
Higher Performance Traversal and
Construction of Tree-Based Raytracing

Acceleration Structures

Vom Fachbereich Informatik

der Technischen Universität Darmstadt

genehmigte

DISSERTATION

zur Erlangung des akademischen Grades

Doktor-Ingenieur

vorgelegt von

DIPL.-INFORM. DOMINIK MAXIMILIAN WODNIOK
geboren in Darmstadt

Referenten der Arbeit: Prof. Dr.-Ing. Michael Goesele
Technische Universität Darmstadt

Prof. Dr.-Ing. Carsten Dachsbacher
Karlsruhe Institute of Technology

Tag der Einreichung: 23. Juli 2018
Tag der Disputation: 19. September 2018

Darmstädter Dissertation, 2018

D 17

Veröffentlicht unter CC BY-NC-SA 4.0 International
https://creativecommons.org/licenses/

II

https://creativecommons.org/licenses/

Abstract

Ray tracing is an important computational primitive used in different algorithms includ-
ing collision detection, line-of-sight computations, ray tracing-based sound propagation,
and most prominently light transport algorithms. It computes the closest intersections
for a given set of rays and geometry. The geometry is usually modeled with a set of geo-
metric primitives such as triangles or quadrangles which define a scene. An efficient ray
tracing implementation needs to rely on an acceleration structure to decouple ray trac-
ing complexity from scene complexity as far as possible. The most common ray tracing
acceleration structures are kd-trees and bounding volume hierarchies (BVHs) which have
an O(log n) ray tracing complexity in the number of scene primitives. Both structures of-
fer similar ray tracing performance in practice. This thesis presents theoretical insights
and practical approaches for higher quality, improved graphics processing unit (GPU) ray
tracing performance, and faster construction of BVHs and kd-trees, where the focus is on
BVHs.

The chosen construction strategy for BVHs and kd-trees has a significant impact on
final ray tracing performance. The most common measure for the quality of BVHs and kd-
trees is the surface area metric (SAM). Using assumptions on the distribution of ray origins
and directions the SAM gives an approximation for the cost of traversing an acceleration
structure without having to trace a single ray. High quality construction algorithms aim at
reducing the SAM cost. The most widespread high quality greedy plane-sweep algorithm
applies the surface area heuristic (SAH) which is a simplification of the SAM.

Advances in research on quality metrics for BVHs have shown that greedy SAH-based
plane-sweep builders often construct BVHs with superior traversal performance despite
the fact that the resulting SAM costs are higher than those created by more sophisticated
builders.

Motivated by this observation we examine different construction algorithms that use
the SAM cost of temporarily constructed SAH-built BVHs to guide the construction to
higher quality BVHs. An extensive evaluation reveals that the resulting BVHs indeed
achieve significantly higher trace performance for primary and secondary diffuse rays com-
pared to BVHs constructed with standard plane-sweeping. Compared to the Spatial-BVH,
a kd-tree/BVH hybrid, we still achieve an acceptable increase in performance. We show
that the proposed algorithm has subquadratic computational complexity in the number of
primitives, which renders it usable in practical applications.

An alternative construction algorithm to the plane-sweep BVH builder is agglomer-
ative clustering, which constructs BVHs in a bottom-up fashion. It clusters primitives
with a SAM-inspired heuristic and gives mixed quality BVHs compared to standard plane-
sweeping construction. While related work only focused on the construction speed of this
algorithm we examine clustering heuristics, which aim at higher hierarchy quality. We pro-
pose a fully SAM-based clustering heuristic which on average produces better performing
BVHs compared to original agglomerative clustering.

The definitions of SAM and SAH are based on assumptions on the distribution of ray

III

Abstract

origins and directions to define a conditional geometric probability for intersecting nodes
in kd-trees and BVHs. We analyze the probability function definition and show that the
assumptions allow for an alternative probability definition. Unlike the conventional prob-
ability, our definition accounts for directional variation in the likelihood of intersecting
objects from different directions. While the new probability does not result in improved
practical tracing performance, we are able to provide an interesting insight on the conven-
tional probability. We show that the conventional probability function is directly linked
to our examined probability function and can be interpreted as covertly accounting for
directional variation.

The path tracing light transport algorithm can require tracing of billions of rays. Thus,
it can pay off to construct high quality acceleration structures to reduce the ray tracing
cost of each ray. At the same time, the arising number of trace operations offers a tremen-
dous amount of data parallelism. With CPUs moving towards many-core architectures
and GPUs becoming more general purpose architectures, path tracing can now be well
parallelized on commodity hardware. While parallelization is trivial in theory, properties
of real hardware make efficient parallelization difficult, especially when tracing so called
incoherent rays. These rays cause execution flow divergence, which reduces efficiency of
SIMD-based parallelism and memory read efficiency due to incoherent memory access.
We investigate how different BVH and node memory layouts as well as storing the BVH in
different memory areas impacts the ray tracing performance of a GPU path tracer. We also
optimize the BVH layout using information gathered in a pre-processing pass by applying
a number of different BVH reordering techniques. This results in increased ray tracing
performance.

Our final contribution is in the field of fast high quality BVH and kd-tree construction.
Increased quality usually comes at the cost of higher construction time. To reduce con-
struction time several algorithms have been proposed to construct acceleration structures
in parallel on GPUs. These are able to perform full rebuilds in realtime for moderate scene
sizes if all data completely fits into GPU memory. The sheer amount of data arising from
geometric detail used in production rendering makes construction on GPUs, however, in-
feasible due to GPU memory limitations. Existing out-of-core GPU approaches perform
hybrid bottom-up top-down construction which suffers from reduced acceleration struc-
ture quality in the critical upper levels of the tree. We present an out-of-core multi-GPU
approach for full top-down SAH-based BVH and kd-tree construction, which is designed
to work on larger scenes than conventional approaches and yields high quality trees. The
algorithm is evaluated for scenes consisting of up to 1 billion triangles and performance
scales with an increasing number of GPUs.

IV

Zusammenfassung

Raytracing (dt. Strahlennachverfolgung) ist ein wichtiger Berechnungsbaustein der in ver-
schiedenen Algorithmen wie der Kollisionserkennung, Sichtverbindungsberechnungen,
die Raytracing-basierte Simulation von Schallausbreitung, so wie am prominentesten in
Lichttransport-Algorithmen verwendet wird. Zu einer gegeben Menge an Strahlen und ei-
nem geometrischen Objekt berechnet Raytracing die nächste Schnittpunkte der Strahlen
mit dem Objekt. Das geometrische Objekt ist dabei meist aus einer Menge geometrischer
Primitive wie Drei- oder Vierecke zusammengesetzt, die eine Szene definieren. Eine effi-
ziente Raytracing-Implementierung ist auf eine Beschleunigungsstruktur angewiesen, um
die Raytracing-Komplexität so weit wie möglich von der Komplexität der Szene zu ent-
koppeln. Die gängigsten Beschleunigungsstrukturen sind k-d-Bäume und BVHs (von engl.
bounding volume hierarchy, dt. Hüllkörper-Hierarchie), die eine Raytracing-Komplexität
von O(log n) in der Anzahl von Szenenprimitiven aufweisen. Beide Strukturen bieten in
der Praxis eine ähnliche Raytracing Leistung. Diese Dissertation präsentiert theoretische
Einsichten und praktische Ansätze für eine höhere Qualität, verbesserte Grafikprozessor
(GPU) Raytracing Leistung, und schnellere Konstruktion von k-d-Bäumen und BVHs, wo-
bei der Fokus auf letzterem liegt.

Die gewählte Konstruktionsstrategie für k-d-Bäume und BVHs hat einen signifikanten
Einfluss auf die letzten Endes erzielbare Raytracing Leistung. Das gebräuchlichste Maß
für die Qualität einer Baum-basierten Beschleunigungsstruktur ist die Oberflächenmetrik.
Unter der Verwendung von Annahmen bezüglich der Verteilung von Strahlenursprüngen
und -richtungen liefert die Oberflächenmetrik eine Approximation für den Berechnungs-
aufwand zur Durchquerung der Beschleunigungsstruktur, ohne einen Strahl zu verfolgen.
Verfahren zur Konstruktion hochwertiger Beschleunigungsstrukturen zielen darauf ab, die
Oberflächenmetrik zu minimieren. Der Standardalgorithmus zur hochwertigen Konstruk-
tion ist der gierige Sweep-Algorithmus, der die Oberflächenheuristik verwendet, welche
eine Vereinfachung der Oberflächenmetrik darstellt. Forschung zu Qualitätsmetriken für
BVHs hat ergeben, dass gierige Oberflächenheuristik-basierte Sweep-Algorithmen BVHs
erzeugen können, die eine überlegene Raytracing Leistung erzielen, obwohl die resultie-
renden Oberflächenmetrik Kosten höher sind als die Kosten von BVHs, die mit weiterent-
wickelteren Verfahren konstruiert wurden. Basierend auf dieser Beobachtung untersuchen
wir verschiedene Konstruktionsverfahren, welche die Kosten interimistisch mit der Ober-
flächenheuristik konstruierter BVHs verwenden, um BVHs höherer Qualität zu erzeugen.
Eine umfangreiche Evaluierung zeigt, dass die resultierenden BVHs verglichen mit dem
Standardverfahren für primäre und diffuse sekundäre Strahlen eine signifikant höhere
Raytracing Leistung erzielen. Verglichen mit der räumlichen BVH, einem k-d-Baum/BVH-
Hybriden, erreichen wir immer noch einen akzeptablen Leistungszuwachs. Wir zeigen,
dass der vorgeschlagene Algorithmus eine subquadratische Berechnungskomplexität in
der Anzahl der Szenenprimitive besitzt, welche ihn in der Praxis nutzbar macht.

Ein alternativer Konstruktionsalgorithmus zum Sweep-Verfahren ist das agglomerie-
rende Clustern, ein Bottom-up BVH Konstruktionsverfahren. Es clustert Primitive anhand

V

Zusammenfassung

einer Oberflächenmetrik-inspirierten Heuristik und gibt gemischte Ergebnisse im Vergleich
zum Standardverfahren. Während sich weitere Forschung an diesem Verfahren auf die
Konstruktionsgeschwindigkeit konzentriert hat, untersuchen wir Clusterungsheuristiken
für ein höhere BVH Qualität. Wir schlagen eine voll Oberflächenmetrik-basierte Cluste-
rungsheuristik vor, die im Durchschnitt bessere Ergebnisse erzielt als herkömmliches ag-
glomerierendes Clustern.

Die Definitionen der Oberflächenmetrik und -heuristik basieren auf Annahmen zur
Verteilung von Strahlenursprüngen und -richtungen, mit deren Hilfe eine bedingte Wahr-
scheinlichkeit für das Schneiden von Baumknoten definiert wird. Wir analysieren die De-
finition der Wahrscheinlichkeitsfunktion und zeigen, dass die Annahmen eine alternative
Definition zulassen. Im Gegensatz zur herkömmlichen Definition beziehen wir die rich-
tungsabhängige Variation der Schneidewahrscheinlichkeit von Objekten in die Herleitung
mit ein. Während die alternative Definition in der Praxis nicht zu einer Zunahme der Ray-
tracing Leistung geführt hat, sind wir in der Lage, eine interessante Einsicht bezüglich der
herkömmlichen Definition zu liefern. Wir zeigen, dass die herkömmliche Definition direkt
mit unserer alternativen Definition verbunden ist und so interpretiert werden kann, dass
sie auf nicht offensichtliche Weise richtungsabhängige Variation berücksichtigt.

Der Path Tracing (dt. Pfadverfolgung) Lichttransport-Algorithmus kann das Nachver-
folgen von Milliarden von Strahlen erfordern. Dafür kann es sich auszahlen, eine Beschleu-
nigunsstruktur hoher Qualität zu bauen, um die Raytracing Kosten pro Stahl zu reduzie-
ren. Gleichzeitig bietet die anfallende Anzahl an Strahlen einen hohen Grad an Daten-
parallelität. Mit der Entwicklung von CPUs in Richtung Vielkernprozessoren und GPUs zu
Mehrzweck-Architekturen, kann Path Tracing nun einfach auf handelsüblicher Hardware
parallelisiert werden. Während die Parallelisierung theoretisch trivial ist, machen Eigen-
schaften der Hardware eine effiziente Umsetzung schwierig, insbesondere dann, wenn so
genannte inkohärente Strahlen verfolgt werden. Diese Strahlen verursachen Abweichun-
gen im Ausführungsfluss, welche zu einer reduzierten Effizienz von SIMD-basierter Paral-
lelität und der Speicherauslesung durch unzusammenhängenden Speicherzugriff führen.
Wir untersuchen, wie sich verschiedene BVH und Knoten Speicherlayouts, so wie das Able-
gen der Knoten in verschiedenen Speicherregionen auf die Raytracing Leistung eines GPU-
basierten Path Tracers auswirken. Des Weiteren optimieren wir das BVH Layout anhand
von Informationen aus einem Vorverarbeitungsschritt durch Anwendung verschiedener
Baum Umordnungstechniken und erzielen dadurch eine höhere Raytracing Leistung.

Unser letzter Beitrag ist im Gebiet der schnellen Konstruktion von BVHs und k-d-
Bäumen hoher Qualität. Eine höhere Qualität bedingt für gewöhnlich eine höhere Kon-
struktionszeit. Um diese zu reduzieren wurden mehrere Algorithmen zur parallelen Be-
schleunigungsstruktur Konstruktion auf GPUs vorgeschlagen. Sie sind für moderate Sze-
nengrößen in der Lage volle Wiederaufbauten in Echtzeit zu vollziehen, wenn alle Daten
in den GPU-Speicher passen. Allein die Menge an Daten, die durch den geometrischen
Detailgrad im Produktions-Rendering anfällt, macht diese Verfahren durch den limitier-
ten Grafikspeicher unanwendbar. Existierende Out-of-Core-GPU-Ansätze führen eine hy-
bride Bottom-up/Top-down Konstruktion durch, welche eine reduzierte Qualität in den
wichtigen oberen Baumebenen aufweisen. Wir präsentieren einen Multi-GPU-fähigen Out-
of-Core-Ansatz zur vollen Oberflächenheuristik-Sweep-basierten Top-down BVH und k-d-
Baum Konstruktion, welcher auf größere Szenen als konventionelle Ansätze ausgelegt ist
und eine höhere Baumqualität erreicht. Das Verfahren wird mit Szenen, die aus bis zu eine
Milliarde Dreiecken bestehen, evaluiert und skaliert mit zunehmender Anzahl an GPUs.

VI

Acknowledgements

I wish to express my gratitude to all those who played their part in the development of
this dissertation and also to the many people who influenced my research.

First and foremost, I would like to thank my supervisor Prof. Dr.-Ing. Michael Goesele
for giving me the opportunity to work in his research group. He always encouraged me
during my years at GCC. I shall never forget his support in scientific and personal matters.
Further, I should like to thank Prof. Dr.-Ing. Carsten Dachsbacher for kindly agreeing to
review this thesis.

Dr. Timo Aila kindly provided the source code he and his colleagues wrote for compu-
tation of the EPO metric. This helped to identify an issue in their code when reproducing
their research results. I also want to thank Mr. Aila for helpful correspondence.

Several 3D models used for evaluations in this thesis have been provided courtesy of
different people and institutions. I would like to thank Johnathan Good for Babylon, Anat
Grynberg and Greg Ward for Conference, the University of Utah for Fairy, Samuli Laine
for Hairball, the University of North Carolina for Powerplant, Guillermo M. Leal Llaguno
for San Miguel, Marko Dabrovic for Sibenik, UC Berkeley for Soda, Ryan Vance for Bubs,
kescha for Rungholt, Epic Games for Epic, and Frank Meinl for Crytek-Sponza. Boeing 777
has been provided courtesy of David Kasik and the Boeing Corporation. Atlas and David
have been provided courtesy of The Digital Michelangelo Project.

This research has been supported by the ’Excellence Initiative’ of the German Federal
and State Governments and the Graduate School of Computational Engineering at Tech-
nische Universität Darmstadt.

Many thanks also go to my former colleagues at GCC with whom I spent a considerable
amount of my time. In particular I want to thank Sven Widmer, Martin Heß, Fabian
Langguth, Mate Beljan, Nicolas Weber, Daniel Thuerck, André Schulz, Simon Fuhrmann,
Jens Ackermann, Nils Möhrle ;), Daniel Thul, Stefan Guthe, Carsten Haubold, Patrick
Seemann, Michael Wächter, and Nelli for interesting on and off topic discussions, technical
support, proof-reading papers, taming LATEX, and simply having a good time. Thanks also
go to our secretary Ursula Paeckel for her support.

I should also thank my colleagues Christoph Lämmerhirt, Joanna Allison, Luiz Carlos
da Rocha Júnior, and Steen Müller at GritWorld for attending my defense test talk and
giving feedback.

I also want to thank my family and friends for their support. Marian Wieczorek eagerly
volunteered to read parts of this thesis and provided valuable feedback. Special thanks go
to my brother Remigius. Little did he know he pushed me on this track a long while ago.

Last but not least I thank my wife Andrea and children Lily and Zoe. My time at GCC
surely had taken its toll on us, for little Lily once asked whether Daddy lived at work. You
gave me the balance and serenity I needed for this chapter in my life. Your patience was
invaluable.

VII

Acknowledgements

VIII

To Andrea, Lily, and Zoe

IX

X

Contents

Abstract III

Zusammenfassung V

Acknowledgements VII

1 Introduction 1
1.1 Problem Statement . 3
1.2 Contributions . 4
1.3 Thesis Overview . 5

2 Background 7
2.1 Ray Tracing in Computer Graphics . 7

2.1.1 Ray Tracing-Based Global Illumination 9
2.1.2 Ray Tracing Acceleration Structures 11

2.2 Bounding Volume Hierarchies . 13
2.2.1 Traversal . 15
2.2.2 Bounding Volumes . 15
2.2.3 Bounding Efficiency Comparison . 20
2.2.4 Number of BVHs for a Scene . 22
2.2.5 Basic Construction Strategies . 23

2.3 kd-Trees . 25
2.3.1 Traversal . 26

2.4 Other Acceleration Structures . 28
2.5 The Surface Area Metric and Surface Area Heuristic 32

2.5.1 Goldsmith and Salmon’s Approach . 32
2.5.2 MacDonald and Booth’s Approach . 33
2.5.3 SAH-based Construction . 35
2.5.4 Binned Construction . 39
2.5.5 The Minimum-SAM BVH and Treelet-based BVH Optimization . . . 41
2.5.6 The Spatial Split BVH . 43
2.5.7 The End-Point-Overlap Metric . 43
2.5.8 Other Metrics . 46

3 GPU Hardware Platform 47
3.1 Kernels, Grids, and Blocks . 47
3.2 Warps . 49
3.3 SIMD and SIMT . 49
3.4 Memory Spaces . 50
3.5 Block Cooperation and Synchronization . 53

XI

Contents

4 On the Geometric Probability Function of the Surface Area Metric 55
4.1 The Conventional Conditional Intersection Probability 55

4.1.1 Expected Projected Visible Area Approach 56
4.1.2 Measure Theory Approach . 58
4.1.3 Comparison . 59

4.2 Expected Direction Dependent Conditional Probability 59
4.3 Including Parent Intersection Likelihood . 63

5 Temporary Subtree SAH-based Bounding Volume Hierarchy Construction 65
5.1 Background and Related Work . 66

5.1.1 Fast High Quality Construction . 67
5.1.2 Higher Quality BVHs . 68

5.2 Algorithm . 69
5.2.1 Computational Complexities . 70
5.2.2 Spatial Splits . 73

5.3 Improving Accuracy of the SAM-EPO Predictor 74
5.4 Evaluation Setup . 75

5.4.1 Scenes and Algorithms . 75
5.4.2 Performance Measurements . 78

5.5 Results . 78
5.5.1 Geometric Object Partitions . 79
5.5.2 Construction Time . 80
5.5.3 Construction Complexity . 80

5.6 Discussion . 80
5.6.1 Insufficiency of the SAM-EPO Metric 82
5.6.2 Inferiority of Geometric Object Splits 82

5.7 Future Work . 83

6 An SAM-Driven Approach to Agglomerative Clustering 87
6.1 SAM Cost of a BVH Forest . 88
6.2 Clustering Criteria . 88
6.3 Evaluation . 90
6.4 Discussion . 91

7 Cache-Optimized BVH GPU Memory Layouts for Tracing Incoherent Rays 95
7.1 Related Work . 96
7.2 GPU Hardware Details / Test Setup . 98

7.2.1 Cache Properties . 98
7.3 GPU Path Tracer Implementation . 99
7.4 BVH Data Structures and Layouts . 100

7.4.1 Node Layouts . 100
7.4.2 Tree Layouts . 100

7.5 Evaluation . 103
7.5.1 Baseline Performance Analysis . 104
7.5.2 BVH and Node Layouts . 104

7.6 Conclusion . 109

XII

Contents

8 Multi-GPU Out-of-Core Top-Down SAH-based kd-Tree and BVH Construction 113
8.1 Related Work . 114

8.1.1 kd-Trees . 115
8.1.2 BVHs . 115
8.1.3 Out-of-Core construction . 116

8.2 Motivation and Assumptions . 117
8.3 Construction . 117

8.3.1 BVH Construction . 118
8.3.2 Job Scheduling . 119
8.3.3 kd-Tree Construction . 120
8.3.4 Improvement Threshold . 122

8.4 Implementation . 123
8.4.1 BVH Implementation . 123
8.4.2 kd-Tree Implementation . 125
8.4.3 Out-of-Core Work and Data Management 125

8.5 Evaluation . 126
8.5.1 Peak System Memory Footprint . 127
8.5.2 Comparison with Optimized CPU Implementations 128
8.5.3 Multi-GPU Scaling . 129
8.5.4 Tree Quality Comparison with Hybrid Construction Approach . . . 133
8.5.5 Localized Binning . 134
8.5.6 SAH Improvement Threshold . 134

8.6 Summary and Discussion . 137
8.6.1 Future Work . 137

9 Final Summary and Discussion 139
9.1 Summary . 139
9.2 Discussion . 141

10 Future Work 145
10.1 Possible SAM-EPO Metric Insufficiency . 145
10.2 Explicit EPO Reduction . 146
10.3 RSAH and the LCV Metric . 146
10.4 Treelet-based BVH Optimization with RBVH 146
10.5 Including Ray Termination into BVH Construction 147
10.6 Predictive Power of the RTSAH Metric . 147
10.7 BVH Tree and Node Layout Auto-Tuning . 148
10.8 Bounding Volume Graph . 148
10.9 An Experimental Alternative Surface Area Heuristic 148
10.10 Out-of-Core BVH Optimization . 149

Appendices 151

A RSAH-based Construction Complexity 151
A.1 Naïve Sweep-Sweep Construction Complexity 151
A.2 Binning-Binning Construction Complexity . 152

B RTSAH Metric Speedup Prediction Experiments 153

XIII

Contents

C Experimental Alternative Surface Area Heuristic Experiments 155

(Co-)Authored Publications 157

Bibliography 159

XIV

Chapter 1

Introduction

Contents
1.1 Problem Statement . 3

1.2 Contributions . 4

1.3 Thesis Overview . 5

Ray tracing or ray casting (which also has non-synonymous uses) is an important computa-
tional primitive used in different fields. It can be broken down to the process of computing
the intersection of a ray with a virtual environment or object. The geometry of the object
or environment is modeled with geometric primitives such as triangles or quadrangles.

Based on principles from geometric acoustics Krokstad et al. [1968] presented an early
computational approach for ray tracing based sound propagation. Acoustic design soft-
ware such as EASE1 or Odeon2 use ray tracing for auralisation. It simulates what a listener
hears in a virtual environment taking into account the environment’s geometry, surface
properties and sound sources. This is e.g. important when designing the acoustics of au-
ditoriums, concert halls, or churches. Game engines such as Unity3 or the Unreal Engine4

provide a ray tracing API for custom ray tracing queries. This e.g. allows to implement
artificial intelligence of agents in virtual environments which require line-of-sight compu-
tations to be able to "see" with the same constraints like a human being, or to simulate
projectile collision. There are also ray tracing-based collision detection and resolution
algorithms for deformable bodies [Hermann et al. 2008, Lehericey et al. 2013].

Most prominently ray tracing is featured in light transport algorithms in computer
graphics. Appel [1968] was the first to propose to trace rays to a virtual light source
to create shadows in images of machine parts. A major step towards photorealism in
computer graphics was the introduction of the rendering equation by Kajiya [1986]. He
also proposed the path tracing algorithm as a solution to the rendering equation. Using
very similar physics to auralisation it simulates what observers see taking into account the
environment’s geometry, surface properties and light sources. Figure 1.1 shows examples

1http://ease.afmg.eu/
2http://www.odeon.dk/
3https://unity3d.com
4https://www.unrealengine.com

1

http://ease.afmg.eu/
http://www.odeon.dk/
https://unity3d.com
https://www.unrealengine.com

Chapter 1. Introduction

Figure 1.1: Examples of scenes rendered with path tracing. The top two images were
rendered using PBRT (http://www.pbrt.org). The bottom image shows a rendering
of a multi-view stereo reconstruction of a sculpture by Ferdinand Seeboeck. Landscape
scene courtesy of Jan-Walter Schliep, Burak Kahraman, and Timm Dapper. Kitchen scene
courtesy of Jay-Artist under CC BY 3.0 (https://creativecommons.org/licenses/
by/3.0/). Geometry changes were made. Elsbeth model courtesy of GCC, TU Darmstadt.

2

http://www.pbrt.org
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/

1.1. Problem Statement

of images rendered with path tracing. Billions of rays had to be traced to generate those
images. Sound propagation and light transport spend a substantial amount of time finding
primitive intersections for millions to billions of rays with millions to billions of primitives.

An efficient ray tracing implementation uses an acceleration structure. The purpose of
ray tracing acceleration structures is to reduce the number of primitives a ray must test
to get a sublinear computational complexity in the number of scene primitives. The most
common ray tracing acceleration structures are kd-trees and bounding volume hierarchies
(BVHs). They allow to find an intersection in logarithmic time w.r.t. the number of prim-
itives. The process of using acceleration structures to find an intersection point is called
traversal.

1.1 Problem Statement

The focus of this dissertation is on two major intertwined problem fields of ray tracing
acceleration structures: traversal performance and construction speed. Traversal perfor-
mance depends on scene characteristics, the construction strategy, and characteristics of
the input rays. In case of parallelized traversal ray characteristics have a strong influence
on performance.

Depending on how well the chosen construction strategy adapts to the distribution
of primitives, traversal performance can vary drastically. Strategies which aim at re-
ducing the so called surface area metric (SAM) give best results (MacDonald and Booth
[1989,1990]). SAM uses a result from geometric probability to compute an estimate for
the cost of traversing an acceleration structure beforehand without tracing a single ray.
Karras and Aila [2013] proposed the most efficient algorithm for constructing BVHs with
minimum SAM cost. Unfortunately, this algorithm has a runtime complexity of Ω(2n) and
a space complexity of O(n2n) in the number of input primitives. Though this is sufficient
for the specific problem of Karras and Aila [2013] it is highly unpractical for BVH con-
struction in general. A scene consisting of just 64 primitives would already require at
least 128 exabytes of auxiliary memory. According to Havran [2000], minimum-SAM cost
construction of kd-trees is NP-hard.

Because of the unfeasibility of minimum-SAM cost, BVH and kd-tree construction re-
search only focuses on approximative solutions. The standard SAM-based construction
approach reduces the metric by applying the surface area heuristic (SAH), which is an ap-
proximation of the SAM. Unfortunately, construction is most expensive with SAH-based
strategies. Minutes to hours are possible for huge scenes with millions to billions of prim-
itives. This can be an issue for interactive ray tracing applications with dynamic con-
tent if frequent rebuilds of the acceleration structure are needed and a given time budget
must not be exceeded. Aila et al. [2013] have shown that the accuracy of the SAM as a
traversal performance predictor is scene dependent for BVHs. They introduced the end-
point-overlap metric (EPO), which, in combination with SAM, produces more accurate
predictions. As a consequence minimum-SAM construction is not sufficient for BVHs as
EPO has to be optimized as well. So far no algorithm has been published which aims at
reducing EPO.

The sheer amount of primitives can also be a problem for construction if they do not
fit into memory. This can easily become a problem if one wants to leverage the massive
parallelism of graphics processing units (GPUs) for construction due to their compara-
tively small graphics memory. Out-of-core construction techniques have to be applied in

3

Chapter 1. Introduction

this case. Finding other construction strategies, which result in even better performing
hierarchies are still a topic of ongoing research.

Another aspect of traversal performance is traversal itself. Theoretically, ray tracing
is embarrassingly parallel as different rays can be traced independently from each other.
On multi-core systems it can be implemented in a straightforward manner by letting each
thread process its own batch of rays. Further parallelization can be achieved by taking ad-
vantage of single-instruction-multiple-data (SIMD) capabilities of multi-core architectures
or the massive parallelism of many-core architectures such as GPUs. Efficient paralleliza-
tion on SIMD architectures is, however, much harder when batches contain so called inco-
herent rays. These rays have widely varying origins and/or directions. Tracing incoherent
rays requires traversing different paths through the acceleration structure, resulting in in-
coherent memory accesses since different nodes are traversed and different primitives are
tested. Additionally, control flow diverges between rays which lowers SIMD efficiency.
As incoherent rays form an absolute majority in sound propagation and light transport
algorithms they pose a serious challenge.

1.2 Contributions

In this thesis we present several contributions on BVHs and kd-trees for ray tracing which
partly have been published at conferences and in a journal where noted. Chapters based
on publications have mostly been edited for layout and extended discussions. Where ap-
plicable text passages have been shortened or replaced by references into the background
chapter. Our main contributions ordered from theoretical to practical are as follows:

• An alternative geometric probability function for surface area heuristic-based accel-
eration structure construction which includes directional variation of the probability
of intersecting a ray with a convex body in its derivation. While computation of this
probability is unpractical, we show that under certain assumptions the conventional
geometric probability includes our proposed function, increasing the credibility of
the conventional approach.

Chapter 4

• A SAM-based bottom-up BVH construction algorithm, which improves on standard
bottom-up agglomerative clustering-based construction. The SAM-based approach
allows to naturally include the collapsing of subtrees into a leaf node as a clustering
decision, instead of applying it as a post-process.

Chapter 6

• An approach for reducing the forecasting error of the SAM-EPO ray tracing perfor-
mance predictor from Aila et al. [2013] which also enables more accurate predic-
tions for primary rays.

[Wodniok and Goesele 2017], Chapter 5

• A BVH construction algorithm that produces BVHs with better average performance
than state-of-the-art methods. Complexity analysis of our algorithm reveals sub-
quadratic runtime in the number of primitives which renders it practical.

[Wodniok and Goesele 2016, Wodniok and Goesele 2017], Chapter 5

4

1.3. Thesis Overview

• An analysis of GPU cache behavior when tracing incoherent rays in real-world sce-
narios. We investigate how different bounding volume hierarchy (BVH) and node
memory layouts as well as storing the BVH in different memory areas impacts the
ray tracing performance of a GPU path tracer. The BVH layout is optimized using
information gathered in a pre-processing pass applying a number of different BVH
reordering techniques.

[Wodniok et al. 2013], Chapter 7

• An efficient out-of-core multi-GPU algorithm for BVH and kd-tree construction that
allows the memory footprint of the output tree as well as the geometry exceed
graphics memory. Data is assumed to fit into system memory, though. Construc-
tion applies SAH right from the beginning and does not rely on quality degrading
pre-clustering of geometry.

Chapter 8 5

1.3 Thesis Overview

The remainder of this thesis is structured as follows:

Chapter 2: Background
First, we give an introduction on ray tracing with path tracing, a global illumination algo-
rithm, as an example application. Then, we proceed with ray tracing acceleration struc-
tures, which are necessary to make ray tracing efficient. We discuss bounding volume
hierarchies and kd-trees, and their construction. We also discuss bounding volume types
and argue why we use axis aligned bounding boxes. Further, we give a more in-depth
introduction to the surface area metric and acceleration structure construction with the
surface area heuristic. Both topics, in one way or the other, are important for the remain-
ing chapters. We also shortly introduce the EPO metric, which plays an important role for
Chapter 5 and Chapter 6.

Chapter 3: GPU Hardware Platform
The underlying GPU algorithms and techniques in Chapter 7 and Chapter 8 are imple-
mented with the NVIDIA CUDA API for GPU programming. This chapter gives an in-
troduction on the computation model behind CUDA and performance critical aspects of
NVIDIA GPUs.

Chapter 4: On the Geometric Probability Function of the Surface Area Metric
This chapter elaborates more on the geometric probability, which is at the core of the
surface area metric and surface area heuristic introduced in Chapter 2. We show that

5This chapter started as an unpublished paper in cooperation with Carsten Haubold, André Schulz, Nicolas
Weber, Sven Widmer, and Michael Goesele. Sven Widmer and Carsten Haubold developed the first prototype
of the underlying out-of-core multi-GPU middleware, which the author developed further. The middleware
is not part of this dissertation. Work on out-of-core kd-tree construction started as Nicolas Weber’s master’s
thesis [Weber 2013] under co-supervision of the author and Sven Widmer. The author completely reworked
the kd-tree implementation and developed the BVH construction approach. For the evaluation André Schulz
developed the implementation of the hybrid BVH-construction approach based on the author’s BVH construc-
tion implementation. All experimental evaluation and discussion has been conducted by the author. The
whole text of this chapter as well as of the unpublished paper has been written by the author.

5

Chapter 1. Introduction

the assumptions underlying this probability also allow for the definition of an alternative
conditional probability, which includes directionally varying object intersection likelihood
in its derivation. We further show how this alternative probability is connected to the
conventionally used probability.

Chapter 5: Temporary Subtree SAH-based Bounding Volume Hierarchy Construction
BVHs constructed with the standard greedy top-down SAH-based construction algorithm
have been shown to implicitly reduce the EPO metric. In this chapter we present a greedy
top-down algorithm, which constructs temporary BVHs with the standard construction
process for both sides of a partition candidate and uses the SAM cost of those temporary
trees to compute a candidate cost. This implicitly guides construction towards partition
candidates with lower EPO. An extensive evaluation reveals superior tree quality but also
limits of the EPO metric for performance prediction.

Chapter 6: An SAM-Driven Approach to Agglomerative Clustering
Bottom-up BVH construction with so called agglomerative clustering uses a clustering met-
ric which is loosely based on the SAM. While follow-up work only focused on improved
construction speed this chapter presents a clustering metric which directly aims at reduc-
ing the SAM cost and also measurably improves the BVH quality of the original algorithm.

Chapter 7: Cache-Optimized BVH GPU Memory Layouts for Tracing Incoherent Rays
Tracing incoherent rays in the context of the massive parallelism of GPUs poses a challenge
with respect to control flow divergence and incoherent memory access. This chapter ana-
lyzes the effects of incoherent memory access on GPU cache behavior which is caused by
batches of incoherent rays from a GPU path tracer. We investigate how different bounding
volume hierarchy (BVH) and node memory layouts as well as storing the BVH in different
memory areas impacts the ray tracing performance. Further, we optimize the BVH layout
using information gathered in a pre-processing pass applying a number of different BVH
reordering techniques.

