operate. For applications which require 

high availability, redundant controllers and communication networks need to be installed in 

order to minimize the failure issues. However, this solution leads to the increase in investment 

and installation costs.  

Another major disadvantage of the centralized control architecture is the reduction of flexibility 

and expandability as all information of the distributed units is required to be collected into the 

central controller. Also, it is unsuitable for large scale systems, which are equipped with various 

units in different locations, as the central control requires a significantly high computing 
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capacity. Thus, the centralized control architecture is usually suitable for local and small size 

microgrid systems [29], [112]. 
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Local 
Cotroller 1

Meas. 1

DG Unit 2

Local 
Cotroller 2

Meas. 2

DG Unit 3

Local 
Cotroller 3

Meas. 3

Central 
Cotroller

Local Control

Comm. Link

Physical Bus  

Figure 2.14: Centralized control topology 

  

 

2.5.3 Distributed control 

Beside the centralized control topology, distributed control is another approach, which offers 

some attractive features such as higher reliability, easier scalability and simpler communication 

system [46]. Distributed control, as shown in Figure 2.15, does not require a central controller 

but an external communication network. This topology is based on both local measurement and 

communication among neighboring units. Each distributed controller can measure and control 

locally while the operating modes of the units are determined according to the information 

exchanging among the local controllers. For example in an autonomous nanogrid, the 

renewable units communicate with the storage unit to decide whether they should operate in 

the MPPT mode or the droop control mode. If the storage unit is fully charged, the renewable 

nodes will switch to the droop control mode to balance power between generation and 

consumption.  
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Figure 2.15: Distributed control topology 

The distributed control ensures a higher reliability than the centralized control topology 

because it does not have a central controller and therefore the system is still operational even 

if a single point of failure occurs. In other words, if there is a failure unit in the distributed 

system, the other units are still operated properly. In addition, the distributed control approach 

provides the scalability and modularity, since it allows the autonomous operation of distributed 

generation sources and loads in different scenarios. However, like the centralized control, the 

system based on distributed control architecture is still dependent on the communication 

network [32]. 

 

2.5.4 Decentralized control 

In contrast to the centralized and distributed control architectures, the coordination strategies 

based on decentralized control, as shown in Figure 2.16, are implemented exclusively by local 

controllers with the absence of a central controller and digital communication link. Each 

distributed unit is controlled by the respective local controller based on only the local 

information. In other words, each distributed unit is able to operate independently without 

communication of data with other units. Therefore, this strategy provides plug-and-play 

capability, allowing a unit can be added to or removed from the system without changes in the 

control structure. This characteristic significantly enhances the flexibility of the system. Also, 

the decentralized control architecture can avoid the centralized data acquisition and reduces 

the complexity of centralized computation. The decentralized control scheme is therefore 
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simple, fast, modular and reliable. This control strategy is commonly used in both AC and DC 

systems to regulate the instantaneous power sharing among parallel converters. A typical 

example of the decentralized control structures is the droop control. It allows power sharing 

among distributed generation sources without the need for a communication network.  
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Cotroller 1

Meas. 1

DG Unit 2

Local 
Cotroller 2

Meas. 2

DG Unit 3

Local 
Cotroller 3

Meas. 3

Local Control

Physical Bus  

Figure 2.16: Decentralized control topology 

Although the decentralized control scheme provides several advantages such as simplicity, 

reliability, modularity and no need for the communication link, it has limitation of operational 

performance due to a lack of awareness of the other distributed units. To mitigate the 

drawbacks of three aforementioned topologies, a hierarchical control topology is often 

employed as an alternative way to enhance the reliability of the system, to reduce the 

computational burden on the central controller as well as to remedy the shortcoming of the 

decentralized control. In this structure, centralized and decentralized control techniques can be 

combined in such a way that if the centralized controller fails, the system still works with 

fundamental functions being remained due to decentralized local controllers. 

 

2.5.5 Summary of control topologies 

Many studies have been carried out to assess the advantages and disadvantages of the different 

approaches. The schemes such as virtual power plant (VPP) or other types of aggregations seem 

to be suitable for centralized control schemes as they provide optimal cooperation of multiple 

energy sources based on the top-down approach with mutual economic benefits [29]. Other 

solutions based on modular micro/nanogrids might offer the best solution regarding resiliency, 

since this approach requires decentralized control to handle power balance between generation 

and consumption of the micro/nanogrid systems. Most of the microgrids around the world 

employ centralized control due to the fact that its design is simple for small microgrids [113]. 
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However, there is an increasing interest in use of decentralized control, since it provides a plug-

and-play capability and it is more suitable for large scale microgrids [88]. 

Nowadays, the modern energy systems are becoming more complex and require higher 

flexibility and reliability. All the functionalities cannot be obtained in a single centralized, 

decentralized or distributed way [32]. One promising solution for this issue is the use of 

hierarchical control architecture, which will be proposed and presented in more detail in 

Chapter 4. 

 

2.6 Summary and the selection for the configuration of the nanogrid  

This chapter presented the overview of nanogrids regarding components, technologies and 

control topologies. Nowadays, electricity of the nanogrids is still more expensive than that of 

the traditional grid as the investment cost of such systems is high [114]. Therefore, the nanogrid 

is now suitable for applications in remote and rural areas, where the electricity is unreliable or 

even not available. For this purpose, this research work proposes a topology which consists of 

two layers: 1) a nanogrid installed in each individual household; and 2) a DC microgrid, that is 

an integration of multiple nanogrids via an external DC bus. The nanogrid is designed based 

upon a modular structure with a set of the following modules [65]: 

1) Renewable energy sources: PV panels and/or wind turbines.  

2) Energy storage systems: batteries. A battery can be operated either as a power source 

or as a load.  

3) Power loads: electrical household appliances, such as TV sets, laptops, refrigerators and 

mobile chargers. 

4) A gateway: a bidirectional connection that is used to interconnect multiple nanogrids to 

form a microgrid.  

As aforementioned, a typical nanogrid is composed of RESs and ESSs. Since RESs have 

intermittent nature, ESSs are commonly employed as an energy buffer between the sources and 

the loads to enhance the efficiency of the RESs [13]. ESSs can be connected either directly to 

the DC bus or through bidirectional DC/DC converters. Since the latter configuration ensures 

the reliability of system, it is preferred for use in renewable energy systems [27]. In this work, 

both RESs and ESSs are connected to the common DC bus via DC/DC converters. 
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For the sake of simplicity, this work deals with a nanogrid equipped with a PV panel, a battery, 

a DC load and a gateway for interconnection as demonstrated in Figure 2.17. By adding more 

sources, storage devices and loads, the proposed topology can be expanded. To connect the PV 

panel and the battery to the common DC bus, a buck DC/DC converter and a bi-directional 

DC/DC converter are typically used, respectively. The battery functions as a prosumer, which 

can either generate or consume power. For example, the battery is being charged when the 

power from the PV is in excess, while by contrast, it feeds the load when power from the PV is 

inadequate. There are two voltage levels for the two DC buses in the proposed topology, in 

which the lower level is set to 48 V for the internal DC bus, while 100 V is selected for the level 

of the external DC bus. Both DC voltages meet the requirement of the safety extra-low voltage 

(SELV) standard [83]. During the design of the control algorithm, the protection of overcharge 

and undercharge of the battery needs to be taken into account in order to maintain the battery 

lifetime. 
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USB port

100VDC

Consumers

230VAC
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(DC Nanogrid)

(DC Microgrid)

DAB

Gateway

DC
DC

DC
DC

 

Figure 2.17: The modular structure of a nanogrid 

The aim of the interconnection is to provide the reliability and expandability for the system. 

The integration of multiple DC nanogrids forms a DC microgrid that enables each nanogrid 

capable of absorbing power from or injecting power to others according to its current power 

status [27]. The control strategy allows a flexible power exchange among nanogrids through 
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the nanogrid network, mitigating the impacts of intermittency of generation and consumption 

of power along with enhancing the system reliability [11]. 

Figure 2.18 illustrates the proposed topology with multiple nanogrids interconnected through 

a bidirectional converter to an external DC bus. For this purpose, the dual active bridge topology 

is employed, as it meets the requirements for a bidirectional power transfer capability and 

galvanic isolation [56]. More importantly, there is no requirement for a communication link in 

the proposed topology. Each nanogrid can be plugged in and plugged out during the operation 

of the microgrid without requiring any manual configuration, leading to a flexible and scalable 

configuration. 

 

DC Nanogrid

1

DC Nanogrid

2

DC Nanogrid

n

DC Microgrid (External DC Bus)

...

 

Figure 2.18: A DC microgrid made of interconnected nanogrids 
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3 Modeling and control of DC/DC power electronics converters 

3.1 Introduction 

An important step in designing power electronic systems concerns modeling and control of 

these systems. In addition, computer-based simulations which need mathematical models have 

recently been extensively used. Once a mathematical model of a system is obtained, analytical 

and computing tools can be employed for analysis and synthesis purposes. The more complete 

a mathematical model is, the more accurate corresponding analyses could be. However, it is 

challenging to attain a precise model of the power electronic systems without losing insights of 

the real-world applications as the topologies of the systems are composed of continuous-time 

elements and discrete-time power switches. A balance between the simplicity and the accuracy 

of the model should be taken into account. A typical approach is that the power switches are 

assumed to be ideal components, then the power electronic converters are modelled as 

switching systems [100]. Therefore, some certain inherent physical properties of the systems 

should be neglected, resulting in a simpler analysis as well as a decrease in the computational 

load for numerical simulations. If the effects of these ignored properties are negligible, the 

mathematical model is coincident with the experimental model. 

Power stages of switching converters are nonlinear systems as they consist of power switches, 

which have two operation modes with the numerical values of either “zero” or “one”. In control 

systems, linear control theory is used for studying the behavior of the switching converters. 

However, in order to implement this theory, nonlinear power stages of switching converters 

should be averaged and linearized [57], [115], [116]. Two traditional techniques including 

state-space averaging [50], [51], [53], [55]–[57] and circuit averaging [117]–[122] are 

commonly used to model DC/DC converters. The circuit averaging method is suitable for linear 

circuit models as the average values of voltages and currents are considered. The benefit of this 

approach is the simplicity of the attained equivalent circuits of the converters and the ease of 

analysis with the use of common circuit simulators [123]. However, when the dynamic behavior 

of the switching systems is taken into account, the state-space averaging method is preferred. 

One of the advantages of this method is to obtain the unified description of all power stages 

through the utilization of the exact state-space equations of the switching models [56]. Another 

benefit of this approach is that a small-signal averaged model can always be obtained from the 

state equations of the original converter [131]. Furthermore, this method is also appropriate 

for the analysis of nonlinear systems as it allows the examined nonlinear system to be 

approximated as a linear system.  
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One of the purposes of this research is to model a complete DC nanogrid system. First, a good 

model of a single converter needs to be obtained. Next, the entire system can be modeled by 

synthesizing the single models and this will be presented in Chapter 4. This chapter presents 

modeling and control of bidirectional buck converters and dual active bridge converters, which 

are used in the proposed DC nanogrid. The state-space averaging method is utilized for the 

modeling process and the small-signal approximation is used to obtain a linearized model. 

 

3.2 Small-signal modeling method based on the state-space averaging technique 

The modeling method based on the state-space averaging technique is commonly used in power 

electronic converter systems [50], [51]. The state-space description of dynamical systems is a 

backbone of the modern control theory. Averaging and small-signal linearization are the main 

steps in modeling switching converters. The state-space averaging approach is very practical, as 

it allows the use of the state-space description to derive the small-signal averaged equations of 

switching converters. This approach is based on analytical averaging of state-space equations, 

which describe equivalent circuits for different states of the converters. Then the average values 

of the state variables in each switching cycle are achieved with low frequency approximation. 

Finally, the small-signal model can be obtained by applying the linearization process [124]. 

The procedure of the modeling method based on the state-space averaging technique is 

described in the flowchart as shown in Figure 3.1. 
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Switched Linear Equations

State-space Averaging

Continuous Non-linear Equations
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Low Frequency Approximation

Converter Circuits

 

Figure 3.1. Flowchart of the small-signal modeling approach based on the state-space averaging 

technique [125] 

 

3.3 Generalized state-space averaging method and Fourier interpolation 

The state-space averaging method can provide a good model if two conditions are satisfied: 1) 

the switching frequency is much higher than the frequencies of the variables under 

consideration; 2) the ripple of the state variables is sufficiently small [54]. However, there are 

some converters that cannot be modeled with this method. For instance, the dual active bridge 

(DAB) converter cannot be modelled by applying the state-space averaging method as the AC 

ripples of the state variables are high and must be taken into account. Therefore, the generalized 

state-space averaging method is applied as an alternative way for the DAB converters. In this 

method, the analysis of variables with AC behavior can be considered. As the generalized 

average modeling method is based upon the Fourier interpolation of time-dependent variables, 

for convenience, some important properties of the Fourier interpolation will be presented 

hereafter. 

The Fourier series expansion of a periodic signal �(�)  is expressed by [55]–[57]: 

 �(�)= � 〈�〉�(�)∙ e
�����

�

����

 (3.1)
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where �� = 2π�� = 2π/��, 〈�〉�(�) are the Fourier coefficients. Since the interval under 

consideration slides as a function of time, these Fourier coefficients are functions of time. At 

any time, the coefficient of the ��� harmonic is defined as: 
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(3.2)

In case the ripples of the state variables are small, the conventional state-space average model 

can be employed where only DC terms (� = 0) given in (3.1) and (3.2) are taken into 

consideration. However, the transformer current in the DAB converter is a pure alternating 

current, which means  that the current ripple is large and the DC term is zero [126]. Therefore, 

in the present work both DC (� = 0) and fundamental terms (� = ±1) in the Fourier series 

expansion are taken into account. 

From (3.2) coefficients 〈�〉� and 〈�〉�� satisfy 

 ℜ {〈�〉�}= ℜ {〈�〉��};  ℑ{〈�〉�}= −ℑ{〈�〉��} (3.3)

where the nomenclatures "ℜ"  and "ℑ" denote the real and the imaginary parts of the complex 

coefficients, respectively. 