Chapter 8: Multi-GPU Out-of-Core Top-Down SAH-based kd-Tree and BVH Construction
Though out-of-core CPU and GPU ray tracing has been investigated, there has been less
attention on efficient out-of-core acceleration structure construction. Out-of-core accel-
eration structures are typically assumed as given. The small amount of available related
work sacrifices hierarchy quality in a geometry pre clustering step to partition a scene into
handleable chunks. SAH-based construction is then applied on these chunks. In this chap-
ter we investigate out-of-core multi-GPU acceleration structure construction that applies
SAH right from the beginning and does not rely on quality degrading pre-clustering of
geometry.

Chapter 9: Final Summary and Discussion
This chapter gives a summary and discussion of our contributions and techniques pre-
sented in Chapters 4 to 8.

Chapter 10: Future Work
Finally, we conclude this dissertation by identifying several open questions and challenges,
which motivate future research.

6

Chapter 2

Background

Contents
2.1 Ray Tracing in Computer Graphics . 7

2.2 Bounding Volume Hierarchies . 13

2.3 kd-Trees . 25

2.4 Other Acceleration Structures . 28

2.5 The Surface Area Metric and Surface Area Heuristic 32

In this chapter we give an in-depth introduction to ray tracing and ray tracing acceleration
structures. We start by introducing ray tracing from a ray tracing-based global illumination
perspective, one of the major applications of ray tracing. Then, we proceed with ray
tracing acceleration structures, which are important to make ray tracing practical. Our
focus is on traversal and construction of two tree-based acceleration structure: bounding
volume hierarchies and kd-trees.

2.1 Ray Tracing in Computer Graphics

We define ray tracing (or alternatively ray casting) as the operation of finding the inter-
section of a ray r with a set of geometrical primitives P in R3. A ray r : R→ R3 is defined
as the function

r(t) = o+ td (2.1)

with ray parameter t ∈ R, origin vector o ∈ R3, and normalized direction vector d ∈ S2.
Here, S2 is the 2-sphere

S2 =
�

d ∈ R3 | ‖d‖2 = 1
	

. (2.2)

We are usually interested in finding the closest intersection point x ∈ R3 for a ray and
the primitives in P. For convenience, we define the function x = intersect(o,d,P)
for this operation which has the set of primitives and a ray’s origin and direction as ar-
guments. Without loss of generality we assume primitives to be triangles though other
primitives such as spheres or higher order surfaces are possible. A point on a triangle

7

Chapter 2. Background

can be parametrized with barycentric coordinates as a convex combination of the triangle
vertices {v0,v1,v2},vi ∈ R3. This can be written in matrix notation as

p(λ0,λ1,λ2) =
�

v0 v1 v2
�

λ0
λ1
λ2

 , λi ∈ [0,1],
∑

λi = 1 (2.3)

with the triangle vertices as columns. Bearing in mind that barycentric coordinates always
sum to one and setting λ1 = µ and λ2 = ν this can be written as

p(µ,ν) =
�

v0 v1 v2
�

1−µ− ν
µ

ν

= v+
�

e1 e2
�

�

µ

ν

�

, (2.4)

where v = v0, e1 = v1 − v0 and e2 = v2 − v0. That is, the triangle can also be described
with a base vertex v and edge vectors e1 and e2, which point from the base vertex to the
other two vertices. To intersect a ray with a triangle we have to insert Equation 2.1 into
Equation 2.4:

v+
�

e1 e2
�

�

µ

ν

�

= o+ td. (2.5)

Rearranging gives:

�

−d e1 e2
�

t
µ

ν

= o− v. (2.6)

To solve for the ray parameter and barycentric coordinates we simply have to invert the
matrix A=

�

−d e1 e2
�

which consists of the triangle edges and the ray direction. The
determinant of this matrix can be formulated as the triple scalar product

det A= d · (e2 × e1) (2.7)

The geometric interpretation of this determinant is that there is a solution to the system if
the ray is not parallel to the triangle. That is, the ray direction d is not orthogonal to the
triangle normal e2×e1. Using Cramer’s rule reformulated with cross products the inverse
of A is

A−1 =
1

det A

�

e1 × e2 d× e2 e1 × d
�T

. (2.8)

Multiplying Equation 2.6 with A−1 we get the ray and triangle parameters:

t
µ

ν

=
1

d · (e2 × e1)

�

e1 × e2 d× e2 e1 × d
�T · (o− v). (2.9)

For the intersection to be valid it must be inside the triangle. That is µ and ν must be in
[0,1]. For the third implicit barycentric coordinate to be one the sum of µ and ν must
be at most one. This can already be checked during computation to reject an intersection
early. The presented intersection test is essentially identical to the approach from Möller
and Trumbore [1997].

8

2.1. Ray Tracing in Computer Graphics

2.1.1 Ray Tracing-Based Global Illumination

In the context of computer graphics, ray tracing is most popularly featured in global il-
lumination algorithms, where the set of primitives P defines a scene. Global illumination
algorithms create photo-realistic images by simulating the interaction of light with the
environment. We give a brief introduction to path tracing as an example for a promi-
nent and simple ray tracing-based global illumination algorithm which showcases two
important basic ray tracing operations. Other more sophisticated and more complicated
ray tracing-based global illumination algorithms such as bidirectional path tracing (Veach
and Guibas [1995] and Lafortune and Willems [1993]), photon mapping (Jensen [1996]),
and Metropolis light transport (Veach and Guibas [1997]) exist which can better handle
certain light situations and/or have faster convergence. For an in depth introduction to
these algorithms and global illumination we refer to Pharr et al. [2016] or Dutre et al.
[2006].

To create an image with path tracing a virtual observer has to be placed in the scene.
In case of a virtual camera or person the image corresponds to the camera’s sensor or
person’s retina. Possibly taking into account its internal system of lenses, this observer
creates so called primary rays which are associated with pixels of the image. A primary
surface intersection point x is computed for each primary ray. For this, we are interested
in finding the closest intersection point of all surfaces the ray intersects. Closest point
determination is the first of two important basic ray tracing operations. What the observer
sees at x is determined by the light transport equation or rendering equation, which is at the
core of all global illumination algorithms. The rendering equation has been introduced
by Kajiya [1986]. For a point x ∈ R3 on a surface and an outgoing direction ωo at this
point it is defined as the sum of two terms:

Lo(x,ωo) = Le(x,ωo) + Lr(x,ωo). (2.10)

It describes that the outgoing light Lo (more specifically radiance) leaving surface point x
in direction ωo depends on the directly emitted light Le at x and the fraction of incoming
light Lr at x that is reflected into direction ωo. Lr is the integral

Lr(x,ωo) =

∫

ωi∈Ω+
fr(x,ωi ,ωo)Li(x,ωi)ωi · n dωi . (2.11)

It integrates all incoming light Li from all directions ωi in the positive hemisphere Ω+ =
{ω ∈ S2 |ω·n≥ 0} defined by the surface normal n at x that is reflected into directionωo.
At surface point x the bidirectional reflectance distribution function (BRDF) fr describes
the ratio of differential irradiance from a differential incident light cone around ωi to
exitant differential radiance in direction ωo for all pairs (ωi ,ωo) ∈ Ω+×Ω+ [Nicodemus
1965]. Thus, it is responsible for the material appearance at a point. The incoming light
Li(x,ωi) itself can be the outgoing emitted and/or reflected light Lo(x′,ω′o = −ωi) from
another surface point x′ = intersect(x,ωi ,P) in direction ωi from x which again can
be found with ray tracing. In general the rendering equation cannot be solved analyti-
cally and numerical methods have to be applied. Figure 2.1 further depicts the geometric
constellation of Lr .

Kajiya [1986] proposed the path tracing algorithm as a possible solution, which is
based on Monte Carlo integration. Given some multivariate function f (x) defined on

9

Chapter 2. Background

fr(x,ωi ,ωo)

n

ωo
ωi

θ
Ω+

Li

Li

Li

Li
LiLi

Li

Li

Li

Figure 2.1: Depiction of the integral in the rendering equation. For the outgoing direction
ωo and all directions ωi in the positive hemisphere Ω+ defined by the surface normal n it
integrates the product of incoming light Li , the BRDF fr at x, and cosθi =ωi · n.

some domain X, Monte Carlo integration approximates the integral

I =

∫

X

f (x)dx (2.12)

with a random variable Î defined as

I ≈ Î =
1
N

N
∑

i=1

f (xi)
p(xi)

, (2.13)

which draws N ∈ N samples {x1, . . . ,xN}with some probability density function p(x). The
expected value of Î is the solution to the original integral itself:

E
�

Î
�

= I . (2.14)

To approximate the rendering equation with Monte Carlo integration we have to evaluate
the integrand with randomly generated direction samples. This results in the approxima-
tion

Lo(x,ωo)≈ Le(x,ωo) +
1
N

N
∑

j=1

fr(x,ω j
i ,ωo)

p(ω j
i)

�

ω
j
i · n

�

Li(x,ω j
i)

= Le(x,ωo) +
1
N

N
∑

j=1

r(x,ω j
i ,ωo)Li(x,ω j

i),

(2.15)

where we introduced the function r(x,ωi ,ωo) =
fr (x,ωi ,ωo)

p(ωi)
(ωi ·n) for brevity. Evaluating

the rendering equation with one sample gives

Lo(x,ωo)≈ Le(x,ωo) + r(x,ωi ,ωo)Li(x,ωi). (2.16)

As already mentioned the incoming light Li itself depends on light, which is emitted
and/or reflected from another surface point x′ = intersect(x,ωi ,P). Expanding Li
with a one sample approximation gives

Lo(x,ωo)≈Le(x,ωo) + r(x,ωi ,ωo)
�

Le(x
′,−ωi) + r(x′,ω′i ,−ωi)Li(x

′,ω′i)
�

=Le(x,ωo)+

r(x,ωi ,ωo)Le(x
′,−ωi)+

r(x,ωi ,ωo)r(x
′,ω′i ,−ωi)Li(x

′,ω′i).

(2.17)

10

2.1. Ray Tracing in Computer Graphics

xcamera

ωcamera

x

n

x′

n′

x′′n′′

ωi

ωo
ω′i

ω′o

ω′′i

ω′′o

Le(x′′′,−ω′′i)

Figure 2.2: Depiction of path construction in the path tracing algorithm. Starting with a
sampled camera ray with origin xcamera and direction ωcamera ray tracing is used to find
the intersection points (x,x′,x′′,x′′′). The incoming light directions at each intersection
point are randomly sampled according to a probability density function, which depends
on local properties at the intersection point.

This approximation gathers light emitted from x and the light from some other point
x′ which is reflected at x. Recursively repeating this one-sample expansion of Li (see
Figure 2.2) constructs a series of raytraced intersection points (x,x′,x′′,x′′′, . . .), which
form a path, hence the name path tracing. Simply terminating construction of a path
after a pre-determined number of path vertices introduces an unrecoverable error into
the estimate. Proper path termination probabilistically terminates a path using Russian
roulette. With this technique the expected value of Equation 2.15 is still the solution to
the rendering equation, but at the cost of possibly higher variance of the random variable.

So far the path construction process finds a light source by accidently intersecting an
emitting surface. To more effectively generate paths to light sources incoming directions
can also be sampled by directly sampling a point on a light source for each path vertex.
This is illustrated in Figure 2.3. As can be seen from the figure the sampled point on the
light source might be occluded with respect to a path vertex. Thus, a so called line-of-sight-,
visibility-, or occlusion-test has to be performed which is the second of two important basic
ray tracing operations. It simply checks if there is any intersection up to a maximum ray
parameter tmax. In case of the light sample tmax is the distance from the path vertex to the
light sample position. The associated query rays are called visibility, shadow, or occlusion
rays. Closest point and line-of-sight computation are summarized in Figure 2.4.

2.1.2 Ray Tracing Acceleration Structures

Usually we want to find intersections for a set of rays R. The set of primary rays in path
tracing from the previous section is an example for this. A naïve ray tracing algorithm finds
the closest intersection of a ray with the set P of primitives in O(|P|) time by iteratively
intersecting all primitives. For the whole set R this complexity is O(|R||P|). If either the
number of rays |R| to test or the number of primitives |P| is very small the naïve algorithm
is acceptable. In practice |R| and |P| can be very large at the same time. Creating a path
traced image with a minimum Ultra HD1 resolution of 3840×2160 already requires tracing

1http://www.itu.int/rec/R-REC-BT.2020-2-201510-I/en

11

http://www.itu.int/rec/R-REC-BT.2020-2-201510-I/en

Chapter 2. Background

ll ′ l ′′

ωl ωl ′

ωl ′′

x

n

x′

n′

x′′n′′

Figure 2.3: Depiction of light sampling in path tracing with an occluding object. To more
efficiently find paths to light sources for every intersection point a light sample is created
(yellow dots). For every pair of a path vertex and a light sample a light direction can be
computed to evaluate the BRDF at the path vertex. As there might by occluding surfaces
between the path vertex and the light sample visibility rays have to be traced.

o

d
i1

i2

o

d
tmax

i

Figure 2.4: Ray tracing with a ray and a set of triangle primitives. The ray has origin o
and direction d. In the left image the ray has two intersection points, i1 and i2. Closest
point determination returns i1 as i2 is farther away. Line-of-sight computation simply
returns that a ray has at least one intersection. Though the occlusion ray in the right
image intersects a triangle at i the computation returns that there is no intersection, as
the ray parameter for i is larger than the upper bound tmax on the ray parameter.

of 8, 294,400 primary rays, assuming one sample per pixel. Several times more rays are
needed when constructing paths for each primary ray and using pixel supersampling for
anti-aliasing. Thus, with higher numbers of samples per pixel the number of rays |R| can
be in the order of trillions. The number of primitives |P| of CGI shots in movies can also
be in the order of billions (e.g. Pantaleoni et al. [2010]).

One way to handle the O(|R||P|) cost are variance reduction techniques for ray tracing-
based global illumination, which allow to reduce the required number of samples, and
thus rays to trace. We refer to Pharr et al. [2016] for an introduction to variance reduc-
tion techniques such as stratified or importance sampling in the context of ray tracing.
This way the computational cost is still linear in the number of rays and primitives. In the
context of this thesis we focus on so called ray tracing acceleration structures, which aim
at reducing the O(|P|) complexity for a single ray. The main principle behind these struc-
tures is to safely reject or ignore whole groups of primitives, which cannot be intersected

12

2.2. Bounding Volume Hierarchies

by a given ray. Acceleration structures can be classified into grid-based and tree-based
structures. Tree-based structures can again be classified into object- or space-partitioning
structures. The main contributions of this thesis are based on the two most widespread
tree-based structures: bounding volume hierarchies (BVH) and kd-trees. We proceed with a
thorough introduction of these structures and afterwards briefly elaborate on alternative
acceleration structures.

2.2 Bounding Volume Hierarchies

The bounding volume hierarchy (BVH) has been introduced by Rubin and Whitted [1980].
It is a so called object partitioning structure as it partitions the set P of scene primitives.
It is defined as a tree with inner nodes I and leaf nodes L. Only leaves store references
to primitives. Every node stores a bounding volume which fully contains all primitives
in its subtree. This gives a hierarchy of bounding volumes (hence the name of the struc-
ture). Conceptually, when a ray does not intersect a node’s bounding volume the contents
of the whole subtree of the node can be ignored. Arbitrary and also varying branching
factors are possible. Implementations usually use a fixed branching factor. In the context
of SIMD ray tracing Ernst and Greiner [2008], Wald et al. [2008], and Dammertz et al.
[2008] simultaneously proposed multi-branching BVHs (MBVH) where the branching fac-
tor corresponds to the SIMD width. Resulting branching factors can range from 4 (SSE),
8 (AVX), and 16 (AVX512) for Intel’s SIMD hardware implementations on CPUs [Intel
2017] to 32 and higher for graphics processing units (GPUs). Our focus is on binary BVHs
for two reasons. Construction-wise MBVHs are a special case of binary BVHs as they are
constructed from the latter by collapsing nodes. Secondly, in the context of ray tracing
with NVIDIA GPUs Aila and Laine [2009] observed that branching factors higher than 2
showed no clear performance benefit and even started to be detrimental to performance
for factors higher than 4. They noted that with a GPU ray traversal implementation similar
to the approach from Wald et al. [2008] (who used 16) higher branching factors might be
beneficial. An efficient GPU adaptation was not possible at that time, though.

Usually BVHs are full trees. That is, all nodes have either 2 (inner nodes) or 0 (leaves)
children. Full trees have the property that |I| = |L| − 1 holds (see e.g. Mehta and Sahni
[2004]). Thus the size |N| of the set of all nodes N = I∪L can be expressed with respect
to |L|:

|N|= |I|+ |L|
= |L| − 1+ |L|
= 2|L| − 1.

(2.18)

Every primitive in P is referenced exactly once by some leaf l ∈ L. A leaf node contains
at least one primitive reference. Thus, for a scene with |P| primitives the corresponding
BVH has at most |P| leaf nodes. Combined with Equation 2.18 the upper bound of the
number of BVH nodes for a scene with |P| primitives is:

|N| ≤ 2|P| − 1. (2.19)

The bounding volumes of nodes can be simple objects such as spheres or boxes. A more
in depth discussion of bounding volume types is provided in Section 2.2.2. Bounding
volumes of leaf nodes are large enough that they fully contain all referenced primitives.

13

Chapter 2. Background

Figure 2.5: Example for a constellation where the spherical bounds of a parent node
(black) do not fully contain the bounds but the primitives of its children (red and blue).
The depicted ray does not intersect the parent bounds. This already rules out the pos-
sibility of intersecting any primitive in the parents subtree, though the ray intersects the
bounds of the red child.

1

3

2
4 5

6

7

{1}

{2,3} {4}

{5,6} {7}

Figure 2.6: Example BVH for a scene with seven triangles. Axis aligned bounding boxes
are used as the bounding volumes for nodes.

Bounding volumes of inner nodes also have to at least fully contain all primitives refer-
enced in their subtrees. Depending on the chosen bounding volume type it can happen
that an inner node’s bounding volume does not fully contain the bounds of its children.
By itself this is not an issue. If a ray misses the bounds of an inner node but intersects
the bounds of one or more children, the subtree still can be safely skipped as the parent
bounds test already ruled out any primitive intersection in the subtree. This situation is
depicted in Figure 2.5. As we will discuss in Section 2.5 a downside of such parent
bounds is, that the surface area metric cost for a BVH with such bounds cannot easily be
evaluated. The bounding volume of a node can potentially overlap with the bounding
volumes of other non-ancestral BVH nodes. Low node bounds overlap is beneficial for ray
tracing performance as will be explained in the next section. An example BVH with axis
aligned bounding boxes as bounding volumes is depicted in Figure 2.6.

14

2.2. Bounding Volume Hierarchies

2.2.1 Traversal

Pseudocode for BVH traversal is provided in Algorithm 1. Traversal for a query ray r(t)
keeps track of an upper ray parameter limit tmax and the currently processed node ncurrent ∈
N. Intersections with bounding volumes or primitives which have a ray parameter larger
than tmax are rejected. tmax is initialized with infinity while ncurrent is set to the root.
Additionally, an auxiliary traversal stack is needed which can temporarily store nodes for
later processing. The stack is empty in the beginning. If ncurrent is an inner node the bounds
of its children nodes are tested for intersection with r. If both children are intersected the
farther one is pushed onto the traversal stack and traversal continues with the closer child.
If only one child is intersected traversal simply continues with this child. If no child has
been intersected the next ncurrent is popped from the stack. If ncurrent is a leaf node the
closest intersection with the contained primitives is computed. In case of no primitive
intersection again the next ncurrent is popped from the stack. In case of an intersection
traversal cannot terminate if the traversal stack is not empty; as bounding volumes of
nodes can overlap with other nodes there might be a closer intersection in one of the
subtrees of the nodes on the traversal stack. Thus, at least all nodes on the stack still have
to be processed and traversal has to continue by popping the next ncurrent from the stack.
But at least on primitive intersection we can "shorten" the query ray by setting tmax to the
current closest intersection. This way subtrees of nodes on the traversal stack will likely
be culled. Benthin et al. [2012] proposed to additionally store the distance to a pushed
node when pushing nodes on the traversal stack. This allows to rapidly discard popped
stack entries by comparing the popped node distance to the current tmax.

Any time the traversal stack is empty when it is queried traversal is terminated and
the intersection is returned if one has been found. What intersection information exactly
is returned depends on the application.

By always processing the closer child first when both children have been intersected
we get an approximate front-to-back traversal. When children of inner nodes on average
split the list of contained primitives in half, an intersection can be found in O(log2 |P|).
With suboptimal bounding volumes or degenerated hierarchies almost all nodes might
have to be visited. As according to Equation 2.19 the number of nodes is bound by |P|
this can result in a complexity of O(|P|), which is the complexity of naïve ray tracing.

Traversal for occlusion rays is only slightly different from closest-hit traversal. Traver-
sal terminates immediately if any intersection is found in the parameter bounds interval
[0, tmax]. Thus, no front-to-back traversal is needed.

2.2.2 Bounding Volumes

Theoretically arbitrary geometrical solids can be used as bounding volumes. Several as-
pects can be important when choosing bounding volume types.

A first aspect is fast ray/bounding volume intersection. Arvo and Kirk [1989] argue
that convexity of bounding volumes is a prerequisite for fast intersection computation as
it guarantees that there are at most two intersection points.

A second aspect is tightness of the fit or bounding efficiency. The most compact convex
bounding volume for an object is its convex hull, which has the smallest area and the
smallest volume of all convex bounding volumes at the same time. In the context of colli-
sion detection applications bounding efficiency is the ratio of the volume of the bounded
object to the volume of the bounding volume (Vogiannou et al. [2010]). As we will see

15

Chapter 2. Background

Algorithm 1: Pseudocode for BVH traversal.
input : ray // ray we have to intersect with the scene
input : root // root node of the scene BVH
output: iIdx // index of the closest intersected primitive

1 iIdx← InvalidIdx // Set intersection index to invalid index
2 push (stack, NIL) // Init stack with invalid node
3 tmax←∞ // Init ray parameter limit
4 ncurrent← root // Start traversal at root
5 while ncurrent 6= NIL do // Traversal loop
6 if is_inner_node (ncurrent) then // Handle inner nodes
7 (leftBounds, rightBounds)← children_bounds (ncurrent) // Get children

bounds
8 // Compute ray intersection parameter intervals
9 tIntervals← get_intersection_intervals (ray, leftBounds, rightBounds)

10 if intersected_both_children (tIntervals, tmax) then
11 // Get farther away child and push it on the stack
12 cfar← get_far_child (ncurrent, tIntervals)
13 push (stack, cfar)
14 // Next node is the closer child
15 ncurrent← get_near_child (ncurrent, tIntervals)
16 else if intersected_one_child (tIntervals, tmax) then
17 // Just proceed with the lone intersected child
18 ncurrent← get_intersected_child (ncurrent, tIntervals)
19 else
20 // No intersection. Get the next node from the stack.
21 ncurrent ← pop (stack)
22 end
23 else
24 // Find closest leaf primitive intersection and update tmax and iIdx if possible
25 intersect_leaf_primitives (ncurrent, ray, tmax, iIdx)
26 // Get next node
27 ncurrent ← pop (stack)
28 end
29 end

in Section 2.5 the probability of a ray intersecting a convex volume is approximately pro-
portional to the volume’s surface area when a uniform ray distribution of infinitely far
away originating rays is assumed. The surface area of the convex hull of an object is a
tight lower bound on the surface area of convex bounding volumes. Thus, for ray tracing
we can define bounding efficiency η(B, O) of a convex bounding volume B for a bounded
object O as

η(B, O) =
Area(ConvexHull(O))

Area(B)
. (2.20)

Any convex bounding volume other than the convex hull has a larger surface area and
will thus have a bounding efficiency of less than one. The reciprocal of η(B, O) describes
how many times more likely it is to intersect B compared to intersecting the convex hull
of O.

Additional important aspects can be the number of parameters needed for parametri-
zation and fast computation of the bounding volume from a set of input primitives. Finally,

16

2.2. Bounding Volume Hierarchies

it might be worth considering how difficult it is to compute bounds for a pair of bounds
of the same type. This is relevant when bounds have to be propagated bottom-up in a
hierarchy. We continue with a discussion of several bounding volume types and conclude
with a bounding efficiency comparison.

Convex Hull According to the definition of η in Equation 2.20 the convex hull is the
convex bounding volume with highest bounding efficiency. The Quickhull algorithm from
Barber et al. [1996] allows to compute the convex hull for a set of n points in O(n log n).
The resulting convex hull is a polygonal mesh where the polygons can have a variable
number of edges. Thus a varying number of parameters is needed to describe the convex
hull. Assuming that all polygons are turned into a set of triangles and using the Euler
characteristic of convex polyhedra discovered by Euler [1758] the number of convex hull
triangles can be shown to be at most 2n−4. Intersecting those triangles for larger n is too
expensive and unfortunately needs itself an acceleration structure in case of convex hulls
with many faces.

Sphere The sphere is the simplest bounding volume in terms of intersection and para-
metrization. It can be parametrized with the sphere center c ∈ R3 and sphere radius
r ∈ R+0 . Intersection with a ray r(t) is done by inserting into the implicit sphere equation

‖r(t)− c‖22 − r2 = 0. (2.21)

Solving the resulting quadratic equation for t gives

t1,2 = −d · (o− c)±
q

(d · (o− c))2 − (o− c)2 + r2. (2.22)

If the discriminant is negative there is no intersection. In practice spheres have lower
bounding efficiency compared to other bounding volume types. It also turns out that com-
putation of a tight sphere is difficult. Gärtner [1999] proposed the fastest exact method,
which requires about 30 milliseconds for computing a tight sphere for about 106 points on
our setup (Intel i7 7700K, 4.2 GHz). Ritter [1990] proposed a widespread, simple, and
about three orders of magnitude faster approximative O(n) algorithm. According to Lars-
son [2008] spheres computed with Ritter’s method can have an about 50% larger surface
area than optimal. Larsson [2008] himself proposed an approximative algorithm which
is slightly slower than Ritter’s method but more often produces close to optimal spheres
which empirically have a 16% larger surface area in the worst case. Computing a bound-
ing sphere from two bounding spheres is straight forward, but the resulting sphere has
a lower bounding efficiency than when directly computing a bounding sphere for objects
contained in the original spheres. This problem is depicted in Figure 2.7.

Axis Aligned Bounding Box An axis aligned bounding box (AABB) is a cuboid which re-
stricts faces to be parallel to the coordinate system axes planes. This allows to parametrize
an AABB with a lower bound vector a ∈ R3 and an upper bound vector b ∈ R3 with
ad ≤ bd , d ∈ {x , y, z}, which define three bounding intervals [ad , bd].

Intersection computation is more expensive than sphere intersection. Though the first
AABB intersection test has implicitly been introduced by Rubin and Whitted [1980] we
follow the more efficient approach from Kay and Kajiya [1986]. Each bounding interval

17

Chapter 2. Background

Figure 2.7: Tight bounding spheres for two sets of primitives (red and blue). The black
sphere, which contains the red and blue sphere, is not tight with respect to the union of
the two primitive sets. While the more bounding efficient dashed sphere tightly contains
the union of the two point sets, it does not fully contain the bounding spheres of each
point set. It still could be used as the bounds for a hypothetical parent node.

[ad , bd] can be interpreted as an axis aligned slab, which is bounded by two bounding
planes with plane equations −xd + ad = 0 and xd − bd = 0. Inserting a ray into these
equations we get the two ray intersection parameters td

1 = (ad − od)/dd and td
2 = (bd −

od)/dd per slab. Sorting both parameters per slab we get the slab entry point parameter
td
min = inf{td

1 , td
2} and slab exit point parameter td

max = sup{td
1 , td

2}. The AABB entry point
parameter tmin is the maximum of the slab entry parameters while the exit point parameter
tmax is the minimum of the slab exit parameters. That is, tmin = sup{t x

min, t y
min, tz

min} and
tmax = inf{t x

max, t y
max, tz

max}. If tmax is smaller than tmin the ray missed the AABB.
For a set

�

p1, . . . ,pn
	

,pi ∈ R3 of n points a tight AABB can be computed in O(n). We
simply have to find the minimum and maximum component value of the points for each
dimension to determine the bounding intervals:

[ad , bd] =
�

inf
�

p1
d , . . . , pn

d

	

, sup
�

p1
d , . . . , pn

d

	�

. (2.23)

Computing the tight AABB for a pair (B1, B2) of AABBs simply requires to find the compo-
nent wise minima of the lower bounds and maxima of the upper bounds:

[ad , bd] =
�

inf
¦

aB1
d , aB2

d

©

, sup
¦

bB1
d , bB2

d

©�

. (2.24)

As opposed to spheres the resulting AABB is also tight with respect to points contained
in B1 and B2, if the later are also tight. Denoting the sets of point cloud coordinates in
dimension d ∈ {x , y, z} of the point clouds from B1 and B2 with P

B1
d and P

B2
d , respectively,

we can show this by inserting Equation 2.23 in Equation 2.24:

[ad , bd] =
�

inf
¦

aB1
d , aB2

d

©

, sup
¦

bB1
d , bB2

d

©�

=
�

inf
¦

infPB1
d , infPB2

d

©

, sup
¦

supPB1
d , supPB2

d

©�

=
�

inf
¦

P
B1
d ∪P

B2
d

©

, sup
¦

P
B1
d ∪P

B2
d

©�

(2.25)

Thus, the tight AABB for B1 and B2 is also tight w.r.t. the union of the point clouds of B1
and B2.

18

2.2. Bounding Volume Hierarchies

c ey

ex

ex

e y

Figure 2.8: Left: Parametrization of an OBB in 2D with center c, orientation vectors
ex and ex y , and corresponding box extents ex and e y . Right: Tight oriented bounding
boxes for two sets of primitives (red and blue). The black box, which contains the red
and blue box, is not tight with respect to the union of the two primitive point. While the
more bounding efficient dashed box tightly contains the union of the two primitive sets,
it does not fully contain the bounding boxes of each primitive set. It still can be used as
the bounds for a hypothetical parent node

Oriented Bounding Box Oriented bounding boxes (OBB) have higher bounding effi-
ciency than AABBs as they have more degrees of freedom. The parametrization chosen
by Gottschalk et al. [1996] consists of the box center c ∈ R3, an orthonormal basis for
the box orientation with basis vectors {ex ,ey ,ez} ,ed ∈ S2, and corresponding box extents
{ex , e y , ez} , ei ∈ R+. The parametrization is depicted in Figure 2.8.

Gottschalk et al. [1996] showed how to compute an optimal fitting OBB from the
convex hull of input points. Therefore, the analytical mean and covariance matrix of the
convex hull’s continuous surface points is computed. The normalized eigenvectors of the
covariance matrix define the orthonormal basis of the OBB. The extents and the center
can be computed by projecting the input points onto the basis vectors. For objects with
rotational symmetry such as cylinders, cones or spheres there is no unique solution.

OBB intersection is reduced to AABB intersection by first transforming the query ray
into the local coordinate system of the OBB using the center and orientation of the box. In
the local coordinate system the OBB is an AABB which is centered at the origin. Thus, like
for AABBs the slab test from Kay and Kajiya [1986] can be used. As the box is centered the
bounding interval for dimension d is [− ed

2 , ed

2]. Because of the initial ray transformation
OBB intersection is more expensive than AABB intersection.

Computing a tight OBB from two OBBs requires to go through the construction pro-
cess with point clouds but using the union of the corners of the boxes as input. Like for
spheres the resulting box can have a lower bounding efficiency than when directly com-
puting a tight box for objects contained in the original boxes. This issue is also depicted
in Figure 2.8.

k-DOP In three dimensional space a k-DOP is a discrete oriented polyhedron, where the
orientations of the polyhedron faces are restricted to k distinct directions di ∈ S2, i ∈
{1, . . . , k}. They were introduced to ray tracing by Kay and Kajiya [1986]. k-DOPs are
implicitly assumed to be convex. As such a k-DOP can be interpreted as the intersection
of up to 2k half-spaces. Each direction di is associated with a bounding interval [adi , bdi]

19

Chapter 2. Background

Figure 2.9: Tight 4-DOP for a set of points in two dimensions. The set of directions is
{(1,0), (1,1), (0,1), (−1,1)}. The interior (gray) is defined by the intersection of the half-
spaces (lines).

which is computed from the projection of an object onto di . For a setP=
�

p1, . . . ,pn
	

,pi ∈
R3 of n points the set of projections Pd

⊥ for a direction d is Pd
⊥ = {p · d | p ∈ P}. Thus, the

bounding interval for direction di is

[adi , bdi] = [infPdi

⊥ , supPdi

⊥]. (2.26)

An example k-DOP in two dimensions is depicted in Figure 2.9. AABBs can be interpreted
as 3-DOPs, where the directions are restricted to the coordinate system axes. We can see
that Equation 2.23 for AABBs is a special case of Equation 2.26. Constructing a k-DOP
from two other k-DOPs B1 and B2 with the same set of directions is done by simply applying
Equation 2.24 from AABBs. Like for AABBs, the resulting k-DOP is also automatically tight
w.r.t. the content of B1 and B2, when the latter are also tight. Intersection computation is
completely analogous to AABB intersection, just with k oriented slabs instead of the fixed
three slabs. The plane intersection tests are more expensive in general as the directions
can be more general and have up to three non-zero components.

Unlike for the other discussed bounding volumes it is difficult to compute the surface
area of a k-DOP, as the surface is only implicitly defined by the intersection of half-spaces.
Barber et al. [1996] showed how to compute an explicit mesh for the half-space intersec-
tion. Figure 2.10 describes how to compute the surface area of a k-DOP with this approach.
As can be seen the whole process is quite expensive considering that we are only interested
in the surface area. This makes BVH construction strategies based on bounding volume
surface areas quiet slow when using k-DOPs.

2.2.3 Bounding Efficiency Comparison

For a comparison of the bounding efficiency of the discussed bounding volumes we used
all 1814 models of the Princeton Shape Benchmark from Shilane et al. [2004]. This model
collection has a wide diversity of real life objects. Examples are humans, insects, birds,
mammals, cars, planes, ships, furniture, tools, or buildings. As a k-DOP we used the
13-DOP from Klosowski et al. [1998]. The baseline for their 13-DOP is an AABB equiva-
lent 3-DOP. They added the four space diagonals (±1,1,±1) and the six quadrant diago-
nals (1,±1, 0), (1, 0,±1), and (0,±1, 1). The original benchmark data is essentially axis
aligned. This is the optimal case for AABBs. Thus, for fairness we also evaluated aver-
age efficiency for a modified version of the data, where all models are exemplary rotated
around the (1,1, 1)T axis by 60 degree. The average bounding efficiency for unrotated
and rotated models is depicted in Figure 2.11.

20

2.2. Bounding Volume Hierarchies

Figure 2.10: Exemplary computation of the surface area of a 4-DOP by computing an
explicit mesh for the intersection (gray) of half-spaces (lines) as described by Barber et al.
[1996]. The set of directions is {(1, 0), (1, 1), (0, 1), (−1,1)}. Left: In a first step the k-
DOP is transformed to the origin by choosing an arbitrary interior point (red). Then, the
half-space planes are transformed into dual three dimensional points (black) by dividing
the plane normals by the plane offsets. Middle: Then the convex hull of the dual points
is computed. Right: From the plane equations of the faces of the convex hull another set
of dual points (blue) is created by dividing the plane normals by the plane offsets. This
new set of points corresponds to the intersection points of the original half-spaces. The
connectivity of the intersection points can be extracted from the convex hull of the first
set of dual points. The surface area of the k-DOP can then be computed from the explicit
mesh.

sphere AABB OBB 13-DOP

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

bo
un

di
ng

ef
fic

ie
nc

y

unrotated rotated

Figure 2.11: Average bounding efficiency (see Equation 2.20) of spheres, axis aligned
bounding boxes (AABB), oriented bounding boxes (OBB), and 13-DOPs computed for all
1814 models of the Princeton Shape Benchmark. Models are either left as is (unrotated),
or rotated around the (1,1, 1)T axis by 60 degree (rotated).

21

Chapter 2. Background

The rotation invariant bounding efficiency of OBBs and spheres is immediately visible.
But the efficiency of OBBs is more than 50% higher than the efficiency of spheres. While
the 13-DOP shows some rotational variance it clearly has the highest bounding efficiency
with roughly 75%−82%. AABBs show highest variance in bounding efficiency. For unro-
tated data AABBs come close to the bounding efficiency of OBBs. In the rotated case they
slightly fall behind spheres. Still we advocate usage of AABBs as they combine more pos-
itive aspects than the other bounding volumes. Computation of tight bounds is cheapest
and simplest for AABBs. Computing an AABB for two AABBs is very cheap and the result
is guaranteed to be tight w.r.t. the primitives contained in the original bounds. While the
latter is also true for 13-DOPs computation of the combined 13-DOP is four times more
expensive, as an AABB is essentially a 3-DOP. In Section 2.5.3 and Section 2.5.4 we will see
that surface area heuristic-based BVH construction requires incremental construction of
tight bounds for a growing set of primitives. To compute a tight fitting OBB it is required
to iterate over all primitives in the current set each time a primitive is added which makes
construction quite expensive. Further, the intersection test of a 13-DOP requires 26 plane
intersections of which 20 are not axis aligned. This is several times more expensive than
the intersection of the 6 axis-aligned planes of the AABB and has to be contrasted with
the 1.35 and 2.15 times higher bounding efficiency of the 13-DOP in the unrotated and
rotated case, respectively. Finally, computation of the surface area of AABBs is straight-
forward while for the 13-DOP a surface mesh has to be computed first.

2.2.4 Number of BVHs for a Scene

Before we introduce basic BVH construction strategies we elaborate on the total number
of different BVHs which can be constructed for a given set of primitives. Swapping the
order of children of an inner node has no effect on traversal when a ray always enters the
closer child first. Thus, two BVHs are only different if they cannot be transformed into
each other by a series of children swaps. According to Karras and Aila [2013] the number
of different BVHs with n ∈ N leaves is

#BVHs with n leaves= (2n− 3)!!, (2.27)

where x!! is the double factorial function. As 2n− 3 is always an odd number the double
factorial in this case is x!!= x(x −2)(x −4) · . . . ·3 ·1. When there is only one primitive in
every leaf this is also the number of different BVHs for a set of primitives. As Karras and
Aila [2013] neither provided a derivation nor a source for this result, and we ourselves
were unable to find a source we provide our own derivation.

Our approach is based on an incremental BVH construction procedure which itera-
tively adds leaves with primitives to a BVH. We assume that leaves contain one primitive.
Leaves are either added at an inner node or at a leaf of an existing BVH. Both cases are
conceptually identical. The targeted node is removed and attached to a new parent node
along with the leaf to add. Then the parent node is inserted at the original position of
the target node. In case of an inner node the whole subtree is moved. Whether the new
leaf is added to the new parent node as the left or right child is irrelevant as both results
are equivalent in the context of BVHs. Figure 2.12 depicts this operation for a leaf and an
inner node as the target nodes. The key observation is that for a BVH with n nodes there
are n different possibilities to add an additional leave. The other way around with this
procedure a BVH with n leaves is constructed from a BVH with n − 1 leaves. According

22

2.2. Bounding Volume Hierarchies

+ = + =

Figure 2.12: Depiction of adding a leaf node (red) to a BVH at a target node (blue) for
the derivation of the number of different BVHs for a given number of primitives. The left
image shows adding a node at a leaf, while the right image shows adding a leaf at an inner
node. The targeted node is removed and attached to a new parent node (green) along
with the leaf to add. Then the parent node is inserted at the original position of the target
node.

n 1 2 3 4 5 6 7 8 9 10
B(n) 1 1 3 15 105 945 10,395 135,135 2,027,025 34,459,425

Table 2.1: Number of different BVHs for a scene with n primitives assuming one primitive
per leaf. This number can be computed as B(n) = (2n − 3)!! where x!! is the double
factorial.

to Equation 2.19 a BVH with n− 1 leaves has 2(n− 1)− 1 = 2n− 3 nodes. Thus, there
were 2n− 3 possibilities to construct a BVH with n leaves from a BVH with n− 1 leaves.
Denoting the number of BVHs with n leaves B(n) this gives us B(n) = (2n− 3)B(n− 1).
A BVH with n− 2 leaves has 2(n− 2)− 1 = 2n− 5 nodes. Thus, there were 2n− 5 pos-
sibilities to construct a BVH with n− 1 leaves from a BVH with n− 2 leaves which gives
B(n−1) = (2n−5)B(n−2) and consequently B(n) = (2n−3)(2n−5)B(n−2). Each BVH
with one leaf less has two nodes less. Repeating this expansion for B(n−2), B(n−3) and
so on we arrive at the special case B(1). There is only one possibility to construct a BVH
with one leaf. Thus, we have B(1) = 1. Putting everything together gives again rise to the
double factorial B(n) = (2n− 3)(2n− 5) · . . . · 3 · 1= (2n− 3)!! as the number of different
BVHs with n leaves as stated by Karras and Aila [2013]. Table 2.1 shows the number of
different BVHs for very small numbers of primitives. We can see that there is already a
combinatorial explosion for such unrealistically small scenes.

2.2.5 Basic Construction Strategies

In the early days of ray tracing, BVHs were often constructed by hand as described in the
initial work on BVHs from Rubin and Whitted [1980] and Weghorst et al. [1984]. The
simplest construction strategy for automatic hierarchy generation is the spatial median
split introduced by Reddy and Rubin [1978]. First, we compute tight AABBs for all input
primitives and then compute the scene AABB, which tightly contains all primitives. The
primitives with their AABBs and the scene bounds are the initial current primitive work-
ing set and current working bounds. For the current bounds a splitting plane which is
orthogonal to the coordinate axis with the largest bounds extent is created. The position
of the plane is the center of the largest extent, the spatial median. The next step is to

23

Chapter 2. Background

Figure 2.13: Example scene with 16 primitives for two iterations (left and right image)
of BVH construction with the spatial median split strategy. This strategy places a splitting
plane (green line) at the spatial median of the largest extent of the node bounds (dashed
box). Depending on the side of the splitting plane the primitive AABB centroid coordi-
nates lie on primitives are put to the left (blue) or to the right (orange). As the splitting
plane is placed completely independent of the centroids the resulting BVHs can be highly
unbalanced.

distribute the current primitives to both sides of the plane to form a partition. This is
done depending on which side of the plane the AABB midpoint lies. Then, tight bounds
are computed for each side of the partition. The current node is turned into an inner node
with both sides of the partition as its children and construction recursively proceeds on
both sides. The recursion ends when some pre-specified number of current primitives are
left or a maximum allowed depth has been reached, and a leaf is created for the current
primitives. Figure 2.13 depicts BVH construction with this strategy.

If the list of primitives is roughly split in half in each step the complexity of this al-
gorithm is O(n log n) for n input primitives. Lauterbach et al. [2009] presented a fast
construction solution for GPUs which also works for CPUs that assigns an m-bit Morton
code to each primitive. The list of codes can be sorted with Radix sort in O(mn). The hier-
archy can be extracted from the sorted codes in linear time which results in O(mn) overall
complexity. Karras [2012] proposed a highly parallel implementation for the hierarchy
extraction step. While the spatial median split construction is simple and fast the tree
does not really adapt to the geometry as the splitting plane positioning does not take the
geometry into account. In Section 2.5 we will see that geometry adaptation is important
for traversal performance. The best case input for this strategy is uniformly distributed ge-
ometry. For non-uniform distributions the tree can partially degenerate into a list. Vinkler
et al. [2017] proposed to extend Morton codes with primitive size information and then
perform construction with the methods from Lauterbach et al. [2009] or Karras [2012].
This allowed to increase BVH quality of the fast O(mn) construction. Quality is still lower
than the state-of-the-art.

Next we describe the object median split construction strategy which has been intro-
duced by Heckbert [1982] and applied to BVHs by Kay and Kajiya [1986]. The object
median split algorithm is similar to the spatial median split algorithm. The main differ-
ence is the splitting strategy. It first sorts the primitives w.r.t. the primitive bounds center
coordinate in the dimension of the largest extent. Then this sorted list is simply split into
two equal halves. As a result trees constructed with this strategy are always balanced.
Figure 2.14 depicts BVH construction with this strategy. Because of the required sorting
step, the complexity of this algorithm is O(n log2 n) for n input primitives. Adopting con-
cepts from Wald and Havran [2006] for the high quality construction of kd-trees, which

24

2.3. kd-Trees

Figure 2.14: Example scene with 16 primitives for two iterations (left and right image)
of BVH construction with the object median split strategy. This strategy focuses solely on
splitting a set of primitives into two halves w.r.t. the primitive AABB centroid coordinates
in the dimension with the largest extent. The green line depicts a symbolic splitting plane
which is positioned such that the set is partitioned into two halves. As resulting BVHs are
balanced by construction they have minimal height.

are introduced in the next section, an alternative faster implementation is possible. It
first sorts the primitives in each dimension in separate arrays before construction. During
construction these arrays are kept sorted in each recursion step, which can be done in
linear time. This improves the complexity to O(n log n) at the cost of higher memory con-
sumption. While the construction is still simple and reasonably fast the tree again does
not adapt to the geometry. For uniform geometry distributions this strategy has no real
benefit over the spatial median split as the resulting hierarchies are essentially the same.
For non-uniformly distributed geometry though this approach can expose higher trace
performance as their balancedness causes them to be of minimum height. This does not
make balancedness a magic bullet. The only reason this is an advantage is that spatial me-
dian splits expose an unthoughtful unbalancedness which unnecessarily increases height.
As we will see in Section 2.5 state-of-the-art construction with the surface area heuristic
deliberately introduces unbalancedness in the tree where it is considered beneficial.

2.3 kd-Trees

In contrast to BVHs, which partition sets of objects, a kd-tree is a binary tree, which parti-
tions space using split planes. kd-trees restrict split planes to be parallel to the coordinate
axes planes. The more general binary space partitioning tree (BSP) allows arbitrarily ori-
ented split planes. Each inner kd-tree node stores a split plane, which partitions space into
two half-spaces. Primitives which straddle the split plane are split themselves. Instead of
actually splitting primitives only references to primitives are kept which are duplicated on
a split. In R3 a kd-tree split plane can be defined by a distance d ∈ R and the coordinate
axis a ∈ {x , y, z} the plane intersects and is perpendicular to. In the context of ray tracing
a kd-tree also stores a tight AABB for the complete scene geometry. As the split planes are
axes parallel this gives every node in the tree an implicit AABB, which can be computed
by intersecting the scene AABB with all half-spaces of the ancestors of the node. In case
of a BSP tree its arbitrarily oriented split planes result in general convex polyhedra as the
implicit bounding volumes of nodes. The union of all node bounds in the same tree level is
the scene bounds. The pairwise intersection of node bounds on the same level is disjoint.
As a result there is no overlap in a kd-tree.

25

Chapter 2. Background

1a 1b

3

2a
2b 4b

4a 5a
5b 5c

6a
6b

7

|

—

|

{1a, 2a} {1b, 4a}

|

{2b, 3} {4b}

—

{5a, 6a} |

{5b} —

{5c, 6b} {7}

Figure 2.15: Example kd-tree for a scene with seven input triangles. A spatial median
construction strategy is applied, where the maximum allowed number of primitives in a
leaf is set to two. The constructed kd-tree references about two times as many primitives
as there are in the input.

The basic construction strategies discussed in Section 2.2.5 can also be applied to kd-
trees. Implementation of the object median strategy is a bit more involved because of
the primitive splitting. After primitives have been sorted the list cannot be simply split in
half. Instead, a split plane has to be swept through the primitives to find the plane which,
including primitive duplicates, partitions the set into ideally two halves. Observing that
the number of primitives on both sides of a split plane changes at primitive starts and ends
this can be implemented in O(n) by counting so called primitive enter- and exit-events as
described in Wald and Havran [2006]. An example kd-tree constructed with the spatial
median split is depicted in Figure 2.15. Due to primitive splitting there is no upper bound
on the number of kd-tree nodes depending on the number of input primitives. In practice,
this requires to specify a maximum depth to ensure construction algorithm termination.

2.3.1 Traversal

kd-tree traversal is similar to BVH traversal. A major difference is that bounding volumes
are defined implicitly by the series of half spaces down the tree. Only the scene bounding
box is explicitly defined. Another major difference to BVHs is that traversal can imme-
diately terminate as soon as an intersection has been found. The reason is that there is
no overlap with other non-ancestral nodes as described earlier. Thus, the intersection is
guaranteed to be the closest. This property of kd-trees is called early ray termination.

We outline the traversal process according to the description from Pharr et al. [2016].
Pseudocode for kd-tree traversal is provided in Algorithm 2. First, the ray is intersected
with the tight axis aligned scene bounding box to obtain initial ray parameter bounds
[tmin, tmax]. If the ray misses the bounds there can be no intersection and traversal termi-
nates. The currently processed node ncurrent is initialized with the kd-tree root. If ncurrent
is an inner node we have to identify which children are intersected by the ray. For this we
have to intersect the split plane with the ray. The ray parameter for the intersection with
the plane is

tplane =
d − oa

da
(2.28)

26

2.3. kd-Trees

Algorithm 2: Pseudocode for kd-tree traversal.
input : ray // ray we have to intersect with the scene
input : root // root node of the scene BVH
input : sceneBounds // tight AABB of the scene
output: iIdx // index of the closest intersected primitive

1 iIdx← InvalidIdx // Set intersection index to invalid index
2 (tmin, tmax)← intersect_bounds (ray,sceneBounds) // Init ray parameter interval
3 if tmin ≥ tmax then // Return if we miss the scene bounds
4 return
5 end
6 push (stack, (NIL,[∞,−∞]) // Init stack with invalid node and parameter interval
7 ncurrent← root // Start traversal at root
8 while ncurrent 6= NIL do // Traversal loop
9 if is_inner_node (ncurrent) then // Handle inner nodes

10 plane← get_split_plane (ncurrent) // Get split plane
11 // Compute ray/plane intersection parameter
12 tplane← intersect_plane (ray, plane)
13 // Order children to get a near and far child
14 (cnear, cfar)← identify_near_and_far_child (ray,ncurrent)
15 // Check which children have been intersected
16 if tmax ≤ tplane ∨ tplane ≤ 0 then // only intersected near child
17 ncurrent← cnear
18 else if tmin ≥ tplane then// only intersected far child
19 ncurrent← cfar

20 else // intersected both children
21 ncurrent← cnear
22 // Push far child with corresponding bounds interval on the stack
23 push (stack, (cfar, [tplane, tmax]))
24 // Shorten ray
25 tmax← tplane

26 end
27 else
28 // Find closest leaf primitive intersection
29 iIdx← intersect_leaf_primitives (ncurrent, ray, tmin, tmax)
30 if iIdx 6= InvalidIdx then // terminate on primitive intersection
31 return
32 end
33 // Get next node and corresponding parameter interval
34 (ncurrent, [tmin, tmax])← pop (stack)
35 end
36 end

27

Chapter 2. Background

near far

{cnear}

tplane > tmax

tmin

tmax

{cnear}
tplane < 0

tmax

{cnear, cfar}

tplane ∈ [tmin, tmax]

tmin

tmax

{cfar} tplane < tmin

tmin

tmax

Figure 2.16: Depiction of the four situations when determining the next node during kd-
tree traversal. Every ray shows the set of relevant child nodes cnear and/or cfar depending
on the plane intersection parameter tplane and its relation to the parent bounds intersection
parameters tmin and tmax. (Based on Pharr et al. [2010], Figure 4.18)

with d ∈ R being the plane distance and a ∈ {x , y, z} being the orthogonal plane axis.
This gives us the ray parameter intervals [tmin, tplane] and [tplane, tmax] of the intersection
with the implicit children AABBs. The child which corresponds to the side of the split
plane containing the ray origin is called the near child cnear and the other one is the far
child cfar. Analyzing the sign of the ray direction component da in dimension a and tplane
the intervals can be attributed to cnear and cfar. In case a child parameter interval has
invalid limits, that is the upper bound is lower than the lower bound, the child is not
intersected. As the union of the disjoint implicit children bounds is exactly the implicit
bounds of the parent node the ray is guaranteed to intersect at least one child since the
ray intersected the parent. If tplane is larger than tmax the ray only intersects cnear. In case
tplane is smaller than zero the ray points away from the split plane and again only intersects
cnear. If tplane is smaller than tmin the ray only intersects cfar. The only remaining case is
where tplane ∈ [tmin, tmax] holds and both children are intersected. Figure 2.16 shows the
four different situations. In the case where both children are intersected the far child is
put on the stack along with its parameter interval [tplane, tmax]. Before traversal continues
with the near child the current parameter interval is shortened to its interval [tmin, tplane].

If ncurrent is a leaf the closest primitive intersection is determined and traversal can
terminate immediately on intersection as explained at the beginning of this section. If a
leaf contains duplicate primitive references it can happen that the closest intersection is
outside of the implicit leaf bounds. The intersection has to be rejected in this case. In case
there was no intersection the next node along with its parameter interval is popped from
the stack.

2.4 Other Acceleration Structures

For the sake of completeness, before we proceed with BVH and kd-tree construction with
the surface area metric in the next chapter we close this chapter with a brief discussion

28

2.4. Other Acceleration Structures

Figure 2.17: Example scene with 16 primitives for two iterations (left and right image) of
an skd-tree partition with the spatial median split construction strategy. The left partition
has overlapping (gray area) implicit bounds, which are also larger than with a kd-tree.
The right partition has smaller implicit bounds, but still larger bounds than a BVH with
AABBs as bounding volumes.

of skd-trees/bounding interval hierarchies, graphs, and uniform grids. The first two are
directly related to BVHs and kd-trees and can benefit from our contributions on hierarchy
quality, out-of-core construction, and memory layouts.

Skd-Trees / Bounding Interval Hierarchies The spatial kd-tree (skd-tree) has been origi-
nally introduced by Ooi et al. [1987] in the context of spatial databases to store non-points
objects (objects with an extent) without producing duplicates. Havran et al. [2006] and
Wächter and Keller [2006] concurrently introduced skd-trees to ray tracing where the lat-
ter coined the term bounding interval hierarchy as they were unaware of the work from Ooi
et al. [1987]. Skd-trees can be interpreted as relaxed kd-trees, where the implicit bounds
of the children are allowed to overlap. Instead of a split plane it stores an upper bound for
the left child and a lower bound for the right child in the split dimension. Another interpre-
tation is to view skd-trees as restricted BVHs with AABBs as children bounding volumes,
where five bounding interval limits are predetermined by the parent bounds. Figure 2.17
shows an skd-tree example. The main benefit of skd-trees is their lower memory footprint
compared to kd-trees and BVHs. Compared to a BVH with its twelve bounding interval
limits for each pair of children AABBs the skd-tree only has to store two limits. As an
skd-tree is an object partitioning structure it has the same bounded number of nodes as a
BVH (see Equation 2.19). Empirically the number of skd-tree nodes is much lower than
for a kd-tree resulting in a lower memory footprint even though a kd-tree node is slightly
smaller (see Wächter and Keller [2006]).

The disadvantage of an skd-tree is its traversal performance. Wächter and Keller
[2006] reported roughly the same and up to three times lower trace performance than
kd-trees constructed with an unspecified construction strategy. Havran et al. [2006] ob-
served a generally lower trace performance, which was even about one order of magni-
tude lower for some scenes. This can be partially explained by the possibly larger implicit
bounds compared to kd-trees due to the allowed overlap (see Figure 2.17). Also, traversal
is more involved. Two planes have to be intersected and more logic is needed to determine
which children have been intersected with the additional case that no child is intersected.
In contrast to kd-trees, skd-trees have no early ray termination mechanism because of the
possible node overlap.

29

Chapter 2. Background

1a 1b

3

2a
2b 4b

4a 5a
5b 5c

6a
6b

7

{2b, 3} {4b} {5b}

{5c, 6b}

{7}

{1a, 2a} {1b, 4a} {5a, 6a}

—

|

R R

R

R R

L L

L L

L

L

T

T

TTT

B

B

BB

Figure 2.18: 2D example of the graph based acceleration structure from Gribble and
Naveros [2013]. Basis is the example kd-tree and scene in Figure 2.15 from the kd-tree
section. The original kd-tree leaves are turned into sectors (colored) with explicit bounds.
The left (L), right (R), top (T), and bottom (B) face of each sector references its adjacent
sector. The bottom face of the purple sector and the right face of the yellow sector have no
unambiguous neighbor. Thus, each face references the deepest inner node in the original
kd-tree (red nodes) which contains all adjacent sectors in its subtree. The referenced
subtree allows to disambiguate ambiguous sectors at traversal time.

2

3

1

1

2

2

2

1

1

1

1

1

1

1

2

2

1

1

1

1

1

1

1

2

1

2

1

1

1

1

Figure 2.19: Example of two uniform grids with different resolution for a scene with 7
primitives. The left grid has resolution r = d1.5 · 3p7e = 3 and the left grid has resolution
r = d3 · 3p7e= 6. The numbers in voxels indicate the number of referenced primitives.

Graph-based Acceleration Structure Gribble and Naveros [2013] very briefly hint at a
novel graph-based spatial acceleration structure which has been developed with GPU ray
tracing in mind. The goal is to get rid of the traversal stack (similar to uniform grids)
while at the same time have a structure, which adapts to the geometry distribution (Alexis
Naveros, personal communication, March 18, 2013). Algorithmic details can be retrieved
from the publicly available implementation (Naveros [2016]). The basis of the structure
is a kd-tree, which can be constructed with any construction strategy. For every face of
the implicit AABBs of leaves (which are called sectors in this structure) a reference to the
neighboring sector is stored. If several sectors touch an AABB face the closest common
ancestor node of those sectors in the kd-tree is referenced. The resulting graph structure
allows to traverse from sector to sector. Figure 2.18 depicts this graph-based acceleration
structure for the example kd-tree in Figure 2.15 from the kd-tree section. We can see
that all leaves of the original kd-tree have turned into sectors. Two inner nodes of the

30

2.4. Other Acceleration Structures

original kd-tree (orange circles) are still present in the graph to resolve neighborhood
ambiguity for the pink and the leftmost yellow sectors. For traversal the ray must start in
the sector, which contains the ray origin. If the ray origin is outside of the scene bounds
the entry sector has to be identified first. For this, Gribble and Naveros [2013] sketch
several methods to identify an initial starting sector in constant time. If those methods
fail the kd-tree is traversed down to find the sector. For secondary rays in ray tracing
based global illumination algorithms the starting sector is known, as they usually start on
surfaces. After, the starting sector has been identified the ray checks all sector primitives
for intersection. On intersection traversal can terminate immediately. Otherwise, the ray
proceeds to the sector which is referenced by the sector face the ray intersects. If the face
references an inner kd-tree node the subtree is traversed to find the next sector. All these
operations do not require a traversal stack. Gribble and Naveros [2013] report competitive
trace performance with kd-trees.

Uniform Grids Fujimoto et al. [1986] proposed uniform grids as a ray tracing accelera-
tion structure. The scene bounds are subdivided into a grid of equally shaped and sized
boxes or voxels (volumetric elements). Each voxel stores the list of all primitives which
overlap with its volume. As a result a primitive can be referenced in more than one voxel.
According to Pharr et al. [2016], the number of voxels optimally is roughly proportional
to the number n of primitives. For uniformly distributed geometry this results in a grid
resolution r ∈ N of r ≈ c 3pn with some constant c for an r × r × r grid. Traversal of the
grid processes voxels which intersect the ray in front to back order. This does not require
a traversal stack. For each voxel the ray visits primitive intersection with all referenced
primitives is performed. Traversal can terminate as soon as an intersection has been found
inside the current voxel. Figure 2.19 depicts a grid with two different resolutions. Fuji-
moto et al. [1986] proposed the 3DDDA (3d digital differential analyzer) algorithm as
an efficient implementation of this traversal process which Amanatides and Woo [1987]
improved on. In the best case a grid can find an intersection after just a couple of steps
if the intersection occurs in the starting cell or its neighborhood. This gives essentially an
O(1) traversal complexity in the number of grid cells in this case.

Grids have some disadvantages which partially can be seen in Figure 2.19. One prob-
lem is that they do not adapt well to the geometry distribution. Only the grid resolution
r can be adapted. If no intersection is found tracing parallel to a coordinate axis requires
roughly r traversal steps. Tracing along the diagonal of the grid requires roughly

p
3r

traversal steps. Thus the worst case complexity of grid traversal is O(r) if no intersection
is found. Using the optimal resolution of r ≈ c 3pn this results in a complexity of O(3pn),
which is much higher than the O(log n) complexity of tree-based ray tracing. If the reso-
lution r is too high too many traversal steps have to be performed to find an intersection
and much time is spent in traversing empty areas. A higher resolution also causes a higher
memory consumption due to the increased number of voxels and duplicate primitive ref-
erences. Sramek and Kaufman [2000] and Es and İ̧sler [2007] proposed to enrich voxels
with additional empty space information computed in a preprocess which allows to per-
form larger leaps over empty regions. This allows to drastically reduce traversal for scenes
with large empty regions, but further increases the memory overhead. If r is too low too
many primitives are stored per voxel which results in a larger number of unnecessary
primitive intersection tests.

While worst case traversal complexity of grids is higher than for trees they have a lower

31

Chapter 2. Background

construction complexity. Hapala et al. [2011] analyzed when it is more beneficial to use
grids based on the number of rays to trace and determined critical points in the number of
rays at which the higher construction cost of trees is amortized. The number of primitives
of their scenes ranged from hundreds to millions. For random rays starting outside of
the scene the critical point was approximately proportional to the number of primitives.
For rays generated from a path tracer critical points where heavily scene dependent and
seemingly independent of the number of scene primitives. For more than half of the 24
test scenes grids never paid off or had their critical point at a couple thousands of rays.
For other scenes the critical point ranged from 1M to 50M rays. It would be interesting
to see how the empty space leaping techniques from Sramek and Kaufman [2000] and Es
and İ̧sler [2007] affect the critical point.

2.5 The Surface Area Metric and Surface Area Heuristic

The surface area metric (SAM) provides a measure for the expected traversal cost of a given
BVH or kd-tree. The surface area heuristic (SAH) is derived from SAM and is a means to
measure the quality of an object or spatial split during construction. SAM and SAH have
been developed in two iterations. We start with presenting the first prototype by Goldsmith
and Salmon [1987] and the final iteration as it is known today from MacDonald and Booth
[1989,1990]. We proceed with the standard and alternative SAH-based kd-tree and BVH
construction algorithms. Further, we will introduce other ray tracing performance metrics
of which the end-point-overlap (EPO) metric is the most important one for this dissertation.

2.5.1 Goldsmith and Salmon’s Approach

The key concept of Goldsmith and Salmon [1987] is that the size of the surface area of
bounding volumes is important for ray tracing performance. Till then it has been thought,
that volume is more important (e.g. Weghorst et al. [1984]). An example for this obser-
vation are planar objects such as triangles, which have zero volume but still can be inter-
sected. Goldsmith and Salmon based their argument on an example from optimal search
theory (in the sense of finding a lost object) by Stone [1975]. Stone himself lend this
example from Koopman [1956] which used it to introduce the inverse-cube law of sighting.
Koopman actually discusses the probability of a plane spotting an object on the ocean. He
determines that this probability depends on the solid angle of the object, which is propor-
tional to surface area at large distance. From this example, Goldsmith and Salmon state
that the probability that some random ray outside of the scene intersects a convex object
O is proportional to the surface area of O:

p(intersect O)∼ Area(O). (2.29)

Based on this principle they proposed an incremental top-down BVH construction algo-
rithm with runtime O(n log n) in the number of primitives. The algorithm starts with a
BVH, which only consists of a single leaf, that contains one of the input primitives. Then,
successively for each primitive heuristically the leaf in the current BVH is identified where
adding the current primitive results in the smallest cumulative increase in bounding vol-
ume surface area of all ancestors up the hierarchy. A new leaf is created for the current
primitive. Then, a common new parent node of the new and the selected leaf is created
at the original position of the selected leaf.

32

2.5. The Surface Area Metric and Surface Area Heuristic

To predict traversal performance of the resulting hierarchies Goldsmith and Salmon
developed a cost metric. For this, based on Equation 2.29 they defined the conditional
probability of intersecting a convex object O1 given that another convex object O2, which
fully contains O1, has been intersected as the ratio of their surface areas. Realizing that
the probability of intersecting O2 given that we intersected O1 is one, we can derive this
conditional probability using Bayes’ theorem and Equation 2.29:

p(intersect O1 | intersect O2) =
p(intersect O2 | intersect O1)p(intersect O1)

p(intersect O2)

=
p(intersect O1)
p(intersect O2)

=
Area(O1)
Area(O2)

(2.30)

We abbreviate p(intersect O1 | intersect O2) with pO2
O1

. This conditional probability allows
to compute the probability of a ray intersecting a BVH node under the assumption that it
intersected the BVH root r. Goldsmith and Salmon assumed that every time an inner node
n of a BVH with branching factor k has been intersected with probability pr

n, its k children
have to be intersected, too. This allowed them to define their BVH traversal cost metric
c(I) on the set of inner BVH nodes I as the expected number of node bounds intersection
tests:

c(I) = k
∑

n∈I
pr

n = k
∑

n∈I

Area(Bn)
Area(Br)

. (2.31)

Bn are the bounds of a node n ∈ I. Empirical tests made by Goldsmith and Salmon [1987]
proved this metric relatively accurate. Thus, it gives a measure for the expected traversal
cost for a tree without tracing a single ray. They also revealed that the value of c(I) of the
BVHs constructed with their algorithm is very sensitive to the order in which primitives
are inserted.

2.5.2 MacDonald and Booth’s Approach

Based on [Goldsmith and Salmon 1987] MacDonald and Booth [1989,1990] developed
the surface area metric (SAM) and the surface area construction heuristic (SAH) that are
used today. SAM and SAH are based on the following three assumptions:

1. Rays originate infinitely far away from the scene.

2. Ray directions have a uniform distribution.

3. Rays do not terminate on intersection.

The first and second assumption allow to define the analytical conditional geometric prob-
ability of a ray r intersecting a convex body B1 given that it intersected another convex
body B2, which contains B1, as follows:

p (r intersects B1 | r intersects B2) =
Area (B1)
Area (B2)

(2.32)

Thus, p is simply the ratio of the surface areas of both convex bodies. This is the same re-
sult as Equation 2.30 but with a more proper theoretical foundation. The exact derivation
of Equation 2.32 is discussed in Chapter 4.

33

Chapter 2. Background

SAM further has two implementation dependent cost constants ci and ct . ci is the
cost for intersecting a scene primitive while ct is the cost of performing a traversal step.
The later includes costs for intersecting children bounding volumes in case of a BVH, or
split plane intersection in case of a kd-tree. It can further include costs of traversal stack
operations and logic for determining which child to traverse first. The cost itself can be the
amount of time or computation cycles needed for performing operations. It is common
practice to set ci to one and express ct relative to ci .

The third SAH assumption means that a ray intersects all nodes and primitives in its
path regardless of whether they are occluded by the closest hit point. Combined with the
intersection probability from Equation 2.32 and the implementation dependent constants
the expected traversal cost c(N) for the set of tree nodes N = I ∪ L is partitioned into
the cost cI for processing inner nodes i ∈ I ⊂ N and costs cL for processing the leaves
l ∈ L ⊆N. The cost metric is as follows

cBVH = cI + cL = ct

∑

i∈I
proot

i + ci

∑

l∈L
proot

l |l|. (2.33)

|l| is the number of primitives in a leaf. This cost metric is equally applicable to BVHs and
kd-trees. For BVH nodes the bounds needed to compute the conditional probabilities are
explicitly defined, while for a kd-tree node bounds are defined implicitly by intersecting
the scene bounds with all half spaces of the predecessors of the node.

It is possible to define Equation 2.33 recursively, which also resembles the tree traversal
process. This requires the conditional probability pn that a ray intersects the bounds Bn
of a node n given that it intersected the bounds of the parent of n. With Equation 2.32 it
can be defined as:

pn =
Area (Bn)

Area
�

B↑(n)
� , (2.34)

where ↑ (n) denotes the parent node of n. Together with the implementation dependent
constants the recursive expected traversal cost c(n) for the subtree of a node n ∈ N is
recursively defined as:

c(n) =

¨

ct + pnl
c(nl) + pnr

c(nr) n ∈ I

|n|ci n ∈ L
(2.35)

Here, nl and nr are the left and right child node of n in case of an inner node, and |n|
is the number of primitives belonging to n. Starting the recursive evaluation of c(n) at
the tree root gives the cost for the whole tree. To see that the result is identical to Equa-
tion 2.33 one has to show that in the end every node n gets multiplied with proot

n as in
Equation 2.33. Because of the recursion the cost of a node n is multiplied by a series of
conditional intersection probabilities of the node and its ancestors up to the root from
previous recursion steps. Let ↑i (n) denote the i-th ancestor of a node n ∈ N up the tree
with ↑0 (n) = n and let d ∈ N be the depth of n in the tree such that ↑d (n) gives the root.
Further we abbreviate the surface area of the bounds of a node n with An. This lets us

34

2.5. The Surface Area Metric and Surface Area Heuristic

formulate the product as follows:

d−1
∏

i=0

p↑i(n) = pn · p↑1(n) · p↑2(n) · · · p↑d−2(n) · p↑d−1(n)

=
An

A↑1(n)
·

A↑1(n)
A↑2(n)

·
A↑2(n)
A↑3(n)

· · ·
A↑d−2(n)

A↑d−1(n)
·

A↑d−1(n)

Aroot

=
An

Aroot
= proot

n

(2.36)

The surface areas of all ancestors between n and the root node cancel out resulting in
conditional probabilities w.r.t. the root as in Equation 2.33.

As already hinted at in Section 2.2, choosing OBBs or spheres as node bounds which
are always tight w.r.t. the geometry in a node’s subtree does not guarantee that the node
bounds are fully contained in the parent bounds. In this case Equation 2.32 cannot be
applied directly to compute the intersection probability of a node. Instead, the surface
area of the intersection of a node’s bounds with the bounds of all ancestors is needed.
This can be computed conveniently when evaluating SAM with the recursive formulation.
Computation of the intersection of multiple OBBs or spheres themselves is non-trivial.

In practice at most only a subset of the three SAM assumptions is fulfilled. Usually
rays originate inside the scene bounds. Rays originating from a camera or directed light
sources such as the sun or spotlights do not have a uniform ray direction distribution. Also,
except for multi-hit traversal (see Gribble et al. [2014]), rays usually terminate traversal
as soon as the closest intersection point has been found. Still SAM empirically proves to be
a good performance predictor for kd-trees. In case of BVHs SAM proved to be less reliable
due to effects caused by node overlap which are not captured by SAM. As we will see in
Section 2.5.7 Aila et al. [2013] developed the EPO metric as an addition to SAM to better
explain the performance of BVHs.