From (3.1), the derivative of �(�) with respect to � is written: 

 
d�(�)
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d

d�
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 (3.4)

From (3.4), derivative of the ��� coefficient for variable �(�) is given as follows: 

 
d

d�
〈�〉�(�)= 〈

d

d�
�〉� (�)− j���〈�〉�(�) (3.5)

The proof of (3.5) can be obtained directly by using the Fourier representation (3.1). The ��� 

coefficient of the product of two variables � and � is  

 〈��〉� = � 〈�〉���〈�〉�

�

����

 (3.6)

By taking into account only the DC and the first harmonics, the product of zeroth coefficient 

terms given in (3.6) is approximated by 
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 〈��〉� = 〈�〉�〈�〉� + 〈�〉�〈�〉�� + 〈�〉��〈�〉� (3.7)

According to (3.2) and (3.3), the coefficients corresponding to � = 1 and � = −1 are complex 

conjugates, and if only harmonics up to the 1st order are taken into account, the fundamental 

coefficient terms are given by 

 〈�〉� = ℜ {〈�〉�}+ j ∙ ℑ{〈�〉�} (3.8)

 〈�〉�� = ℜ {〈�〉��}+ j ∙ ℑ{〈�〉��}= ℜ {〈�〉�}− j ∙ ℑ{〈�〉�} (3.9)

 〈�〉� = ℜ {〈�〉�}+ j ∙ ℑ{〈�〉�} (3.10)

 〈�〉�� = ℜ {〈�〉��}+ j ∙ ℑ{〈�〉��}= ℜ {〈�〉�}− j ∙ ℑ{〈�〉�} (3.11)

From (3.7)-(3.11), the product of the zeroth coefficient term is given by 

 〈��〉� = 〈�〉�〈�〉� + 2(ℜ {〈�〉�}ℜ {〈�〉�}+ ℑ{〈�〉�}ℑ{〈�〉�}) (3.12)

Similarly, the 1st coefficient terms are approximated by   

 ℜ {〈��〉�}= 〈�〉� ∙ ℜ {〈�〉�}+ ℜ {〈�〉�}∙ 〈�〉� (3.13)

 ℑ{〈��〉�}= 〈�〉� ∙ ℑ{〈�〉�}+ ℑ{〈�〉�}∙ 〈�〉� (3.14)

The Fourier coefficients can be determined theoretically. In the following section, the DC and 

the 1st coefficient of a well-known signal will be described as an example. 

Figure 3.2 shows two periodic square-wave signals with fundamental period of �� and two 

possible values of +1 and −1. It is realized that ��(�) is the special case of ��(�) corresponding 

to � =  0. Hence, the calculation of the Fourier coefficients will be conducted for the signal 

��(�). 
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Figure 3.2: Two periodic signal with the same fundamental period ��, but different phase shift 

Because ��(�) is symmetric regarding �, the DC component is zero: 

 〈��〉�(�)= 0 (3.15)
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From Figure 3.2, the 1st coefficient of ��(�) is calculated as follows:  
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(3.16) 

 Therefore  

 ℜ {〈��〉�}= −
2sin(�π)

π
;  ℑ{〈��〉�}= −

2cos(�π)

π
 (3.17)

With � = 0, the corresponding coefficients of ��(�) are 

 〈��〉� = 0;  ℜ {〈��〉�}= 0;  ℑ{〈��〉�}= −
2

π
 (3.18)

  

3.4 Modeling and control of a bidirectional buck converter 

3.4.1 Introduction 

As aforementioned, the topology of the DC nanogrid consists of a buck converter for the PV 

source, a bidirectional buck converter for charging and discharging the battery and a DAB 

converter for the purpose of interconnection. For convenience, the bidirectional buck topology 

is employed for both the PV source and the battery in this work. In order to design controllers 

for the bidirectional buck converter, the small-signal transfer functions need to be derived and 

will be presented hereafter. 

 

3.4.2 Circuit description 

The topology of a bidirectional buck converter is shown in Figure 3.4. It consists of two switches 

�� and ��, an inductor �, a parasitic resistor �� of the inductor and a filter capacitor ��. A passive 

DC load is represented by a resistor ��. Each switch is composed of a power MOSFET and a 

freewheeling diode. With this topology, the switches are bidirectional for the current, allowing 

energy flow in both directions from left to right and vice versa. The switch �� and �� must never 
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be closed at the same time in order to avoid short circuit on the input voltage which would 

cause a shoot-through current spike and can result in power MOSFET failure [127]. In order to 

prevent power MOSFET from cross conduction, a delay between the turn-off of one MOSFET 

and the turn-on of the other must be added. The switches are controlled by a pulse-width 

modulation (PWM) generator from a digital signal processing unit (DSP) from which they are 

turned on and turned off at the switching frequency ��. The duty ratio D for the switches is 

defined as follows 

 � =
��
��
=

���
��� + ����

=
���
��

 (3.19)

where ��� is the time interval when switch �� is ON, ���� is the time interval when switch �� is 

OFF, �� = 1/�� is the switching period, �� and �� are the input and output voltages, respectively. 

In most cases, the input voltage �� often fluctuates over a certain range while the output voltage 

�� needs to be maintained at the reference value. By regulating the duty ratio �, the amount of 

energy exchanged between the input and output sides can be controlled.  

=

PWM

 

Figure 3.3:  The bidirectional buck converter 
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Figure 3.4: Waveforms of the bidirectional buck converter during one period 
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3.4.3 State-space averaged model of the bidirectional buck converter 

In this section, a small-signal model for a buck converter is developed based on the state-space 

averaging method. For simplicity, only the zeroth harmonics of the output voltage �� and the 

inductor current �� as state variables are considered in this work since they are DC in the steady 

state [66]. 

As shown in the Figure 3.4 the voltage ��� has two states: 1) +�� when switches �� is ON and 

�� is OFF; and 2) 0 when switches  �� is OFF and �� is ON. Therefore, 

 

���(�)= �(�)��(�)          

with  �(�)= �
1,      0 ≤ � < � ∙ ��
0,      � ∙ �� ≤ � < ��

 
(3.20)

where �� is the switching period, d is the duty cycle, and ��(�) is the input voltage with taking 

into account the perturbation, 〈��〉� = �� with 〈�〉� corresponding to the coefficient of the ��� 

harmonic of the signal �(�). The dynamics of the converter are achieved by applying Kirchhoff’s 

law: 
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The state-space model of the bidirectional buck converter is represented by equation (3.22) and 

equation (3.24), respectively, as the switched model in which the binary valued nature of the 

switch position function �(�) is the set of {0,1}. By taking the determination of the zeroth 

coefficient term for both sides of (3.22) and (3.24), the state-space equations of the 

bidirectional buck converter can be deduced as 
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According to (3.12), 〈���〉� can be given as follows 

 〈���〉� = 〈�〉�〈��〉� + 2(ℜ {〈�〉�}ℜ {〈��〉�}+ ℑ{〈�〉�}ℑ{〈��〉�}) (3.27)

Substituting 〈���〉� from (3.27) into (3.26) yields 
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For simplicity, the first harmonics of �(�) are neglected, then (3.28) is equivalent to: 
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From Figure 3.4, the zeroth component of �(�) can be determined as follows 
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Substituting 〈�〉� from (3.30) into (3.29), the following equation is achieved: 
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From (3.25) and (3.31), the state-space model of the bidirectional buck converter in a matrix 

form is given by  

 
d

d�
�
〈��〉�
〈��〉�

� =

⎣
⎢
⎢
⎡−

1

����

1

��

−
1

�
−
��
� ⎦
⎥
⎥
⎤
�
〈��〉�
〈��〉�

� + �
0
�

�

� [〈��〉�] (3.32)

 

3.4.4 Small-signal model of the bidirectional buck converter 

The small-signal model of the bidirectional buck converter can be obtained by linearizing (3.32) 

around a steady state operating point. The control signal and the state variables are defined as 

follows: 

� = � + ∆� (3.33)
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〈��〉� = 〈��〉� + ∆〈��〉� (3.34)

〈��〉� = 〈��〉� + ∆〈��〉� (3.35)

〈��〉� = 〈��〉� + ∆〈��〉� (3.36)

where steady state variables are represented by capital characters, large-signal state variables 

by lower case characters and small-signal variables by ∆. If the input voltage is constant and the 

multiplication of two small variables is negligible, ∆〈��〉� ≈ 0 and ∆〈��〉�.∆� ≈ 0. Steady state 

values of 〈��〉� and 〈��〉� can be found from (3.32) by solving  

 
d

d�
�
〈��〉�
〈��〉�

� = 0 (3.37)

Substituting (3.33)–(3.37) into (3.32) results in the small-signal model of the bidirectional buck 

converter given in (3.38), which can be used to obtain the control-to-output transfer functions 

of the bidirectional buck converter. 

 
d

d�
�
∆〈��〉�
∆〈��〉�

� =

⎣
⎢
⎢
⎡−

1

����

1

��

−
1

�
−
��
� ⎦
⎥
⎥
⎤
�
∆〈��〉�
∆〈��〉�

� + �
0

〈��〉�
�

� ∆� (3.38)

The small-signal control to output transfer function given in (3.38) is represented in the matrix 

form as follows 

 �
d

d�
� = � ∙ � + � ∙ ∆�

� = � ∙ �

 (3.39)

where 

 � = [∆〈��〉�,∆〈��〉�]
� (3.40)

 � =

⎣
⎢
⎢
⎡−

1

����

1

��

−
1

�
−
��
� ⎦
⎥
⎥
⎤
 (3.41)

 � = �
0

〈��〉�
�

� (3.42)
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 � = �
1 0
0 1

� (3.43)

 

3.4.5 Closed-loop control of the bidirectional buck converter 

3.4.5.1 Control scheme for the bidirectional buck converter 

According to the state-space representation (3.39), the control-to-output transfer functions are 

given by 

 �� = ����,�,����,��
�
= (� ∙ � − �)���  (3.44)

where the nomenclature ‘b’ denotes the bidirectional buck converter, ���,� and ����,� are the 

transfer functions from the small signal ∆〈��〉� and ∆〈��〉� to the control small signal ∆�, 

respectively. From these functions, ���,� represents the relationship between a change of the 

duty cycle ∆� and the output voltage while ����,� represents the relationship between ∆� and 

the inductor current ��. Assuming that the input voltage is constant, then 〈��〉� = ��. The transfer 

functions of the bidirectional converter are given by 

 ���,� =
��

����
� + ����� +

�
��
��+

��
��

+ 1
 (3.45)

 ����,� =
�� ����+

1
��
�

����
� + ����� +

�
��
��+

��
��

+ 1
 (3.46)

The cascaded control structure with two control loops for the bidirectional buck converter is 

shown in Figure 3.5, where the power stage of the converter is represented by the obtained 

small-signal transfer functions. The inductor current �� is regulated by the inner loop while the 

outer loop controls the output voltage ��. For cascaded control structures, the closed-loop 

bandwidth of the inner control loop needs to be adequately higher than that of the outer control 

loop [128]. In Figure 3.5, the control delay is approximated by a first-order lag element ��,�(�) 

with the time constant �� = 2 ∙ ��. 

 ��,�(�)=  
1

1+ �� ∙ �
 (3.47)
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Figure 3.5: Control scheme for the bidirectional buck converter 

The controller design of the bidirectional buck converter is based on the obtained small-signal 

transfer functions. Conventional PI controllers can be used for both the current and voltage 

control loops as they are simple and robust. The transfer functions of the PI controllers for the 

current and the voltage loops are given by (3.48) and (3.49), respectively.   

 ���,�(�)= ���,� +
���,�
�

 (3.48)

 ���,�(�)= ���,� +
���,�
�

 (3.49)

where ���,�,���,� are the gains of the proportional and integral parts of the current controller, 

while ���,�,���,� correspond to the voltage controller. From the control structure of the 

bidirectional buck converter, as shown in Figure 3.5, the open-loop transfer functions ����,�(�) 

from �� to ��,��� and ����,�(�) from �� to ��,��� are given by 

 ����,�(�)= ���,�(�)��,�(�)����,�(�) (3.50)

 ����,�(�)=
���,�(�)���,�(�)��,�(�)���,�(�)

1 + ���,�(�)��,�(�)����,�(�)
 (3.51)

The parameters of PI controllers are tuned by using the SISO (Single Input Single Output) tool 

in MATLAB along with the procedure presented in [125]. These parameters are selected to 

ensure appropriate bandwidths, phases and gain margins, in which gain and phase margins will 

be at least 6 dB and at least 60� away from 180�, respectively [129]. The inner current loop 

needs to be tuned first without closing the voltage loop as the inner loop is much faster than 

the outer loop. This way, appropriate parameters of the current controller can be chosen by 

examining the step response of the loop. Afterwards, the same procedure is examined by closing 

the voltage loop in order to achieve the PI parameters for the outer loop. The obtained values 
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for the proportional and integral gains, which are used in both simulations and experiments, 

are summarized in Table 3.1.  

Table 3.1: Parameters of controller 

Voltage controller Current controller 

���,� = 1.2 (A/V) ���,� = 0.008 (1/A) 

���,� = 150 (A/Vs) ���,� = 25 (1/As) 

 

 

3.4.5.2 Bode plots of the open-loop transfer functions 

Figure 3.6 and Figure 3.7 show the Bode diagrams of the open-loop transfer functions of the 

current and the voltage control loops, respectively. The gain and phase margins of the open 

loop transfer function of the current control loop are infinite and 71 degrees, respectively, as 

illustrated in Figure 3.6. For the open-loop transfer function of the voltage control loop, the 

phase and gain margins are 86 degrees and 26 dB at frequency of 2.2 kHz, respectively. It is 

observed that the bandwidths of the inner current loop and the outer voltage loop are 1240 Hz 

and 190 Hz, respectively. Therefore, it meets the requirement that the bandwidth of the inner 

current loop is significant higher than that of outer voltage loop. 

 

Figure 3.6: Bode plot of the open-loop transfer function of the current loop 
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Figure 3.7: Bode plot of the open-loop transfer function of the voltage loop 

 

3.4.6 Simulation and experimental results 

Simulation and experimental models were built to verify the operation of the proposed method. 

The parameters of the bidirectional buck converter are summarized in Table 3.2. The simulation 

results that correspond to step changes in the resistive loads are shown in Figure 3.8. It can be 

observed in Figure 3.8 that the output voltage �� remains stable around the reference value of 

48 V with a small overshoot and a small undershoot, which are approximately 1 V equivalent 

to 2% of the reference value, with respect to the changes in the load. The settling time is around 

15 ms. At � = 0.07 s the load is suddenly increased, leading to a decrease in the output voltage 

�� and an increase in the inductor current ��. By contrast, the load is decreased at � = 0.11 s 

resulting in an overshoot of the output voltage �� and a drop of the inductor current ��.  