2.5.3 SAH-based Construction

Construction of high quality kd-trees and BVHs aims at reducing SAM cost for the result-
ing tree. Besides introducing SAM MacDonald and Booth [1989,1990] also developed a
greedy top-down construction algorithm for kd-trees which reduces SAM in a more direct
manner than Goldsmith’s and Salmon’s algorithm. In contrast to Goldsmith and Salmon
[1987] the output of their algorithm does not depend on the order of input primitives.
While MacDonald and Booth [1989,1990] note that their approach could be directly ap-
plied to BVHs, Müller and Fellner [1999] where the first to present and evaluate a similar
approach for BVHs. Müller and Fellner [1999] were not aware of the prior work from
MacDonald and Booth [1989,1990] and proposed a slightly simpler cost model applied
to BVHs. Wald et al. [2007] presented a direct adaptation of MacDonald and Booth’s ap-
proach, which in contrast to Müller and Fellner’s approach made traversal performance of
BVHs competitive to kd-trees.

On a high level the construction process is the same for kd-trees and BVHs. The prob-
lem solving heuristic for the greedy algorithm is intuitively derived from Equation 2.35. It
assumes that the set of input primitives P embedded in a leaf node n is split into a left leaf
l with primitives Pl and a right leaf r with primitives Pr which share a common parent.
The cost for this split is

csplit = ct + pl |l|ci + pr |r|ci , (2.37)

35

Chapter 2. Background

where px is the conditional probability from Equation 2.34 w.r.t. the original node. Con-
struction aims at finding a partition of P, which gives the lowest csplit. The cost for not
splitting n is the cost for processing the node as a leaf:

cleaf = |n|ci . (2.38)

If the lowest csplit is lower than cleaf the partition is executed and construction recursively
continues on Pl and Pr . The recursion terminates as soon as the best csplit is larger than
or equal to cleaf . Considering that pl and pr are both w.r.t. the same parent node area An
for all split candidates, a common variant of Equation 2.37 avoids the involved division
by multiplying with An:

csplit = Anct + Al |l|ci + Ar |r|ci . (2.39)

The adapted variant of Equation 2.38 for recursion termination is

cleaf = An|n|ci . (2.40)

The kd-tree and BVH construction process differs in creation of the partition candidates.
We first discuss partition creation for kd-trees and then proceed with BVHs.

kd-tree Partition Candidates Finding the best partition for a kd-tree boils down to finding
the split plane, which results in the lowest cost. Figure 2.20 shows the behavior of the cost
when sweeping a split plane along the coordinate axes for some example scene. We see
that the cost c(s) is a piecewise linear function with respect to split position s. Whenever
the plane starts or ends to intersect a primitive there is a discontinuity. Primitive starts
cause a discontinuous increase of c(s) as primitives are split, while primitive ends cause a
discontinuous decrease as they are not split anymore. Thus, for each dimension we only
have to look for the minimum of csplit at the 2|P| distinct discontinuities caused by the
primitives in P.

Wald and Havran [2006] presented an efficient implementation for finding the best
partition candidate. For a fixed sweeping dimension a list E of events is created which
contains the discontinuities of c(s). An event is a pair (xe, e), where xe ∈ R is the position
of the discontinuity and e ∈ {START, END} is an event label which distinguishes between
a primitive start or end. For each primitive such a start event (xSTART, START) and an end
event (xEND, END) is created and added to E. Then the events in E are sorted w.r.t. x in
ascending order, where in the case that two events have the same position, a start event
goes before an end event. The next step is to extract split candidates from the sorted list.
For this we track the number of primitives L and R on the left and right side of a partition
by updating them depending on the order of events encountered in the event list. Initially,
L is zero and R is |P|. Now, we iteratively inspect the sorted events. On a start event a
primitive enters the left side while on an end event a primitive leaves the right side. This
gives the following simple update rules for L and R based on the event label e:

e = START : L← L + 1

e = END : R← R− 1.
(2.41)

For every encountered event we compute csplit with the current counts L and R, and the
bounds associated with this split. To compute the bounds we simply have to set the maxi-
mum of the left bounds and the minimum of the right bounds in the sweeping dimension

36

2.5. The Surface Area Metric and Surface Area Heuristic

1 2 3 4 5 6

2

3

4

x

cx

2 3 4

1

2

3

cy

y

Figure 2.20: Example for the candidate cost function when sweeping the candidate plane
along the x- and y-axis. The z-dimension is not depicted. The scene consists of three
triangles where the scene bounding box has width, height, and depth (6,3,1). The pair of
implementation dependent constants (ct , ci) is set to (1

2 , 1). From the given box geometry
the cost function for split positions on the x-axis is cx(x) =

1
2+ |l|

8x+6
54 + |r|

�

1− 8x+6
54

�

. For

split positions on the y-axis the cost function is cy(y) =
1
2+|l|

14y+12
54 +|r|

�

1− 14y+12
54

�

. The
dashed lines mark discontinuities at the start and end of primitives. Primitive starts cause
a discontinuous increase of cx and cy as the primitive is split in two parts. At Primitive
ends cx and x y show a discontinuous decrease as the primitive is not split anymore. cx(x)
has its minimum at x = 3 with cx(3) ≈ 1.94 and the minimum for cy(y) is at y = 2 with
cy(2) ≈ 2.76. Thus, the best split candidate is the plane x = 3. With ci = 1 the leaf cost
cleaf = 3 is simply the number of triangles. As the best split has lower cost than the leaf
cost it would have been chosen for splitting the node.

to the plane position of the current event. The remaining bound limits are identical to the
parent bounds. This process is repeated for the other two sweeping dimensions to find
the overall best candidate. The described procedure allows to find the best candidate in
the sorted list in O(n). As the event list had to be sorted first the overall complexity of
this step is O(n log n). Wald and Havran [2006] also had a third event for the case when a
primitive completely lies in the splitting plane. We left this event out for simplicity. Recur-
sively repeating this procedure on both sides of a partition to construct the whole kd-tree
has complexity O(n log2 n).

Wald and Havran [2006] proposed a modification to improve on this complexity which
requires additional memory. For this approach event lists for each sweeping dimension are
created and sorted for all input primitives once before construction. Then, at construction
time best candidates can be found in O(n). When partitioning the primitives the sorted
event lists are partitioned, too, and merely have to be maintained to preserve the event
order for each partition. This maintenance step only has O(n) complexity in contrast to the

37

Chapter 2. Background

Figure 2.21: Example of generating candidate partitions for greedy SAH-based top-down
BVH construction. First, the primitives are sorted w.r.t. a fixed dimension coordinate of
the centroid of their AABBs. The initial partition contains the left most sorted primitive
on its left side (blue) while all other primitives are put to the right side (red). Additional
partitions are generated by iteratively removing a primitive from the right side and adding
it to the left side in the order they appear in the sorted primitive list. This process is
repeated for all coordinate dimensions as well. The candidate partition which gives the
lowest SAH cost is chosen.

O(n log n) cost for sorting after each partitioning step. Constructing the whole kd-tree has
O(n log n) complexity with this approach. As the sorting pre-process also has O(n log n)
complexity the overall complexity is O(n log n).

BVH Partition Candidates SAH-based BVH construction has to find a partition (L,R) of
P which has the lowest cost csplit. With respect to the power set P(P) of P the set of
partition candidates of P is

CP = {(L,R) ∈ P(P)× P(P) \ {(;,P), (P,;)} | L∪R= P∧L∩R= ;} (2.42)

As for every L ∈ P(P) \ {;,P} there is exactly one R ∈ P(P), (L,R) ∈ CP the number of
candidate pairs is |CP|= |P(P)|/2−1= 2|P|−1−1. Thus, in contrast to kd-tree construction
the number of candidates is exponential in the number of primitives which is unpractical.
Most of these possible partitions are unreasonable as they do not provide a good spatial
separation of the primitives.

Instead of testing all partitions, which is infeasible, Wald et al. [2007] propose to test
only a reasonable subset which should result in acceptable partitions. The idea is to sweep
for candidates along each coordinate axis similar to kd-trees in the previous section. First
all primitives are sorted w.r.t. the x-coordinate of the centroid of their AABBs. To reduce
memory traffic the algorithm works on primitive references. A primitive reference is a pair
(i, Bi) where i and Bi are the index and the bounds of the referenced primitive. For the
first partition the left most sorted primitive is put to the left side while all other primitives
are put to the right side. Remaining partitions are generated by iteratively removing a
primitive from the right side and adding it to the left side in the order they appear in the
sorted primitive list. This results in a total of |P| − 1 partitions. Every iteration also has
to keep track of the partition bounds to compute the SAH cost. Let us assume B1, . . . , B|P|
is the array of sorted reference bounds and let Ba ⊕ Bb denote the grow operation which
computes tight bounds for the given bounds Ba and Bb. Then the left bounds Bk

l of the

k-th partition are Bk
l =

⊕k
j=1 B j . The respective right bounds are Bk

r =
⊕|P|

j=k+1 B j . For the

left side the partition bounds Bk
l can be incrementally updated when adding primitives

to it by simply computing Bk
l = Bk−1

l ⊕ Bk, where B1
l = B1. For the bounds Bk

r of the
right side it is not possible to simply remove the bounds of the removed primitive from
Br . An efficient way to compute all right partition bounds is to perform a scan from the

38

2.5. The Surface Area Metric and Surface Area Heuristic

xmin xmax

xmax−xmin
B

Figure 2.22: Example for a scene which has been subdivided into B = 4 bins with three
equidistant split planes (red) along the x-axis.

right on the sorted bounds B1, . . . , B|P| using the grow operator ⊕. That is we compute
Bk

r = Bk+1
r ⊕Bk+1, where B|P|−1

r = B|P|. The resulting array of right partition bounds has to
be stored in additional memory. The partition index k is also the number of primitives on
the left side of the partition. As BVH construction does not split primitives the number of
primitives on the right side of the k-th partition is simply |P|−k. Now we have all required
information to compute the SAH cost of all partitions. The candidate partition which gives
the lowest SAH cost is chosen. This process is repeated for the y- and z-axis and the overall
best candidate is selected. From Figure 2.21 it can already be seen that this procedure can
generate partitions with reasonable spatial separation. As with kd-tree construction this
sorting-based candidate determination has O(n log n) complexity resulting in an overall
complexity of O(n log2 n). It is possible to adapt the concepts of the O(n log n) approach
for kd-tree construction to BVHs to also achieve O(n log n) SAH-based BVH construction.

2.5.4 Binned Construction

While BVHs and kd-trees constructed with the SAH give significantly higher traversal per-
formance than trees constructed with the spatial- or object-median split strategy SAH-
based construction is also the most expensive. Popov et al. [2006] proposed an O(n log n)
SAH-based kd-tree construction algorithm which is faster than the O(n log n) algorithm
from Wald and Havran [2006] as it has a lower constant. This is achieved by sampling the
cost function c(s) at a couple of different sample split plane positions s, where the number
of sample positions is chosen to be much lower than the number of candidates. This gives
an approximation to the full sweep approach. Popov et al. [2006] presented an efficient
implementation of this idea which completely replaces all sorting with a O(n) binning or
histogram computation step. They sample c(s) with a number of equidistant split planes
with respect to the current bounds of the node to split. Consecutive split planes includ-
ing the sides of the bounds define equally shaped volumetric bins to which primitives are
distributed. Binning with B ∈ N bins results in B − 1 split planes/split candidates. Fig-
ure 2.22 depicts this bin construction for an example bin partition with three split planes.
Bins have a zero-based index b ∈ {0, . . . , B − 1}. Exemplary for binning along the x-axis
the associated right split plane is at sb = xmin+(b+1) xmax−xmin

B , where [xmin, xmax] are the
current node bounds for this axis. At this point binned kd-tree and BVH construction have
minor differences. We will proceed with binned kd-tree construction before we explain
binned BVH construction.

39

Chapter 2. Background

S : 1 2 1 0

E : 0 2 1 1

L : 1 3 4 4

R : 4 4 2 1

Figure 2.23: Example for binning in kd-tree construction with B = 4 bins. Each bin
stores the number of start events S and end events E (dashed lines) which fall into it. By
performing a prefix sum from the left on S and a prefix sum from the right on E we can
efficiently compute the numbers L and R of primitives on the left and right of a candidate
partition (red).

Binned Kd-tree Construction For kd-tree construction start and end events of primitives
are distributed to bins based on the event position xe. In the x-axis the target bin be can
be directly computed from xe and the node bounds as

be = inf

§�

B
xe − xmin

xmax − xmin

�

, B − 1
ª

. (2.43)

Each bin b stores the number of start events Sb and number of end events Eb that fall into
it. Thus we have two separate arrays S and E of start and end event counters. Figure 2.23
depicts this for the example bin partitioning in Figure 2.22 including extraction of left
and right primitive counts for partition cost computation. To compute the candidate cost
for split plane b at position sb we have to determine the number of primitives to the left
and right of this plane. The number of left primitives Lb is the sum

∑b
i=0 Si of start event

counts of all bins i with index i ≤ b, while the right count is the sum
∑B−1

i=b+1 Ei of end
event counts of all bins i with index b < i < B. These counts can be computed efficiently
by performing a prefix sum on S from the left and a prefix sum from the right on E as also
depicted in Figure 2.23. As the binning process and the candidate cost computation have
both O(n) complexity the whole best split determination has linear time. With a sufficient
number of bins hierarchy quality is practically identical to full sweep construction.

Binned BVH Construction Wald et al. [2007] proposed an adaptation of the binned kd-
tree construction algorithm to BVHs. Primitive information is distributed to bins w.r.t. the
centroid c of the primitive bounds. Computation of the target bin from the centroid is
analogous to event target bin computation of kd-trees. In the x-axis the index of the bin
bc which contains the centroid can be computed from the centroid x-component cx and
the node bounds as

bc = inf

§�

B
cx − xmin

xmax − xmin

�

, B − 1
ª

. (2.44)

40

2.5. The Surface Area Metric and Surface Area Heuristic

C : 1 2 0 1

L : 1 3 3 4

R : 3 1 1 0

B0

B1

B3

Figure 2.24: Example for binning in BVH construction with B = 4 bins. Left: Bins store the
number C of bounding volume centroids which fall into them. By performing a scan on C
we can efficiently compute the number L of primitives on the left of a candidate partition
(orange). As primitives are not split the number of primitives on the right of each partition
can be directly computed as R= |P|−L, where |P| is the number of primitives in the current
node. Right: The bounds B0 to B3 stored in each bin are also depicted. The stored bounds
B2 of bin 2 are invalid as no centroid fell into the bin. Bounds for the different partition
candidates can be be computed efficiently from the stored bounds.

Each bin b counts the number Cb of centroids it contains and stores tight bounds Bb of all
primitives which have their bounds centroid in this bin. This is depicted in Figure 2.24.
The number of primitives on the left side of a candidate partition can be computed effi-
ciently by performing a prefix sum on the centroid count array. As with sweeping con-
struction the number of primitives on the right side can be directly computed from the
primitives on the left side. Computation of partition bounds is also analogous to sweep-
ing construction. The only difference is that we work on the bounds stored in the bins.
Using zero-based numbering of partitions the left bounds of partition k-th can be incre-
mentally computed as Bk

l = Bk−1
l ⊕ Bk, where B0

l = B0 and ⊕ again is the grow operator.
Analogous to the sweeping approach the right partition bounds can be efficiently com-
puted with a scan from the right on the bin bounds using the grow operator. The scan
computes Bk

r = Bk+1
r ⊕Bk+1 with BB−1

r = BB−1. As was already the case for binned kd-tree
construction the whole best split determination process has linear time.

2.5.5 The Minimum-SAM BVH and Treelet-based BVH Optimization

Karras and Aila [2013] proposed a fast and parallel high quality BVH construction al-
gorithm, which first constructs a cheap-to-build low quality BVH, which then is post-
processed in a fast and parallel optimization step to yield a high quality BVH. At the
core of the optimization step is a minimum-SAM BVH builder, for which Karras and Aila
[2013] presented an efficient exhaustive search-based construction algorithm. We briefly
introduce the minimum-SAM algorithm and optimization procedure as we refer to them
throughout this thesis in different contexts.

For a set of n primitives the algorithm follows a dynamic programming approach which
computes optimal splits for smaller subsets to construct optimal BVHs for larger subsets.
All intermediate solutions are memoized for reuse. Partitions of the n primitives are en-

41

Chapter 2. Background

R

1

2 3

4 R

4 3

1

2

Figure 2.25: Example for treelet formation and optimization in a BVH for a target treelet
size of four. Left: Starting from some BVH node as the treelet root (R) the treelet adds
descendant nodes by some criterion (e.g. largest bounds surface area) until it contains a
maximum number of treelet leaves (green). The example treelet has four treelet leaves.
Right: The inner treelet nodes (blue) are discarded and a new hierarchy is built on the
treelet leaves with e.g. the minimum-SAM BVH builder from Karras and Aila [2013].

coded with n-bit bitmasks, where each primitive is assigned a designated bit position,
which is set to 0 or 1 to indicate whether the primitive is contained in the partition. The
algorithm uses two tables which for each partition store the corresponding optimal BVH
SAM cost, and an n-bit mask for the optimal left split of the partition. The bit mask for
the optimal right split can be obtained by an XOR of the partition mask and the optimal
left mask. The tables are directly indexed by the bitmasks of partitions. As there is a
table entry for each bitmask each table has 2n entries. Thus, the table which stores SAM
costs has a space complexity of O(2n) and the table which stores n-bit bitmasks has a
complexity of O(n2n). This results in an overall space complexity of O(n2n). The algo-
rithm successively computes optimal splits starting from all 1-sized partitions going up to
the full n-sized partitions. In each step a partition looks up all memoized solutions of its
previously computed sub-partitions to find an optimal split. The relevant sub-partitions
can be extracted from the bitmask of the partition. Starting from the table entry for the
complete set of primitives the hierarchy can be extracted from the table, which stores the
optimal left splits, by simply following the explicit left and implicit right masks.

As all 2n table entries have to be computed and each entry requires a non-constant
amount of computation the computational complexity of the algorithm is at least Ω(2n).
Because of the time and space complexity the algorithm is unsuitable even for tiny scenes.
For a scene with 32 primitives both auxiliary tables require 16GB each for storing the
32-bit split masks and 32-bit floating point partition subtree costs.

Karras and Aila [2013] locally apply the minimum-SAM algorithm on treelets, small
sub-hierarchies of a BVH. Starting from some BVH node a treelet is formed by recursively
adding node children to the treelet depending on a custom criterion (e.g. largest node
bounds surface area). Karras and Aila [2013] grow a treelet until it has 6 to 8 treelet
leaves. Then, they optimize the treelet by removing the inner treelet nodes and optimally
reorganizing the treelet leaves with the minimum-SAM algorithm. For the targeted treelet
sizes the minimum-SAM algorithm is still practical. Treelet formation and optimization is
depicted in Figure 2.25. This procedure is applied bottom-up on the whole BVH with each
BVH node being a treelet root once. The resulting BVHs achieve quality close to greedy
top-down SAH-based construction in much less time.

42

2.5. The Surface Area Metric and Surface Area Heuristic

Figure 2.26: Example for partitioning a set of two primitives with an object split(left)
and a spatial split (right). The object split resulted in large node overlap (orange). The
spatial split produced smaller node bounds without any overlap. This comes at the cost
of duplicated primitives on both sides.

2.5.6 The Spatial Split BVH

The object splits applied by BVH construction algorithms can have problems with separat-
ing non-uniformly tessellated geometry or non-axis-aligned shared triangle edges which
causes high overlap between nodes. Such geometry is no problem for spatial splits applied
by kd-trees as they cannot produce overlap. Stich et al. [2009] proposed to overcome this
weakness of BVHs by simply also allowing spatial splits during BVH construction. Fig-
ure 2.26 demonstrates both split types with a very simple example similar to a depiction
from Stich et al. [2009]. Their algorithm which they call spatial split BVH (SBVH) is also
an SAH-based top-down construction approach. When searching for a good partition for
a set of primitives, they first determine the best object split with a sweeping or binning
approach. Next they determine the best spatial split for the same set of primitives. This
is done with a binning approach which is a hybrid of kd-tree and BVH binning. It is also
computationally much more expensive. As with kd-tree binning each bin counts start and
end events. Also each bin stores bounds as with binned BVH construction. But in contrast
to binned BVH construction bounds in a bin are not simply grown by the bounds of all
primitive references which have their bounds centroid in the bin bounds. Bins store the
exact bounds of all geometry clipped to the bin bounds. For this they have to iterate over
all primitives and for each primitive have to separately compute its clipped bounds w.r.t. all
bins it overlaps. This is a big computational difference to ordinary binning as this incurs a
non-constant cost per primitive. Stich et al. [2009] proposed an efficient implementation
for this per primitive computation which they called chopped binning. An example for the
result of chopped binning for a single primitive is shown in Figure 2.27. For more details
on chopped binning we refer to the original publication. As a hybrid of kd-tree and BVH
binning after all primitives have been binned, scan operations are performed on the start
and end event counters and on the stored per bin bounds as described in Section 2.5.4 to
compute the SAH costs of the different partitions. An important aspect is that SBVH only
applies the best spatial split when it has lower SAH cost than the best object split. BVHs
constructed with the SBVH algorithm so far have the highest ray traversal performance.
This comes at the cost of a much higher construction time and a higher and unpredictable
memory footprint due to duplicate primitives caused by the spatial splits.

2.5.7 The End-Point-Overlap Metric

Aila et al. [2013] analyzed the correlation between measured performance and the SAM
cost of BVHs constructed with several BVH construction algorithms. Their motivation

43

Chapter 2. Background

Figure 2.27: Result of chopped binning of a triangle primitive with a node, which is
partitioned into eight bins. The procedure computed the tight bounds (green) of the
primitive clipped against the bounds of each bin the primitive overlaps. Each bin computes
the tight total bounds of all clipped bounds that fall into it.

was the often made observation that more sophisticated construction algorithms that con-
structed BVHs with lower SAM cost improved measurements less than expected or even
decreased performance (e.g., Popov et al. [2009], Walter et al. [2008], and Bittner et al.
[2015]). At the same time BVHs with similar SAM cost but constructed with different
algorithms can give significantly different trace performance. Aila et al. identified end-
point-overlap (EPO) as the missing piece of information and proposed the EPO metric to
better predict the performance of BVHs in combination with the SAM. The key observation
behind EPO is if the start point and/or end point of a ray lies on a primitive we have to at
least process all nodes that overlap with these points. If these points overlap with nodes
which are not ancestors of the leaves containing the primitives these nodes cause an extra
traversal cost simply because of overlap. The aim of EPO is to directly measure this extra
traversal cost caused by overlapping nodes. Regarding the derivation of EPO Aila et al.
[2013] “tried many variations of the general idea (e.g. [Stich et al. 2009], [Popov et al.
2009], or using node areas to approximate triangle areas), but EPO was significantly more
descriptive than the alternatives”. EPO assumes secondary diffuse rays. That is, rays start
at surface points. Ray origins and ray intersection points are assumed to be uniformly
distributed over all primitive surfaces. The probability density of a surface point x ∈ SP is
1

AP
, where P is the set of scene primitives and AP is the surface area of the surface SP of the

union of all primitives in P. The probability of such a random point to be in the bounding
volume Bn of a node n is the surface area of the primitive surfaces which overlap Bn times
the probability density:

p(x ∈ SP ∩ Bn) =
Area(SP ∩ Bn)

AP

. (2.45)

The EPO metric is interested in surface points which are contained in Bn but do not belong
to any primitive referenced in the subtree of the node n. These points cause extra traversal
costs since n needs to be processed simply because they are contained in the overlap with
n. This is depicted in Figure 2.28. Similar to Aila et al. we denote the set of primitives
referenced in the subtree of a node n with Q(n). This allows to define the set of these
points as SP\Q(n) ∩ Bn. Thus, the probability of such a random point to be in a node n is

p(x ∈ SP\Q(n) ∩ Bn) =
Area(SP\Q(n) ∩ Bn)

AP

. (2.46)

44

2.5. The Surface Area Metric and Surface Area Heuristic

Figure 2.28: Simple primitive overlap example with a scene consisting of two primitives
in two leaves. The primitive in the blue leaf overlaps (orange) with the bounds of the
green leaf. Rays starting at or intersecting the overlapping surface inevitably also have to
process the green leaf. EPO assumes that the probability of this to occur during traversal
is the surface area of the overlapping surface divided by the combined surface area of all
scene primitives.

1

2

3

{1} {2}

{3}

Figure 2.29: Depiction of EPO for a BVH with three primitives in three leaves. In this
example EPO is non-zero because of primitive 3. It overlaps with the bounds of leaf 2
(orange) and the blue inner node (orange and red). As the node bounds overlap region
of leaf 1 and 2 (green) does not contain any primitive it has no contribution to EPO.

Now, the EPO cost metric for a BVH is defined as the expected extra node processing
cost caused by random ray origins or hit points on scene surfaces overlapping with non-
ancestral nodes. For a BVH with leaf nodes L and inner nodes I this cost is

EPO :=
∑

n∈I∪L
Cn

Area(SP\Q(n) ∩ Bn)

AP

, (2.47)

where Cn is defined as

Cn =

¨

ct n ∈ I

ci|n| n ∈ L
. (2.48)

ct and ci are the implementation dependent constants from the SAM. |n| is the number
of primitives referenced in a leaf node n. Figure 2.29 depicts EPO computation in a BVH.
Aila et al. [2013] proposed a traversal cost predictor p which uses the SAM and EPO cost
of a BVH to give a better approximation of traversal cost than SAM alone. The predictor
is simply a convex combination of SAM and EPO:

p = SAM · (1−α) + EPO ·α. (2.49)

45

Chapter 2. Background

Here, α ∈ [0,1] is a scene dependent constant. Given the actual average measured traver-
sal cost m for a BVH it is assumed that

m∼ p (2.50)

holds (MacDonald and Booth [1989,1990]). Via the derivation of EPO this predictor is
only designed for secondary diffuse rays and scalar traversal. α values as high as 0.98
have been computed by Aila et al. [2013] and also by ourselves (see Table 5.1) meaning
that performance can be almost completely governed by EPO in practice. With such high
possible values it becomes clear that minimizing SAM is not enough as EPO must be opti-
mized as well. Aila et al. [2013] discovered that top-down greedy SAH-based construction
algorithms implicitly reduce node overlap in a way that also minimizes EPO, which gives
them an innate superiority over bottom-up or hybrid algorithms. This result is especially
important for Chapter 5, where we describe an algorithm which exploits this implicit prop-
erty. Chapter 5 also explains computation of α, as one of the chapters contributions is the
computation of α values, which result in more accurate performance predictions.

2.5.8 Other Metrics

Unlike the EPO metric, which is meant to be used in addition to the SAM, other alter-
native ray tracing metrics, which aim at introducing more realistic assumptions in the
derivation of SAM or SAH, have been developed. Fabianowski et al. [2009] proposed the
scene-interior-ray-origin (SIRO) heuristic as a possible improvement of the standard SAH.
As the name implies this heuristic replaces the assumption of infinitely far away ray ori-
gins with the more realistic assumption that ray origins are uniformly distributed inside
the scene bounds. This only changes the computation of node intersection probabilities
involved in the SAH. Instead of the conventional surface area ratio an elliptic integral
has to be solved, which has no closed-form solution. Thus, the authors provide two ap-
proximations with a focus on speed or quality. While only evaluated for kd-trees, SIRO
should be directly applicable to BVHs as well. Unfortunately, reported kd-tree traversal
performance improvement on average is only 2.6% for larger scenes.

Ize and Hansen [2011] proposed an algorithm which improves occlusion ray traversal
performance (see Figure 2.4, Section 2.1.1) for a given tree. For every inner node they
evaluate an extended SAM. Their metric, which they call ray termination SAH (RTSAH),
accounts for the fact that when a ray intersects two sibling nodes traversal can stop when
there is a primitive intersection in the first visited sibling’s subtree. Each inner node stores
a flag to indicate which child more likely produces an intersection with lower cost. The
flagged sibling’s subtree is traversed first in case both siblings have been intersected during
traversal. The technique can be applied to kd-trees as well as BVHs. Speedups of up to
a factor of two have been observed. As the left and right child of inner BVH nodes can
be swapped without corrupting the hierarchy, we noted that the lower cost child can be
indicated by letting it be the left child. This way occlusion ray traversal does not have to be
modified and still can always enter the left child first when both children are intersected.

46

Chapter 3

GPU Hardware Platform

Contents
3.1 Kernels, Grids, and Blocks . 47

3.2 Warps . 49

3.3 SIMD and SIMT . 49

3.4 Memory Spaces . 50

3.5 Block Cooperation and Synchronization 53

The GPU algorithms we present in Chapter 7 and Chapter 8 were implemented using
the NVIDIA CUDA API1. CUDA allows to implement data parallel problems in so called
kernels, which are executed by millions of GPU threads. According to Flynn’s taxon-
omy [Flynn 1972] on a high level a GPU can be categorized as a multiple-instructions-
multiple-data (MIMD) device, as groups of different GPU threads can process different
kernel instructions on different data per clock. The groups themselves operate in a single-
instruction-multiple-data (SIMD) fashion. Kernels are implemented in CUDA C, which is
the language C with some extensions for GPU programming. We give a brief introduction
on the basic aspects of GPU programming with CUDA [NVIDIA 2017a]. A non-proprietary
platform independent alternative for GPU programming is OpenCL2. The Intel SPMD Pro-
gram Compiler3 takes a very similar approach to CUDA but is intended for exploiting the
vector units of CPUs.

3.1 Kernels, Grids, and Blocks

We start our introduction with kernels, grids, blocks, multiprocessors, and their relation-
ships, which are also depicted in Figure 3.1. A CUDA kernel is executed by a grid of up
to millions of threads and operates on data stored in device memory (GPU memory). The
user side which invokes the kernel is called the host. A grid is decomposed into user spec-
ified equally sized blocks of at most 1024 threads. CUDA C code can access the global

1https://developer.nvidia.com/cuda-downloads
2https://www.khronos.org/opencl/
3https://ispc.github.io/

47

https://developer.nvidia.com/cuda-downloads
https://www.khronos.org/opencl/
https://ispc.github.io/

Chapter 3. GPU Hardware Platform

__global__
void VecAdd(float* A,

float* B, float* C, int N)

{
int i = threadIdx.x +

blockDim.x * blockIdx.x;
if (i < N)

C[i] = A[i] + B[i];
}

Kernel in CUDA C

B0 B1 B2 B3

B4 B5 B6 B7

B8 B9 B10 B11

B12 B13 B14 B15

...

Grid

0 1 2 N − 1

. . .

threads

Block 11

B0 B1
B4

B6B8

B11B12

B15

...

SM 0

t

B2 B3

B5B7
B9B10
B13

B14

...

SM 1

GPU with 2 SMs

B0 B1
B8

B13

...

SM 0

t
B2 B3

B10
B14

...

SM 1

B4 B5
B9 B11

...

SM 2

B6 B7

B12B15

...

SM 3

GPU with 4 SMs

launch grid

execute blocks

Figure 3.1: Depiction of the relationship between kernels, grids, blocks, and multiproces-
sors. To execute a kernel a grid of threads is launched. A grid is decomposed into smaller
units called blocks (B) which are waiting (red) to be executed. Each block has the same
programmer specified number of threads N . Blocks are executed (green) in parallel by
the streaming multiprocessors (SM) of GPUs. The number of blocks a multiprocessor can
process at a time depends on different factors. In our example this resulted in two blocks
at a time. GPUs can have different numbers of multiprocessors. The example shows two
GPUs with 2 and 4 multiprocessors, respectively. A multiprocessor replaces terminated
blocks with new blocks waiting for execution. As runtime of blocks can vary new blocks
are scheduled dynamically. (Partially based on [NVIDIA 2017a], Figure 5)

index of a block and the block-relative index of threads in a block via built-in variables.
Both indices together allow to compute unique global indices to identify the portion of the
input data each thread has to process. A GPU possesses NSM ∈ N so called multiprocessors
which process blocks. A block is mapped to exactly one multiprocessor, which can only
process a GPU dependent maximum number of blocks at a time. Thus, only a subset of
the millions of threads of a grid is actually active at a time. There is neither a guaran-
teed processing order for the whole set of blocks nor a predetermined mapping of blocks
to multiprocessors. Threads in blocks of different multiprocessors can process different
instructions on different data per clock. The GPU dependent maximum number of active
threads per multiprocessor is also limited. This maximum number cannot be reached if
the block size is not a proper divisor of this limit or is so small that the active block count
limit is reached first. In NVIDIA terminology the ratio of active threads to the maximum
possible amount of active threads is called occupancy. In practice, occupancy is mainly
further limited by the register and shared memory usage of a kernel. Depending on the
complexity of a kernel the compiler determines the maximum amount of registers needed

48

3.2. Warps

per thread for execution of the kernel. Shared memory is a resource that can be allocated
per block that we will briefly introduce in Section 3.4. Only a small amount of both re-
sources is available per multiprocessor. At times it can be beneficial to partition kernel
code into several smaller kernels which might have higher occupancy and thus possibly
higher performance. Using streams several kernels can be launched in parallel, if resource
usage allows. Streams also allow to asynchronously transfer data to and from the device
memory while kernels are running.

3.2 Warps

CUDA implicitly partitions blocks into groups of 32 threads which are called warps. Warps
are processed by different single-instruction-multiple-data (SIMD) units of a multiproces-
sor. The actual SIMD width of a SIMD unit varies from GPU to GPU and also depends on
the type of instruction. However, to the programmer warps appear to be of SIMD nature
with a SIMD width of 32 as threads in a warp are implicitly synchronized after each in-
struction. Starting with the NVIDIA Fermi GPU architecture each multiprocessor has at
least two warp schedulers, which can each issue instructions to different warps at a time.
This means that a multiprocessor is a MIMD device itself. As a block consists of more warps
than there are warp schedulers only a subset of the active threads per multiprocessor is
issuing instructions at a time. But the larger amount of active threads is still necessary.
GPUs are optimized for high instruction throughput at the cost of different kinds of high
latencies. SIMD units rely on switching between warps in the pool of active threads to
hide those latencies by issuing instructions of other ready warps. If enough instruction
level parallelism is available warps have to be switched less often and full performance
can be achieved with lower occupancy.

3.3 SIMD and SIMT

While multiprocessors essentially posses SIMD units NVIDIA coined the term SIMT for
single-instruction-multiple-threads as there are some differences to traditional SIMD in
terms of programming and hardware. On the programming side the CUDA C programming
language, in which kernels are programmed, mainly expresses kernels from the point of
view of a single scalar thread, which has a global ID to identify the data it has to process.
Thus, code is independent of the SIMD-width. In contrast, SIMD programming directly
exposes the underlying SIMD-width in its separate sets of instructions (or intrinsic func-
tions). The hardware implementations of Intel’s SSE, AVX, and AVX-512 technologies
have 4-, 8-, and 16-wide SIMD units, respectively [Intel 2017]. Code has to be specifically
adapted to the SIMD width of the used technology. On the hardware side each thread or
lane in an active warp has its own set of registers and, more importantly, own program
counter. This already enables a lane to define a single thread of execution, justifying the
term thread. Reading from (gather) or writing to (scatter) individual memory addresses
per lane is also directly supported in hardware and in contrast to SIMD programming does
not require explicit handling in software.

What SIMT has in common with SIMD is potentially lower SIMD efficiency with con-
ditional code. As the name implies SIMT can only execute a single instruction on multiple
threads at a time. Execution diverges when different threads in a warp take different con-

49

Chapter 3. GPU Hardware Platform

Device Memory

L2 Cache

L1 Cache

Local Memory Global Memory Texture Memory Constant Memory Shared Memory

Texture Cache Constant Cache On-Chip
Scratch Memory

Thread Grid Block

Figure 3.2: Diagram of the different memory spaces (rounded boxes) and their scopes
(white boxes). The underlying hierarchy of caches and device memory is depicted as
well. Arrows indicate read/write or read-only access. The presence of the L1 cache varies
between GPU series and also between models in a series. (Partially based on [NVIDIA
2017a], Figure 7)

trol flow paths. The separate branches have to be executed one after the other. Deeply
nested conditional statements can lead to complete serialization of the execution of a
warp. While with traditional SIMD units the programmer has to manually create lane
masks to deactivate SIMD lanes, SIMT automatically handles masking in hardware. If all
threads decide on the same branch of a conditional statement no divergence occurs. But
there is a key difference to SIMD. As every SIMT lane has its own program counter exe-
cution automatically continues after the conditional statement after the branch has been
processed. The SIMD programmer has to explicitly branch past the untaken branch to
prevent unnecessary issuing of instructions where all lanes are deactivated.

3.4 Memory Spaces

CUDA provides access to different memory spaces, which differ in purpose, scope, and
access characteristics. We give a brief introduction to each memory space. Figure 3.2
gives an overview on the scope of the memory spaces and their hierarchical relationship
with caches and device memory.

Device and Global Memory Device memory is the off-chip main memory of a GPU. Es-
sentially every CUDA kernel at least works on device memory, as it is the only memory
area which allows to exchange data with the host. While it is possible to directly read from
and write to system memory from the GPU, this is unpreferable as bandwidth through the
PCI express bus is about two orders of magnitudes lower than for device memory access.
From the scope of a grid, device memory is also called global memory as it is globally
readable and writable for all threads in a grid.

The first generation of CUDA-enabled GPUs had very strict so-called coalescing rules for
efficient global memory access which we will not discuss here. All following generations

50

3.4. Memory Spaces

128 160 192 224 256 288

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

warp

Figure 3.3: Depiction of a warp accessing global memory via the L1 cache (red) or the
L2 cache (green). The L1 cache access results in two 128 byte transactions as the warp
accesses two 128 byte L1 cache lines. On a miss, 256 bytes would have to be loaded from
the L2 cache. The L2 cache access results in four 32 byte transactions as the warp accesses
four 32 byte L2 cache lines. (Based on [NVIDIA 2017a], Figure 16)

have an L2 cache and some have an L1 cache which have much simpler coalescing rules.
The presence of the L1 cache varies between GPU series and also between models in a
series. Global memory is divided into segments of 32 bytes for the L2 cache and 128 bytes
for the L1 cache. When threads in a warp access global memory, the access is simply split
into as many memory transactions as different segments are accessed. Figure 3.3 depicts
this for L1 and L2 accesses. In the worst case each thread in a warp accesses a different
segment, which results in 32 transactions. Thus, to keep the number of transactions low
threads in a warp should access nearby addresses, or related data should be kept closer
together.

Local and Constant Memory Local memory and constant memory are two additional
memory types, which reside in device memory. Local memory derives its name from the
fact that it has thread local scope. It is mainly used for register spilling if a kernel uses too
many registers, or thread scope arrays, which have no static access pattern. The thread
local traversal stack used in the GPU ray tracing kernels from Aila and Laine [2009], for
example, ends up in local memory, as it is accessed in an unpredictable manner. Constant
memory has a designated cache, which is optimized for multiple simultaneous 4-byte ac-
cesses to the same address. Thus, it is meant for constant data that is needed by several
threads at the same time. Simultaneous accesses to multiple addresses are serialized into
the number of different addresses.

Texture Memory Texture memory is the last type of memory, that resides in device mem-
ory. It allows 1-, 2-, or 3- dimensional indices for addressing with optimized performance
of lookups in a 2D or 3D neighborhood. For the last two variants the input data first has
to be converted into a CUDA Array, which stores the data in an optimized opaque propri-
etary memory layout. All NVIDIA GPUs access texture memory via an additional dedicated
read-only L1 cache. The CUDA programming guide is unspecific regarding optimal tex-
ture memory access patterns. The only hint is that “[if] the memory reads do not follow
the access patterns that global or constant memory reads must follow to get good perfor-
mance, higher bandwidth can be achieved providing that there is locality in the texture
fetches” [NVIDIA 2017a]. As we will see in Chapter 7, Section 7.2.1 our experiments with
certain access patterns, which are bad for either global or both global and shared memory,

51

Chapter 3. GPU Hardware Platform

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

simplified warp with 16 threads

threads

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

shared
memory

conflicts 0 0 0 2 0 0 0 0 0 3 0 0 0 0 0 0

Figure 3.4: Depiction of the organization of shared memory into banks and access pat-
terns in a warp which cause bank conflicts. For clarity the warp size and number of banks
is reduced to 16. Consecutive 4-byte words are periodically assigned to the memory banks.
Threads 3 and 4 cause a two-way bank conflict as they access two different words in the
same bank. Threads 7, 8, 9, and 10 cause a three-way bank conflict as they access three
different words in the same bank. (Based on [NVIDIA 2017a], Figure 18)

reveal an almost equal performance for texture memory with either access pattern. From
its computer graphics origins texture memory provides some additional hardware features
such as different addressing modes, value interpolation, and unpacking of specially stored
data. These features are not important in the context of this dissertation.

Shared Memory Shared memory is located on-chip and as such has “much higher band-
width and much lower latency than local or global memory” [NVIDIA 2017a]. It has block
scope and is intended to be shared between threads in a block in a cooperative way. The
amount of available shared memory is only a couple of kilobytes per multiprocessor. It is
organized in 32 banks, which can be accessed simultaneously. Consecutive 4-byte words
are periodically assigned to the 32 banks. That is, shared memory addresses which are
128 byte apart are assigned to the same bank. The bandwidth of each bank is one 4-
byte word per clock. Multiple threads are allowed to access different banks or the same
bank. When several threads access different words which are assigned to the same bank
a bank conflict occurs. In this case the accesses to the different words have to be serial-
ized, which effectively reduces the instruction throughput. Thus, efficient shared memory
usage aims at reducing the number of bank conflicts. Figure 3.4 depicts the shared mem-
ory organization and conflicting access patterns. Common strided access patterns of the
form threadIdx*stride cause bank conflicts if stride has common divisors with the
number of banks and should be avoided if possible. The worst case is if the stride is the
number of banks itself, in which case we have the number of banks as many conflicts.

52

3.5. Block Cooperation and Synchronization

3.5 Block Cooperation and Synchronization

Threads in a block can work cooperatively by exchanging data via slow global memory or
the fast on-chip shared memory. To avoid data hazards between threads, special synchro-
nization instructions have to be explicitly inserted into the kernel code. While choosing
larger block sizes allows more threads to cooperate, block synchronization time increases.
Also the occupancy of a multiprocessor temporally decreases the more warps arrive at the
synchronization barrier. This can reduce the latency hiding efficiency of a multiprocessor.

Section 3.2 mentioned that threads in a warp are implicitly synchronized after each
instruction. This implicit synchronization can be used to avoid explicit synchronization
if a problem can be partitioned into warps in a meaningful way. The downside of this is
that kernel code is not oblivious to SIMT-width anymore and might break if future GPUs
have a different SIMT-width. The implementations of our GPU algorithms in Chapter 8
exploit implicit warp-level synchronicity to achieve higher performance. CUDA provides
special hardware supported warp voting and warp shuffle functions which allow to effi-
ciently exchange data between threads in a warp without additional memory and explicit
synchronization, but are out of scope of this introduction. According to [NVIDIA 2017a],
Section H.6.2 future NVIDIA GPU generations remove the implicit warp synchronization.
Instead, special warp synchronization functions, which also allow sub-warp synchroniza-
tion, have to be used.

53

Chapter 3. GPU Hardware Platform

54

Chapter 4

On the Geometric Probability Function
of the Surface Area Metric

Contents
4.1 The Conventional Conditional Intersection Probability 55

4.2 Expected Direction Dependent Conditional Probability 59

4.3 Including Parent Intersection Likelihood 63

In this chapter we will shed some light on the origins and background of the conventional
surface area ratio based intersection probability function for intersecting node bounds
(Equation 2.32), which is at the core of the surface area metric and heuristic. We will
see that there are two equivalent approaches for its derivation, which result in the ratio of
node bound surface areas. Considering a fixed ray direction the probability that a ray with
random origin intersects a node contained in another node depends on the ratio of the
surface area of the projections of the bounds w.r.t. the plane, which has the fixed ray direc-
tion as its normal. In general, this directional intersection probability varies with the ray
direction. The conventional definitions do not take this directional variation into account.
Based on the same assumptions underlying the conventional probability we define and
analyze an alternative conditional probability which includes the directional dependence
in its derivation. Finally we discuss the relationship of the conventional and alternative
probability.

4.1 The Conventional Conditional Intersection Probability

In Section 2.5.2 we saw that the conventional conditional intersection probability is based
on two assumptions regarding the distribution of ray origins and ray directions:

1. Rays originate infinitely far away from the scene.

2. Ray directions have a uniform distribution.

55

Chapter 4. On the Geometric Probability Function of the Surface Area Metric

dA

n

ω

θ

dA⊥ = cosθdA= |ω · n|+ dA

d

Figure 4.1: Computation of the projected visible surface area dA⊥ of a surface element dA
with normal n for rays originating from direction ω with ray direction d= −ω.

Based on these two assumptions, the conditional geometric probability that a ray r inter-
sects a convex body B1 given that it intersects another convex body B2 with B1 ⊆ B2 is
defined as the ratio of the surface area of B1 to the surface area of B2:

p (r å B1 | r å B2) :=
Area (B1)
Area (B2)

.

For brevity we used the notation r å B for the predicate r ∩ B 6= ; or "r intersects B".
While this probability is an important part of the SAM and SAH there is no consensus

on the origins of this result. Goldsmith and Salmon [1987] and MacDonald and Booth
[1989,1990] simply state this result as a fact. Other graphics researchers (Arvo and Kirk
[1989], Havran [2000], Wald and Havran [2006], and Fabianowski et al. [2009]) refer
to results from different publications in integral geometry (Kendall and Moran [1963],
Santaló [1976], Solomon [1978], Cazals and Sbert [1997], and Hulst [1981]). These can
be boiled down to two essentially equivalent approaches.

4.1.1 Expected Projected Visible Area Approach

The first approach is based on the expected projected visible area of a convex body. As a
consequence from Assumption 1 we only have to deal with ray directions to compute the
projected area of a convex body B. For convenience we work with directionsω from which
infinitely far away rays with direction d= −ω originate. Given a surface element dA with
surface normal n the projected visible surface area with respect to rays from direction ω
is

dA⊥ = |ω · n|+ dA. (4.1)

Here, |ω·n|+ is the clamped dot product, which clamps negative results to zero. That is, we
only consider one-sided surfaces. Figure 4.1 depicts the computation of dA⊥. To obtain
the projected area for the whole convex body B and a direction ω we have to integrate

56

4.1. The Conventional Conditional Intersection Probability

over its surface SB:

A⊥(ω, B) =

∫

SB

dA⊥ =

∫

SB

|ω · n(x)|+ dA (4.2)

To compute the expected visible projected area of B we have to integrate over all directions
ω ∈ S2. As according to Assumption 2 ray directions d= −ω are uniformly distributed the
probability density function for ω is the constant function p(ω) = 1

4π . Thus, the expected
value of Equation 4.2 is

E [A⊥(ω, B)] =

∫

S2

A⊥(ω, B)p(ω)dω

=
1

4π

∫

S2

∫

SB

|ω · n(x)|+ dAdω

=
1

4π

∫

SB

∫

S2

|ω · n(x)|+ dωdA

(4.3)

As B is convex there can be no self-occlusion and the inner integral is the same for all
x ∈ SB. Integration has only to be done on the positive hemisphereΩ(n)with respect to the
surface normal as the surface is one sided. Arbitrarily choosing a local coordinate system
at every point x where the normal n(x) corresponds to the y-axis, every directionω in the
hemisphere Ω(n) can be transformed to a direction ω′ in the unifying hemisphere Ωy =
{ω ∈ S2 | ωy ≥ 0}. Putting everything together and converting to spherical coordinates
we can solve the inner integral:

∫

S2

|ω · n|+ dω=

∫

Ω(n)
ω · ndω

=

∫

Ωy

ω′ ·
�

0 1 0
�T

dω′ =

∫

Ωy

ω′y dω′

=

∫ 2π

0

∫

π
2

0

cosθ sinθ dθ dφ

=

∫ 2π

0

∫ 1

0

u dudφ

= π.

(4.4)

Reinserting into Equation 4.3 we get:

E [A⊥(ω, B)] =
1

4π

∫

SB

∫

S2

|ω · n(x)|+ dωdA

=
π

4π

∫

SB

1 dA

=
1
4
Area(B).

(4.5)

That is, the expected projected area of a convex body B and a random ray r is one forth of
the surface area of B. From this result the conditional geometric probability that a ray r

57

Chapter 4. On the Geometric Probability Function of the Surface Area Metric

x

y

z

ω

u

v

Figure 4.2: Depiction of the line parametrization chosen by Cazals and Sbert [1997]
for the differential line measure dL = dωdudv. ω is the line direction. u and v are the
coordinates of the intersection of the line with a plane through the origin which has the
line direction ω as its plane normal. (Based on Cazals and Sbert [1997], Figure 3 (c))

intersects a convex body B1 given that it intersects another convex body B2 with B1 ⊆ B2
is the ratio of the expected projected surface area of B1 to the expected projected surface
area of B2:

p(r å B1 | r å B2) =
E[A⊥(r, B1)]
E[A⊥(r, B2)]

=
Area(B1)
Area(B2)

.
(4.6)

4.1.2 Measure Theory Approach

The second approach is based on measure theory. It states that the intersection proba-
bility is defined as the measure of lines intersecting B1 divided by the measure of lines
intersecting B2:

p (r å B1 | r å B2) :=
µ (B1)
µ (B2)

. (4.7)

That is, with this interpretation the conditional probability is not an actual probability,
but rather the relative "amount" or fraction of rays intersecting B2 which also intersect B1.
Following Cazals and Sbert [1997] the differential measure of a line on the set of all lines
L is dL = dωdudv. The corresponding line parametrization is depicted in Figure 4.2. To
compute µ(B) for a convex body B we have to integrate all lines which intersect B. For a
given directionω this simply results in integrating the projected area of B in this direction.
This gives

µ(B) =

∫

L∩B
dL=

∫

S2

∫

Aω⊥(B)
dudv dω=

∫

S2

A⊥(ω, B)dω, (4.8)

where Aω⊥(B) is the set of points of the projection of B on the plane with normal ω and
A⊥(ω, B) is the projected area function from Equation 4.2. We can see that this is the same
integral as in Equation 4.3 without the factor of 1

4π . Thus, the solution to the integral is
the result of Equation 4.5 multiplied by 4π. This gives

µ(B) = 4π
1
4
Area(B) = πArea(B). (4.9)

Reinserting into the measure-based probability definition gives

p (r å B1 | r å B2) :=
µ (B1)
µ (B2)

=
πArea (B1)
πArea (B2)

=
Area (B1)
Area (B2)

. (4.10)

58

4.2. Expected Direction Dependent Conditional Probability

x

y

z

ω

θ

90◦ 180◦ 270◦ 360◦

0.2

0.4

0.6

0.8

θ

p

Figure 4.3: Example for the directional conditional intersection probability p(ω, B1, B2)
from Equation 4.11 for a pair of axis aligned bounding boxes (B1, B2), B1 ⊆ B2. B2 has
x-, y-, and z-dimension extents eparent = (2,1, 1). B1 has extents echild = (0.1,0.8, 0.8). p
is evaluated for directions ω = (cosθ , sinθ , 0),θ ∈ [0◦, 360◦] in the x y-plane. The left
image depicts this setup, while the right plot shows the resulting directional probabilities.

4.1.3 Comparison

We can see that both probability definitions are equivalent though they are derived with
different approaches. Both approaches do not consider that the probability of intersecting
an object can be different for different directions. The measure approach sums up the
amount of all different rays intersecting B1 and B2 separately and computes the relative
amount intersecting B1. The projected area approach essentially replaces B1 and B2 with
spheres which have the same projected area as the respective expected projected area of
B1 and B2. This eliminates any directional variation, as spheres have the same projected
area from all directions.

4.2 Expected Direction Dependent Conditional Probability

Motivated by the observations from the previous section we investigated the possibility to
define a conditional probability which accounts for directional variation in the likelihood
of intersecting two objects. Our approach is also based on projected areas and can be
derived from the first two SAM assumptions as well. For a fixed direction ω which rays
originate from and two convex bodies B1, B2, B1 ⊆ B2 we can define a direction dependent
conditional probability based on projected area:

p(ω, B1, B2) :=
A⊥(ω, B1)
A⊥(ω, B2)

(4.11)

An example for the possibly strong directional variation of this directional probability is
given in Figure 4.3. From this direction dependent conditional probability we can de-
fine a direction independent probability as the expected direction dependent conditional
probability for uniformly distributed directions ω:

p(r å B|r å A) := E [p(ω, B1, B2)] = E

�

A⊥(ω, B1)
A⊥(ω, B2)

�

(4.12)

59

Chapter 4. On the Geometric Probability Function of the Surface Area Metric

Contrary to Equation 4.5 this is not a ratio of expected values, but the expected value of
a ratio, which is not equivalent to the former. We denote this alternative probability pa
to distinguish it from the conventional probability, which we denote pc . Unfortunately,
pa cannot be evaluated analytically in general and must be evaluated numerically. We
identified three special cases, which have an analytical solution. The solution of these
cases turned out to be identical to pc .

Case 1: Uniform Projected Area The first case is when B2 has uniform projected area,
that is, A⊥ constantly has value c ∈ R+ for all ω. As a result p(ω, B1, B2) is not a non-
polynomial rational function anymore and can be integrated:

E

�

A⊥(ω, B1)
A⊥(ω, B2)

�

= E

�

A⊥(ω, B1)
c

�

=
1
4Area(B1)

c
. (4.13)

The only body which has this property is a sphere, where the projection from all directions
is a circle. Thus, for a sphere with radius rs the projected area function is ASphere

⊥ (ω) = c =
πr2

s . Inserting into Equation 4.13 gives

1
4Area(B1)

πr2
s

=
1
4Area(B1)

4
4πr2

s

=
1
4Area(B1)

1
4Area(Sphere)

, (4.14)

which is the conventional probability for a convex body in a sphere.

Case 2: Isotropically Scaled Bounds The second case is when B1 is an isotropically
scaled version of B2. In this case A⊥(ω, B1) = s A⊥(ω, B2), s ∈ R holds and p(ω, B1, B2)
constantly has a fixed value s ∈ [0, 1]. This case is depicted for two AABBs in Figure 4.4.
As can be seen in the example both probabilities also do not deviate much from each other.
While pa is about 25% larger when the child box degenerates to a quad the difference of
pa and pc is very low.

Case 3: Axis Aligned Bounding Box in Axis Aligned Bounding Cube The third case with
an analytical solution of pa is when B1 is an AABB and B2 is an axis aligned bounding cube
(AABC). The projected area function of an AABB can be defined as

AAABB
⊥ (ω) = Ax |ωx |+ Ay |ωy |+ Az|ωz|, (4.15)

where Ad , d ∈ {x , y, z} is the area of an AABB face with normal direction parallel to the
d-coordinate axis. In case of a cube all faces have the same area Ac . Thus, the directional
probability is

p(ω, B1, B2) :=
AAABB
⊥ (ω)

AAABC
⊥ (ω)

=
Ax |ωx |+ Ay |ωy |+ Az|ωz|

Ac(|ωx |+ |ωy |+ |ωz|)
(4.16)

For uniformly distributed random ray directions the expected value of this function is

E

�

AAABB
⊥ (ω)

AAABC
⊥ (ω)

�

=
1

4π

∫

S2

Ax |ωx |+ Ay |ωy |+ Az|ωz|
Ac(|ωx |+ |ωy |+ |ωz|)

dω (4.17)

60

4.2. Expected Direction Dependent Conditional Probability

inner box width w ∈ [0,4]

1 1.6 2 3 4

0.1

0.16
0.2

0.3

w

pc
pa

1 1.6 2 3 4

1

1.1

1.2

1.3

w

pa/pc

Figure 4.4: Exemplary comparison of the conventional intersection probability pc and
our numerically evaluated alternative intersection probability pa for a pair of axis aligned
bounding boxes. The parent box has fixed extents eparent = (4,2, 1). The child box has
extents echild = (w, 0.8, 0.4) with varying width w ∈ [0, 4]. At w = 1.6 the child box
is an isotropically scaled version of the parent box with echild = 0.4eparent. Thus, both
intersection probabilities have an identical value of 0.42 = 0.16 at this width.

Due to the symmetry of the absolute values, the integral can be reduced to integration
over the set Ω+ = {ω ∈ S2 | ωx ≥ 0 ∧ ωy ≥ 0 ∧ ωz ≥ 0} of directions with positive
components. This allows us to write the integral as follows:

E

�

AAABB
⊥ (ω)

AAABC
⊥ (ω)

�

=
1

4π
8

∫

Ω+

Axωx + Ayωy + Azωz

Ac(ωx +ωy +ωz)
dω

=
2

Acπ

�

AxΦx + AyΦy + AzΦz

�

,

Φd =

∫

Ω+

ωd

ωx +ωy +ωz
dω, d ∈ {x , y, z}.

(4.18)

To compute the expected value we have to solve the integrals Φd . Though, to the best of
our knowledge, these integrals cannot be integrated analytically we still managed to find

61

Chapter 4. On the Geometric Probability Function of the Surface Area Metric

a solution. The first step is that we can compute the sum of all Φd :

Φx +Φy +Φz =

∫

Ω+

ωx +ωy +ωz

ωx +ωy +ωz
dω=

∫

Ω+
1 dω=

π

2
. (4.19)

The next step is based on the observation that sphere parametrization with spherical
coordinates is not unique. That is, for every Φd we can choose a different spherical
coordinates-based parametrization for ω. By setting ωd to cosθ and the other compo-
nents to sinθ cosφ and sinθ sinφ we can write every Φd , d ∈ {x , y, z} in the same form:

Φd =

∫

Ω+

ωd

ωx +ωy +ωz
dω=

∫ 2π

0

∫

π
2

0

cosθ sinθ
sinθ cosφ + cosθ + sinθ sinφ

dθ dφ. (4.20)

Consequently, the value of all Φd are identical. This allows us to solve Equation 4.19 for
Φd :

Φx +Φy +Φz = 3Φd =
π

2

⇒ Φd =
π

6
.

(4.21)

Inserting this result in Equation 4.18 we finally arrive at

E

�

AAABB
⊥ (ω)

AAABC
⊥ (ω)

�

=
2

Acπ

�

AxΦx + AyΦy + AzΦz

�

=
2

Acπ

π

6

�

Ax + Ay + Az

�

=
2
�

Ax + Ay + Az

�

6Ac

=
Area(AABB)
Area(AABC)

.

(4.22)

That is, in the particular combination of an AABB contained in an AABC pa is identical to
the conventional probability.

Evaluation and Discussion

We evaluated the applicability of pa for SAH-based BVH construction with the plane-sweep
algorithm from MacDonald and Booth [1989,1990] and AABBs as bounding volumes. As
we had to numerically evaluate pa for every split candidate construction time increased
drastically. At the same time the traversal performance was essentially the same as for
hierarchies constructed with pc . This is not surprising considering the results from the
example in Figure 4.4, where deviations from the isotropically scaled case did not result
in significant absolute differences between pa and pc . Case 2 also should result in al-
most identical probabilities with nearly cubic parent bounds, which additionally causes
the small differences in the hierarchies. Thus, unfortunately, at least in our experiments
pa does not provide a clear advantage over pc .

62

4.3. Including Parent Intersection Likelihood

4.3 Including Parent Intersection Likelihood

The directional conditional probability p(ω, B1, B2) from Equation 4.11 can display a
strong directional variation as can be seen in the example in Figure 4.3. It is conditionally
more likely to intersect the child box from the x-direction than from the y-direction. But,
at the same time only half as much random rays actually intersect the parent box from the
x-direction than from the y-direction as Ax of the parent is only half the size of Ay . That
is, for different directions ω the directional probability p(ω, B1, B2) should be weighed
differently.

Our attempt to account for this is to redefine the direction probability density function
p(ω). We redefine it as the probability that from all randomly generated rays with uniform
direction distribution which intersect B2, a ray has directionω. As for a particular direction
ω the amount of randomly generated rays which intersect B2 is proportional to the size
of the projected area of B2 w.r.t. ω the redefined probability p(ω) is of the form p(ω) =
A⊥(ω, B2)/c, where c is the normalization constant. To compute c we have to integrate
A⊥(ω, B2) over S2. This is the same integral as for the computation of the measure of lines
intersecting a convex body. Thus, identical to the solution of Equation 4.8 we get:

c =

∫

S2

A⊥(ω, B2)dω

=

∫

SB2

∫

S2

|ω · n(x)|+ dωdA

= π

∫

SB2

1 dA

= πArea(B2).

(4.23)

Now we use this adapted probability density to compute the expected value of p(ω, B1, B2):

E [p(ω, B1, B2)] =

∫

S2

p(ω, B1, B2) p(ω)dω=

∫

S2

A⊥(ω, B1)
A⊥(ω, B2)

p(ω)dω

=

∫

S2

A⊥(ω, B1)
A⊥(ω, B2)

A⊥(ω, B2)
πArea(B2)

dω

=
1

πArea(B2)

∫

S2

A⊥(ω, B1)dω

=
πArea(B1)
πArea(B2)

=
Area(B1)
Area(B2)

(4.24)

This result corresponds to the conventional intersection probability. As a consequence, in
reverse the conventional intersection probability has the unrecognized property that it can
be interpreted as the expected value of the direction dependent conditional intersection
probability from Figure 4.3 with our adapted ray direction probability density. This prop-
erty might partially explain the success of the surface area metric in predicting traversal
performance despite being based on unrealistic assumptions.

63

Chapter 4. On the Geometric Probability Function of the Surface Area Metric

64

Chapter 5

Temporary Subtree SAH-based Bound-
ing Volume Hierarchy Construction

Contents
5.1 Background and Related Work . 66

5.2 Algorithm . 69

5.3 Improving Accuracy of the SAM-EPO Predictor 74

5.4 Evaluation Setup . 75

5.5 Results . 78

5.6 Discussion . 80

5.7 Future Work . 83

The previous chapter aimed at defining a more accurate conditional node intersection
probability to improve SAM and SAH. As our probability function gave values similar to the
conventional probability it resulted in essentially identical BVHs. The focus of this chapter
is on construction of higher quality BVHs w.r.t. SAM and SAH with the conventional prob-
ability. State-of-the-art SAH-based BVH builders are the greedy top-down plane-sweeping
algorithm from MacDonald and Booth [1990] and the extension of this algorithm with
spatial splits proposed by Stich et al. [2009] (see Section 2.5.3 and Section 2.5.6). More
sophisticated algorithms have been developed (see the summary in Aila et al. [2013]) that
produce higher quality BVHs with respect to SAH. But the improvements do not translate
well to actual measured performance and can in fact even decrease performance. As de-
scribed in Section 2.5.7, Aila et al. [2013] identified geometry that overlaps bounds of
subtrees to which it does not belong as a second major factor and proposed the end-point-
overlap metric (EPO) to measure this effect. They also revealed the unique characteristic
of greedy top-down SAH builders that they not only optimize SAH but also implicitly min-
imize EPO, which explains why they perform so well in practice.

To the best of our knowledge no approach has been proposed to date, which directly
takes advantage of this implicit correlation of SAH and EPO for greedy top-down builders
to construct better BVHs. We examine the possibility to improve EPO further by using
recursive SAH evaluation on temporarily built BVHs as an accurate prediction for the

65

Chapter 5. Temporary Subtree SAH-based Bounding Volume Hierarchy Construction

surface area metric (SAM) cost of subtrees during construction. Further, we reason why
the temporary BVHs themselves have to be constructed with SAH to gain any benefit and
propose an algorithm that can construct BVHs with recursive SAH in O(N log2 N). Due to
the computational complexity the algorithm is mainly suitable for static scenes and global
illumination algorithms.

Our main contributions are as follows:

• a BVH construction algorithm that produces BVHs with better average performance
than state-of-the-art methods,

• a complexity analysis of our algorithm that reveals subquadratic runtime in the num-
ber of primitives,

• a spatial split-based algorithm, which applies temporary spatial splits to push quality
of BVHs even further,

• an approach for reducing the forecasting error of the ray tracing performance predic-
tor from Aila et al. [2013] which also enables more accurate predictions for primary
rays, and

• a comparison with a related algorithm proposed by Popov et al. [2009] and a hybrid
of their algorithm with ours.

This chapter is based on the paper by Wodniok and Goesele [2017]. The paper from
Wodniok and Goesele [2017] itself is an extended version of an earlier conference paper
by Wodniok and Goesele [2016] and added the last three contributions.

5.1 Background and Related Work

From the in-depth introduction in Section 2.5 we know that SAM provides an approxi-
mation for the expected cost of traversing a given kd-tree or BVH. The conditional node
intersection probability pn for a node n, combined with implementation dependent con-
stants ct for traversal step costs and ci for primitive intersection test cost, the recursive
definition of the expected traversal cost of the subtree of n is

c(n) =

¨

ct + pl c(l) + pr c(r) inner node

|n|ci leaf node
. (5.1)

Here, l and r are the left and right child of n in case of an inner node, and |n| is the number
of primitives belonging to n. Evaluating c(n) for the tree root yields the expected cost of
the whole tree.

The state-of-the-art greedy top-down plane-sweeping construction from MacDonald
and Booth [1990] locally applies an approximation of Equation 5.1 when splitting a node.
Several candidate partitions are generated and their expected traversal cost is evaluated
with c(n) under the assumption that the newly generated children are leaf nodes. That is
we compute:

csplit = ct + pl |l|ci + pr |r|ci (5.2)

The partition with smallest csplit is chosen and construction recursively proceeds with the
children. The recursion terminates as soon as the smallest csplit is higher than the cost for

66

5.1. Background and Related Work

creating a leaf node. Partitions are typically generated by sweeping axis aligned planes
through every dimension and checking on which side the bounding volume centroids of
primitives fall. With this approach, only planes which contain bounding volume centroids
are relevant.

Though the assumptions underlying SAH generally do not apply in practice, SAH
guided construction empirically produces the best performing BVHs to date. Unfortu-
nately, SAH-based construction is also the most expensive. In Section 2.5.4 we described
O(n log(n)) SAH-based kd-tree and BVH construction with binning from Popov et al. [2006]
and Wald et al. [2007]. Both algorithms replace the sorting step with an O(n) primitive
binning step. With a sufficient number of bins hierarchy quality is practically identical
to full sweep construction. Fabianowski et al. [2009] changed the SAH assumption of
infinitely far away ray origins to origins uniformly distributed in the scene bounds. On
average ray tracing performance increases of 2.6% have been reported for kd-trees.

5.1.1 Fast High Quality Construction

Lauterbach et al. [2009] proposed three GPU-based BVH construction algorithms with
different trade-offs between tree quality and construction time: The median split-based
linear BVH (LBVH) algorithm is fast but has poor tree quality. The second algorithm is a
parallel approach for full binned-SAH BVH construction (see Wald [2007]) with high tree
quality but slower construction. The third algorithm, a hybrid of the former two, strikes a
balance: Upper levels are constructed according to the highly parallel first algorithm while
the remaining levels expose enough parallelism to be efficiently constructed according to
the second one. Pantaleoni and Luebke [2010] and Garanzha et al. [2011] proposed much
faster implementations for the median split and the hybrid algorithm called hierarchical
LBVH (HLBVH) which allow real-time rebuilds for scenes with up to 2 million triangles.
An important change to the hybrid algorithm is, that LBVH is used to build the lower levels
of the tree first. The roots of the subtrees themselves are then used for binned top-down
SAH BVH construction. Thus the expensive part of the algorithm is performed on much
less input elements and tree quality is improved in the important upper levels.

Ganestam et al. [2015] proposed a hybrid algorithm called BONSAI. Similar to the
original hybrid algorithm from Lauterbach et al. [2009] it first performs a spatial-median
split partition on the input to produce sufficiently small chunks of spatially coherent prim-
itives. Then for each chunk top-down plane-sweeping SAH-based BVHs are constructed
in parallel. Finally, in the spirit of HLBVH an SAH-based top-level BVH is constructed
on the chunks. Quality of the final hierarchy on average is identical to full sweep-based
construction but construction time is much lower.

Bittner et al. [2015] presented the first incremental BVH construction algorithm which
can produce high quality BVHs. While average hierarchy quality w.r.t. SAM is higher than
for a full sweep construction, the actual average measured performance is slightly lower.
Nonetheless, construction is faster than top-down sweep construction.

As dynamic scenes are not in focus of our work we only give a very brief overview on
related algorithms. One approach is to simply construct a new BVH each frame as fast
as possible. This was the purpose of LBVH from Lauterbach et al. [2009] and derived
work (Pantaleoni and Luebke [2010], and Garanzha et al. [2011]). For state-of-the-art
in refitting-based approaches we refer to the algorithm from Yin and Li [2014] and the
references therein.

67

Chapter 5. Temporary Subtree SAH-based Bounding Volume Hierarchy Construction

5.1.2 Higher Quality BVHs

The offline spatial split BVH (SBVH) algorithm (see Section 2.5.6) from Stich et al. [2009]
drastically improves tree quality for scenes with a widely varying degree of tessellation.
Their key idea is to either use spatial splits or object partitions depending on which of
them yields a better SAH value. When searching for a node split, the best spatial split is
determined in addition to the best object split. Spatial splits are only applied when con-
sidered beneficial. To date no efficient GPU implementation of this algorithm has been
presented. Karras and Aila [2013] proposed an approximate but real-time construction
algorithm for GPUs that takes any BVH (i.e., LBVH) as input and performs local opti-
mizations on small node subsets (treelets) w.r.t. SAM. They also present a triangle pre-
splitting heuristic with a strong focus on producing splits which are likely to be beneficial
for tree quality. The resulting trees achieve about 90% of SBVH tree quality. Ganestam
and Doggett [2016] present an alternative triangle pre-splitting algorithm, which can op-
tionally directly be integrated into the clustering phase of the BONSAI algorithm. They
report traversal performance improvements to be similar to Karras and Aila [2013] while
producing less duplicate triangles.

Plane sweeping only generates left-right partitions with respect to a splitting plane.
Popov et al. [2009] proposed to allow more general partitions in order to achieve smaller
SAH cost partitions if possible. This is done by pre-generating a set of more general child
bound pairs and distributing the primitives to these sets. They call this process geometric
partitioning. Though achieving smaller total SAM values, trace performance did not im-
prove equally or even decreased. Further, they also tried to improve their general partition
BVH constructor by rating partitions with recursive SAM computed from temporarily built
spatial-median split BVHs. This improved measurements but results were still inferior to
the standard plane sweeping algorithm.

An alternative construction approach is the agglomerative clustering algorithm from
Walter et al. [2008]. Initially each primitive is in its own leaf node. Then, in a bottom-
up fashion the algorithm iteratively generates a new parent for the pair of nodes which
produces the smallest parent bounds surface area. The nodes of the selected pair are re-
moved from the list of candidates while the new parent node is added to this list. The
authors empirically show that runtime of their implementation is somewhere between
linear and quadratic. While this algorithm can produce hierarchies with higher quality
than top-down SAH-based construction, Aila et al. [2013] observed that it can also pro-
duce hierarchies with drastically lower quality, or expose low traversal performance even
when the SAM cost is low. Gu et al. [2013] presented a more efficient but approximative
implementation of this algorithm, which also inherits its downsides.