Figure 3.9 depicts the schematic of the bidirectional buck converter built in the laboratory. A 

TMS320F28335 DSP is employed to execute the control algorithm and generate PWM signals 

at a switching frequency of 50 kHz. The input and output DC voltages are measured by the 

measurement circuit equipped with two voltage transducers LEM LV-25P while two current 

transducers LEM LA-25-NP are used to measure the input and the inductor currents. 
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Table 3.2: Parameters of bidirectional buck converter 

Parameter Symbol Value Unit 

Input voltage �� 100 V 

Output voltage �� 48 V 

Power � 300 W 

Inductance @50kHz � 
1000 µH 

Resistance @50kHz �� 180 mΩ 

Power semi. devices �� and �� IRFP260MPBF MOSFET 

Switching frequency �� 
50 kHz 

Output capacitor �� 20 µF 

DC link capacitor ��� 1000 µF 

 

 

 

Figure 3.8: Simulation results of the bidirectional buck converter 
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Figure 3.9: System diagram of the bidirectional buck converter 

Experimental results are illustrated in Figure 3.10 and Figure 3.11. Figure 3.10 shows the 

responses of the output voltage ��, the inductor current �� and the load current �� corresponding 

to an increase in the resistive load. On the contrary, the experimental results depicted in Figure 

3.11 show that the decrease in the load leads to an overshoot of the voltage and a decrease in 

the inductor current as well. It is observed that the undershoot and overshoot of the voltage are 

around 1 V or 2% of the reference value and the settling time is almost 15 ms in both cases. 

From Figure 3.8 and Figure 3.10 - Figure 3.11, it is confirmed that experimental results concur 

with those attained in the simulation model, verifying the validity of the simulation results. 
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Figure 3.10: Experimental result of the buck converter for load current step up from 0.96 A to 2.88 A 

 
 

 

Figure 3.11: Experimental result of the buck converter for load current step down from 2.88 A to 

0.96 A 

 
3.5 Modeling and Control of Dual Active Bridge Converter 

3.5.1 Introduction 

As shown in Figure 2.17, the interconnected converter portrayed in the red box is required to 

provide a galvanic isolation and bidirectional power transfer capability. For these requirements, 

the DAB converter is a suitable candidate. This chapter focusses on the modeling and control of 
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the interface converter where a DAB converter is adapted. Both the output current and output 

voltage of the DAB converter are controlled in a cascaded two-control-loop structure to ensure 

a flexible exchange of power inside a nanogrid and among different nanogrids. 

Many researches have been carried out for modeling of the DAB converter. The authors in [55] 

and [130] present the full-order modeling and dynamic analysis of a phase-shift DAB converter 

in both continuous-time domain and discrete-time domain, respectively. The leakage 

inductance current of the high-frequency (HF) transformer is considered as a state variable in 

both approaches. These two methods model the DAB converter in such a way that a single 

closed loop control structure is designed for the output voltage. Since more variables are 

considered, the attained full-order models ensure higher accuracy as compared to reduced-

order models introduced in [131]. 

Apart from the single voltage control loop, a cascaded control structure has been developed for 

the DAB converter, as presented in [132], in which an inner current control loop is inserted 

within an outer voltage cascade. Typically, the current control loop is responsible for controlling 

the current in the windings of the HF transformer. An alternative solution as presented in [133] 

proposes the function of the current control loop to regulate the output current which is fed to 

the output voltage. This approach is based on modeling of the DAB converter in the discrete-

time domain and is developed to be implemented on a digital signal processing unit (DSP). 

Based on a generalized averaging method mentioned in [55], this work presents a full-order 

continuous-time state-space model of a DAB converter which offers a modification in the 

topology of the DAB in a manner that an LC filter is added before the output DC link for meeting 

the electromagnetic interference (EMI) requirement. The generalized state-space averaging 

technique has an advantage associated to achieve more accurate models [126], as it considers 

more terms in Fourier series of the high frequency transformer currents as state variables [115], 

[134]. Moreover, rather than using a single voltage control loop as proposed in previous work, 

a cascaded control structure is developed for the output current and the output voltage in this 

research. 

 

3.5.2 The conventional DAB converter 

The bidirectional isolated DAB converter was first introduced in early 1990s [135] as a 

candidate for high power density and high power DC/DC converter. Figure 3.12 shows the 

circuit diagram of a conventional DAB converter. It is composed of two H-bridges, two DC 
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capacitors and a HF transformer. The HF transformer functions to provide galvanic isolation 

between the two voltage levels. Besides, using the HF transformer along with high-frequency 

switching devices results in the reduction of the weight and volume of passive magnetic devices 

[126]. The DAB converter has a symmetrical configuration where each H-bridge consists of four 

switching devices along with anti-parallel freewheeling diodes. 

= =

HF-Transformer

 

Figure 3.12: Bidirectional dual active bridge converter 

Three methods are commonly applied to control the DAB converter: 1) the control of phase 

shift � between the two bridges; 2) the duty ratios of switching devices and 3) the switching 

frequency [55], [133]. The phase-shift control method is employed in this work, as it is simple 

and effective. In the phase-shift modulation technique, the power flow is controlled by changing 

the phase shift between two square wave voltages generated by the two H-bridges while the 

duty cycle is kept constant at 50%. The sign of the phase shift determines the direction of power 

flow. Power transferred from the leading bridge to the lagging bridge is given as follows 

 � =
������
2�����

�(1− �) (3.52)

where ��� and ��� are the input and output voltages, respectively, �� is the switching frequency, 

� = �/π is the phase shift ratio with � being the phase shift, � = ��/�� is the turn ratio from 

the primary side to the secondary side of the HF transformer,  �� = ���/�
� + ��� is the leakage 

inductance referred to the secondary side where ��� and ��� are the leakage inductances in the 

primary and secondary sides, respectively. 

 

3.5.3 Generalized model of the DAB converter 

A simplified DAB referred to the secondary side is depicted in Figure 3.13. Note that Figure 

3.13 slightly differs from Figure 3.12 where �� = ���/� is the input voltage referred to the 

secondary side, and �� = ��� is the output voltage. The two bridges generate square wave 

voltages �� and �� at the terminals of the HF transformer with amplitudes equal to the DC 
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voltages �� and ��, respectively. �� is the equivalent inductance and �� is the equivalent 

resistance of the HF transformer, whereas, �� is the load resistance. In comparison to the 

conventional DAB as shown in Figure 3.12, the DAB portrayed in Figure 3.13 has an LC output 

filter described by three components: an inductor ��, a DC resistance �� of the inductor and a 

capacitor �� in order to meet the EMI requirement. The calculation of the parameters of the LC 

filter can be referred to the Appendix 6.2.1.2.  

=

HF-Transformer
1 : 1

 

Figure 3.13: Simplified DAB converter referred to the secondary side 

According to the phase shift modulation technique, the switching mode ��(�) of the left H-

bridge, ��(�) of the right H-bridge and the transformer current for one period are illustrated in 

Figure 3.14 [55]. Assuming the transformers magnetizing current is neglected and the 

switching devices are ideal and have no voltage drop, the following waveforms are derived. 

Only two states are possible for the voltage �� at the transformer input side:  1) +�� when 

switches ��� and ��� are ON; and 2) −�� when switches  ��� and ��� are ON [55]. Therefore, 

 

��(�)= ��(�)��(�)          

with  ��(�)= �
1,      0 ≤ � <

��
2

−1,      
��
2
≤ � < ��

 
(3.53)

where �� = 1/��, ��(�) is the input voltage with taking into account the perturbation, 〈��〉� = ��. 

Correspondingly, the terminal voltage at the secondary side is given as 

 

��(�)= ��(�)���(�) 

 with  ��(�)= � 1,      
� ∙ ��
2

≤ � <
��
2
+
� ∙ ��
2

−1,                          otherwise
  

 

(3.54)
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Figure 3.14: Waveforms during one period 

The output voltage ��, the filter voltage ���, the transformer current �� and the filter current �� 

are considered as state variables to model the DAB converter. By applying the Kirchhoff’s law, 

the mathematical description of the DAB can be achieved as follows. 

For ��(�): 

 ��(�)= ���(�)+ ��(�)= ��
d��(�)

d�
+
��(�)

��
 (3.55) 

or 
d��(�)

d�
= −

��(�)

����
+
��(�)

��
 (3.56) 

For ��(�): 

 ��(�)��(�)− ��(�)���(�)= ����(�)+ ��
d��(�)

d�
 (3.57)

or 
d��(�)

d�
= −

��
��
��(�)+

��(�)��(�)

��
−
��(�)���(�)

��
 (3.58)

For ���(�): 

 ��(�)��(�)= ��(�)+ ���(�)= ��(�)+ ��
d���(�)

d�
 (3.59)
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or 
d���(�)

d�
=
��(�)��(�)

��
−
��(�)

��
 (3.60)

For ��(�): 

 ���(�)= ����(�)+ ��
d��(�)

d�
+ ��(�) (3.61)

or 
d��(�)

d�
= −

��(�)

��
−
��
��
��(�)+

���(�)

��
 (3.62)

The transformer current �� is purely AC. By contrast, only DC components of the three state 

variables: the output voltage ��, the filter voltage ��� and the output current ��, are considered, 

as they are DC in the steady state. If more terms in the Fourier series are used, a more accurate 

model could be obtained, but that would render a more complex model, influencing the 

controller design [126]. For simplicity, only the 1st harmonic of �� is taken into account in this 

work. By determining the DC and the 1st harmonic according to (3.5) and (3.12)-(3.14), the 

state-space differential equations of the DAB are given as follows 

 
d〈��〉�
d�

= −
1

����
〈��〉� +

1

��
〈��〉� (3.63) 

 

d(ℜ {〈��〉�})

d�
= −

��
��
ℜ {〈��〉�}+ ��ℑ{〈��〉�}+

1

��
(〈��〉�ℜ {〈��〉�}+ ℜ {〈��〉�}〈��〉�)

−
1

��
(〈��〉�ℜ {〈���〉�}+ ℜ {〈��〉�}〈���〉�)          

(3.64) 

 

d(ℑ{〈��〉�})

d�
= −

��
��
ℑ{〈��〉�}− ��ℜ {〈��〉�}+

1

��
(〈��〉�ℑ{〈��〉�}+ ℑ{〈��〉�}〈��〉�)

−
1

��
(〈��〉�ℑ{〈���〉�}+ ℑ{〈��〉�}〈���〉�) 

(3.65) 

 
d〈���〉�
d�

=
1

��
〈��〉�〈��〉� +

2

��
ℜ {〈��〉�}ℜ {〈��〉�}+

2

��
ℑ{〈��〉�}ℑ{〈��〉�}−

1

��
〈��〉�        (3.66) 

 
d〈��〉�
d�

= −
1

��
〈��〉� −

��
��
〈��〉� +

1

��
〈���〉� (3.67) 

Equation (3.63)-(3.67) can be rewritten in a matrix equation as follows: 
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d

d�
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⎢
⎢
⎢
⎡
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2 ∙ ℜ {〈��〉�}

��

2 ∙ ℑ{〈��〉�}
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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×

⎣
⎢
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〈��〉�
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ℑ{〈��〉�}
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〈��〉� ⎦
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⎣
⎢
⎢
⎢
⎢
⎢
⎡
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ℜ {〈��〉�}

��
ℑ{〈��〉�}

��
0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

[〈��〉�]  

(3.68)

The DC and the 1st harmonic of ��(�) and ��(�) were already calculated in (3.15), (3.17), (3.18). 

For convenience, they are restated as follows 

 〈��〉� = 0;  ℜ {〈��〉�}= 0;  ℑ{〈��〉�}= −
2

π
 (3.69)

 〈��〉� = 0;  ℜ {〈��〉�}= −
2sin(�π)

π
;  ℑ{〈��〉�}= −

2cos(�π)

π
 (3.70)

Substituting (3.69) and (3.70) into (3.68), the state-space model of the DAB converter in the 

matrix form is expressed as (3.71). 
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⎣
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⎢
⎢
⎡

0
0

−
2

π��
0
0 ⎦

⎥
⎥
⎥
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⎤

[〈��〉�]  

 

(3.71)

3.5.4 Small-signal model of the DAB converter 

To design controllers and analyze the stability for the DAB converter, the small-signal control-

to-output transfer functions have to be defined. The state-space representation of the DAB 

converter given in (3.71) allows determining the small-signal control-to-output transfer 

functions that illustrate the dynamic responses of the converter from a small deviation of the 

system to the control signal. The control signal is the phase-shift ratio � as the phase-shift 

modulation technique is applied. The input voltage is assumed to be constant. The deviation of 

the state variables and the control signal are defined as 

 � = � + ∆� (3.72)

 〈��〉� = 〈��〉� + ∆〈��〉� (3.73)

 ℜ {〈��〉�}= ℜ {〈��〉�}+ ∆(ℜ {〈��〉�}) (3.74)

 ℑ{〈��〉�}= ℑ{〈��〉�}+ ∆(ℑ{〈��〉�}) (3.75)

 〈���〉� = 〈���〉� + ∆〈���〉� (3.76)

 〈��〉� = 〈��〉� + ∆〈��〉� (3.77)

where large-signal state variables are represented by lower characters, steady state variables by 

capital characters and small-signal state variables by ∆. Note that (3.71) includes 
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multiplications of control input and state variables. The following multiplication is derived as 

an example as described in (3.78) [56]. Other terms can be achieved in the same way. 

 

sin(�π)〈���〉� = sin[(� + ∆�)π] ∙ (〈���〉� + ∆〈���〉�)

= (sin (�π)∙ cos (∆�π)+ cos (�π)∙ sin (∆�π))∙ (〈���〉� + ∆〈���〉�)

≈ sin (�π)∙ 〈���〉� + sin (�π)∙ ∆〈���〉� + cos (�π)∙ ∆�π ∙ 〈���〉� 

(3.78)

It should be mentioned that the approximation (3.78) is based on the assumption that for small 

value of any variable � we have sin� ≈ �,cos� ≈ 1 and the multiplication of two small variables 

is ignored. 