In Section 2.5.7 we introduced the EPO metric proposed by Aila et al. [2013]. The
metric was developed to better explain and predict performance of different BVHs con-
structed with different construction algorithms. EPO is a measure for the extra traversal
cost caused by intersection with primitives which intersect bounds of subtrees they do not
belong to. We refer to Aila et al. [2013] and Section 2.5.7 for computation of EPO for a
BVH. The traversal cost predictor p is a convex combination of SAM and EPO:

p = SAM · (1−α) + EPO ·α, (5.3)

where α is a scene dependent constant. It is assumed that

m∼ p (5.4)

68

5.2. Algorithm

holds for the given actual average measured traversal cost m for a BVH (MacDonald and
Booth [1989,1990]). The predictor is only designed for secondary diffuse rays and scalar
traversal. Aila et al. [2013] computed α values as high as 0.98. With such a high possible
weight for EPO it becomes clear that optimizing SAM alone is not enough and that even
the BVH with total minimum SAM is not necessarily the best performing one. Especially
important for this chapter, and the next section where we describe our algorithm, is the
discovery from Aila et al. [2013] that top-down greedy SAH-based construction algorithms
implicitly reduce node overlap in a way that also minimizes EPO. This gives them an innate
superiority over bottom-up or hybrid algorithms.

Finally, for SAH kd-tree construction Havran [2000] examined a possibly better pre-
diction model than Equation 5.2 for subtree SAM costs. He assumed that geometry is
distributed uniformly in space, that a spatial-median split strategy is used, and that the
subtree root has cube shaped bounds. He proved that the predicted cost is in O(N), which
renders the classic linear cost model (Equation 5.2) sufficient under these assumptions.
Havran further elaborates on minimum total SAM cost kd-tree construction. This requires
to recursively evaluate SAM for each split candidate and the recursive evaluation itself has
to recursively apply recursive SAM evaluation. This results in a combinatorial explosion
which Havran states to be NP-hard and also translates to BVH construction. As a side
note, a consequence of the work of Aila et al. [2013] would be that the minimum total
SAM cost kd-tree would probably also be the best performing one as EPO is always zero
for kd-trees.

5.2 Algorithm

The goal of the approach presented in this section is to give a better predictor for split
candidates than the classic linear model given in Equation 5.2. To achieve this, the model
has to improve both SAM as well as EPO. So far greedy top-down builders are the only
known builders which, at least implicitly, minimize EPO. We want to take advantage of
this characteristic during construction. As EPO minimization only occurs implicitly during
construction we cannot estimate it, e.g., just from the number of primitives and bounds
of the node to split. Thus we propose to actually construct temporary, greedily built BVHs
for the left and right side of each split candidate and use their recursive SAM values. The
rating function for a split then becomes

csplit = ct + pl c(t l) + pr c(tr), (5.5)

where t l and tr are the roots of the temporarily constructed BVHs and c is the recursive
SAM function introduced in Equation 5.1. Note that EPO does not directly appear in this
rating function. We rely on the assumed correlation of SAM and EPO of the greedily
top-down built temporary BVHs to find the split with minimal EPO by finding the split
with minimal csplit. This also should implicitly guide global construction into directions of
lower EPO. Pseudo-code for determining the best split is given in Algorithm 3. A depiction
of candidate cost computation with temporary BVH construction is given in Figure 5.1.
Note that BuildTemporaryBVH and ComputeSAM can be merged into a single function
as SAM cost can be computed incrementally during construction. There is no need to store
the temporary hierarchy at any point. It is also not beneficial to store the hierarchy of the
best candidate for reuse as it only has the quality of the standard algorithm and different
hierarchies on smaller subsets have to be constructed for the newly created child nodes.

69

Chapter 5. Temporary Subtree SAH-based Bounding Volume Hierarchy Construction

Algorithm 3: Pseudo-code for determining the best node split with recursive
SAH.

input : node // node to split
input : ct // cost of a traversal step
input : ci // cost of intersecting a primitive
output: bestP // Best primitive partition
output: bestC // Best partition costs

1 (bestP, bestC)← (;,∞)
2 partitions← GeneratePartitions(node)
3 foreach partition ∈ partitions do
4 t l ← BuildTemporaryBVH(partition.left, ct , ci)
5 t r ← BuildTemporaryBVH(partition.right, ct , ci)
6 cl ← ComputeSAM(t l , ct , ci)
7 cr ← ComputeSAM(t r , ct , ci)
8 (pl , pr)← ComputeIntersectionProbabilities(partition)
9 csplit← ct + pl cl + pr cr

10 if csplit < bestC then
11 (bestP, bestC)← (partition, csplit)
12 end
13 end

Seen from a different angle, our approach can be interpreted as a middle ground
between the NP-hard algorithm proposed by Havran [2000] and the recursive SAH eval-
uation on temporary spatial-median split trees used by Popov et al. [2009] in terms of
computational complexity and BVH quality. The difference is, that we give a more rep-
resentative cost estimate for the split candidates than a spatial-median split as it much
closer reflects the way the main BVH itself is constructed. Spatial-median split construc-
tion does not incorporate SAM in any way. Thus, SAM values retrieved from temporary
BVHs constructed in this way are unreliable for construction that aims at reducing SAM.

We will now proceed with the algorithmic aspects of our approach, which we call
recursive SAH-based BVH construction (RBVH). The GeneratePartitions function in
Algorithm 3 determines if the main BVH is constructed with plane-sweeping or binning,
though more general partitions such as in Popov et al. [2009] are also possible. The
BuildTemporaryBVH function for temporary BVH construction can also use arbitrary
construction schemes but we only consider the EPO-reducing greedy top-down plane-
sweeping or binning construction. Alternatives would be the fast to construct bottom-up
LBVH and HLBVH approaches or the agglomerative algorithm from Walter et al. [2008].
Data collected by Aila et al. [2013] shows that these algorithms can increase EPO drasti-
cally, which renders them a poor choice for BuildTemporaryBVH. Depending on whether
we choose sweeping or binning for GeneratePartitions and BuildTemporaryBVHwe
have four different RBVH algorithms with their own asymptotic computational complexi-
ties. We will proceed with deriving complexities for all four cases.

5.2.1 Computational Complexities

We first recap the computational complexity of the standard SAH-based construction ap-
proach. The common plane-sweeping algorithm implementation which sorts in every di-
mension needs O(n log n) steps to find a split and O(n log2 n) steps in total. Adapting

70

5.2. Algorithm

subtrees estimate

leaves estimate

Figure 5.1: Depiction of candidate cost evaluation in Algorithm 3 for a candidate partition
(red and blue boxes) generated by GeneratePartitions for a set of input primitives
with e.g. a plane-sweeping or binning approach. Classic SAH candidate cost assumes that
both sides of the partition will stay leaves. With the BuildTemporaryBVH function we
construct separate temporary BVHs for each side of the partition and compute their SAM
cost to obtain a candidate cost estimate. Depending on the construction strategy used in
BuildTemporaryBVH quality of the estimate can be better or worse than for the classic
candidate cost.

concepts of Wald and Havran [2006] for kd-tree construction to BVHs allows to imple-
ment an algorithm with lower complexity. For this, three copies of all primitives have to
be sorted in each dimension in a pre-computation step. This allows to find the best split
in O(n) steps. The arrays which do not correspond to the dimension of the best split can
then be updated in O(n). As a result the whole algorithm has a complexity of O(n log n).
Using binning construction also has O(n log n) complexity, but with a smaller constant.
To simplify derivation of the complexities we make the common assumption that a split
produces two new nodes with roughly the same number of primitives and that the number
of scene primitives N is a power of two.

Sweep-Sweep / Sweep-Binning Construction We start with the derivation of the com-
plexity of sweep-sweep construction (sweeping construction for the main and temporary
BVHs). For a node with N primitives a sweep-based construction generates N − 1 can-

71

Chapter 5. Temporary Subtree SAH-based Bounding Volume Hierarchy Construction

didate partitions. This results in 2(N − 1) temporary BVHs that need to be constructed.
With our proposed approach akin to Wald and Havran [2006] each temporary BVH can be
constructed in O(n log n), where n is the number of primitives of each side of a candidate
partition. Using the hyper factorial H(x) =

∏x
i=1 i i and O(n log n) = O(log nn) we can

define the recurrence relation T (N) of the algorithm:

T (N) = 2

�N−1
∑

i=1

i log i

�

+ 2T
�

N
2

�

= 2 log (H (N)) + 2T
�

N
2

�

= 2 log (H (N)) + 2
�

log
�

H
�

N
2

��

+ 2T
�

N
4

��

= 2
log N
∑

i=0

2i log
�

H
�

N
2i

��

Using the simple-to-derive upper bound log(H(x))< x2 log x we get:

T (N)< 2
log N
∑

i=0

2i
�

N
2i

�2

log
�

N
2i

�

= 2
log N
∑

i=0

N22−i (log(N)− i)

= 2N2

log(N)

log N
∑

i=0

2−i

!

−
log N
∑

i=0

2−i i

!

→ O
�

N2 log(N)
�

(5.6)

As we only found an upper bound for log(H(x)) the asymptotic complexity O(N2 log N)
is not tight. Using log(H(x)) > x2/2 we get the lower bound Ω(N2) for the asymptotic
complexity. An algorithm based on the common naïve approach which sorts in every
step has a higher complexity of O

�

N2 log2 N
�

. A derivation of this result is provided in
Appendix A.1.

Asymptotic complexity of binning-based temporary BVH construction is the same as
for sweep-based construction akin to Wald and Havran [2006]. Consequently the sweep-
binning approach has the same complexity as the sweep-sweep approach.

Binning-Binning / Binning-Sweep Construction Let B = 2b, b ∈ N denote the number of
bins for the main BVH. The number of bins for the temporary BVHs is not relevant, as it
does not appear in the complexity of binned construction. For simplicity we assume that
geometry is roughly distributed uniformly in space such that a node with N primitives
generates B bins with N/B primitives in each bin after binning. This results in B − 1
candidate partitions and thus 2(B−1) temporary BVHs that need to be constructed. Each
temporary BVH itself is constructed in O(n log n), where n is the number of primitives in
the union of all bins on each side of a candidate partition. This results in the following

72

5.2. Algorithm

recurrence relation:

T (N) = 2

� B
∑

i=1

i
N
B

log
�

i
N
B

�

�

+ 2T
�

N
2

�

= 2
log N
∑

i=0

2i

B
∑

j=1

j
N

2iB
log

�

j
N

2iB

�

!

∈ O(N log2 N + BN log(B) log(N)) = O(N log2 N)

(5.7)

We used the upper bound of log H(x) for the derivation. This has no effect on the asymp-
totic complexity. The full derivation is described in Appendix A.2. As we can see, the
binning-binning construction algorithm has subquadratic complexity and thus more rele-
vance in practice. Though the number of bins asymptotically has no effect on runtime it
increased runtime linearly in our experiments for problem sizes we used in our tests. The
reason for this is that the BN log(B) log(N) of T is dominating up to a certain problem
size. We proceed with computing bounds for the number of input primitives N for which
the number of bins causes the second most dominating term to dominate the N log2 N
term. Using the lower bound for log H(B) the second term becomes BN log(N). Equating
the two dominating terms of T for the upper and lower bound of log H(B) we get:

N log2 N = BN log(N) (5.8)

N log2 N = BN log(B) log(N) (5.9)

Solving for N we get the bounds 2B < N < BB. As a result even for the small number of B =
32 bins the BN log(B) log(N) term dominates till 232 < N < 2160 primitives. Thus, B keeps
impacting construction time even for scenes which have a several orders of magnitude
higher number of primitives than current scenes in production rendering.

Again, due to the same asymptotic complexity of binning construction and our ap-
proach for sweep construction of temporary BVHs, binning-sweep construction has the
same complexity as binning-binning construction.

5.2.2 Spatial Splits

To also take advantage of spatial splits akin to SBVH from Stich et al. [2009] we cannot
simply treat them as an additional technique to RBVH. SBVH uses the linear cost model
from Equation 5.2 which is an upper bound on the cost model of RBVH (Equation 5.5).
This does not allow us to compare split candidates from those techniques in a meaning-
ful way. Instead, we simply have to adapt the GeneratePartitions function to also
generate spatial partitions in order to remove this problem. This requires to temporarily
split primitives for each candidate partition, but potentially allows to find even better split
candidates. This variant is included into the evaluation, where we call it recursive spatial
split bounding volume hierarchy (RSBVH).

Going one step further we can include spatial splits into BuildTemporaryBVH to con-
struct temporary SBVHs. This again allows to find better split candidates. To unfold the
full potential of this approach temporary SBVHs have to be constructed for spatial par-
titions as well as object partitions generated by GeneratePartitions. Constructing
temporary SBVHs but not generating spatial partitions in GeneratePartitions is detri-
mental for BVH quality as the main BVH might be misguided into directions which are

73

Chapter 5. Temporary Subtree SAH-based Bounding Volume Hierarchy Construction

only beneficial if spatial splits are enabled. RSBVH construction with temporary SBVHs is
also included into the evaluation.

5.3 Improving Accuracy of the SAM-EPO Predictor

In our previous work [Wodniok and Goesele 2016] we observed that while the achieved
correlations of predicted cost p from Equation 5.3 and average measured traversal cost
m are higher than 0.99 in most scenes, the average predicted performance improvements
were up to 50% higher than the actual average measured performance improvement, but
could not provide an explanation for this. Before presenting our solution to this problem
we first recap how the scene dependent α value of Equation 5.3 is computed.

Given a set of BVHs B constructed for a scene and triples (SAMi , EPOi , mi) of SAM,
EPO, and measured traversal cost for each BVH i ∈ B Aila et al. [2013] we have to find
the α value which maximizes the correlation of predicted and measured costs. This can
be formulated as

αbest = argmax
α∈[0,1]

r ({(pi(α), mi) | i ∈B}) , (5.10)

where r is the centered sample Pearson correlation coefficient and pi(α) = SAMi · (1 −
α) + EPOi · α corresponds to Equation 5.3 for a pair (SAMi , EPOi) of a BVH i for some
tentative α. We computed α by simply sampling the [0, 1] range and selecting the αwhich
gives the highest correlation. For a chosen α we can then compute the mean absolute
percentage error (MAPE) of the expected and measured pairwise speedups pi j = pi/p j and
mi j = mi/m j for pairs of BVHs i, j:

MAPE =
1

|B|2 − |B|

∑

i, j∈B
i 6= j

�

�

�

�

pi j −mi j

mi j

�

�

�

�

. (5.11)

Computing MAPE of the predicted and measured speedups allows us to quantify the pre-
diction error of a given α without having to know the constant of proportionality of the
assumed proportionality of p and m. Computing α with the centered Pearson correlation
resulted in average MAPE errors as high as 65%.

The reason for this high error is that solving Equation 5.10 is equivalent to finding
the α, which gives the smallest least squares error of a simple linear regression with an
intercept term. The intercept term breaks, however, the proportionality assumption be-
tween measured and estimated cost (Equation 5.4) as it allows to not contain the origin.
To force regression through the origin we propose to use the uncentered sample Pearson
correlation (equivalent to the cosine similarity function):

runcentered =

∑

i pimi
Æ
∑

i(pi)2
Æ
∑

i(mi)2
(5.12)

Solving Equation 5.10 with the uncentered correlation is equivalent to finding theα, which
gives the smallest least squares error of a simple linear regression without an intercept
term. Table 5.1 shows the computed α values along with their corresponding correlation
and MAPE for the centered and uncentered sample Pearson correlation coefficients for all
test scenes. Though only intended for secondary diffuse rays we also computed a separate
α for primary rays.

74

5.4. Evaluation Setup

Primary rays Diffuse rays

Centered Uncentered Centered Uncentered

Scene α corr. MAPE α corr. MAPE α corr. MAPE α corr. MAPE

Babylon 0.98 0.993 116.5% 0.53 0.997 9.4% 0.89 0.997 60.2% 0.38 0.998 6.2%
Bubs 0.00 0.935 5.7% 0.00 0.998 5.7% 0.25 0.989 8.0% 0.00 0.999 4.6%
Conference 0.49 0.971 9.2% 0.45 0.998 8.9% 0.64 0.999 9.9% 0.27 0.999 2.5%
Epic 1.00 0.936 62.2% 0.66 0.996 10.9% 1.00 0.955 65.9% 0.60 0.998 8.4%
Fairy 0.48 0.855 7.4% 0.80 0.997 8.0% 0.75 0.928 3.6% 0.68 0.999 3.4%
Hairball 1.00 0.886 74.9% 0.87 0.993 13.2% 0.96 0.993 32.2% 0.72 0.999 2.8%
Powerplant 0.75 0.997 23.0% 0.47 0.999 4.1% 0.61 0.999 17.3% 0.28 0.999 3.4%
Rungholt 0.00 0.602 2.6% 0.00 0.999 2.6% 0.00 0.664 2.6% 0.00 0.999 2.6%
San Miguel 0.61 0.990 16.7% 0.43 0.999 9.0% 0.66 0.993 28.2% 0.28 0.999 7.8%
Sibenik 0.47 0.995 5.9% 0.62 0.999 3.5% 0.74 0.997 12.7% 0.38 0.999 3.1%
Soda 0.61 0.975 14.0% 0.45 0.998 9.7% 0.61 0.998 11.8% 0.35 0.999 4.6%
Sponza 0.74 0.920 12.3% 0.75 0.995 12.4% 0.79 0.979 10.0% 0.62 0.999 5.9%

Average 0.59 0.921 29.2% 0.50 0.998 8.1% 0.66 0.958 21.9% 0.38 0.999 4.6%

Table 5.1: Listing of determined α values for primary and diffuse rays for all scenes used
for benchmarking our algorithms obtained with the centered and uncentered sample Pear-
son correlation. Each α is accompanied by its corresponding correlation coefficient and
mean absolute percentage error (MAPE). Lowest MAPE is highlighted for each combina-
tion of ray type and scene.

Table 5.1 shows that our approach reduces MAPE significantly. The obtained α values
can differ drastically from the original approach with an extreme case of 0.89 and 0.38 for
Babylon with diffuse rays, where MAPE is reduced from 60.2% to 6.2%. Overall we can
observe that our approach gives less of an emphasis on EPO for diffuse rays in all scenes.
On average we reduce MAPE from 22% to 4.6% for diffuse rays.

Our measurements show that the SAM-EPO predictor indeed gives higher errors for
primary rays for which it is not intended. MAPE is highest for Babylon with 116.5%. But
our approach was able to reduce the error to 9.4%. On average we reduced MAPE from
29.2% to 8.1%. Unlike for diffuse rays, we cannot observe the overall trend that α values
with our approach are lower than with the centered correlation. Note that average MAPE
for primary rays with the uncentered correlation is also lower than average MAPE with
the centered correlation and diffuse rays.

5.4 Evaluation Setup

Our test platform is equipped with two Intel Xeon E5-2650 v2 octa-core CPUs. Construc-
tion timings are included in our results. Our implementation of the algorithms only par-
allelized the for-each loop in Algorithm 3. This is not optimal as it introduces global syn-
chronization between every node split. With additional effort it is possible to parallelize
the whole construction process, though.

5.4.1 Scenes and Algorithms

To evaluate our proposed construction algorithm we measured the impact on SAM, EPO
and traversal performance. We used a number of freely available test scenes (see Fig-

75

Chapter 5. Temporary Subtree SAH-based Bounding Volume Hierarchy Construction

Babylon: 488.199Babylon: 488.199Babylon: 488.199Babylon: 488.199Babylon: 488.199Babylon: 488.199Babylon: 488.199Babylon: 488.199Babylon: 488.199Babylon: 488.199Babylon: 488.199Babylon: 488.199Babylon: 488.199Babylon: 488.199Babylon: 488.199Babylon: 488.199Babylon: 488.199 Bubs: 1.850.084Bubs: 1.850.084Bubs: 1.850.084Bubs: 1.850.084Bubs: 1.850.084Bubs: 1.850.084Bubs: 1.850.084Bubs: 1.850.084Bubs: 1.850.084Bubs: 1.850.084Bubs: 1.850.084Bubs: 1.850.084Bubs: 1.850.084Bubs: 1.850.084Bubs: 1.850.084Bubs: 1.850.084Bubs: 1.850.084 Conference: 282.675Conference: 282.675Conference: 282.675Conference: 282.675Conference: 282.675Conference: 282.675Conference: 282.675Conference: 282.675Conference: 282.675Conference: 282.675Conference: 282.675Conference: 282.675Conference: 282.675Conference: 282.675Conference: 282.675Conference: 282.675Conference: 282.675

Epic: 385.630Epic: 385.630Epic: 385.630Epic: 385.630Epic: 385.630Epic: 385.630Epic: 385.630Epic: 385.630Epic: 385.630Epic: 385.630Epic: 385.630Epic: 385.630Epic: 385.630Epic: 385.630Epic: 385.630Epic: 385.630Epic: 385.630 Fairy: 172.677Fairy: 172.677Fairy: 172.677Fairy: 172.677Fairy: 172.677Fairy: 172.677Fairy: 172.677Fairy: 172.677Fairy: 172.677Fairy: 172.677Fairy: 172.677Fairy: 172.677Fairy: 172.677Fairy: 172.677Fairy: 172.677Fairy: 172.677Fairy: 172.677 Hairball: 2.850.000Hairball: 2.850.000Hairball: 2.850.000Hairball: 2.850.000Hairball: 2.850.000Hairball: 2.850.000Hairball: 2.850.000Hairball: 2.850.000Hairball: 2.850.000Hairball: 2.850.000Hairball: 2.850.000Hairball: 2.850.000Hairball: 2.850.000Hairball: 2.850.000Hairball: 2.850.000Hairball: 2.850.000Hairball: 2.850.000

Powerplant: 294.703Powerplant: 294.703Powerplant: 294.703Powerplant: 294.703Powerplant: 294.703Powerplant: 294.703Powerplant: 294.703Powerplant: 294.703Powerplant: 294.703Powerplant: 294.703Powerplant: 294.703Powerplant: 294.703Powerplant: 294.703Powerplant: 294.703Powerplant: 294.703Powerplant: 294.703Powerplant: 294.703 Rungholt: 6.704.264Rungholt: 6.704.264Rungholt: 6.704.264Rungholt: 6.704.264Rungholt: 6.704.264Rungholt: 6.704.264Rungholt: 6.704.264Rungholt: 6.704.264Rungholt: 6.704.264Rungholt: 6.704.264Rungholt: 6.704.264Rungholt: 6.704.264Rungholt: 6.704.264Rungholt: 6.704.264Rungholt: 6.704.264Rungholt: 6.704.264Rungholt: 6.704.264 San Miguel: 10.483.092San Miguel: 10.483.092San Miguel: 10.483.092San Miguel: 10.483.092San Miguel: 10.483.092San Miguel: 10.483.092San Miguel: 10.483.092San Miguel: 10.483.092San Miguel: 10.483.092San Miguel: 10.483.092San Miguel: 10.483.092San Miguel: 10.483.092San Miguel: 10.483.092San Miguel: 10.483.092San Miguel: 10.483.092San Miguel: 10.483.092San Miguel: 10.483.092

Sibenik: 79.937Sibenik: 79.937Sibenik: 79.937Sibenik: 79.937Sibenik: 79.937Sibenik: 79.937Sibenik: 79.937Sibenik: 79.937Sibenik: 79.937Sibenik: 79.937Sibenik: 79.937Sibenik: 79.937Sibenik: 79.937Sibenik: 79.937Sibenik: 79.937Sibenik: 79.937Sibenik: 79.937 Soda: 2.169.046Soda: 2.169.046Soda: 2.169.046Soda: 2.169.046Soda: 2.169.046Soda: 2.169.046Soda: 2.169.046Soda: 2.169.046Soda: 2.169.046Soda: 2.169.046Soda: 2.169.046Soda: 2.169.046Soda: 2.169.046Soda: 2.169.046Soda: 2.169.046Soda: 2.169.046Soda: 2.169.046 Sponza: 262.141Sponza: 262.141Sponza: 262.141Sponza: 262.141Sponza: 262.141Sponza: 262.141Sponza: 262.141Sponza: 262.141Sponza: 262.141Sponza: 262.141Sponza: 262.141Sponza: 262.141Sponza: 262.141Sponza: 262.141Sponza: 262.141Sponza: 262.141Sponza: 262.141

Figure 5.2: Listing of all twelve scenes used for benchmarking our algorithms along with
their number of primitives.

76

5.4. Evaluation Setup

Abbr. Algorithm o s t

BBVH Baseline Plane-Sweep [MacDonald and Booth 1990] - - -
SBVH Baseline SBVH [Stich et al. 2009] 256 128 -
RBVH RSAH 256 - 32
RMBVH BBVH + temp. median splits 256 - -
RSBVH RSAH + SBVH 256 128 32
RSSBVH RSBVH + temp. SBVH 256 128 32
GBVH Geometric splits [Popov et al. 2009] 256 - -
RMGBVH GBVH + temp. median splits 256 - -
RGBVH GBVH + RSAH 256 - 32

Table 5.2: List of algorithms and their configurations we used for evaluation. o and s
denote the numbers of object and space partitioning bins used for construction of the main
BVH. t is the number of object partitioning bins used for the construction of temporary
BVHs. In case of RSSBVH the number of temporary spatial bins is equal to t.

ure 5.2) partly from McGuire [2011] and the Mitsuba renderer [Jakob 2010]. We only
evaluated the O(N log2 N) binning-binning algorithm as the superquadratic complexity of
the sweep-sweep and and sweep-binning algorithm proved to be impractical. The RSBVH
algorithm and the extension with temporary SBVHs (RSSBVH) from Section 5.2.2 is also
included into the evaluation. As the baseline construction algorithm we chose the stan-
dard plane-sweeping approach. We also evaluated our RBVH algorithm with recursive
SAM evaluation on temporarily built spatial-median split BVHs (RMBVH).

Further, we included the geometric partitions with (RMGBVH) and without (GBVH)
temporarily built spatial-median split BVHs from Popov et al. [2009]. In this connection
we also evaluated the inclusion of geometric partitions into the GeneratePartitions
function of our RBVH algorithm (RGBVH).

As the baseline for construction with spatial splits we chose the SBVH algorithm from
Stich et al. [2009]. SBVH allows to specify a parameter which guides spatial split attempts.
We follow the authors recommendation and use a value of 10−5 for all scenes. Exceptions
were Hairball where we used 10−4 to avoid excessive primitive duplication and San Miguel
where we had to use 10−6 for any spatial splits to occur. The same parameter values are
also applied to the temporary SBVH construction of the RSSBVH algorithm.

In total we have up to nine different BVHs per scene. We omit results for RGBVH
and RMGBVH for the five largest scenes as the expected total computation time is several
months (a year for RGBVH on San Miguel) and we expect the results to be similar to the
results for the smaller scenes.

For the main BVH we have 256 object split bins and 128 spatial bins. The number of
object and spatial bins for temporary BVH construction is 32. SAH build constants were
set to (ct , ci) = (1.2, 1.0). They correspond to the constants of the GPU ray tracing kernels
from Aila and Laine [2009], which we used for collecting traversal statistics. All BVH
algorithms and configurations along with abbreviations we used for them are listed in
Table 5.2.

77

Chapter 5. Temporary Subtree SAH-based Bounding Volume Hierarchy Construction

Avg. reduction (%)

Algo. Bins Time SAM EPO mp md

RBVH
64 -64.5 +0.7 +0.3 +0.2 +0.5
32 -78.1 +1.2 +0.3 -0.2 +0.5

RSBVH
64 -57.3 -0.2 0.0 +1.7 +0.4
32 -75.5 +0.6 +4.3 +2.2 +1.0

RSSBVH
64 -61.3 0.0 0.0 -0.5 -0.2
32 -79.0 +0.1 +5.8 +0.7 -0.2

Table 5.3: Average relative difference of construction time, SAM, EPO, as well as mea-
sured traversal cost of primary (mp) and diffuse (md) rays for the RSAH-based algorithms
in percent when the number of object- and space partitioning bins for the main BVH are
reduced to 64 or 32.

5.4.2 Performance Measurements

We measure performance of front-to-back traversal for primary rays and secondary diffuse
rays to compare quality of the different BVHs. To get implementation and platform inde-
pendent measurements we measured the average number of traversal steps ns and the
average number of intersected triangles nt over a varying number of views for each scene
and BVH. Combined with the SAH constants we define the average measured traversal
cost

m= nsct + nt ci . (5.13)

We also give results for predicted traversal cost with EPO according to Equation 5.3. For
this we computed the scene dependent α values with the novel approach described in
Section 5.3 using the uncentered Pearson correlation (see Table 5.1 for the specific α
values).

5.5 Results

All measurements are collected in Table 5.5 and Table 5.6. To give a more condensed view
of the results Table 5.4 shows relative improvements averaged over all scenes with BBVH
and SBVH as baseline. Measurements for each scene are sorted from best to worst with
respect to measured traversal cost m of diffuse rays.

Our spatial split-based algorithms improved SAM, EPO and trace performance in all
scenes compared to BBVH and SBVH. Performance of primary and diffuse rays improves
roughly by the same amount on average with a slightly higher improvement for primary
rays. The average improvement of SBVH is higher than for our RBVH algorithm with-
out spatial splits. SBVH improves SAM only slightly compared to RBVH, but outperforms
RBVH in EPO improvements. The RMBVH algorithm which, unlike RBVH, uses tempo-
rary spatial median splits performs worse than BBVH and overall performs second worst
of all evaluated algorithms. The SAM costs of temporarily constructed spatial median
split BVHs were less representative for subtree costs than the standard cost estimate from
Equation 5.2 and misguided the construction process.

78

5.5. Results

Avg. (Min/Max) reduction (%)

Primary rays Diffuse rays

Algorithm SAM EPO p m p m

B
as

el
in

e
B

BV
H

RSSBVH
-21.6 -71.9 -32.6 -24.0 -28.3 -22.5

(-4.0/-35.8) (-20.8/-90.6) (-4.0/-47.0) (-2.2/-37.1) (-4.0/-39.7) (-0.9/-32.2)

RSBVH
-19.4 -68.1 -30.1 -23.9 -26.0 -22.4

(-3.9/-34.7) (-19.6/-85.8) (-3.9/-41.3) (+0.6/-37.0) (-3.9/-35.9) (+0.3/-32.6)

SBVH
-12.5 -58.2 -22.3 -17.7 -18.6 -18.5

(+3.8/-26.8) (0.0/-82.8) (0.0/-38.7) (+1.7/-33.7) (0.0/-33.3) (0.0/-32.0)

RBVH
-11.7 -22.2 -13.3 -10.4 -12.7 -8.9

(-2.7/-33.3) (-1.4/-65.3) (-2.7/-33.3) (+0.9/-28.3) (-2.7/-33.3) (+0.4/-23.7)

RGBVH
-10.6 -11.4 -11.1 -7.7 -11.0 -7.5

(-4.0/-17.8) (+8.3/-42.5) (-2.7/-24.9) (+2.3/-20.2) (-3.2/-22.0) (-1.9/-22.8)

GBVH
+2.6 +31.7 +9.8 +22.2 +7.1 +11.9

(+21.1/-21.8) (+96.0/-63.6) (+36.4/-21.8) (+46.2/-6.2) (+30.4/-21.8) (+31.6/-13.8)

RMBVH
+22.1 +60.6 +29.6 +33.4 +26.4 +26.6

(+69.4/-12.9) (+171.0/-7.3) (+90.7/-12.9) (+84.5/-7.6) (+80.1/-12.9) (+74.8/-4.9)

RMGBVH
+26.7 +113.7 +45.0 +60.8 +37.2 +44.9

(+70.0/-0.5) (+228.6/+29.2) (+103.3/+10.4) (+124.3/-1.0) (+86.8/+7.3) (+93.7/+2.6)

B
as

el
in

e
SB

V
H

RSSBVH
-10.3 -35.1 -13.5 -7.4 -12.1 -4.7

(-4.0/-19.4) (-1.7/-70.6) (-4.0/-27.5) (-1.7/-17.6) (-4.0/-20.1) (+0.2/-15.1)

RSBVH
-7.8 -18.6 -9.8 -7.1 -8.9 -4.6

(-2.0/-15.6) (+52.6/-70.6) (-0.7/-28.4) (+2.1/-18.3) (-2.4/-18.6) (+0.3/-15.4)

RBVH
+1.7 +143.7 +13.4 +10.7 +8.5 +12.9

(+23.8/-12.1) (+394.0/-20.1) (+46.9/-8.9) (+46.0/-9.3) (+35.9/-8.9) (+36.0/-3.7)

RGBVH
+4.9 +198.5 +22.4 +18.5 +15.0 +18.4

(+21.2/-7.5) (+451.3/+25.0) (+50.2/+0.2) (+51.3/-8.3) (+37.5/-3.0) (+39.8/-1.3)

GBVH
+18.3 +331.6 +44.2 +51.1 +33.4 +39.4

(+46.0/-0.2) (+894.5/+22.3) (+98.1/-0.2) (+93.2/+0.4) (+75.3/-0.2) (+72.2/-0.2)

RMBVH
+42.4 +459.9 +72.7 +66.9 +59.3 +59.1

(+124.4/-0.4) (+1081.3/+2.0) (+194.9/+3.2) (+178.5/-0.7) (+157.3/+3.2) (+149.0/+2.7)

RMGBVH
+51.4 +700.9 +104.7 +111.3 +80.8 +88.7

(+125.2/-1.0) (+1710.1/+60.3) (+219.3/+13.7) (+227.8/-2.6) (+171.9/+7.6) (+176.0/+5.0)

Table 5.4: Average, minimum, and maximum relative reduction of SAM, EPO, as well as
predicted (p) and measured (m) traversal cost of primary and diffuse rays over all scenes.
Algorithms are either compared against BBVH or SBVH as baseline. For each baseline,
algorithms are sorted from highest to lowest reduction in traversal cost of diffuse rays.
The highest reduction of each attribute is highlighted per baseline.

In the Rungholt scene no algorithm was able to significantly outperform the other al-
gorithms. The baseline BBVH already gives the third best results and its output is identical
to SBVH, which was not able to find any beneficial spatial splits. The scene mainly con-
sists of triangles of the same shape and size which are also parallel to the main coordinate
system planes. BBVH seems to be sufficient for scenes with such characteristics. This is
also reconfirmed by identical results we obtained for the Lost Empire scene available from
McGuire [2011] which has the same characteristics but is not included in our results in
the interest of brevity.

5.5.1 Geometric Object Partitions

On average our algorithms perform better than algorithms based on the geometric splits
from Popov et al. [2009]. In fact, we can reconfirm results from Popov et al. that GBVH

79

Chapter 5. Temporary Subtree SAH-based Bounding Volume Hierarchy Construction

and RMGBVH perform worse than standard plane-sweeping. Given that spatial median
splits already decreased performance of RMBVH over BBVH, it is no surprise that RMGBVH
performs worse than GBVH. RMGBVH proved to be the worst performing of all evaluated
algorithms. Only RGBVH, our RBVH algorithm extended with geometric splits, managed
to produce better results than BBVH on average from all algorithms with geometric splits.
Still, RGBVH proved to be less effective than RBVH.