Steady state values of 〈��〉�,(ℜ {〈��〉�}),(ℑ{〈��〉�}),〈���〉� ,〈��〉� can be found from (3.71) by 

solving  

 
d

d�

⎣
⎢
⎢
⎢
⎡
〈��〉�

ℜ {〈��〉�}

ℑ{〈��〉�}

〈���〉�
〈��〉� ⎦

⎥
⎥
⎥
⎤

= 0 (3.79)

Substituting (3.72)–(3.79) into (3.71), the small-signal model of the DAB converter is given in 

(3.80), which can be used to obtain the control-to-output transfer functions of the DAB 

converter. 
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(3.80)

Denoting � = [∆〈��〉�,∆(ℜ {〈��〉�}),∆(ℑ{〈��〉�}),∆〈���〉� ,∆〈��〉�]
� as the state variable vector and 

� = � ∙ � as the output variables where � represents the 5 × 5 identity matrix, the small-signal 

state-space representation of the DAB converter is 

 �
d

d�
� = � ∙ � + � ∙ ∆�

� = � ∙ �

 (3.81)
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 (3.82)
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 (3.83)

In order to complement the state-space equation (3.81), the calculation of ℜ {〈��〉�} and ℑ{〈��〉�} 

is of critical importance. For the determination of the real part ℜ {〈��〉�} and the imaginary part 

ℑ{〈��〉�} of the first harmonic, the DAB converter is run at a steady state with a predefined value 

of � =  � and after obtaining the leakage current ��, the Fast-Fourier Transform (FFT) is applied. 

 

3.5.5 Closed-loop control of the DAB converter 

3.5.5.1 Control scheme for the DAB converter 

Based on the state-space representation (3.81), the control-to-output transfer functions are 

defined by (3.84). 

 ���� = ����,���,����,���,����,���,�����,���,����,����
�
= (�∙ � − �)���     (3.84)

where the DAB converter is represented by the nomenclature ‘dab’. ���,���, ����,���, ����,���, 

�����,���, and ����,��� are the transfer functions of the small signals ∆〈��〉�, ∆(ℜ {〈��〉�}), 

∆(ℑ{〈��〉�}), ∆〈���〉�, and ∆〈��〉� depending on the small signal ∆�, respectively. According to these 

transfer functions, the relationship between the change of the phase shift ratio ∆� and the 

output voltage is represented by ���,���, while ����,��� denotes the dependence of the current 

��, flowing into the filter, on ∆�. 

The cascaded control structure consisting of two control loops for the DAB converter is 

illustrated in Figure 3.15. The inner loop enables the control of the output current �� and is 

superimposed by the outer loop which controls the output voltage ��. Similar to the 

bidirectional buck converter, the control delay is represented by a first-order lag element 

��,���(�) with the time constant �� = 2 ∙ ��. 

 ��,���(�)=  
1

1+ �� ∙ �
 (3.85)
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Figure 3.15. Control scheme for DAB converter 

The transfer functions of the PI controllers for the current and the voltage loops are represented 

by (3.86) and (3.87), respectively.   

 ���,���(�)= ���,��� +
���,���
�

 (3.86)

 ���,���(�)= ���,��� +
���,���
�

 (3.87)

where ���,���,���,��� are the proportional and integral gains of the current controller while 

���,���,���,��� are related to the voltage controller.  

The open-loop transfer functions ����,���(�) from �� to ��,��� and ����,���(�) from �� to ��,��� are 

given as: 

 ����,���(�)= ���,���(�)��,���(�)����,���(�) (3.88)

 ����,���(�)=
���,���(�)���,���(�)��,���(�)���,���(�)

1+ ���,���(�)��,���(�)����,���(�)
 (3.89)

The SISO tool in MATLAB together with the procedure introduced in [125] is used for tuning 

the parameters of the PI controllers in the inner and the outer loops. The attained values of the 

gains of the proportional and integral parts are employed in both simulations and experiments 

and are listed in Table 3.3. 

Table 3.3: Parameters of controllers 

Voltage controller Current controller 

���,��� = 1.2 (A/V) ���,��� = 0.001 (1/A) 

���,��� = 140 (A/Vs) ���,��� = 100 (1/As) 
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3.5.5.2 Bode plots of the open-loop transfer functions 

Figure 3.16 and Figure 3.17 depicts the Bode diagrams of the open-loop transfer functions of 

the current and the voltage control loops, respectively. The gain crossover frequencies of the 

current loop is observed to be 100 Hz and that of the voltage loop 70 Hz. Due to the resonance 

point at the cut-off frequency of the output filter, the bandwidth of the two control loops are 

quite low. One possible solution for increasing the bandwidth is to increase the proportional 

gain of the PI controller. Nevertheless, increasing the proportional gain leads to decreases of 

both the gain margin and phase margin that might result in the destabilization of the current 

control loop. Alternative solution for the elimination of the resonance frequency is to provide a 

damping network at the output side of the converter as presented in [136]. 

It is observed that the open-loop transfer function of the current control loop has the gain 

margin of 15.2 dB corresponding to the frequency of 7.8 kHz and the phase margin of 88 

degrees at the crossover frequency of 100 Hz, respectively. Similarly, the phase margin of the 

open-loop transfer function of the voltage control loop is 50 degrees at the crossover frequency 

of 70 Hz and the gain margin is 35 dB at 700 Hz as shown in Figure 3.17. The results show that 

the bandwidth of the outer control loop is lower than that of the inner control loop. 

 

Figure 3.16: Bode plot of the open-loop transfer function of the current loop of the DAB converter 
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Figure 3.17: Bode plot of the open-loop transfer function of the voltage loop of the DAB converter 

 

3.5.6 Simulation and experimental results 

The operation of the proposed method is validated by the results from simulation and 

experimental models. The parameters of the DAB model are listed in Table 3.4. 

 Table 3.4: Parameters of DAB converter 

Parameter Symbol Value Unit 

Input voltage ��� 100 V 

Output voltage ��� 48 V 

Power �  400 W 

Transformer ratio ��: �� 16:8  

Total inductance @50kHz ��
�

  60 µH 

Total resistance @50kHz ��
�
  110 mΩ 

Power semi. devices ��� − ��� IRFP260MPBF MOSFET 

Switching frequency ��  50 kHz 

Output capacitor ��  2200 µF 

Filter capacitor ��  40 µF 

Filter inductor ��  10 µH 

Filter resistor ��  16 mΩ 
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Figure 3.18 shows the simulation results associated to step changes in resistive loads. It can be 

seen that the output voltage �� is kept stable around the nominal value of 48 V with only a 

slight overshoot and undershoot with respect to the fluctuations in the load. The load is raised 

at � = 0.07 s causing a decline in the output voltage �� and a rise in the output current ��. The 

undershoot of the voltage is approximately 1 V equivalent to 2% of the reference value. The 

settling time is around 20 ms that depends on the magnitude of the load variations and the 

output capacitance. An analogous phenomenon is visible at � = 0.11 s when the load is reduced 

abruptly. 

 

Figure 3.18: Simulation results of DAB converter 

The schematic of the DAB converter built in the laboratory is depicted in Figure 3.19. For the 

execution of control algorithm and the generation of gate signals at a switching frequency of 

50 kHz, the TMS320F28335 DSP is used. In this converter, an additional inductor is connected 

in series with the primary winding of the HF transformer to make sure that the converter can 

transfer the maximum power of 400 W corresponding to the total inductance, referred to the 

primary side, of 60 µH. The calculation of the leakage inductance and the additional inductance 

can be found in Appendix 6.1.1.  

As shown in Figure 3.19, two voltage transducers LEM LV-25P are employed to measure the 

input and output DC voltages. Similarly, the input and output currents are measured by two 

current transducers LEM LA-25-NP. The output filter, whose parameters can be referred in 

Appendix 6.1.1.3, is used in order to suppress conducted EMI.  
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Figure 3.19: System diagram of the DAB converter 

Figure 3.20 - Figure 3.22 show the experimental results. The responses of the output voltage 

��, the output current �� and the load current �� are demonstrated in Figure 3.20 corresponding 

to the step up of the resistive load. As observed, the experimental results coincide with 

simulation results, since the undershoot of the voltage is also around 1 V or 2% of the reference 

value as well as the settling time is approximately 20 ms. Figure 3.21 illustrates the 

experimental results regarding the decrease in the resistive load. When comparing Figure 3.18 

and Figure 3.21, a similarity between the simulation and experimental results in regards to the 

step down of the load can be observed. The terminal voltages of the HF transformer and the 

current flowing in the primary winding are shown in Figure 3.22. 
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Figure 3.20: Experimental result of the DAB converter for load current step up from 0.96 A to 2.88 A 

 

 

Figure 3.21: Experimental result of the DAB converter for load current step down from 2.88 A to 

0.96 A 
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Figure 3.22: Switching wave form for load current of 0.96 A 

 

3.6 Summary 

In this chapter, the small-signal modeling method based on state-space averaging technique 

was used in modeling the bidirectional buck converter and the generalized state-space 

averaging technique was employed for the DAB converter. For the bidirectional buck converter, 

only the DC components of the DC state variables are considered while both the DC component 

of the DC state variables and the fundamental harmonic of the AC state variables are taken into 

account for the DAB converter. Control-to-output transfer functions were derived from the 

state-space representation to design a cascaded control structure composed of the output 

current and the output voltage control loops. The effectiveness of the developed model was 

verified by both simulations and experiments. The attained results depict good transient 

responses of the output current as well as the output voltage under the changes in the resistive 

loads. The next chapter considers the application of the developed control techniques to manage 

the exchange of electrical power among multiple nanogrids working in the autonomous mode. 
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4 A self-sustained and flexible control strategy for DC nanogrids 

4.1 Introduction 

As already mentioned in Chapter 2, a nanogrid is a power distribution system which is 

analogous to a microgrid but smaller in scale. Like microgrids, nanogrids have a capability of 

operating in isolated or grid connected mode hence, making them an appropriate solution for 

population living in rural or remote areas. To avoid power outage and increase the operational 

efficiency, nanogrids are commonly connected to the utility grid [19], [20]. However, to ensure 

the reliable operation of nanogrids in remote or isolated areas where main grid does not exist, 

different methods have been developed to prevent the imbalance between consumed and 

generated electrical power. 

In this thesis, a self-sustained and flexible control for nanogrids is developed. Based on the 

Open Energy System, the nanogrids can be operated in either independent or interconnected 

mode without the need for a dedicated communication network. Each nanogrid can exchange 

power with its counterparts through an external DC bus by using a bidirectional dual active 

bridge DC/DC converter, resulting in galvanic isolation between the external DC bus and the 

internal structure. This architecture allows integration of multiple nanogrids and sharing of 

electrical energy among them with high reliability, flexibility and safety by the virtue of 

redundancy. If one DC nanogrid is not able to fulfill its load demand, other interconnecting DC 

nanogrids can support through an external DC bus voltage to ensure a continuous operation of 

critical loads. Furthermore, the proposed control strategy manages the power of the PV panel, 

the interconnections and the battery in such a way that renewable energy can be harvested to 

the maximum since the voltage threshold of the primary control loop of the PV unit is set at the 

highest value. Additionally, the control algorithm ensures a self-configuration capability of the 

nanogrid allowing the nanogrid to operate properly even if one or two power units are 

disconnected. The power exchange in a nanogrid and within the integrated nanogrid 

architecture is also regulated based on the SoC of the battery in order to prevent extreme 

charging situations and to avoid the disruption of the external DC bus [65], [67]. 

 



 

 

4.2  Proposed control strategy  68 

4.2 Proposed control strategy 

The configuration of the DC nanogrid system and the interconnection of multiple DC nanogrids 

are shown in Figure 2.17 and Figure 2.18, respectively. This chapter presents the hierarchical 

control structure, as shown in Figure 4.1, which is used to regulate power in a nanogrid and 

within nanogrids to provide the system with the capability of self-sustaining itself. The control 

strategy is also aimed to coordinate among different sources of power supplies and to optimize 

the power flow between power generation sources and loads. To achieve this  coordination and 

optimization, a control algorithm is implemented with two levels: a primary control and a 

secondary control. It is necessary to mention again that in order to prevent overcharging or 

deep discharging of the battery and to prevent the excess and breakdown of voltage through 

the external DC bus within a defined threshold, the control strategy is implemented according 

to the SoC of the battery and the levels of the external DC bus voltage. 

(0): Converter control loops 
including the outer and current 
control loops

(1): Primary control of a nanogrid 
including droop control

(2): Secondary control of a nanogrid

(0)(0)

(0)

(1)

(2)

PV 
converter

Battery 
converter

DAB 
converter

 

Figure 4.1: The proposed hierarchical control structure of the nanogrid 

 

4.2.1 Primary control 

The primary control as shown in Figure 4.2 consists of converter control loops (one converter 

control loop per converter) and the droop control. This control level is responsible for regulating 

the internal DC bus voltage of the nanogrid by adjusting the current injection into the nanogrid. 

Therefore, it is appropriate for nanogrids equipped with a decentralized control architecture 

that allows sharing power among different DC sources without establishing any communication 

link between them. 
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Figure 4.2: Primary control of nanogrids 

Typically, a converter control loop consists of an outer converter control loop and an inner 

converter control loop. The outer converter control loop may be implemented as a voltage 

control, an MPPT algorithm for the PV system or a charge control strategy of the battery, based 

on the requirements of the system, while the inner converter control loop is a current control, 

as shown in Figure 4.2. The outer converter control loop is responsible for setting the reference 

current while the function of the current control loop is to regulate the output current to track 

the reference value. Note that the power interfaces between the power sources and the nanogrid 

can work either as current source converters (CSCs) or voltage source converters (VSCs) [33], 

[137]. RESs working in an MPPT mode and batteries operating in a charging mode are typical 

examples of CSCs as they extract constant power regardless of the condition where the RESs 

unit operates as a constant power source and batteries behave as a constant power load in the 

nanogrid system. These units can be defined as controllable current sources that set the 

reference current for the inner current loop. At least one of the converters must regulate the 

internal bus voltage by controlling the current injection into the internal DC bus according to 

the feedback signal of the bus voltage to stabilize the internal DC bus voltage of the nanogrid 

system. 

To extract maximum power from RESs, the maximum power point tracking algorithm is 

employed. However, it is not always applicable in isolated systems, where the nanogrid is not 

connected to the main grid, an overcharge situation of the battery might occur due to a surplus 

of renewable energy [25]. In such a case, the droop control is employed in order to limit power 

surplus. By using the droop control, power can be shared among sources through interface 

converters in relation to their rated power [32]. As demonstrated in Figure 4.2, the droop 

control loop superimposes the converter control loops to regulate the reference voltage of each 

interface converter, thereby allowing current sharing among different sources inside a nanogrid. 
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The plug-and-play capability is therefore ensured by the droop control algorithm [76]. As shown 

in Figure 4.3, the droop curves are defined at respective voltage ranges. According to Figure 

4.3, the PV has the highest priority to inject power into the loads since its reference voltage is 

set at the highest threshold [41]. The reference voltage of the voltage control loop is defined as 

 ����,� = ��,� − ��,� ∙ ��,� (4.1)

where ��,� is the voltage threshold, ��,� is the output current and ��,� is the droop coefficient of 

the converter #� (�= 1,2,3), respectively. The typical design principle is to choose the largest 

droop coefficient while limiting the internal DC voltage deviation at the maximum load 

condition on the basis of which the droop coefficient is selected [32]. Hence, the droop 

coefficient of each converter is given as follows 

 ��,� =
∆����

��,�,���
 (4.2)

where ��,�,��� is the maximum output current of the corresponding source #�, ∆���� is the 

maximum value of the DC voltage deviation. The maximum value of the internal DC bus voltage 

deviation is set to 5% of the nominal voltage of 48 V as it is the accepted global value for all 

converters. 
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Inject AbsorbCharge Discharge

Constant 
power

PV

 

Figure 4.3: Droop curves of different sources in a nanogrid 

In a standard situation where it is required to maximize energy yield, the PV is operated in the 

MPPT mode. If the power harvested from the PV is beyond what is needed to fulfill the load 

demand, the system will redirect any surplus power to charge the battery or to inject into the 

external DC network. If the battery is fully charged and the external DC bus voltage reaches the 

maximum voltage threshold, the PV will be switched into the droop mode to restrict power 

generation. When power from the PV cannot fulfill the local load demands, the battery starts 

discharging and the DAB converter extracts power from the interconnection. Under overload 
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conditions, a load shedding operation is scheduled to prevent the system from collapsing. The 

load shedding strategy can be found in [42], [138] and is out of scope in this work. 

 

4.2.2 Secondary control 

The droop control method ensures a flexible current sharing, but it has a major drawback as it 

introduces a voltage deviation on the internal DC bus voltage due to the imbalance between 

the production and consumption of power. To overcome this side effect, the centralized voltage 

secondary control is employed to stabilize the DC bus voltage. The secondary control eliminates 

the voltage deviation by adding an appropriate voltage ��, which is passed through a 

participation factor �� (�= 1,2,3), and then �� ∙ �� is added to the reference voltage in the 

primary control. As the droop lines are shifted in accordance with the value of ��, (see Figure 

4.3), the reference voltage of each local converter can be described as 

 ����,� = ��,� − ��,� ∙ ��,� + �� ∙ �� (4.3)

A proportional-integral (PI) controller is generally used for the secondary control due to its 

simplicity and effectiveness. The secondary control works in a centralized way for a standalone 

nanogrid operation. Nevertheless, when multiple nanogrids are connected to form a microgrid, 

it operates in a decentralized manner in order to share power among the interconnected 

nanogrids. 

 

4.2.3 The participation factor �� based on SoC 

The control algorithm employs the SoC of the battery to adjust a participation factor �� that is 

used to regulate the reference voltage for the voltage control loop, as shown in Figure 4.5. The 

relationship between the battery power and the SoC is depicted in Figure 4.4. The value of 

factor �� is dependent on the SoC and charging modes of the battery. Factor �� remains at unity 

when the SoC is higher than the low-threshold SoC (����) in the discharging mode or smaller 

than the high-threshold SoC (����) in the charging mode. In case the SoC is out of the range of 

[����,����], to limit the power exchange between the battery and the DC link, the participation 

factor �� is progressively declined. Factor �� is defined by 



 

 

4.2  Proposed control strategy  72 

 �

�� = 1 −��(��� − ����)          if (��� > ����) and (��,��� < 0)

�� = 1 −��(���� − ���)           if (��� < ����) and ���,��� > 0� 

�� = 1                                                                                      otherwise    

 (4.4)

SoC

Pmin Pmax

SoCh

SoCl

100%

P

Charge Discharge

0  

Figure 4.4: Relationship between power and SoC of battery 

where the coefficients �� and �� are defined by 

 �� =
1

100%− ����
 (4.5)

 �� =
1

����
 (4.6)

and ��,��� is the inductor current of the interface converter between the battery and the internal 

DC bus. 

There are several methods to estimate the SoC as summarized in [139]. In this work, the 

Coulomb counting method is implemented, from which the SoC is estimated by the following 

equation:  

 ���(�)=  ���(� = 0)−
�

����
� ����(�)d�
�

�

 (4.7)

where ���(0) is the initial SoC, � is the charging/discharging efficiency, ���� is the battery 

current, ���� is the nominal or rated capacity. Figure 4.5 shows the determination of the 

participation factor �� according to the SoC. 
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Figure 4.5: Effect of the participation factor based on SoC on primary control 

 

4.2.4 The participation factor �� based on the external DC bus voltage 

In the control algorithm, which is developed in this research, �� is a participation factor that is 

used to adjust the reference voltage of the primary control loop. Before the determination of �� 

is presented, the role of the external DC bus voltage is introduced as follows. 

Assuming that the power produced by the nanogrid is more than the required power for internal 

consumption, the surplus power can be utilized to support other nanogrids. From Figure 4.6 

the charging power of the external DC bus capacitor is given as: 

 �� = �� − �� (4.8)

or �����
d�����
d�

∙ ����� = �� − �� (4.9)

where �� is the output power of the interconnected converter of a nanogrid, �� is the delivered 

power to other nanogrids, �� is the power to the external DC bus capacitor.  
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Figure 4.6: Effect of the participation factor based on external DC bus voltage on primary control 

From (4.9) it can be inferred that an external DC bus voltage close to the rated level indicates 

a power balance among nanogrids. A rise or a drop of the external DC bus voltage corresponds 

to a surplus or deficit of power, respectively. Therefore, in order to regulate power injected into 

or absorbed from other nanogrids, the external DC bus voltage (�����) can be used as an 

intervention. The dependence of the exchanged power on the external DC bus voltage level is 

shown in Figure 4.7. 

In Figure 4.7, the left and the right regions portray the function of the nanogrid as a power 

source and as a power load, respectively. While the nanogrid is working as a source, factor �� 

is set to unity as long as the external DC bus voltage is lower than the rated value �����_���; 

otherwise, it is gradually reduced to limit the power that the nanogrid is injecting to the 

interconnecting network. On the other hand, when the nanogrid works as a load, factor �� is 

set to unity if the external DC bus voltage is higher than the nominal value �����_���. Otherwise, 

it is gradually ramped down to reduce the power that is absorbed from other nanogrids. The 

participation factor �� can be defined as follows 

 �

�� = 1− �������� − ���������            if ������ > ��������� and ���,��� < 0�     

�� = 1− ��������_��� − ������            if ������ < �����_���� and ���,��� > 0� 

�� = 1                                                                                               otherwise             

 (4.10)

The coefficients �� and �� are given by 
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 �� =
1

�����_� − �����_���
 (4.11)

 �� =
1

�����_��� − �����_�
 (4.12)

where �����_� and �����_� are the high and low thresholds of the external DC bus voltage, 

respectively, ��,��� is the output current of the DAB converter. 

Pmin Pmax

Vbus2_h

P

Vbus2

Vbus2_l

Vbus2_ref

Inject Absorb

0  

Figure 4.7: Relationship between exchanged power and external DC bus voltage 

Figure 4.8 shows the proposed control strategy of autonomous nanogrids. The proposed 

implementation of the coordinated control is based on hierarchical control levels. Each level 

has its own functions to perform based on the hierarchy in which the higher control level sends 

command to the lower control level. The primary and secondary control loops were already 

mentioned in section 4.2.1 and 4.2.2. 
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Figure 4.8: Proposed control strategy for the nanogrid 
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4.3 Modelling, control and stability analysis for an DC nanogrid system 

Modelling of DC nanogrids plays an important role to design a suitable control. A number of 

approaches for modeling and control for AC micro/nanogrids were listed in [48], [49]. 

Although there has been a significant increase in the interest in DC nanogrids, only few research 

activities have been carried out regarding modeling of a whole DC nanogrid system. Some 

researches have been carried out for modeling and controlling of a single converter [56], [140], 

where the method adapted is often based on the small-signal analysis [63]. However, a 

modeling method to synthesize a transfer function of a DC nanogrid system consisting of 

multiple converters is not yet available. The aim of this research is to model a complete DC 

nanogrid system. First, a mathematical model of a single converter needs to be derived. 

Subsequently, a model of the entire system can be obtained. This research develops a 

methodology to achieve a small-signal transfer function of a DC nanogrid integrated with one 

dual-active bridge converter and two buck converters. The transfer function is eventually 

utilized to design a secondary controller and to analyze the stability of the entire system. 

As already presented in Chapter 3, each converter in the DC nanogrid is modeled and controlled 

individually. However, when these converters are integrated, they will interact with each other 

and impact the stability of the entire system. To deal with this issue, a model of the entire 

system needs to be developed and an appropriate secondary controller has to be designed. 

In order to keep the voltage stable for the DC nanogrid system, at least one of the converters 

that is connected to the internal DC bus must stabilize the internal DC bus voltage. The 

converter performs this action by adjusting the current injection into the internal DC bus 

according to the feedback signal of the actual DC bus voltage. Hence, each source is modeled 

as a controllable current source that feeds the current into the internal DC bus as shown in 

Figure 4.9. 

ipv ibat idab

C∑

Ro

vbus

ic iload

 

Figure 4.9: Equivalent model of the DC nanogrid 

As mentioned earlier in section 4.2.1, in order to allow current sharing among multiple sources 

inside a DC nanogrid, the droop control is required. Therefore, it is essential to take into 
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consideration the droop control in modeling of each converter. According to the transfer 

functions achieved from (3.46) and (3.84), a small-signal model of the DC nanogrid composed 

of three sources is derived as shown in Figure 4.10 

Small-signal model of a DC nanogrid
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Figure 4.10: The small-signal model of the entire nanogrid 

For simplicity, the control structure of the PV converter is studied to develop the correlation 

between the output current ��� and the voltage correction ��. The same procedure is also 

applied for the battery and the interconnected converters. 

From Figure 4.10, the following equations are derived 

 �����,��(�)− ���(�)����,��(�)��,��(�)����,��(�)= ���(�) (4.13)

 �����,��(�)− ����(�)����,��(�)= ����,��(�) (4.14)

 �����(�)− ��,�����(�)� = ����,��(�) (4.15)

Substituting (4.14) and (4.15) into (4.13) results in 

 ���(�)= �����(�)− ����(�)���,��(�) (4.16)

where  

 ��,��(�)=
���,��(�)���,��(�)��,��(�)����,��(�)

1 + ���,��(�)��,��(�)����,��(�)�1+ ��,�����,��(�)�
 (4.17)
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In the same manner, the correlation between the output current and the voltage correction �� 

corresponding to the battery and the interconnected converters are specified in (4.18) and 

(4.19), respectively. 

 ����(�)= �����(�)− ����(�)���,���(�) (4.18)

 ����(�)= �����(�)− ����(�)���,���(�) (4.19)

where  

 ��,���(�)=
���,���(�)���,���(�)��,���(�)����,���(�)

1+ ���,���(�)��,���(�)����,���(�)�1 + ��,������,���(�)�
 (4.20)

 ��,���(�)=
���,���(�)���,���(�)��,���(�)����,���(�)

1+ ���,���(�)��,���(�)����,���(�)�1 + ��,������,���(�)�
 (4.21)

Additionally, as presented in Figure 4.10, the coupling equation of the nanogrid system is 

 ����(�)=
��

1 + �����
����(�)+ ����(�)+ ����(�)� (4.22)

where �� is the total capacitance of the internal DC bus. 

From (4.18)-(4.22), the transfer function of the nanogrid without the secondary control is 

deduced as 

 ����(�)=
����(�)

��(�)
=

����,��(�)+ ����,���(�)+ ����,���(�)

��,��(�)+ ��,���(�)+ ��,���(�)+
1+ �����

��

 (4.23)

where ����(�) is the transfer function demonstrating the dynamic behavior of the DC bus 

voltage with respect to small variation of the voltage correction. Figure 4.11 illustrates the 

control structure of the DC nanogrid with the secondary control. A PI controller with a transfer 

function as given by (4.24) is implemented for the secondary control loop as it is easy to 

implement and reasonably robust. 

 ��,���(�)= ��,��� +
��,���
�

 (4.24)

From Figure 4.11 , the closed-loop transfer function ���,���(�) from ����  to ����,��� is given by 

 ���,���(�)=
����(�)

����,���(�)
=

��,���(�)����(�)

1+ ��,���(�)����(�)
 (4.25)
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Figure 4.11: The control structure of DC nanogrid with secondary control 

In this research, the design of the PI controller is based on a linear model for the nominal load. 

By using the SISO tool in MATLAB along with the procedure introduced in [125], the 

parameters of the PI controller are tuned again. The secondary control loop has to be tuned to 

ensure that the bandwidth of the secondary loop is much slower than that of the primary loop. 

The obtained values of the proportional and integral gains are summarized in Table 4.1. 

Table 4.1: Parameters of secondary controller 

Proportional gain Integral gain 

��,��� = 0.01 ��,��� = 60 (1/s) 

 

With the designed controller, the closed loop needs to be stable within the whole range of all 

possible loads. To analyze the robustness of the closed loop, the change in the load resistance 

within the range of [5 Ω, 500 Ω] is examined to verify whether the closed loop is robust against 

the load changes or not. Figure 4.12 and Figure 4.13 demonstrate the corresponding closed-

loop eigenvalues and the dominant ones for the resistive load range of [5 Ω, 500 Ω], 

respectively. As shown in Figure 4.12, with the obtained control parameters, all roots of the 

characteristic polynomials of ���,���(�) with different load resistances are located on the left 

half of the �- plane, ensuring stability of the system.  

The performance of the controller is evaluated under different operating points within a wide 

range of changes in the loads. As visible from Figure 4.13, the dominant eigenvalues shift in 

the direction of the imaginary axis of the �-plane according to the increase in load resistances. 

Additionally, it is evident from Figure 4.14 that the maximum real part of eigenvalues of the 

nanogrid moves towards but never reaches to zero when the load resistance increases. 
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Figure 4.12. Closed-loop eigenvalues of the NG 

 

 

Figure 4.13: The dominant eigenvalues with different load models 

 

-50 -40 -30 -20 -10 0
-10

-8

-6

-4

-2

0

2

4

6

8

10

Im
a
g
in

a
ry

 

Real 

Im
a
g
in

a
ry

 

Real 

��  

�� = 500 Ω  �� = 5 Ω  



 

 

4.3  Modelling, control and stability analysis for an DC nanogrid system  82 

 

Figure 4.14: The maximum real parts of eigenvalues of the nanogrid with respect to the different load 

resistances 

Figure 4.15 displays the Bode plot of the closed-loop transfer function of the DC nanogrid 

system. The observed bandwidth of the secondary control loop is around 10 Hz which is lower 

than 70 Hz of the primary control loop defined by the DAB converter. 