5.5.2 Construction Time

RBVH- and RSBVH- based construction time is one to two orders of magnitude higher than
for the baseline. RSSBVH additionally takes 2 to 8 times longer than RSBVH. One possi-
bility to reduce construction time is to reduce the number of object and spatial bins for
the main and temporary BVHs of our algorithms, as this reduces the number of temporary
BVHs to construct. Therefore we evaluated configurations where the number of object
and spatial bins is set to 64 or 32. Average results for relative construction time, quality,
and measured cost are collected in Table 5.3. On average construction time is reduced
by a factor of 2.5 and 4.5 with 64 and 32 bins respectively. Surprisingly, the effects on
quality and measured performance are small on average. Performance of RBVH decreases
by just half a percent with both reduced bin counts for diffuse rays. RSBVH performance
decreases by up to one and two percent for diffuse and primary rays, while RSSBVH per-
formance actually improved slightly for diffuse rays despite having the largest average
increase in EPO.

All geometric split-based algorithms are the most expensive ones with RGBVH already
taking 12 hours to construct for our smallest scene Sibenik and more than two days for
Babylon.

5.5.3 Construction Complexity

To evaluate the validity of our derived construction complexity of O(N log2 N) we com-
pared the measured and predicted construction time of RBVH, RSBVH, and RSSBVH w.r.t.
the number primitives. Results are shown in Figure 5.3. The measurements seem to
validate our derivation for RBVH though it built on the unrealistic assumption that the
number of primitives is halved on every split. The prediction accuracy for RSBVH is as
good as for RBVH. While RSSBVH exhibits a less predictable construction time behavior
our predictions do not systematically underestimate its cost. Considering that our com-
plexity derivation did not consider spatial splits and the extra cost from chopped binning
(see Section 2.5.6) the results for RSBVH and RSSBVH are remarkable.

5.6 Discussion

The proposed RBVH, RSBVH and RSSBVH builders managed to reduce SAM as well as
EPO by a significant amount. All three algorithms do not handle EPO reduction directly
but rely on the implicit correlation of SAM and EPO minimization of greedy top-down
builders. Thus, our results also reconfirm the results from Aila et al. [2013]. Though
SBVH already gives high average reduction in SAM and more so in EPO, RSBVH managed
to push both reductions even further. Although RBVH manages to reduce SAM and EPO
well, the spatial splits of SBVH prove to be a superior splitting strategy. Considering that

80

5.6. Discussion

105 106 107
101

102

103

104

105

Primitives

t

RBVH
RSBVH
RSSBVH

Figure 5.3: Measured construction time in seconds of the RBVH, RSBVH, and RSSBVH
algorithms with respect to the number of primitives of the different scenes. The dashed
line indicates the predicted construction time using our derived O(N log2 N) complexity.
For each construction algorithm the computational constant is adjusted such that the pre-
diction agrees for the smallest scene.

RBVH only performs object splits, an EPO reduction of up to 65% and 22% on average is
quite impressive. If primitive duplication is not desired RBVH might be an alternative to
SBVH.

Compared with SBVH, RSBVH and RSSBVH on average produce twice the number
of duplicates. An exception to this is Hairball, where we measured five times as many
duplicates. Our subtree cost estimate predicts more accurately whether a spatial split will
pay off and seems to find more opportunities where a spatial split is more beneficial than
an object split. As a result more spatial splits are performed. The slightly more accurate
cost estimate of RSSBVH results in a slightly higher number of duplicates compared to
RSBVH.

The downside of our proposed algorithms is the large increase in construction time,
which renders them unsuitable for realtime applications. Our largest test scene, San
Miguel, took almost 4 hours to construct with RSBVH and almost 14 hours with RSS-
BVH. However, global illumination computations are one application that requires many
intersection tests and can thus offset the initial costs of acceleration structure construc-
tion. We also have to remark that our implementation was not heavily optimized and
not entirely parallelized. With enough implementational effort it should be possible to
significantly increase construction performance. Results from Section 5.5.2 showed that

81

Chapter 5. Temporary Subtree SAH-based Bounding Volume Hierarchy Construction

reducing the number of bins might be an option as construction can be sped up by a
factor of 4.5 without severe effects on measured performance. Alternatively, the construc-
tion of temporary BVHs could be completely offloaded to a GPU. Only primitive bounds
are needed for construction. When primitive bounds are reordered according to the bins
they fall into, the GPU can incrementally construct all temporary BVHs without further
reloading or reordering. This also should give a significant performance boost.

5.6.1 Insufficiency of the SAM-EPO Metric

Compared with RSBVH, RSSBVH manages to reduce SAM 1.3 times and EPO twice as
much over SBVH. But disappointingly the average reduction of measured traversal cost is
only about 3% higher. Actually, RSSBVH only performed best in five out of twelve scenes
for diffuse rays, while RSBVH performed best in the remaining seven scenes. Consider-
ing that RSSBVH managed to achieve the highest reduction in SAM and EPO at the same
time for eight scenes, this is an unexpected result. Though both SAM and EPO are clearly
smaller in Babylon, Bubs, Conference, and Sponza than with any other builder, measured
traversal cost is higher than for RSBVH in those scenes. The most severe example for this
observation is Sponza, where RSSBVH also falls behind SBVH. RSSBVH has 14% lower
SAM and 60% lower EPO cost than SBVH for this scene. The predicted decrease in traver-
sal cost is 17%. But measured traversal cost is slightly higher than for SBVH. Both, the
SAM metric and the combined SAM-EPO metric (which is designed for diffuse rays), fail to
explain these observations for RSSBVH. Thus, there must be an unidentified effect which
is not captured in the former metrics. We were unable to identify this extra cost and
consider it an open question for future work.

5.6.2 Inferiority of Geometric Object Splits

The GBVH, RMGBVH, and RGBVH algorithm can be interpreted as extending BBVH, RM-
BVH, and RBVH with geometric object splits from Popov et al. [2009]. In all three cases
adding geometric object splits resulted in a decrease in the quality of the original algo-
rithms. Considering that geometric splits only extend the set of available partitions of the
original algorithms and are only selected if considered beneficial this seems perplexing at
first. Analyzing constructed BVHs we found that GBVH indeed finds geometric splits where
csplit from Equation 5.2 is up to 40% lower than the best split found with plane-sweeping.
To explain why the overall quality is nonetheless lower we first write Equation 5.1 for the
SAM cost of a BVH in its iterative form. This partitions the cost of a BVH in costs cI for
processing inner nodes and costs cL for processing leaves:

cBVH = cI + cL = ct

∑

i∈I
pi + ci

∑

l∈L
pl |l|, (5.14)

where I is the set of inner nodes and L is the set of leaves. pi and pl are the probabilities of
intersecting an inner or leaf node w.r.t. the root bounds and |l| is the number of primitives
in a leaf. We found that while cL for GBVH is essentially identical to BBVH larger SAM
costs for GBVH mainly stem from a larger cI. Further analysis revealed that GBVH has a
strong tendency to create children with a larger discrepancy in surface area of the children
bounds than BBVH. Let A and A denote the surface area of the smaller and larger child
respectively. On average A is smaller and A is bigger for GBVH compared with BBVH. This
seems to be necessary to allow GBVH to locally find smaller csplit. But at the same time

82

5.7. Future Work

A+A turns out to be larger than for BBVH on average which directly causes the increase in
CI. That is, GBVH is worse in reducing the average area of the children bounds, an effect
not captured in Equation 5.2. This increase in cI is most severe in the upper levels, where
surface area of bounds is larger anyway. Our results comply with the observation from
Aila et al. [2013]: It is not clear that locally minimizing Equation 5.2 globally reduces
SAM, but the minimization maximizes saved worst-case triangle cost. On average overlap
of children bounds is also increased. This might be a direct consequence of the larger
average child bounds and explains the increase in EPO of algorithms with geometric splits.

We also observed the increase in average children bounds area for RMGBVH and RG-
BVH. Both algorithms are based on Equation 5.5, which includes the cost of temporarily
constructed hierarchies, but cI is also increased for those algorithms. Though this time the
increase in cost for the direct child nodes is included in the candidate cost, the extra cost
gets lost in the costs for the temporary hierarchies. Concluding, the supremacy of greedy
top-down builders declared by Aila et al. [2013] does not hold for algorithms based on
geometric splits.

We conducted experiments with GBVH where we included traversal costs for children
into Equation 5.2. This proofed to be insufficient as quality decreased. Overcoming the
blindness of Equation 5.2 towards increases in cI should also benefit the plane-sweeping
algorithm. Section 10.9 in the chapter on overall future work of this dissertation proposes
an attempt in this direction and gives promising preliminary results on an experimental
surface area heuristic, which is also applicable to GBVH.

5.7 Future Work

There are several directions for future work. One direction would be to find a BVH quality
metric which explains the observations made for RSSBVH in Section 5.6.1.

Another direction would be to directly include EPO into the construction process. We
can readily compute EPO of a candidate partition from the temporarily built BVHs com-
bined with the node to split. This would allow us to directly use Equation 5.3 to guide
construction into directions of low p. An unpleasant aspect of this approach is that con-
struction depends on prior knowledge of α. Further, we would have to actually store
temporary hierarchy nodes, which so far is not necessary with our algorithms (see Sec-
tion 5.2). In this regard fast and accurate determination of α for unknown scenes is also
an interesting problem.

The treelet-based BVH optimization algorithm proposed by Karras and Aila [2013]
is only practical for small treelet sizes as their minimum-SAM BVH construction algo-
rithm has Ω(exp n) computational complexity and O(exp n) space requirements (see Sec-
tion 2.5.5). While our RBVH algorithm does not construct minimum-SAM BVHs, its com-
putational complexity and space requirements allows for much larger treelets. Combined
with its high quality output it would be interesting to see what can be achieved.

Finally, additionally to the EPO metric Aila et al. [2013] proposed the leaf count vari-
ability (LCV) metric, which in a convex combination with SAM and EPO can explain SIMD
performance of the efficient GPU ray tracing kernels of Aila and Laine [2009]. Aila et al.
[2013] showed that top-down greedy SAH-based construction algorithms implicitly re-
duce LCV besides EPO. We assume that this property should be naturally inherited and
boosted by our algorithms. That is, our BVHs might be specially suited for SIMD traver-
sal. Experimental validation is left for future work.

83

Chapter 5. Temporary Subtree SAH-based Bounding Volume Hierarchy Construction

Primary rays Diffuse rays

Builder Time Dupl. SAM EPO ns nt p m ns nt p m

B
ab

yl
on

RSBVH 454.8s 69.2% 39.1 2.1 27.7 2.8 19.5 36.1 29.5 4.2 25.0 39.6
RSSBVH 3285.2s 71.9% 37.1 1.7 27.1 2.9 18.3 35.3 29.6 4.3 23.6 39.8

SBVH 16.8s 39.7% 40.5 2.6 27.7 3.4 20.4 36.7 30.4 4.9 26.0 41.4
RBVH 250.3s - 49.2 12.9 38.0 5.6 29.9 51.2 39.7 6.6 35.3 54.3

RGBVH 63.8h - 49.0 14.4 39.0 6.3 30.6 53.1 41.4 7.3 35.7 57.0
BBVH 3.8s - 53.7 15.1 38.7 5.5 33.2 51.8 42.6 7.0 39.0 58.2
GBVH 268.7s - 59.1 23.8 50.2 6.5 40.3 66.8 53.2 7.4 45.6 71.3

RMBVH 43.9s - 79.2 28.4 61.8 5.0 52.2 79.1 63.1 6.7 59.8 82.5
RMGBVH 10.1h - 85.2 47.1 90.7 7.6 65.0 116.4 87.1 7.7 70.7 112.2

B
ub

s

RSBVH 1874.2s 6.4% 15.8 1.9 23.1 2.9 15.8 30.6 25.5 4.1 15.8 34.7
RSSBVH 3385.5s 6.5% 15.6 1.0 23.2 2.7 15.6 30.5 25.7 4.1 15.6 35.0

RBVH 1500.2s - 16.2 2.9 24.3 2.9 16.2 32.0 26.8 4.3 16.2 36.5
SBVH 22.9s 2.5% 17.7 1.8 26.6 3.0 17.7 34.9 28.1 4.2 17.7 37.9
GBVH 7992.0s - 19.0 3.1 31.6 3.8 19.0 41.8 30.7 4.5 19.0 41.3

RMBVH 236.9s - 21.1 8.0 31.7 3.1 21.1 41.2 34.3 4.4 21.1 45.5
BBVH 16.5s - 24.2 8.4 34.3 3.4 24.2 44.6 36.0 4.7 24.2 47.9

C
on

fe
re

nc
e

RSBVH 219.3s 82.8% 33.4 3.0 21.8 3.2 19.8 29.4 24.4 5.3 25.2 34.5
RSSBVH 1045.0s 81.2% 33.0 2.8 22.4 4.1 19.5 31.0 24.3 5.7 24.9 34.8

SBVH 5.7s 30.1% 38.4 3.5 23.6 6.6 22.8 34.9 26.3 7.7 29.0 39.3
RBVH 126.1s - 38.6 7.1 21.2 6.9 24.5 32.4 26.3 10.3 30.1 41.8

RGBVH 18.9h - 38.2 7.3 22.6 7.3 24.3 34.4 26.2 10.7 29.9 42.1
BBVH 2.1s - 46.4 9.8 26.8 7.3 30.0 39.5 32.3 10.8 36.6 49.5
GBVH 73.9s - 47.3 10.6 28.7 7.9 30.9 42.4 34.0 11.0 37.5 51.7

RMGBVH 3.1h - 54.1 15.9 42.1 8.3 37.0 58.9 42.3 11.7 43.8 62.5
RMBVH 25.0s - 65.6 19.0 47.7 7.0 44.7 64.2 50.6 10.4 53.1 71.1

Ep
ic

RSSBVH 2786.2s 66.6% 17.7 1.6 41.8 4.2 7.2 54.3 41.4 6.8 8.2 56.5
RSBVH 433.5s 64.9% 18.2 1.8 44.2 4.3 7.4 57.3 41.8 6.8 8.4 57.0
SBVH 11.3s 32.7% 19.7 3.0 42.5 5.0 8.7 56.1 41.4 7.9 9.7 57.6
RBVH 237.5s - 19.5 6.0 52.2 6.6 10.6 69.2 49.8 9.4 11.5 69.2

RGBVH 69.5h - 19.3 6.3 52.1 6.9 10.8 69.4 51.0 9.8 11.6 70.9
BBVH 3.3s - 21.3 7.1 54.7 7.0 12.0 72.6 52.7 9.9 12.8 73.1

RMBVH 44.2s - 21.3 8.1 68.2 7.0 12.6 88.8 64.6 9.8 13.4 87.3
GBVH 134.9s - 21.6 9.9 71.3 8.3 13.9 93.9 66.0 10.2 14.7 89.4

RMGBVH 11.6h - 21.2 9.8 82.4 8.4 13.7 107.3 73.3 10.2 14.4 98.2

Fa
ir

y

RSBVH 174.7s 32.2% 31.3 2.7 27.3 4.8 8.4 37.5 30.6 8.5 12.0 45.2
RSSBVH 642.8s 33.8% 31.5 2.7 27.8 4.8 8.4 38.1 31.0 8.4 12.1 45.6

RBVH 111.0s - 31.5 3.0 28.9 5.4 8.7 40.0 31.8 9.0 12.3 47.2
RGBVH 12.3h - 32.0 3.4 29.0 5.6 9.1 40.5 32.0 9.1 12.7 47.5
SBVH 3.2s 9.3% 34.7 2.7 32.6 5.0 9.1 44.2 32.9 8.6 13.1 48.1
BBVH 1.4s - 33.4 3.4 31.7 5.4 9.4 43.4 33.5 9.1 13.1 49.3

RMGBVH 7258.4s - 34.3 4.4 31.3 5.4 10.3 43.0 34.5 9.1 14.1 50.5
RMBVH 18.5s - 34.5 4.3 32.1 5.4 10.3 43.8 34.8 9.1 14.1 50.9
GBVH 34.5s - 35.7 4.8 42.5 6.2 11.0 57.2 40.7 9.1 14.8 58.0

H
ai

rb
al

l

RSBVH 4544.3s 191.4% 386.5 8.3 74.6 25.8 57.3 115.4 72.1 29.8 113.5 116.3
RSSBVH 9.5h 205.4% 392.1 8.3 75.4 25.8 58.0 116.3 73.3 28.8 115.1 116.8

SBVH 136.4s 40.2% 428.0 28.3 80.6 44.5 80.0 141.2 75.8 46.6 139.5 137.5
RBVH 1685.2s - 454.0 36.7 82.0 55.0 90.8 153.3 78.3 56.2 152.8 150.1
BBVH 23.8s - 466.4 37.8 85.6 56.1 93.3 158.8 80.2 56.8 157.0 152.0

RMBVH 377.1s - 494.6 44.2 95.8 56.0 102.5 170.9 90.5 57.1 169.5 165.6
GBVH 2.4h - 470.7 49.8 130.6 75.4 104.3 232.1 95.5 58.8 166.9 173.4

Table 5.5: Results for the first two rows of scenes in Figure 5.2. ns, and nt average
the average number of measured traversal steps and triangle intersection tests. p is the
EPO measure for BVH performance (Equation 5.3) and m the average measured traversal
cost (Equation 5.13). For each scene builders are sorted from smallest to largest m. The
highest reduction of each attribute is highlighted per scene.

84

5.7. Future Work

Primary rays Diffuse rays

Builder Time Dupl. SAM EPO ns nt p m ns nt p m

Po
w

er
pl

an
t

RSSBVH 1944.7s 149.4% 30.7 2.2 29.8 3.8 17.3 39.6 31.2 5.3 22.6 42.8
RSBVH 251.6s 149.0% 32.4 2.3 31.5 4.0 18.2 41.7 32.4 5.4 23.8 44.3
SBVH 11.9s 84.5% 33.2 3.2 31.0 4.5 19.1 41.7 31.8 6.2 24.6 44.3
RBVH 96.7s - 41.1 13.0 39.7 13.1 27.9 60.8 39.8 12.6 33.1 60.3

RGBVH 21.1h - 40.2 14.2 40.9 13.9 28.0 63.0 40.9 12.9 32.8 62.0
BBVH 2.0s - 43.9 13.2 41.6 13.0 29.5 62.9 42.0 12.8 35.2 63.2
GBVH 88.8s - 47.0 22.0 52.3 14.5 35.3 77.3 51.4 13.2 39.9 74.0

RMBVH 21.9s - 74.4 35.7 85.0 14.1 56.2 116.1 80.7 13.5 63.4 110.4
RMGBVH 2.6h - 74.7 43.2 99.4 17.3 59.9 136.6 90.2 14.1 65.7 122.4

R
un

gh
ol

t

RSSBVH 5.9h 3.1% 105.5 2.6 35.4 2.1 105.5 44.6 37.3 3.3 105.5 48.1
GBVH 4.1h - 109.7 4.2 36.3 2.2 109.7 45.7 37.5 3.4 109.7 48.4
BBVH 54.3s - 109.9 3.4 36.1 2.2 109.9 45.6 37.7 3.3 109.9 48.5
SBVH 160.0s 0.0% 109.9 3.4 36.1 2.2 109.9 45.6 37.7 3.3 109.9 48.5

RSBVH 4797.4s 3.1% 105.6 2.6 36.4 2.1 105.6 45.8 37.8 3.3 105.6 48.6
RBVH 2432.7s - 105.5 2.7 36.6 2.1 105.5 46.0 37.8 3.3 105.5 48.7

RMBVH 493.0s - 113.4 3.5 37.3 2.1 113.4 46.9 38.8 3.3 113.4 49.8

Sa
n

M
ig

ue
l

RSBVH 4.1h 21.6% 16.6 1.6 60.8 6.6 10.2 79.6 57.5 9.2 12.3 78.2
RSSBVH 14.0h 22.7% 15.8 2.1 60.8 6.5 10.0 79.5 59.2 9.2 11.9 80.3

SBVH 211.5s 13.7% 19.6 3.1 61.8 6.8 12.6 80.9 60.2 9.9 14.9 82.2
RBVH 2.5h - 17.3 7.5 71.8 9.6 13.1 95.8 68.4 12.9 14.5 95.0
BBVH 130.5s - 20.3 10.2 83.1 9.8 16.0 109.5 76.5 13.2 17.4 104.9
GBVH 28.5h - 24.6 18.1 119.9 12.4 21.8 156.3 103.8 13.5 22.7 138.1

RMBVH 2042.7s - 27.6 20.5 142.4 10.8 24.6 181.7 120.6 13.8 25.6 158.5

Si
be

ni
k

RSSBVH 431.1s 80.9% 44.6 1.2 32.9 3.5 17.6 43.0 34.0 5.8 28.0 46.7
RSBVH 58.4s 78.9% 46.6 1.3 33.2 3.5 18.4 43.4 34.8 5.8 29.2 47.6
SBVH 2.2s 33.8% 47.5 1.6 35.9 4.3 19.0 47.5 34.6 6.6 29.9 48.1
RBVH 29.0s - 48.8 4.2 37.4 6.3 21.1 51.2 37.0 7.7 31.7 52.1

RGBVH 2.1h - 49.1 4.7 36.5 6.5 21.5 50.4 37.1 7.8 32.1 52.3
BBVH 0.5s - 53.6 5.0 42.4 6.4 23.4 57.3 39.4 7.6 35.0 54.8
GBVH 10.3s - 54.3 6.3 46.7 7.0 24.5 63.0 43.1 8.1 35.9 59.8

RMBVH 6.6s - 68.5 9.5 61.3 6.1 31.9 79.7 52.9 7.5 46.0 71.0
RMGBVH 1027.9s - 69.9 14.7 65.5 7.3 35.6 85.9 60.2 8.3 48.8 80.5

So
da

RSSBVH 2.2h 25.7% 58.7 1.9 31.6 3.3 33.1 41.3 30.4 5.1 38.6 41.6
RSBVH 2396.6s 25.7% 61.1 2.4 31.3 3.5 34.6 41.1 30.4 5.2 40.3 41.8
SBVH 45.6s 14.0% 66.6 2.7 32.8 3.8 37.8 43.1 30.7 5.6 43.9 42.4
RBVH 1451.7s - 66.2 10.2 31.2 5.2 40.9 42.6 34.3 7.8 46.3 49.0
BBVH 21.4s - 77.9 13.7 36.0 5.7 49.0 48.8 38.8 8.5 55.2 55.1
GBVH 2.1h - 85.4 26.9 53.4 6.9 59.0 71.0 49.0 8.8 64.7 67.6

RMBVH 252.3s - 110.3 31.9 64.8 6.6 74.9 84.4 62.2 8.5 82.5 83.1

Sp
on

za

RSBVH 257.8s 57.6% 65.0 4.6 39.8 3.9 19.8 51.7 41.7 6.0 27.6 56.1
SBVH 7.4s 28.8% 70.2 3.0 45.1 3.8 19.9 57.9 41.9 6.3 28.6 56.6

RSSBVH 2052.2s 61.4% 60.9 1.2 42.9 4.3 16.2 55.8 41.6 6.9 23.9 56.7
RGBVH 36.0h - 69.2 7.5 48.6 7.2 23.0 65.5 46.6 8.3 30.9 64.2
RBVH 133.4s - 70.9 7.9 47.0 7.1 23.7 63.5 48.4 9.1 31.8 67.2
GBVH 96.9s - 78.1 9.9 66.4 8.5 27.1 88.2 57.7 8.7 35.9 77.9

RMBVH 25.9s - 85.6 12.0 61.7 5.2 30.5 79.1 62.0 7.1 40.0 81.5
BBVH 2.1s - 83.1 13.0 63.6 5.8 30.6 82.1 62.3 8.4 39.7 83.2

RMGBVH 4.5h - 90.8 16.9 86.6 9.4 35.5 113.3 73.5 9.4 45.0 97.5

Table 5.6: Results for the last two rows of scenes in Figure 5.2. See Table 5.5 for a
description of each measurement.

85

Chapter 5. Temporary Subtree SAH-based Bounding Volume Hierarchy Construction

86

Chapter 6

An SAM-Driven Approach to Agglomer-
ative Clustering

Contents
6.1 SAM Cost of a BVH Forest . 88

6.2 Clustering Criteria . 88

6.3 Evaluation . 90

6.4 Discussion . 91

The construction algorithms we presented in the previous chapter where all top-down
approaches. Unlike kd-trees, BVHs can also be build bottom-up. The highest quality
bottom-up approach is the agglomerative clustering algorithm from Walter et al. [2008].
Initially, for each input primitive the algorithm creates a leaf node, which references the
respective primitive. Then, iteratively nodes are clustered by creating a new parent node
for a pair of nodes. The authors proposed to always cluster the two nodes where the tight
parent bounds have the smallest surface area. This gives the following clustering criterion
for the current set N of clusterable nodes:

xbest = argmin
(n,m)∈N×N, n6=m

Area(Bn◦m). (6.1)

Here, Bn◦m are the tight bounds for the bounds Bn and Bm of nodes n and m. The intuition
behind this clustering given by Walter et al. [2008] is that nodes with small surface areas
should be preferred in the spirit of the surface area metric. As with this construction
algorithm each leaf contains exactly one primitive the authors further proposed to perform
collapsing of clustered nodes into leaves during construction or as a post processing pass
on the constructed BVH if this is beneficial w.r.t. the SAM cost of the subtree.

While the authors report positive results throughout, reevaluation by Aila et al. [2013]
showed very mixed results. Especially, the new EPO cost proposed by Aila et al. [2013]
seems to be comparatively high with agglomerative clustering. Related work only focused
on faster agglomerative clustering-based (e.g. Gu et al. [2013] and Meister and Bittner
[2016]) construction. While Walter et al. [2008] only used a SAM-inspired approach we

87

Chapter 6. An SAM-Driven Approach to Agglomerative Clustering

investigate an agglomerative clustering approach, which includes the SAM throughout.
We start by introducing the SAM cost for a forest of BVHs. Then we propose two clustering
heuristics, which are derived from the forest cost. Finally, we evaluate both heuristics and
conclude with a discussion of the results.

6.1 SAM Cost of a BVH Forest

Like the approach from Walter et al. [2008] we start by constructing separate leaf nodes
for each input primitive. We can interpret this set of leaves as a forest of roots R of BVHs,
where initially each BVH is just a leaf. To find the intersection of a ray with this forest,
each forest root has to be tested for intersection. For each intersected root the subtree has
to be processed. To define the cost of processing a forest we have to introduce the cost
constant cr for the cost of testing a forest root for intersection. As there is no hierarchy
yet, the initial cost for the forest of leaf BVHs is:

cleafforest = |R|cr +
∑

n∈R
pnci . (6.2)

That is we have the number of forest roots |R| times the cost of intersecting a forest root
plus the sum of the probability of intersecting each root times the cost of intersecting a
single primitive. To construct a single BVH from the forest, pairs of forest roots have to
be iteratively clustered. There are two possible clustering operations for how two nodes
can be clustered. We can either create a leaf node which contains all primitives of the
two original nodes, or we create a new common parent node for the pair. Before we
discuss possible clustering criteria for which nodes should be clustered let us assume that
several clustering iterations have been performed with an arbitrary clustering criterion.
The resulting forest has a smaller number of roots and the roots can have subtrees with
more than one node. Thus, the cost of a BVH forest is

cforest = |R|cr +
∑

n∈R
c(n), (6.3)

where c(n) is the SAM cost of the subtree of a forest root n.

6.2 Clustering Criteria

To derive our clustering criteria we first analyze the subtree cost of the two clustering
operations. When creating a leaf for a pair (n, m) ∈ R×R of roots the cost of the leaf is

cleaf (n, m) = cr + (|n|+ |m|)pn◦mci , (6.4)

where pn◦m is the probability of intersecting the tight bounds of the new leaf node n ◦m
and |n| and |m| are the total numbers of primitives in the subtrees of n and m. Instead,
creating a new common parent node for a pair (n, m) results in a new subtree with the
cost

csubtree(n, m) = cr + pn◦mct + c(n) + c(m). (6.5)

The operation which results in lower costs should be chosen. Thus, the cost for clustering
two nodes is

ccluster(n, m) = inf{cleaf (n, m), csubtree(n, m)} (6.6)

88

6.2. Clustering Criteria

Based on these results we found two possible criteria for clustering nodes. The first
criterion is to find the pair x ∈ R × R which gives the node with smallest subtree cost.
That is, we have to compute

xbest = argmin
(n,m)∈R×R, n6=m

ccluster(n, m). (6.7)

The idea behind this heuristic is that it should incrementally produce subtrees with small
SAM cost and that clustering of several subtrees with low cost again produces low cost
subtrees. The second criterion is to find the pair x ∈ R×Rwhich gives the largest reduction
in the forest cost function from Equation 6.3. When clustering a node pair the change in
forest costs is the change in the cost contribution caused by those nodes. The contribution
of a pair of root nodes (n, m) to the total forest cost is

cpair(n, m) = 2cr + c(n) + c(m). (6.8)

The cost delta when clustering (n, m) is simply the difference of the clustering cost and
the pair cost:

∆cforest(n, m) = ccluster(n, m)− cpair(n, m) (6.9)

Now, to find the best clustering candidate pair we have to compute

xbest = arg min
(n,m)∈R×R, n6=m

∆cforest(n, m). (6.10)

Expanding the functions in the definition of ∆cforest(n, m) in Equation 6.9 we get:

∆cforest(n, m) = inf{cleaf (n, m), csubtree(n, m)} − cpair(n, m)

= inf{cr + (|n|+ |m|)pn◦mci , cr + pn◦mct + c(n) + c(m)} − cpair(n, m)

= cr + inf{(|n|+ |m|)pn◦mci , pn◦mct + c(n) + c(m)} − 2cr − c(n)− c(m)

= −cr + inf{(|n|+ |m|)pn◦mci − c(n)− c(m), pn◦mct}.
(6.11)

We can see that independent of the clustering operation the forest cost is always reduced
by the forest root intersection cost cr as there is one less root node after clustering. Thus,
this addend is shared by all candidates and can be ignored. Consequently, cr does not
have to be specified at all for construction. This is also true for construction with our first
criterion. Another observation is that if clustering decides to create a new parent node
the resulting cost delta is ∆cforest(n, m) = pn◦mct − cr . Ignoring the common cr addend
this delta is proportional to Area(Bn◦m). That is, the algorithm of Walter et al. [2008] is
included as a special case. Our SAM based approach also easily integrates leaf creation
into construction in a meaningful way which is not possible with the purely area based
heuristic from Walter et al. [2008].

A naïve implementation of agglomerative clustering has runtime O(n3). Walter et al.
[2008] presented an implementation which uses an auxiliary min-heap for fast retrieval of
best clustering candidate pairs and a special kd-tree with extra information for empirically
fast determination of an optimal clustering partner for a given node. Performance of
their implementation has empirically shown to be sub-quadratic. The implementation
can directly be adapted to use our clustering criteria.

89

Chapter 6. An SAM-Driven Approach to Agglomerative Clustering

Abbreviation Algorithm

BBVH Baseline Plane-Sweep [MacDonald and Booth 1990]
AGGLO Aggl. clustering with pure surface area criterion [Walter et al. 2008]
SAGGLO Aggl. clustering with subtree SAM cost criterion (Equation 6.7)
∆SAGGLO Aggl. clustering with forest SAM cost delta criterion (Equation 6.10)
RBVH RSAH-based algorithm without spatial splits (Chapter 5)

Table 6.1: List of algorithms and their abbreviations used for evaluation of our proposed
clustering criteria for agglomerative clustering.

Avg. (Min/Max) reduction (%)

Primary rays Diffuse rays

Algorithm SAM EPO p m p m

RBVH
-11.7 -22.2 -13.3 -10.4 -12.7 -8.9

(-2.7/-33.3) (-1.4/-65.3) (-2.7/-33.3) (+0.9/-28.3) (-2.7/-33.3) (+0.4/-23.7)

∆SAGGLO
-3.0 +82.3 +5.0 +16.5 +1.7 +13.3

(+36.2/-34.4) (+655.9/-55.0) (+36.2/-34.4) (+83.7/-18.8) (+36.2/-34.4) (+66.6/-15.9)

AGGLO
-2.6 +82.6 +5.4 +17.0 +2.0 +13.5

(+36.0/-34.3) (+643.7/-53.8) (+36.0/-34.3) (+82.9/-16.7) (+36.0/-34.3) (+63.2/-14.8)

SAGGLO
+56.2 +594.6 +122.6 +154.9 +95.3 +125.3

(+147.4/-6.0) (+3346.3/+26.8) (+316.9/-6.0) (+386.8/+30.7) (+198.8/-6.0) (+319.2/+23.4)

Table 6.2: Average, minimum, and maximum reduction of SAM, EPO, as well as predicted
(p) and measured (m) traversal cost of primary and diffuse rays over all scenes relative
to BBVH as baseline. Algorithms are sorted from highest to lowest reduction in traversal
cost of diffuse rays.

6.3 Evaluation

For evaluation of our proposed clustering criteria we used the same hardware and mea-
surement setup as in Section 5.4. We give SAH and EPO cost, and predicted and measured
traversal cost. For the predicted cost we used the alpha values from Table 5.1 in Chapter 5.
Table 6.1 lists all evaluated BVH construction algorithms along with their abbreviations.
The baseline construction algorithm is the standard plane-sweep algorithm (BBVH). The
first agglomerative clustering based algorithm uses the surface area based criterion from
Equation 6.1 as proposed by Walter et al. [2008] (AGGLO). The other two algorithms
use either our subtree SAM cost criterion (SAGGLO) from Equation 6.7 or our BVH forest
SAM cost delta criterion (∆SAGGLO) from Equation 6.10. Finally, we also included our
RSAH-based RBVH algorithm without spatial splits from Chapter 5 for comparison. All
results are compiled in Table 6.3 and Table 6.4. Table 6.2 gives a more condensed view
of the results.

Unexpectedly, SAGGLO by far results in the highest SAM, EPO, and measured traversal
cost for all scenes. Our RBVH algorithm achieves the best result in all scenes except for
Conference, where ∆SAGGLO is best, and Rungholt, where the baseline BBVH is best.
∆SAGGLO performs slightly better than AGGLO in eight out of twelve scenes. Though
compared to BBVH ∆SAGGLO and AGGLO give a slightly better result in Babylon and
much better results in Bubs, Conference, and Sponza, they are inferior to BBVH in the

90

6.4. Discussion

Primary rays Diffuse rays

Scene Builder Time SAM EPO p m p m

Babylon

RBVH 250.25 49.22 12.86 29.91 51.15 35.31 54.25
∆SAGGLO 15.79 47.98 14.23 30.05 51.03 35.07 55.35

AGGLO 15.85 48.97 15.19 31.02 53.10 36.05 56.98
BBVH 3.82 53.72 15.12 33.21 51.89 38.95 58.15

SAGGLO 24.47 78.99 49.58 63.36 106.43 67.74 107.64

Bubs

RBVH 1500.20 16.16 2.91 16.16 31.96 16.16 36.53
∆SAGGLO 107.55 15.90 3.77 15.90 36.19 15.90 40.54

AGGLO 92.97 15.91 3.87 15.91 37.12 15.91 40.77
BBVH 16.52 24.23 8.38 24.23 44.55 24.23 47.87

SAGGLO 129.79 22.76 10.63 22.76 68.32 22.76 67.22

Conference

∆SAGGLO 12.20 37.83 7.62 24.30 32.70 29.74 41.59
RBVH 126.05 38.56 7.09 24.47 32.35 30.14 41.80

AGGLO 9.15 38.11 7.66 24.47 33.48 29.96 42.22
BBVH 2.11 46.44 9.79 30.03 39.50 36.63 49.47

SAGGLO 12.82 53.35 18.56 37.77 51.63 44.03 61.03

Epic

RBVH 237.50 19.47 6.02 10.63 69.24 11.47 69.20
BBVH 3.34 21.33 7.06 11.95 72.62 12.84 73.08

∆SAGGLO 17.04 20.22 9.16 12.96 77.58 13.64 77.23
AGGLO 15.41 20.21 9.04 12.88 80.03 13.57 77.38

SAGGLO 25.34 33.15 31.53 32.09 170.83 32.19 153.32

Fairy

RBVH 111.01 31.48 2.97 8.66 40.03 12.25 47.20
BBVH 1.40 33.38 3.37 9.36 43.42 13.14 49.26

AGGLO 5.97 36.67 6.45 12.48 48.18 16.29 55.20
∆SAGGLO 9.37 36.79 6.69 12.69 51.63 16.48 57.07
SAGGLO 9.51 51.19 17.72 24.40 84.12 28.61 84.91

Hairball

RBVH 1685.17 453.97 36.72 90.75 153.29 152.77 150.12
BBVH 23.80 466.36 37.82 93.31 158.78 157.01 152.96

∆SAGGLO 1104.88 474.34 64.55 117.62 224.48 178.53 210.06
AGGLO 887.52 476.31 65.18 118.41 229.78 179.53 210.58

SAGGLO 1875.35 858.73 319.07 388.95 720.72 469.17 583.76

Table 6.3: Results for agglomerative clustering and the first two rows of scenes in Fig-
ure 5.2 of the previous chapter. p is the EPO-based measure for BVH performance (Equa-
tion 5.3) and m the average measured traversal cost (Equation 5.13). For each scene
builders are sorted from smallest to largest m of diffuse rays. The highest reduction of
each attribute is highlighted per scene.

remaining majority of scenes. Drastic increases in SAM and/or EPO can be observed in
Fairy, Hairball, Powerplant, Rungholt, Sibenik, and Soda.