 

Figure 4.15: Bode plot of the closed-loop transfer function of the DC nanogrid 
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4.4 Simulation and experimental verification 

Simulation and experimental results of a nanogrid are used to verify the proposed control 

strategy. The topology of a nanogrid being used for simulations and experiments is shown in 

Figure 4.16. The nanogrid comprises two buck converters, a DAB converter, three DC power 

supplies and a load bank. In addition, two bidirectional power supplies are used in order to 

mimic a battery as well as the interconnection of the nanogrid with other nanogrids. By doing 

this, the interoperability is established when the nanogrid is connected to the bidirectional 

power supply which functions as the second nanogrid. A bank of four parallel resistors with 

resistances of 100 Ω, 50 Ω, 25 Ω, 12.5 Ω were used as a passive resistive load. The bank resistors 

provide 2� = 16 different levels of power load with a resolution of 23.04 W. The main 

parameters of the system are given in Table 4.2. The picture of the experimental model is 

illustrated in Figure 4.17 
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Figure 4.16: Topology of a DC nanodrid for the experiment 
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Figure 4.17: Experimental setup 

Table 4.2: Parameters of interface converters 

Converter Parameter Symbol Value Unit 

PV Interfaced 
Converter 

Rated power Pmax 300 W 

Input voltage Vin 100 V 

Output voltage Vout 48 V 

Droop coefficient kd,pv 0.5 V/A 

Battery 
Interfaced 
Converter 

Rated power Pmax 300 W 

Input voltage Vin 100 V 

Output voltage Vout 48 V 

Droop coefficient kd,bat 0.5 V/A 

Interconnection 
Converter 

Rated power Pmax 400 W 

Input voltage Vin 100 V 

Output voltage Vout 48 V 

Droop coefficient kd,dab 0.5 V/A 

 

In this system, the highest priority to supply the load is taken by the PV. Any surplus or 

deficiency of power is compensated by the battery or by interconnection. For simplicity, the PV 

panel is assumed to be operating in the MPPT mode to supply a constant power of 200 W as 

the load varies. As aforementioned, to verify the assumption that the system is stable and robust 

DAB converter 

PV converter 

BAT converter 
DSP TMS320 F28335 

Load bank 

DC power supplies 
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with the designed controller, three critical loads are examined to observe the transition between 

the corresponding nonlinear models for both simulations and experiments. Figure 4.18 and 

Figure 4.19 demonstrate the simulation and experimental results, respectively, relating to the 

changes in the loads for the DC nanogrid while the solar power remains constant. 

 

Figure 4.18: Simulation results for load changes 

To begin with, the power of the load is set to 70 W. Under this condition, the PV is capable of 

providing the power to the load, and the excess power is utilized to charge the battery or to 

inject into the external DC bus. From 0.1 s to 0.2 s time interval, the load power is increased to 

323 W, which surpasses the capability of PV to handle the load. Consequently, power is 
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absorbed from the battery and the external DC bus in order to stabilize the power in the internal 

DC bus. After 0.2 s, the load power is dropped to 138 W. The PV source is again capable of 

meeting the load demand that results in a lower rate of charging and injecting power. 

 

Figure 4.19: Experimental results for load changes 

For the second scenario, the fluctuation phenomenon of the renewable power source is 

emulated by changing the MPP of the PV source. Figure 4.20 and Figure 4.21 illustrate the 

simulation and experimental results, respectively, with respect to the effects of the changes on 

the DC bus voltage, the battery and the output currents of the DAB. To demonstrate the impact 

of the changes in PV power, the load power is kept constant at 138 W during this scenario. 

During the first interval, the power supplied by the PV is 100 W, which is less than what is 

required by the load. In this case, the battery discharges and the DAB converter absorbs power 

from the external DC bus to compensate the power deficiency. In the second interval, the MPP 

of PV panel is increased to 200 W, which is greater than the load demand. The excessive power 

can be used to charge the battery and transfer it to outer nanogrids. In the last interval, the 

MPP of PV panel is reduced to 50 W. Consequently, more power is supplied to the load by the 

battery and external DC nanogrid. 

It is evident from Figure 4.18 - Figure 4.21 that the DC bus voltage of the DC nanogrid is 

maintained around ����,��� = 48 V through the secondary control. With respect to the changes 

in the load, a minor undershoot and overshoot of 2 V, or 4% of the nominal voltage is observed. 

The settling time depends on the extent of the load changes and capacitance rating of the DC 

bus capacitor. It is clearly visible that the experimental results coincide with those acquired 

from simulations. 
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Figure 4.20: Simulation results for PV changes 
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Figure 4.21: Experimental results for PV changes 

 

4.5 Interconnection of multiple DC nanogrids 

4.5.1 Configuration of interconnected DC nanogrids 

As mentioned before, the proposed control strategy was applied for a single nanogrid that was 

verified by demonstrations of both simulation and experimental results. In this section, the 

feasibility of the proposed control strategy implemented by interconnecting multiple nanogrids 

is tested. Simulation results of a microgrid system that consists of three interconnected 

nanogrids validate the effectiveness of the proposed strategy. According to Figure 4.22, each 

nanogrid unit is interconnected with the other units through resistive-inductive lines which are 

employed to study the impact of the line impedances on the stability of the microgrid system 

[67]. The reference voltage of the internal DC bus and the nominal voltage of the external DC 

bus are set at 48 V and 100 V, respectively. All converters that are parts of nanogrids are 

operated at switching frequency of 50 kHz. The line impedances with respect to their length 

are selected according to [23], where the line resistance and inductance are 0.1 Ω/km and 

0.1 mH/km, respectively. The parameters of the microgrid made of three interconnected 

nanogrids are summarized in Table 4.3. In this model, each nanogrid can work as either a load 

or a source as it can consume or distribute power. The SimPowerSystem toolbox and S-function 

block in MATLAB Simulink were used to build the simulation model. 
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Figure 4.22: Simulation model of three interconnected nanogrids 

 

Table 4.3: Parameters of the microgrid 

Parameter Symbol Value Unit 

Nominal internal DC bus voltage ����_��� 48 V 

Nominal external DC bus voltage �����_��� 100 V 

High-threshold of the external DC bus voltage �����_� 110 V 

Low-threshold of the external DC bus voltage �����_� 90 V 

High-threshold SoC ���� 90 % 

Low-threshold SoC ���� 30 % 

Tie-line inductance of NG1 �� 100 µH 

Tie-line resistance of NG1 �� 100 m� 

Tie-line inductance of NG2 �� 10 µH 

Tie-line resistance of NG2 �� 10 m� 

Tie-line inductance of NG3 ��  100 µH 

Tie-line resistance of NG3 �� 100 m� 

Switching frequency fs 50 kHz 
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4.5.2 Case study and simulation results 

As aforementioned, the PV takes the first priority to supply the load according the proposed 

control strategy. The battery or the interconnection compensates any excess or deficit of power. 

Two simulation scenarios are considered to investigate the operation of three nanogrids. The 

first scenario is related to the changes in the load inside each nanogrid while the second one is 

associated with the variations in the MPP of the PV source. 

4.5.2.1 Scenario 1 – Load changes for the nanogrids 

Figure 4.23 shows the simulation results for the changes in the loads for three nanogrids while 

the solar power remains constant. The load change events are highlighted by the dotted lines 

��.1− ��.6. For consideration, the constant power of the PV panel associated with the first 

nanogrid (NG1), the second nanogrid (NG2) and the third nanogrid (NG3) is set at 200 W, 

100 W and 50 W, respectively. In this scenario, NG1 always feeds power to the external DC bus 

while NG3 always consumes power from the external DC bus. Meanwhile, NG2 can operate as 

either a power source or a power load as it can inject power to or absorb power from the 

external DC bus, respectively. 

At the beginning, the loads of the NG1, NG2 and NG3 are set at 46 W, 23 W and 230 W, 

respectively. Under this condition, the excessive renewable power of NG1 and NG2 is utilized to 

charge their batteries and to feed into the external DC bus. Meanwhile, the NG3 consumes 

power from the external DC bus to maintain the power balance inside its internal DC bus. The 

power flow is reflected by the current flow as illustrated in Figure 4.23 (b). The operations of 

the microgrid in the next intervals corresponding to different events are summarized as follows: 

Event 1 (Ev.1): By increasing the load power of NG1 to 138 W, the charging and the injecting 

power is reduced, as the PV source still meets the load demand, leading to the diminishing of 

the charging and injecting current, blue in Figure 4.23 (c) and blue in Figure 4.23 (b), 

respectively. 

Event 2 (Ev.2): As the load power of NG2 is increased to 253 W which is greater than the 

generated power, the battery of NG2 discharges and NG2 itself absorbs power from the external 

DC bus as it is shown in the red line in Figure 4.23 (b). 
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Event 3 (Ev.3): The load power of NG3 is reduced to 69 W that is still slightly greater than the 

PV power. The green line in Figure 4.23 (b) describes that NG3 still consumes power from 

outside but with a smaller value. 

 

Figure 4.23: Simulation results for load changes 

Event 4 (Ev.4): The load power of NG1 is decreased to 46 W again while the generated power 

from the PV remains unchanged at 200 W, which means that the surplus power is used to charge 

the battery and to inject into the interconnected DC bus. Nevertheless, as is observed in Figure 

(a)
0.05 0.1 0.15 0.2 0.25 0.3N

G
s 

V
o
lt

a
g
es

 (
V

)

46

48

50

NG1
NG2
NG3

(b)
0.05 0.1 0.15 0.2 0.25 0.3

In
te

rc
o
n

. 
C

u
rr

en
ts

 (
A

)

-5

0

5

NG1
NG2
NG3

(c)
0.05 0.1 0.15 0.2 0.25 0.3N

G
1

 C
u

rr
en

ts
 (

A
)

-5

0

5

ILpv
ILbat
ILoad

(d)
0.05 0.1 0.15 0.2 0.25 0.3S

O
C

s 
o
f 

N
G

s 
(%

)

0

50

100

NG1
NG2
NG3

Time (s)
0.05 0.1 0.15 0.2 0.25 0.3E

x
te

rn
a
l 

V
o
lt

a
g
e 

(V
)

96

98

100

102

MG Voltage

Ev.1 Ev.2 Ev.3 Ev.4 Ev.5 Ev.6

(e)



 

 

4.5  Interconnection of multiple DC nanogrids  92 

4.23 (c), the charging power is gradually decreased by the reduction of the participation factor 

�� in order to protect the battery from overcharging because the SoC of the battery reaches 

above the high-threshold of 90% as shown in Figure 4.23 (d). Meanwhile, the remaining excess 

power of NG1 is utilized to inject into the external DC bus with a larger value as shown in the 

blue line in Figure 4.23 (b). 

Event 5 (Ev.5): By decreasing the load power of NG2 to 184 W but still larger than the renewable 

energy, while NG2 continue to absorb power from the external DC bus but at a lower rate. This 

is demonstrated by the decrease in the current, which is in red line in Figure 4.23 (b). 

Event 6 (Ev.6): The power consumed by the load of NG3 is much higher than power generated 

by the renewable source as the load power of NG3 is increased to the new value of 346 W. As a 

result, the battery discharges more power and NG3 absorbs higher power from the external DC 

bus, as illustrated in the green line in Figure 4.23 (b), to maintain the power balance inside 

NG3.  

As is observed in Figure 4.23 (a), the internal DC bus voltages of three nanogrids remains stable 

at 48 V. It is evident that changing the load of each nanogrid does not have any influence on 

the internal DC bus voltage of other nanogrids. This guarantees system stability not only within 

a nanogrid but also within a microgrid. Figure 4.23 (e) depicts the fluctuations of the external 

DC bus voltage during the interconnecting operation. It is apparent that the external DC bus 

voltage does not exceed beyond the range of [90 V - 110 V]. 

4.5.2.2 Scenario 2 – PV power changes for three nanogrids 

In this scenario, the operations of three nanogrids are demonstrated in Figure 4.24 in which the 

PV generation is varied while the load power is kept constant. To observe the influence of the 

external DC bus voltage on the exchanged power among nanogrids as well as the interaction 

inside the nanogrids, the loads of NG1, NG2 and NG3 are set at 23 W, 138 W and 46 W, 

respectively. In this case, power generation is significantly higher than power consumption.  

To begin with, the renewable power of NG1, NG2 and NG3 is set at 50 W, 180 W and 100 W, 

respectively. Since the generated power is greater than the consumed power, the excess power 

is used to charge the batteries and to feed into the external DC bus voltage. As illustrated in 

Figure 4.24 (e), the external DC bus voltage almost reaches the high-threshold of 100 V and 

therefore, by decreasing the participation factor ��, injection of power is limited. 
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Event 1 (Ev.1): The renewable power of NG1 is increased to 100 W. It is observed from the blue 

line in Figure 4.24 (c) that most of excess power is used to charge the battery, while injection 

of power into the external DC bus is insignificant, as illustrated by the blue line in Figure 

4.24 (b), since the external DC bus voltage has almost reached the high-threshold. This protects 

the external DC bus from overvoltage. 

Event 2 (Ev.2): The generated power from the PV is reduced to 100 W which is inadequate for 

load demand. To compensate the power deficiency, the battery discharges to feed the load and 

NG2 absorbs power from the interconnected DC bus as shown in the red line in Figure 4.24 (b). 

Event 3 (Ev.3): As the PV power of NG3 is increased to 200 W, major portion of the excess power 

is utilized for battery charging. Similar to the first event, only a small portion of power is 

injected to the external DC as shown in the green line in Figure 4.24 (b). 

Event 4 (Ev.4): The PV power of NG1 is gradually increased to 200 W, which results in a rise of 

battery charging and injected power. It is observed from the blue line in Figure 4.24 (b) that 

just a minor amount of power is fed to the external DC bus, which approaches its high-threshold. 

As a result, a major portion of the surplus power of NG1 is used to charge the battery as depicted 

in the blue line in Figure 4.24 (c). 

Event 5 (Ev.5): The behavior depicted in the red line in Figure 4.24 (b) shows the rise in power 

consumption of the external DC bus as the power of NG2 is reduced to 50 W. 

Event 6 (Ev.6): In this scenario, the battery-charging power and injected power are insignificant 

and reaching zero as the PV power of NG3 is decreased to 50 W, meaning that the generated 

power and the consumed power are almost equal. The SoC of the NG1 almost approaches 100% 

as is observed in the blue line in Figure 4.24 (d), meaning that there is no need for charging 

the battery. During this condition, PV converter of the NG1 switches to the droop mode to limit 

power generation, as shown in the green line in Figure 4.24 (c), since the battery of NG1 is 

almost fully charged and the external DC bus voltage is almost at the high-threshold. 

Figure 4.24 (a) depicts the fact that the internal DC bus voltage of each nanogrid is kept stable 

around the reference value of 48 V. Moreover, there is no effect due to changes in the PV power 

of the other nanogrids. In this scenario, two of the three nanogrids tend to inject power into 

the external DC bus, increasing the external bus voltage. Nonetheless, the external DC bus 

voltage stays within the predefined range, which is achieved by the modification of the 
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participation factor ��. This ensures that overvoltage does not occur as demonstrated in Figure 

4.24 (e). 

 

Figure 4.24: Simulation results for PV source changes 

As can be observed, due to the control of the dual active bridge converter installed inside each 

nanogrid, the internal DC bus voltage remains stable regardless of changes in the external DC 

bus. This decouples the internal and the external DC bus. Consequently, the parameters of the 

nanogrid such as tie-line impedances has no effect on the stability of the nanogrid. Those 
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parameters just have an impact on the voltage drop of the external DC bus voltage. However, 

the external DC bus voltage is regulated to be in the predefined range of [90V, 110V] according 

to the adjustment of the participation factor ��. In addition, as illustrated in Figure 4.23 and 

Figure 4.24, variation of the external DC bus does not affect the stability of individual nanogrids 

when multiple nanogrids are integrated. 

 

4.6 Summary 

This chapter presents the self-sustained and flexible control strategy based on a hierarchical 

architecture for nanogrids. In addition, the procedure for development of the small-signal 

model of the entire nanogrid is introduced. From the obtained small-signal model, the 

appropriate secondary controller is designed and then the stability of the nanogrid is analyzed. 

The effectiveness of the proposed control strategy is verified by simulation and experimental 

results which prove that electric power can be exchanged among multiple nanogrids without 

using any communication links. The results demonstrate good transient response and stability 

of the internal DC bus voltage along with the battery and interconnected currents. Despite 

changes in the loads and PV source, the stability of the nanogrid is still maintained. The 

proposed control algorithm also has the ability to maintain the state of charge of the battery in 

each nanogrid by avoiding an overcharge or a deep discharge when there is an excess or deficit 

of power generated from renewable source. As illustrated by the simulation results of multiple 

nanogrids, even with variation in the external DC bus voltage, every internal DC bus voltage 

remains stable. The integration of multiple nanogrids has no impact on the stability of 

individual nanogrids due to the power flow control of the interconnected bidirectional DAB 

converter. Additionally, the control strategy manages power in the nanogrids in an effective 

manner as the nanogrids extract the PV power to the maximum extent. The modular structure 

enhances the flexibility and reliability of the nanogrid network as it allows each nanogrid to 

operate autonomously or in connection to other nanogrids. More importantly, the control 

algorithm provides the plug-and-play capability of one or several power units, enabling the 

nanogrids to self-sustain themselves. Moreover, while the external DC bus voltage exists as a 

floating voltage according to the amount of power absorbed from or injected into the external 

DC bus, this algorithm ensures the stability of the nanogrid by regulating the internal DC bus 

voltage around the nominal value.  
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5 Conclusion and outlook 

5.1 Conclusion 

The main objective of the present work is the development of self-sustained and flexible control 

strategy for a DC nanogrid, which is supposed to be applied in off-grid areas. It is also focused 

on modeling and system stability analysis of the DC nanogrid system. 

The first step concerned the mathematical representation of each single converter inside a DC 

nanogrid, including two bidirectional buck converters and a dual-active bridge converter. By 

means of the state-space averaging technique, a small-signal model of the buck converters was 

derived. In the case of the dual-active bridge, the generalized state-space averaging based 

modelling method was used. The state-space representation of the converters allowed the 

determination of the control-to-output transfer functions, which were then employed for the 

design of current and voltage controllers in the cascaded control structure. Simulation and 

experimental results regarding the operation of the converters proved the precision and 

effectiveness of the modelling methods. 

New ideas presented in this work are related to the self-sustained capability of the DC nanogrid 

whether it operates in an autonomous mode or an interconnected mode without any need for 

an extra communication system. The safety of the DC nanogrid was improved due to two 

reasons. First, the SoC of the battery was taken into account in the control algorithm in order 

to protect the battery from overcharging and deep discharging situations. Second, the external 

DC bus voltage was under consideration with the purpose of avoiding the collapse of this bus 

when multiple DC nanogrids are working in the interconnected mode. Moreover, the control 

topology was designed based on the decentralized approach, making the system flexible and 

scalable. Simulations and experiments proved that electric power from different sources inside 

a DC nanogrid was flexibly exchanged while the renewable energy was managed in such a way 

that it was harvested as much as possible. The control algorithm also provided a plug-and-play 

capability for one or several power entities. The reliability of the system was also enhanced due 

to the interconnection capability of multiple DC nanogrids and no need for a digital 

communication system. 

In the next step, a small-signal model of the entire DC nanogrid system was developed and 

system stability analysis was performed. The small-signal transfer function of the complete DC 

nanogrid was synthesized from the small-signal transfer functions of three single converters. 

Based on the obtained transfer function, the secondary controller was designed and the system 
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stability analysis was conducted. Results obtained from both simulations and experiments 

showed that the secondary controller eliminated the voltage deviation caused by the droop 

control operation and ensured the stability of the whole system. More importantly, the proposed 

control strategy allowed the interconnection of multiple DC nanogrids to form a DC microgrid, 

in which the stability of a single interconnected DC nanogrid was not influenced by other 

nanogrid systems. 

 
5.2 Outlook 

This work presents a self-sustained and flexible control strategy for a DC nanogrid based on a 

hierarchical control approach. In order to verify the proposed control strategy, the coordinated 

operations of a nanogrid as well as multiple nanogrids are introduced through typical test cases 

such as the changes in the load and the changes in the PV source. However, further research is 

needed to complete the operation of the micro/nanogrid and to demonstrate the operation of 

the nanogrid in fault modes such as overload, short circuit or blackout. 

First, possible faults and a well-functioning protection scheme of the system should be taken 

into account in order to ensure reliable operation of a nanogrid. In addition, different protection 

devices and grounding methods should be employed in DC nanogrids. 

Second, a possible solution to avoid overload situation of nanogrids is to utilize load shedding 

strategy for interruptible loads. In order to achieve this goal, the demand side control needs to 

be implemented and different preset internal DC bus voltage levels should be used for respective 

load cutting. Depending on preset voltage levels, the priorities should be assigned to critical 

loads in order to ensure the uninterrupted operation of nanogrids with these loads. 

It is also interesting for future work to develop an algorithm to provide a black start capability 

after blackouts of the system. Power outages can occur when power consumption is much 

higher than power generation for a given period, especially for micro/nanogrids working in an 

island mode. Therefore, future studies should take into consideration the possible black start 

capability of micro/nanogrids for restoration. 
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6 Appendix 

This section presents the design of main components as well as the schematics and printed 

circuit boards for the nanogrid system including the DAB and buck converters.  

 

6.1 Design of dual active bridge converter 

Figure 3.19 shows the schematic of the DAB converter that consists of power, control, 

measurement and gate driver circuits. The power part contains two H-bridges, a HF 

transformer, an additional inductor, an output filter and DC link capacitors. The core element 

of the control part is a TMS320F28335 DSP that is responsible for executing the control 

algorithm and generating PWM signals to the gate driver. The measurement circuit comprises 

two voltage transducers and two current transducers to measure the input and output voltages 

and currents, respectively. The design of these parts will be presented hereafter. 

 

6.1.1 Power part 

The definitions of some components have already been mentioned in section 3.5, and therefore 

they are not repeated in this section. The design procedure of the HF transformer, the additional 

inductor, the output filter and power MOSFETs of the DAB converter are introduced in this 

section. 

 

6.1.1.1 HF transformer 

In DAB converter topologies, a HF transformer is used to transfer electric power. The size of the 

HF transformer depends on the transferred power and the switching frequency. The first step 

of designing the HF transformer is to select a suitable ferrite core. Afterwards, the numbers of 

primary and secondary turns are calculated. 

As shown in Figure 6.1, the voltage ��� produces a magnetizing current �� which is proportional 

to the magnetic flux �. According to Faraday’s law of induction, the relationship between the 

voltage and the magnetic flux is expressed as 

 ��� = �� ∙
d�

d�
 (6.1) 
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or ��� = �� ∙
���� − (−����)

��/2
= 4 ∙ �� ∙ ���� ∙ �� (6.2) 

where �� is the number of the primary turns of the HF transformer, ���� is the maximum value 

of the magnetic flux. In addition, the maximum magnetic flux is equal to: 

 ���� = ���� ∙ �� (6.3) 

where ���� is the maximum magnetic flux density and �� is the effective cross-section area of 

the core.  
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Figure 6.1: Typical waveforms of the voltage and the magnetic flux 

From (6.2) and (6.3), the number of the primary turns is given by 

 �� =
���

4 ∙ ���� ∙ �� ∙ ��
 (6.4) 

A magnetic core without an air gap is employed to minimize the magnetizing current. In this 

work, an Economical Transformer Design (ETD) 49/25/16 with N87 is selected for the 

magnetic core. Accordingly, the effective core cross section area is �� = 211 mm� [141]. The 

number of the primary turns is calculated to ensure that the flux density does not exceed 

���� =  0.2 T in order to achieve low core losses and to avoid magnetic saturation. Therefore, 

the minimum number of the primary turns is 

 ��,��� =
100 V

4 ∙ 0.2 T ∙ 211 mm� ∙ 50 kHz
= 11.9 turns (6.5) 

In this work, the selected number of the primary turns is �� = 16 turns to ensure a high filling 

factor of the core. As a result, the number of the secondary turns is given by 

 �� =
��
�

=
16 turns

2
= 8 turns (6.6) 

The next step is to choose the diameter of the wire based on the root mean square (RMS) value 

of the current. The diameter of the primary winding is determined as follows 
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 ��� = �
4���
� ∙ π

 (6.7) 

where ��� is the RMS value of the primary current and � is the current density inside the wire. 

The RMS value of the primary current can be given as follows 

 ��� = �
2

��
� ��

�
��/�

�

d� (6.8) 

This RMS value of the primary current is calculated for the maximum power according to the 

phase shift ratio � = 0.5. Hence, (6.8) is rewritten as 

 ��� =
1

8���
����

� + ���
�� =

1

8 ∙ 50 kHz ∙ 60 μH 
�(100 V)� + (2 ∙ 48 V)� = 5.77 A (6.9) 

According to the thermal design, the current density of 6 A/mm� is given for Litz wire [142]. 

Therefore, the diameter of the primary winding is calculated as 

 ��� = �
4 ∙ 5.77 A

6 A/mm� ∙ π
= 1.11 mm (6.10) 

The cross-section area of the primary wire ��� is given by 

 ��� =
���
�
=

5.77 A

6 A/mm�
= 0.96 mm� (6.11) 

Similarly, the diameter and cross-section area of the secondary wire are calculated as 1.57 mm 

and 1.92 mm�, respectively. Litz wire that consists of 245 strands×0.1 mm is selected for both 

the primary and secondary windings as its copper area and diameter are 1.93 mm� and 2.2 mm, 

respectively. 

Using the E5061B network analyzer in the laboratory, the leakage inductance of the primary 

side ��� and secondary side ��� are measured to be 2.18 μH and 0.52 μH, respectively. 

Therefore, the total leakage inductance of the HF transformer referred to the primary side is 

 �� = ��� + �� ∙ ��� = 4.26 μH (6.12) 
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6.1.1.2 Additional inductor 

The coupling inductance is the sum of the leakage inductance of the HF transformer and the 

additional inductance which can be connected in series to the primary side or the secondary 

side of the HF transformer. According to (3.52), the coupling inductance referred to the 

secondary side is calculated as follows 

 ��,��� =
������

2�������
����(1− ����) (6.13) 

where ���� = 400 W is the maximum power of the converter, ���� is the maximum phase shift 

ratio between the primary and secondary sides. Power is transferred from the leading bridge to 

the lagging bridge according to the phase shift �, which is varied from 0 to π/2 to minimize the 

reactive current of the HF transformer. The maximum power can be obtained at a phase shift 

���� = π/2. Therefore, the maximum phase shift ratio can be obtained by 

 ���� =
����

π
= 0.5 (6.14) 

With the given values in Table 3.4, the coupling inductance referred to the secondary side is 

 ��,��� =
100 V ∙ 48 V

2 ∙ 2 ∙ 50 kHz ∙ 400 W
∙ 0.5(1− 0.5)= 15 μH (6.15) 

The coupling inductance referred to the primary side is given by 

 ��,���
� = �� ∙ ��,��� = 2� ∙ 15 μH = 60 μH (6.16) 

In addition, the coupling inductance referred to the primary side, which consists of the external 

inductance ����, the leakage inductances ��� and ��� of the HF transformer, is obtained by 

 ��,���
� = ���� + ��� + �� ∙ ��� (6.17) 

The total leakage inductance of the HF transformer referred to the primary side is �� = ��� +

�� ∙ ��� = 4.26 μH. Then the external inductance referred to the primary side is deduced as 

 ���� = ��,���
� − �� = 55.74 μH (6.18) 

The next step is to choose a suitable core for the inductor. The inductor needs a required volume 

for the air gap to store energy which is given by  

 � =
1

2
��������

�  (6.19) 
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where ���� is the peak primary current of the HF transformer. On the other hand, the energy 

stored in the inductor can be given as follows 

 � ≈
1

2

�� ∙ �� ∙ �

��
 (6.20) 

where � is the air gap and �� = 4π ∙ 10�� H/m is the vacuum permeability. The effective cross-

section area of the core can be chosen so that the magnetic flux density is not over its maximum 

value ����. Therefore, from (6.19) and (6.20), the effective cross-section area of the core can 

be expressed as  

 �� ≥
��������

� ∙ ��

����
� ∙ �

 (6.21) 

The peak primary current of the HF transformer can be given by 

 ���� =
1

4����
� ���� + �

2�

π
− 1����

� � (6.22) 

where ���
�  is the output voltage referred to the primary side of the HF transformer. The 

maximum value of the peak primary current can be achieved at the phase shift � = π/2. 

Therefore, the maximum peak primary current of the HF transformer can be given as follows 

 ����,��� =
���
4����

� =
100 V

4 ∙ 50 kHz ∙ 60 μH
≈ 8.33 A (6.23) 

For the given values, the effective cross-section area of the core can be calculated as 

 �� ≥
��������

� ∙ ��

����
� ∙ �

=
55.74 μH ∙ (8.33 �)� ∙ 1.2566 ∙ 10��

H
m

(0.2 T)� ∙ 1 mm
≈ 122 mm� (6.24) 

According to the datasheet of ferrite cores, ETD 39/20/13 is selected for the additional inductor 

with the effective cross-section area of the core �� = 125 mm� [143]. Litz wire is used for the 

winding of the additional inductor for the capability of conducting a high frequency current 

and for minimizing the skin effect. The number of turns of the additional inductor is calculated 

as 

 ���� = �
����
��

 (6.25) 
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where �� is inductance factor of the ferrite core. Material N87 is chosen for the ferrite core with 

the air gap of 1 mm and the inductance factor of 196 nH [143], the required number of turns 

of the additional inductor is given as follows 

 ���� = �
55.74 μH

196 nH
≈ 17 turns (6.26) 

Litz wire with 245 strands×0.1 mm is chosen for the inductor wire as the inductor and the 

primary winding of the transformer have the same current. 

 

6.1.1.3 Output filter 

The filter inductance �� is determined based on the maximum current ripple ∆��,��� which is 

given by [136]  

 ∆�� = �
���
�

− ����
����

����
≤ 40%

����

���
 (6.27) 

Therefore, the required inductance of �� is calculated as follows 

 �� ≥ �
���
�

− ����
���� ∙ ���

40%�� ∙ ����
= �

100 V

2
− 48 V�

0.5 ∙ 48 V

40% ∙ 50 kHz ∙ 400 W
≈ 6 μH (6.28) 

For the given values in Table 3.4, the inductance of �� from (6.28) is calculated to be at least 

6 μH. In this work, the inductance of the filter inductor is chosen as �� = 10 μH with a parasitic 

resistance �� = 16 mΩ. 

According to [142], the capacitance of the output filter is calculated based on the peak-to-peak 

voltage ripple as follows 

 ∆�� =
∆�

��
=

1

��
∙
1

2
∙
∆��
2
∙
1

2��
 (6.29) 

where ∆� is an additional charge, ∆�� is the voltage ripple. Substituting ∆�� from (6.27) into 

(6.29) yields 

 ∆�� =
1

8��
���

�
���
�

− ����
����

��
 (6.30) 

Therefore, the capacitance can be given as follows 
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 �� =
1

8��
�∆��

�
���
�

− ����
����

��
≈ 10 μF (6.31) 

The voltage ripple ∆�� is chosen to be less than 1% of the output voltage of 48 V. From (6.31), 

with the given values, the capacitance is calculated to be bigger than 10 μF. In this work, film 

capacitors are selected for the output filter as the losses generated in these capacitors are 

insignificant and their parasitic inductance is very low [136]. Four films are chosen and are 

connected in parallel with the total value �� = 40 μF. 

 

6.1.1.4 Power MOSFETs 

Power losses on the power switches and thermal design are not considered in this work. For 

simplicity, the power switches are selected to meet the overvoltage and overcurrent 

requirement. In this case, IRFP260MPBF is employed for power MOSFETs for both high and 

low sides with the main parameters being listed in Table 6.1. 

Table 6.1: Main parameters of the power MOSFET of the DAB converter 

Name Switch 
No. 

Drain-to-source 
breakdown 

voltage 
���,��(V) 

Continuous 
drain 

current 
��(A) 

Gate-to-
source 
voltage 
���(V) 

Drain-to-
source On-
resistance 
���,��(Ω) 

IRFP260MPBF 8 200 50 ±20 0.04 

 

 

6.1.2 Measurement circuit 

In this work, the Hall Effect transducers LV25-P and LA25-NP from LEM manufacturer are used 

to measure the voltage and current, respectively. They provide some advantages such as an 

excellent accuracy, a very good linearity, a wide frequency bandwidth and a high immunity to 

external interference. 

 

6.1.2.1 Current measurement 

The LA25-NP, whose figure representation is shown in Figure 6.2, is a Hall Effect transducer 

which can be used to measure AC or DC signals up to 25 A. It provides a galvanic isolation 

between the primary and secondary sides. The power supply for this transducer is normally 

±15 V.  
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1-56-10

OUT

M

RM

0V

+-

+15V-15V

VM
LA25-NP

IN

  

Figure 6.2: Current transducer LA25-NP 

The output of the current transducer is a current which is measured at terminal “M”. In this 

work, 8 A is selected for the nominal primary current. According to the datasheet of LA25-NP, 

the nominal output current in secondary side is ��� = 24 mA and the turns ratio is �� = 3: 1000. 

In order to make the current signal suitable for input of ADC, it is converted into a voltage 

signal by using a measuring resistance �� as shown in Figure 6.2. The measuring voltage �� 

depends on the primary current ��, the turns ratio �� and the measuring resistance ��. Because 

the input voltage of the ADC of DSP varies from ���� = 0 V to ���� = 3 V, the measuring 

resistance can be calculated as follows 

 �� =
����

���
=

3 V

24 mA
= 125 Ω (6.32) 

For the design in this work, the selected value of �� is 120 Ω. The measuring voltage �� is 

proportional to the primary current and the turns ratio as follows 

 �� = �� ∙ �� ∙ �� (6.33) 

Since the DAB converter can deliver power in both directions, the current could be negative or 

positive depending on the direction of delivered power. As the input voltage of the ADC is in 

the range of [0 V, 3 V], the measuring voltage from the current sensor need to be shifted from 

−3 V ÷ 3 V to 0 V ÷ 6 V and then it is amplified by a gain of 0.5. To meet this requirement, an 

offset voltage is added and an amplifier is used as shown in Figure 6.3. 
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Figure 6.3: Current sensor and operational amplifier 

As shown in Figure 6.3, the circuit contains a closed-loop inverting amplifier, which uses 

negative feedback to control the overall gain of the amplifier. The output measuring voltage is 

given as 

 ���� = −�
��
��

�� +
��
��

�������� (6.34) 

In this work, the resistances are chosen as �� = �� = 2��. Therefore, (6.34) can be deduced as 

follows 

 ���� = −
1

2
(�� + �������) (6.35) 

All values of the components can be found in section 6.3. 

 

6.1.2.2 Voltage measurement 

As illustrated in Figure 6.4, LV25-P is a Hall Effect transducer, which is capable of measuring 

AC and DC voltages up to 500 V while ensuring a galvanic separation between the primary and 

secondary sides. This sensor is powered with a power supply between ±12 V and ±15 V.  

For voltage measurement, a resistance ��� is connected in series with the “+HT” terminal to 

produce a current which is proportional to the measured voltage. This resistance is chosen to 

ensure that the primary nominal current is around 10 mA. The output of the LV25-P transducer 

is also a current out of terminal “M” with the nominal value of 25 mA. Similar to the current 

measurement circuit, the output voltage needs to be produced from the output current by using 

a measuring resistance �� = 120 Ω as shown in Figure 6.4.  The output voltage is also a product 

of the primary current, the turns ratio and the measuring resistance. 
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Figure 6.4: Voltage transducer LV25-P 

An operational amplifier with a unity gain is also used to provide a buffer for the output voltage 

connected to the ADC as demonstrated in Figure 6.5. 

OPA ADC

VM

RM -

+ VADC

+15V

-15V

 

Figure 6.5: Voltage sensor and operational amplifier 

 

6.1.3 Gate driver 

The function of a gate driver is to generate high driving current to the gate terminal of a power 

MOSFET. It also functions as an interface to provide a galvanic isolation between the control 

and the power sides. Some other requirements of a gate driver are the abilities to protect the 

power MOSFET from short circuit and over voltage. In this work, gate drive 1ED020I12-B2 is 

selected, whose main technical information is given in Table 6.2, as it satisfies the 

aforementioned requirements. 

Table 6.2: Main parameters of the isolated gate driver 

Name Power supply 
input side (V) 

Positive 
power supply 
output side 

(V) 

Negative 
power supply 
output side 

(V) 

Logic input 
voltage (V) 

Gate drive 
current (A) 

1ED020I12-B2 4.5  5 13  20 -12  0 -0.3  5.5 2 
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The isolation is applied for not only the signal but also the power supplied to the chip. 

Therefore, the isolated 2W gate drive DC/DC converters named MGJ2D241505SC are used in 

this work. The main parameters of the isolated DC/DC converter are given in Table 6.3. 

Table 6.3: Main parameters of the isolated DC/DC converter 

Name Input 
voltage 

(V) 

Output 
voltage 1 

(V) 

Output 
voltage 2 

(V) 

Output 
current 1 

(mA) 

Output 
current 2 

(mA) 

Efficiency 
(%) 

MGJ2D241505SC 24 15 -5 80 40 80.5 

 

The diagram of the isolated gate driver with the isolated DC/DC power supply is shown in 

Figure 6.6. The TXB0104 device is used to match the logic voltage levels. With this translator 

device, the PWM voltage level of 3.3 V from DSP can be converted to the voltage level of 5 V at 

the output side. 

VCC2

OUT

1ED020I12-B2

VEE2

VCC1

GND1

GND2
A1 B1 IN+

MGJ2D241505SC

DC/DC Converter

Gate Driver
Signal translation

TXB0104

PWM

+5V +15V

0V

+Vout

-Vout

+15V

PGND

-5V

-5V

Power CircuitControl Circuit

Galvanic Isolation

Microcontroller

+Vin

-Vin

+24V

RG

PGND

MOSFET

 

Figure 6.6: Gate drive circuit 
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6.2 Design of half-bridge converter 

Figure 3.9 demonstrates the schematic of the bidirectional buck DC/DC converter that 

comprises power, control, measurement and gate driver circuits. The power circuit consists of 

two power MOSFET, an inductor and a DC link capacitor. Similar to the DAB converter, the 

control part of the buck converter uses the same DSP to generate the PWM signals. In addition, 

LV25-P and LA25-NP transducers are employed for voltage and current measurements, 

respectively. 

 

6.2.1 Power part 

This section presents the design of the inductor, the output capacitor and the selection of the 

power MOSFETs for the bidirectional buck converter. 

 

6.2.1.1 Inductor 

The inductance is computed according to the ripple of the inductor current and the switching 

frequency as follows [144]. 

 � =
�(�� − ��)

��∆��
 (6.36) 

where ∆�� is the ripple of the inductor current. In this work, a maximum current ripple of 10% 

of the load current is considered for design. Therefore, the inductance of the inductor L is 

calculated as  

 � =
0.48 ∙ (100 V − 48 V)

50 kHz ∙ 10% ∙ 6 A
= 832 μH (6.37) 

In experiment, the selected inductance is 1000 μH. The ferrite core ETD 49/25/16 with an air 

gap of 1 mm and material N87 is utilized for the inductor design. According to the datasheet of 

the ETD core, the inductance factor �� is 314 nH [141]. Thus, the required number of turns of 

the inductor is calculated as follows 

 ���� = �
1000 μH

314 nH
≈ 56 turns (6.38) 

For convenience, Litz wire with 245 strands×0.1 mm is selected for wiring the inductor. 
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6.2.1.2 Output capacitor 

The value of the capacitance of the output capacitor �� is determined according to the ripple of 

the output voltage ∆��. Typically, the voltage ripple is specified to be less than 1% of the output 

voltage. Therefore, the capacitance is calculated as follows [142]. 

 �� =
(1− �).��

8��
�.�.∆��

=
(1− 0.48)

8 ∙ (50 kHz)� ∙ 0.1 mH ∙ 1%
= 2.6 μF (6.39) 

In order to achieved the aforementioned requirement, the selected capacitance needs to be 

higher than 2.6 μF. In this work, a film capacitor with capacitance of 20 μF is used to obtain a 

smaller voltage ripple. A DC link capacitor with the capacitance of 1000 μF is also added in the 

output side of the buck converter in order to maintain a stable output voltage. 

 
6.2.1.3 Power MOSFETs 

For simplicity, similar to the DAB converter, the power MOSFETs of the bidirectional buck 

converter are chosen to ensure that the selected voltage and current are higher than the peak 

values of the voltage and current of the designed converter. Power MOSFETs IRFP4227PbF are 

used for the bidirectional buck converter with the main parameters being summarized in the 

Table 6.4. 

Table 6.4: Main parameters of the power MOSFET of the buck converter 

Name Switch 
No. 

Drain-to-source 
breakdown 

voltage 
���,��(V) 

Continuous 
drain 

current 
��(A) 

Gate-to-
source 
voltage 
���(V) 

Drain-to-
source On-
resistance 
���,��(Ω) 

IRFP4227PbF 2 200 65 ±30 0.021 

 
 
6.2.2 Measurement circuits and gate drivers 

The measurement circuits for voltages and currents as well as the gate drivers for the power 

MOSFET are designed similarly to those of the DAB converter. Therefore, the procedure for the 

design of those circuitries is not presented here. 
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6.3 Schematics and printed circuit boards 

The schematics and the printed circuit boards (PCB) of the DAB and buck converters are 

designed based on the Altium Designer. The main parts of the converters are presented 

hereafter. 

 

6.3.1 Schematics and printed circuit boards of the DAB converter 

This section presents the printed circuit board (PCB) layout and schematics of DAB converter. 

 

6.3.1.1 Schematics and PCB layout for power module and gate drivers 

 

 

Figure 6.7: PCB layout of an H-Bridge of the DAB converter 
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6.3.1.2 Schematics and PCB layout for voltage and current measurement of the DAB 
converter 

 

 

Figure 6.8: PCB layout of the measurement circuit of the DAB converter 
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6.3.2 Schematics and PCB layout of the bidirectional buck converter  

This section shows the PCB layout and schematics of bidirectional buck converter. 

 

 

Figure 6.9: PCB layout of the buck converter 
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6.4 Photos of the converter prototype 

This section shows photos of components of the DC nanogrid including the DAB converter, the 

measurement circuit and the bidirectional buck converter. 

 

Figure 6.10: Photo of the DAB converter (top side) 
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Figure 6.11: Photo of the DAB converter (front side)  

 

Figure 6.12: Photo of the DAB converter (back side) 
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Figure 6.13: Photo of the measurement circuit 

 

 

Figure 6.14: Photo of the bidirectional buck converter 
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