6.4 Discussion

The clustering criterion based on subtree SAM cost from SAGGLO turned out to be detri-
mental for quality. Analysis of constructed trees revealed that with this criterion the
bounds of clusters where on average bigger than with AGGLO or ∆SAGGLO. The total
leaf cost contribution cL =

∑

l∈L pl |l|ci of all leaves L is essentially the same and at times
even lower than with the other algorithms. That is, SAGGLO essentially constructed sim-
ilar leaves as the other algorithms. Thus, the main difference must be the inner node
case cost csubtree(n, m) of the clustering criterion in Equation 6.7. Ignoring the forest root

91

Chapter 6. An SAM-Driven Approach to Agglomerative Clustering

Primary rays Diffuse rays

Scene Builder Time SAM EPO p m p m

Powerplant

RBVH 96.65 41.06 12.97 27.85 60.83 33.08 60.28
BBVH 2.01 43.93 13.16 29.46 62.90 35.19 63.17

∆SAGGLO 6.03 46.11 20.36 34.00 74.51 38.80 74.52
AGGLO 6.92 46.44 20.37 34.18 79.48 39.04 75.27

SAGGLO 9.35 73.60 58.26 66.39 144.20 69.24 131.15

Rungholt

BBVH 54.26 109.86 3.43 109.86 45.56 109.86 48.51
RBVH 2432.67 105.49 2.74 105.49 45.99 105.49 48.68

AGGLO 231.65 149.39 25.53 149.39 83.32 149.39 79.16
∆SAGGLO 292.97 149.64 25.95 149.64 83.69 149.64 80.82
SAGGLO 421.88 271.83 118.31 271.83 221.80 271.83 203.34

San Miguel

RBVH 8985.24 17.25 7.52 13.08 95.79 14.48 95.01
BBVH 130.53 20.28 10.21 15.97 109.46 17.42 104.94

∆SAGGLO 1076.92 17.04 10.26 14.14 109.22 15.12 110.36
AGGLO 881.36 17.21 10.28 14.24 107.64 15.24 111.13

SAGGLO 1558.25 29.76 39.86 34.09 259.63 32.63 237.68

Sibenik

RBVH 28.97 48.75 4.16 21.06 51.21 31.69 52.07
BBVH 0.52 53.64 5.00 23.43 57.25 35.03 54.81

∆SAGGLO 2.41 55.42 9.53 26.92 59.12 37.86 62.26
AGGLO 1.75 55.69 10.09 27.37 59.51 38.25 62.84

SAGGLO 3.10 87.38 34.75 54.69 113.15 67.24 106.18

Soda

RBVH 1451.70 66.15 10.17 40.90 42.61 46.32 48.96
BBVH 21.35 77.93 13.70 48.96 48.82 55.18 55.05

AGGLO 86.82 82.41 28.51 58.10 80.41 63.32 77.38
∆SAGGLO 88.37 81.99 27.85 57.57 84.78 62.81 77.53
SAGGLO 127.50 133.87 92.06 115.01 176.43 119.06 155.09

Sponza

RBVH 133.39 70.86 7.85 23.72 63.54 31.83 67.20
∆SAGGLO 13.87 72.04 8.58 24.57 73.87 32.74 76.82

AGGLO 10.36 72.05 8.39 24.42 75.45 32.62 78.32
BBVH 2.06 83.14 12.95 30.63 82.07 39.66 83.20

SAGGLO 16.30 107.31 29.50 49.10 143.47 59.12 134.42

Table 6.4: Results for agglomerative clustering and the last two rows of scenes in Fig-
ure 5.2. See Table 6.3 for a description of each measurement.

constant cr the inner node cost is

csubtree(n, m) = pn◦mct + c(n) + c(m).

When searching for a best clustering partner for a node n higher values of pn◦mct can be
compensated with lower c(m) of other nodes m. Thus this criterion is to some extent blind
to the larger cluster bounds. This effect propagates up the tree resulting in bounds which
are almost as big as the scene bounds in the first few upper BVH levels.

While on average better than AGGLO, ∆SAGGLO turned out to be not a significant
improvement. Though ∆SAGGLO more directly aims at reducing SAM cost clustering
decisions are made very local due to the greedy nature. This can result in a seemingly
beneficial series of local clustering operations which still at times result in higher global
cost compared to AGGLO. The higher SAM and EPO cost of AGGLO and ∆SAGGLO com-
pared to BBVH for most of the scenes can be explained by the ignorance of the clustering

92

6.4. Discussion

process towards the inner node bounds in the upper levels from the completely local clus-
tering decision making. Clustering decisions in lower levels can prevent good separation
of nodes in upper levels. BVH analysis showed that the drastic increases in SAM and/or
EPO of these algorithms observed in the previous section for most scenes are caused by
larger bounds and/or higher overlap in the upper levels compared to the BVHs constructed
with BBVH and RBVH. In the light of this the better results of AGGLO and∆SAGGLO than
BBVH for four scenes could be considered accidental as their clustering order happened
to produce good upper bounds.

Though by far not as severe as in the previous chapter we can observe two cases where
the combined SAM-EPO predictor is not sufficient to predict traversal cost for clustering
based construction. In Epic AGGLO has slightly lower SAM and EPO than ∆SAGGLO, but
slightly higher measured traversal cost for diffuse rays and a more pronounced difference
for primary rays. This can also be observed in Soda where ∆SAGGLO has lower SAM and
EPO than AGGLO but higher measured cost. In the previous chapter we only observed
this behavior for the RSSBVH algorithm, which also applies spatial splits. From this, one
might have concluded that spatial splits cause some uncaptured extra traversal cost. This
makes it all the more interesting that we observed this behavior without spatial splits for
AGGLO and ∆SAGGLO.

Future Work An interesting venue for future work might be to find a way to make ag-
glomerative clustering sensitive to the bounds in upper tree levels. One possibility would
be a hybrid top-down/bottom-up construction, which performs SAH-based plane-sweep
construction in the top levels and agglomerative clustering in the remaining levels. Gu et
al. [2013] did a spatial median split pre-partitioning to speed-up agglomerative clustering
by essentially performing less clustering.

An alternative clustering approach might be to restrict the set of possible clustering
partners to candidates from a plane-sweeping partition. For this, three separate arrays of
cluster root references would have to be maintained. Each array sorts the cluster refer-
ences w.r.t. the x, y, or z coordinate of the cluster bounds centroid, respectively. To find the
best clustering partner each cluster only considers neighboring references in each array.
After a new cluster has been created its two subclusters are removed from the arrays and a
new cluster reference for the new cluster is inserted into the arrays. An array maintenance
step is required to keep the clusters sorted. The implicit partition planes encountered in
each step of this algorithm would also be considered by a plane-sweeping algorithm and
should at least result in a better separation of clustered nodes. Though EPO should still
be a problem, it would be interesting to see if this restricted clustering results in better
BVHs compared to standard agglomerative clustering. Given the unreliability regarding
the quality of BVHs produced by clustering it is unclear if it is worthwhile to use agglom-
erative clustering at all.

According to Ize and Hansen [2011] their RTSAH metric, which we briefly discussed in
Section 2.5.8, might also be used for acceleration structure construction. The authors did
not present approaches for this. We think agglomerative clustering is a perfect candidate
for inclusion of RTSAH as it can be directly integrated into our BVH forest SAM cost delta
criterion from Equation 6.10. Also, due to the bottom-up nature of clustering it is very
simple to compute the RTSAH cost of subtrees during construction. On the other hand
inclusion of RTSAH would not remove the problem of too large bounds in the upper tree.
Still, it would be interesting if there is any benefit.

93

Chapter 6. An SAM-Driven Approach to Agglomerative Clustering

94

Chapter 7

Cache-Optimized BVH GPU Memory Lay-
outs for Tracing Incoherent Rays

Contents
7.1 Related Work . 96

7.2 GPU Hardware Details / Test Setup . 98

7.3 GPU Path Tracer Implementation . 99

7.4 BVH Data Structures and Layouts . 100

7.5 Evaluation . 103

7.6 Conclusion . 109

The last three chapters aimed at constructing higher quality BVHs to increase ray tracing
performance. This traversal performance increase comes from a reduced average number
of intersection tests that have to be performed. In this chapter we shift the focus on the
ray tracing performance aspect of parallel acceleration structure traversal. Theoretically,
ray tracing is embarrassingly parallel as different rays can be traced independently. On
multi-core systems it is implemented in a straightforward manner by letting each thread
process its own batch of rays. Further parallelization can be achieved by taking advantage
of SIMD capabilities of multi-core architectures or the massive parallelism of many-core
architectures such as GPUs, which are the focus of this chapter. Efficient parallelization
on SIMD architectures is, however, much harder due to incoherent rays whose origins and
directions vary widely.

Tracing incoherent rays requires traversing different paths through the acceleration
structure, resulting in incoherent memory accesses since different nodes are traversed and
different primitives are tested. As incoherent rays form an absolute majority they pose a
serious challenge. It is thus important to carefully choose where (i.e., in which memory
area) and how to layout data and to use special instructions to unlock the hardware’s
full potential. GPUs typically achieve their massive parallelism by a wide SIMD width
(in our case 32 lanes, see Section 3.2) yielding the following challenges for an efficient
implementation:

95

Chapter 7. Cache-Optimized BVH GPU Memory Layouts for Tracing Incoherent Rays

• SIMD efficiency (ratio of active to total number of SIMD lanes): Especially for incoher-
ent rays, the SIMD efficiency can be low since the number of acceleration structure
nodes that a ray has to test in order to find the nearest intersection can vary signif-
icantly. Some rays terminate earlier than others, leaving a number of SIMD lanes
idle.

• SIMD divergence: Even if all SIMD lanes have active rays, some may want to test
geometry while others are still traversing the acceleration structure. In that case
the execution paths of the lanes diverge and SIMD efficiency is temporarily lower
until the execution paths re-converge.

• Memory bandwidth/latency: As incoherent rays access many different memory ad-
dresses, the number of different cache lines accessed increases, too. On current
GPUs only a single cache line can be read at a time. In the worst case, each SIMD
lane accesses a different cache line, resulting in serialization of the accesses and
increased latency [Aila and Karras 2010].

We focus on the memory effects of tracing incoherent rays on NVIDIA GPUs. “Real-
world” incoherent rays are generated by a basic path tracer. Presumably, the cache effi-
ciency when tracing incoherent rays is low. We analyze our GPU path tracer and the effects
of rearranging the nodes of the acceleration structure (a bounding volume hierarchy) on
cache efficiency using previously recorded access statistics. Our goal is to increase cache
hit rates and reduce the number of cache lines read per access. Our contributions are the
analysis of the cache behavior when tracing incoherent rays in real-world scenarios. In
particular, we show that the commonly used depth-first search memory layout performs
worst and we present several alternative layouts. None of those performs, however, best
in all cases.

7.1 Related Work

Plunkett and Bailey [1985] first implemented ray tracing on a vector processor. With the
widespread availability of SIMD architectures, research on efficiently implementing ray
tracing on such architectures proliferated. Wald et al. [2001b] presented an SIMD imple-
mentation of a ray tracer using Intel’s SSE instructions. Their packet tracing technique
exploits ray coherence by tracing rays in packets of SIMD width size (4 for SSE) which
achieves good caching behavior and yields a speed-up of roughly half an order of magni-
tude. Memory bandwidth is reduced by loading a node only once for packets of 4 rays.
Later, Wald et al. [2007] proposed a combination of packet and frustum tracing. Using a
packet size larger than the native SIMD width and different optimizations, they reported
3.3-10.7× speed-ups over the native SIMD packet size. Purcell et al. [2002] first presented
a complete GPU ray tracing pipeline which had to map all computations to the GPU’s ren-
dering pipeline. First ray tracing implementations using NVIDIA’s CUDA [NVIDIA 2016a]
were proposed by Gunther et al. [2007] and Popov et al. [2007].

Aila and Laine [2009] presented different trace loop implementation organizations.
The key difference to packet tracing is that essentially single ray tracing in an SIMD man-
ner is performed using scatter/gather operations and hardware SIMD divergence han-
dling. Rays only visit nodes which they actually intersect, but memory accesses become

96

7.1. Related Work

more incoherent. The speculative while-while loop organization performed best. It pro-
cesses rays in one of two phases at a time: traversal or triangle intersection. During
traversal, an SIMD lane traverses the tree until it finds a leaf. If some SIMD lanes have not
yet found a leaf, the SIMD lane stores its found leaf and speculatively continues traver-
sal until every SIMD lane found a leaf. Though this may result in superfluous memory
accesses, the memory bandwidth overhead is generally low enough and the higher SIMD
efficiency results in a 10% lower runtime.

Ray grouping and reordering Simply grouping rays into packets only works well for co-
herent rays. Therefore, techniques that extract hidden ray coherence using regrouping or
reordering ray packets have been developed. Pharr et al. [1997] and Navratil et al. [2007]
proposed to defer ray processing at certain queue points. Queue processing is scheduled
to minimize and amortize cache misses, and reduce memory bandwidth demand when
computing intersections with scene geometry. Mansson et al. [2007] investigated several
regrouping algorithms for secondary rays. Further strategies are regrouping by ray type
[Boulos et al. 2007], by hashes generated from a ray’s geometry [Garanzha and Loop
2010], by approximations of ray intersection points [Moon et al. 2010], or by ray packet
filtering [Boulos et al. 2008].

Cache efficient algorithms We can distinguish two types of cache-efficient algorithms:
Cache-aware algorithms explicitly use prior knowledge about caches (e.g., cache-line size).
Cache-oblivious algorithms [Prokop 1999] only assume that a cache is present without
knowing any of its properties.

Aila and Karras [2010] presented a massively parallel hardware architecture which is
to some extent based on NVIDIA’s Fermi GPU architecture. They developed a cache-aware
traversal algorithm specifically designed for this architecture, which achieves up to a 90%
reduction in total memory bandwidth for tracing incoherent rays. A major assumption of
the algorithm is, that the L1 cache can access multiple cache lines per clock (otherwise
L1 fetches are a serious bottleneck). However, according to Aila and Karras [2010] this
was not the case at the time of their publication. To our knowledge, L1 caches of current
hardware still do not have such capabilities. While the latest NVIDIA Nsight Profiler User
Guide [NVIDIA 2017b] states in its memory statistics section, that memory accesses which
spread over several L1 or texture cache lines incur several transactions per request, it is
left open whether multiple transactions can be performed per clock.

Wald et al. [2001b] and Havran [1999] optimized cache efficiency by either storing just
one child pointer or completely omitting them through special node arrangements, thus
reducing node size. Kim et al. [2010] proposed a random-accessible compressed BVH with
context-based arithmetic coding. Combined with random accessible compressed triangle
meshes [Yoon and Lindstrom 2007] they achieve an average rendering time improvement
of 35-54% due to increased cache efficiency and hit rate as more nodes fit into the cache.
Yoon and Manocha [2006] proposed a cache-oblivious BVH layout for collision detection.
They also conducted raytracing experiments with coherent rays where they adopted their
layout to k-d trees. This resulted in a 44% runtime improvement compared to a kd-tree
with depth-first layout. Emde Boas [1975] derived a cache-oblivious tree memory layout
built by recursively subdividing the height of the tree in half yielding a number of sub-trees
per step. This clusters nodes and is beneficial for caches since traversing a node causes
nodes of the subtree below the current node to be loaded into the cache which are likely

97

Chapter 7. Cache-Optimized BVH GPU Memory Layouts for Tracing Incoherent Rays

12,032 12,160 12,288 12,416 12,544 12,672 12,800 12,928
100
105
110
115
120
125
130
135

Texture Cache Footprint (bytes)

R
ea

d
La

te
nc

y
(c

lo
ck

s)

Figure 7.1: Average texture memory L1 cache latency in cycles of a Geforce GTX 680
revealing the cache properties.

to be traversed as well. Gil and Itai [1999] proposed a dynamic programming algorithm
which allocates tree nodes to memory pages, minimizing the number of visited memory
pages and page faults. Bender et al. [2002] present faster but approximate algorithms
for solving the same problem in a cache-oblivious manner. Multi-branching BVHs [Ernst
and Greiner 2008, Dammertz et al. 2008, Wald et al. 2008] improve cache efficiency by
simply requiring less memory thus reducing bandwidth demand and keeping more nodes
in the cache. Contrary to packet tracing a single ray is tested against SIMD width size
number of bounding boxes and triangles. This is beneficial for incoherent rays but slower
for coherent rays compared to packet tracing.

7.2 GPU Hardware Details / Test Setup

We made minor modifications to the micro-benchmarking code from Wong et al. [2010]
and ran it on an NVIDIA Geforce GTX 680 to determine cache properties and access la-
tencies. We evaluated the GPUs and performed all benchmarks using CUDA Version 5.0
[NVIDIA 2016a], the NVIDIA Nsight Visual Studio Edition 3.0 Beta, and the CUDA Pro-
filer Tools Interface (CUPTI). The test system is equipped with an Intel Core i7-960, 32 GB
RAM, and an NVIDIA Geforce GTX 480 (primary device) as well as a GTX 680 with 2 GB
RAM (headless device). All tests were performed on the GTX 680 using driver version
306.94.

7.2.1 Cache Properties

The Geforce GTX 680 consists of eight Streaming Multiprocessors (SMX) with 192 CUDA
cores each. It provides 2048 MB of global/texture memory, 16, 32 or 48 KB of shared
memory or L1 cache for local memory (depending on the runtime configuration) and
65536 registers per SMX. The fetch latency for a global memory load of 4 bytes hitting
the L2 cache takes ≈160 cycles while a miss results in a latency of ≈290 cycles.

Given the average texture memory cache access latency in Figure 7.1 retrieved from
the micro-benchmark, we can deduce that the texture cache size is 12 KB, consisting of 4
cache sets with a cache line size of 128 bytes and is 24-way set associative. L1 hit latency
for reading 4 bytes is ≈105 cycles, L2 hit latency is ≈266 cycles and missing both L1 and

98

7.3. GPU Path Tracer Implementation

0 5 10 15 20 25 30 35
0

200

400

600

800

1,000

1,200

n-way bank conflicts

A
ve

ra
ge

R
ea

d
La

te
nc

y
(c

lo
ck

s)
Global Mem.
Shared Mem.
Texture Mem.

0 5 10 15 20 25 30 35
0

200

400

600

800

1,000

1,200

n threads reading with threadID*132B-stride

A
ve

ra
ge

R
ea

d
La

te
nc

y
(c

lo
ck

s)

Global Mem.
Shared Mem.
Texture Mem.

Figure 7.2: Average read latency in cycles of a Geforce GTX 680 using a memory access
pattern which would cause n-way bank conflicts (top) in shared memory and a shared
memory optimal access pattern (bottom).

L2 incurs a latency of ≈350 cycles. Figure 7.2 shows the latency of two different access
patterns evaluated in three different memory areas. One causes n-way bank conflicts in
shared memory and the other is optimal for shared memory. We can see that while the
patterns are bad for either global or both global and shared memory, texture memory
performs almost equally well with either access pattern.

7.3 GPU Path Tracer Implementation

The GPU path tracer implementation essentially follows van Antwerpen’s streaming de-
sign [Antwerpen 2011]. A large batch of 220 samples is processed in parallel using one
thread per sample. Sample paths are iteratively extended. Samples that have finished
computation due to termination via Russian Roulette or because their paths have escaped
the scene are removed from the stream in each iteration and the remaining samples are
compacted. To keep the amount of work constant, each finished sample is regenerated
by appending a new sample to the compacted stream. As previously observed [Antwer-
pen 2011], appending regenerated samples exploits primary ray or even higher order ray

99

Chapter 7. Cache-Optimized BVH GPU Memory Layouts for Tracing Incoherent Rays

coherence due to specular reflection or refraction and improves SIMD efficiency. To in-
clude such effects on performance in our analysis we use the Ashikhmin-Shirley BRDF
[Ashikhmin and Shirley 2000] to model scenes with materials ranging from diffuse to
highly specular as well as refractive rough surfaces [Walter et al. 2007]. For ray traver-
sal, we use the fast speculative-while-while traversal kernel design [Aila and Laine 2009].
For the underlying ray traversal acceleration structure we use the established high qual-
ity split-BVH [Stich et al. 2009]. The whole path tracer is implemented in four kernels
(sample initialization/regeneration, ray tracing, path extension, connection validation).
As tracing is done in a designated kernel, all statistics are only affected by ray traversal
and not by other computations such as shading.

7.4 BVH Data Structures and Layouts

For our analysis we focus on binary bounding volume hierarchies with axis aligned bound-
ing boxes and include several memory layouts for the node data and the tree itself.

7.4.1 Node Layouts

The classic BVH node data structure stores a bounding volume along with pointers to its
children. We follow Aila and Laine [2009], i.e., a node does not store its bounding box, but
the bounding boxes of its children. Both children are fetched and tested together, which
is more efficient for GPUs due to increased instruction level parallelism. This also allows
to implement rough front to back traversal as the nodes can be sorted by distance while
testing for intersection. Depending on the data layout, the size of such a node is at least
56 bytes (2 float values for minimum/maximum per dimension and child plus pointers).
We implemented one array-of-structures (AoS) layout and two structure-of-arrays (SoA)
layouts:

• AoS: 64 bytes, including 8 bytes padding (fitting 2 nodes in one 128B cache line)

• SoA32_24: 32 + 24 bytes, min/max x/y both children, min/max z both children
and pointers, plus 8 bytes padding (fitting 4 nodes across 2 128B cache lines)

• SoA16_8: 3× 16+ 8 bytes, min/max x/y child1, min/max x/y child2, min/max z
both children, pointers (fitting 8 nodes across 4 128B cache lines)

We also analyzed an SoA8 layout which fitted 16 nodes in 7 cache lines. As it consistently
performed much worse than the other layouts, we excluded it from our experiments.

7.4.2 Tree Layouts

A tree layout describes how nodes are grouped in memory. We analyzed six different tree
layouts. The first four layouts are two common layouts and two cache-efficient layouts.
We further propose two more layouts. The idea behind them is to compute a path traced
image at a relatively low sample rate as a pre-process, recording the number of accesses for
each BVH node. We then use the access statistics to guide the two layouting methods. In
the following we describe the layouts in more detail. They are also illustrated in Figure 7.3.
Layouts not using statistics are:

100

7.4. BVH Data Structures and Layouts

• Depth-first-search (DFS): Nodes are ordered as visited by a pre-order traversal.
This layout performs best with coherent rays since a cache line is potentially filled
with nodes on the path to the leaf.

• Breadth-first-search (BFS): Nodes are ordered as visited by a breadth-first traver-
sal visiting the left child node first. This fits best for rays traversing neighboring
branches.

• van Emde Boas (vEB): A cache-oblivious tree layout [Emde Boas 1975] described
in Section 7.1.

• COLBVH (COL): A cache-oblivious tree layout mainly used for collision detection
[Yoon and Manocha 2006] but also applicable to ray tracing. Beginning with all n
nodes in a root cluster, the tree is recursively decomposed into clusters of d

p
n+ 1−

1e nodes. Nodes are merged into root clusters depending on their access probability
computed from the ratio of the surface areas of its grand-parent and parent.

Next we describe our two proposed layouts depending on node access statistics collected
in a pre-process. Both use a preset empirical threshold p:

• Swapped subtrees (SWST): Swap the sub-trees of a node in a depth-first layout
if the fraction of left child accesses compared to all child accesses is below a fixed
threshold p ∈ [0, 0.5]. Left children of the nodes form a path whose nodes are
accessed the most and are spread over fewer cache lines.

• Treelet based DFS/BFS (TDFS/TBFS): A treelet is a connected sub-tree of a BVH.
For this layout treelets of nodes that were accessed above the threshold p are built.
This decomposes the BVH into treelets whose nodes are accessed the most. The
treelet decomposition algorithm works with two queues: a merge queue and a de-
ferred queue. The merge queue contains nodes which will be added to the current
treelet and the other queue contains nodes which are deferred for creating addi-
tional treelets. Initially the current treelet and deferred queue are empty, and the
merge queue contains the BVH root. Nodes are removed from the merge queue and
added to the current treelet as long as the merge queue is not empty. When a node
is removed its children are added to one of the queues. If the percentage of rays that
continued to descend to a child node is larger than a fixed threshold p ∈ [0%, 100%]
the child is added to the merge queue, otherwise to the deferred queue. If the merge
queue is empty, a new treelet is created by moving a node from the deferred queue
to the merge queue and repeating the process. Once no more nodes are present in
either queue the algorithm is done. The internal memory layout of a treelet can be
chosen freely. By always adding nodes just to the front or the back of the merge
queue we automatically obtain a treelet in DFS or BFS order. Finally the node order
of the whole tree is obtained by lining up the nodes of all treelets. Thus treelets are
only used as a means for grouping nodes and are not stored explicitly.

Note that there are other possible treelet construction algorithms such as the construction
algorithm described by Aila and Karras [2010]. As mentioned previously, this approach is
to our knowledge not supported by current hardware and therefore not included in our
analysis.

101

Chapter 7. Cache-Optimized BVH GPU Memory Layouts for Tracing Incoherent Rays

1

2

3

4 5

6

7 8

9 10

11

12

13 14

15

16

17

18

19 20

21 22

23

24 25

26

27

1

2

4

8 9

5

10 11

16 17

3

6

12 13

7

14

18

20

22 23

26 27

21

24 25

19

15

1

2

4

5 6

7

8 9

16 17

3

10

11 12

13

14

18

19

22 23

24 25

20

26 27

21

15

1

2

3

4 5

10

11 12

13 14

6

7

8 9

15

16

19

20

21 22

23 24

25

26 27

17

18

1

2

4

6 7

10

11 12

13 14

3

5

8 9

15

16

19

20

22 23

26 27

21

24 25

18

17

Figure 7.3: The different tree layouts described in Section 7.4.2 for a tree with n = 27
nodes. SWST is omitted as it is essentially the same as DFS but the left child is always
the more likely one to be visited. Top left: DFS. Top right: BFS. Center left: van Emde
Boas layout. The tree height is recursively split in half resulting in a number of subtrees
in each step. Center right: COLBVH layout from Yoon and Manocha [2006]. The first
cluster decomposition step is shown. Based on the number of tree nodes it creates a root
cluster of size s = d

p
n+ 1− 1e= 5 starting from the root node. The root cluster greedily

collects nodes with highest access probability until it is full. The subtrees of root cluster
leaf children form child clusters. This decomposes the tree into roughly

p
n ≈ 5 clusters.

The decomposition recursively proceeds with all clusters starting with the root cluster.
The postorder root cluster first traversal gives the order of the nodes. Bottom: Our TDFS
(left) and TBFS (right) treelet layouts, where nodes in treelets are either stored in DFS or
BFS order.

102

7.5. Evaluation

Crytek Sponza Kitchen Hairball San Miguel

262269 triangles 425504 triangles 2880012 triangles 7880512 triangles
99127 nodes (6.1MB) 150219 nodes (9.2MB) 1021548 nodes (62.4MB) 2723017 nodes (166.2MB)

Table 7.1: Scenes used for benchmarking. The number of scene triangles and BVH nodes
including the memory footprint of the BVH is shown as well.

7.5 Evaluation

We evaluated the performance of the BVH and node layouts on four different scenes of
varying complexity and materials (see Table 7.1). The Kitchen scene consists of a mixture
of diffuse, glossy, and translucent materials. Hairball uses a nearly specular refractive
material. Sponza and San Miguel use diffuse materials throughout the scenes. Several
different metrics are computed using the event counters from CUPTI. Some of them can
be found in the CUPTI User’s Guide, others were deduced from values in Nsight Visual
Studio Edition and reconstructed with events from CUPTI. A short explanation of each
metric follows (see Schulz et al. [2013] for more details):

• Runtime, trace kernel runtime in milliseconds, measured using CUPTI’s activity API.

• GM/L1 ← L2 cache load hit rate, percentage of global memory (GM) loads that
hit in L2 cache. It is slightly diluted as the event counters include both global and
local memory loads. (Local memory makes up ∼10% of the sum of global and local
memory traffic.)

• Tex cache hit rate, percentage of texture memory loads that hit the texture memory
cache.

• Instruction replay overhead, percentage of instructions that were issued due to
replaying memory accesses, such as cache misses (lower is better).

• SIMD efficiency (warp execution efficiency), percentage of average active to total
number of threads per warp.

• Branch efficiency, ratio of non-divergent branches to all branches (SIMD diver-
gence).

• Load efficiency, the ratio of requested memory load throughput to actual memory
load throughput. That is, the ratio of the ideal number of memory transactions for a
warp-wide memory load to the average measured number of transactions per load
(see Section 3.4).

103

Chapter 7. Cache-Optimized BVH GPU Memory Layouts for Tracing Incoherent Rays

7.5.1 Baseline Performance Analysis

The baseline BVH is laid out in DFS order and stores nodes in AoS format. The AoS node
format was chosen because Aila and Laine [2009] are using it in their GPU ray traversal
routines which are amongst the fastest. Tree nodes are accessed via global memory and
geometry via texture memory. Furthermore, Aila et al. [2012] proposed to store the BVH
in texture memory but did not state expected speed-ups. We evaluated the gain of storing
BVHs in texture memory and included the results in the layout evaluation.

Figure 7.4 and Figure 7.5 give an overview of the baseline performance for each scene
and render loop iteration. We can see the effect of incoherent rays immediately after
the first iteration. Runtime increases fivefold from 2.85 ms to 14.36 ms for the Kitchen
scene. The number of primary rays per batch drops to 20%. Despite the huge number of
incoherent rays the branch efficiency only decreases slightly to 85%. This indicates that
threads in a warp mostly agree on their execution path. The cache hit rate does not suffer
noticeably. The amount of data transferred between the different caches in the memory
hierarchy shows that most data requests are serviced by caches. We notice a significantly
lower load and SIMD efficiency after the first iteration, which later on increases with the
number of primary rays per batch. The achieved occupancy stays relatively close to the
theoretical maximum of 75% which means that work is well spread over the GPU’s multi-
processors. For the Hairball scene we made a similar observation. Runtime increases from
2.49 ms up to 75.29 ms after a significant number of rays did not hit the environment map
but the geometry. Especially the load efficiency as well as the SIMD efficiency collapses
due to a combination of the incoherent memory access pattern and the depth complexity
of the BVH tree. Observations for Sponza and San Miguel are analogous.

7.5.2 BVH and Node Layouts

Table 7.2 shows a ranking of all BVH and node layout combinations which were ac-
cessed via global memory or texture memory. The ranking is performed w.r.t. the average
achieved speedup compared to the DFS layout in the respective memory area. The SWST,
TDFS and TBFS layouts require a threshold probability p. We have tested a number of
different values to find the best performing one. The best threshold is required to per-
form well for all scenes in our data set so that its performance extends to unknown data
sets. We use the sum of the scene runtimes to measure the performance of a threshold
and choose the best performing ones. The determined thresholds are stated in the table
caption. Table 7.3 additionally shows per scene rankings. Following, we will compare the
best performing combinations of threshold, BVH and node layout in each memory area to
the other introduced BVH layouts.

Global Memory Overall, the node layout has the biggest impact on runtime. The AoS
layout performs best followed by SoA32_24 and SoA16_8, except for the Kitchen scene
where it is roughly the other way around. Runtime of AoS-based layouts is 10% – 35%
lower than SoA16_8 based layouts. For AoS performance differences between tree layouts
are only up to 2%. Only in the San Miguel scene the treelet DFS layout manages to achieve
6%. Our baseline already performs quite well. For the other node layouts tree layouts im-
prove performance up to 9%, i.e., without access statistics the simple BFS layout performs
best for all node layouts, followed by the more complex vEB layout, whereas DFS on av-
erage performs worst for all node layouts. Interestingly the AoS SWST layout, which is

104

7.5. Evaluation

0
10

20
30

40
50

60
70

80
90

10
0

0%10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

11
0%

12
0%

K
it

ch
en

B
as

el
in

e
-D

FS
/A

oS

0
10

20
30

40
50

60
70

80
90

10
0

0m
s

2m
s

4m
s

6m
s

8m
s

10
m

s

12
m

s

14
m

s

16
m

s

18
m

s

0
10

20
30

40
50

60
70

80
90

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

0%10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

11
0%

12
0%

H
ai

rb
al

lB
as

el
in

e
-D

FS
/A

oS

0
10

20
30

40
50

60
70

80
90

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

0m
s

10
m

s

20
m

s

30
m

s

40
m

s

50
m

s

60
m

s

70
m

s

80
m

s

0
10

20
30

40
50

60
70

80
90

10
0

0%10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

11
0%

12
0%

0
10

20
30

40
50

60
70

80
90

10
0

0m
s

2m
s

4m
s

6m
s

8m
s

10
m

s

12
m

s

14
m

s

16
m

s

18
m

s

R
un

ti
m

e
C

ac
he

lo
ad

hi
t

ra
te

SI
M

D
ef

f.
B

ra
nc

h
ef

f.
Lo

ad
ef

f.
In

st
.

re
pl

ay
ov

er
he

ad
R

ay
s

in
ba

tc
h

Pr
im

ar
y

ra
ys

in
ba

tc
h

0
10

20
30

40
50

60
70

80
90

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

0%10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

11
0%

12
0%

0
10

20
30

40
50

60
70

80
90

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

0m
s

10
m

s

20
m

s

30
m

s

40
m

s

50
m

s

60
m

s

70
m

s

80
m

s

R
un

ti
m

e
C

ac
he

lo
ad

hi
t

ra
te

SI
M

D
ef

f.
B

ra
nc

h
ef

f.
Lo

ad
ef

f.
In

st
.

re
pl

ay
ov

er
he

ad
R

ay
s

in
ba

tc
h

Pr
im

ar
y

ra
ys

in
ba

tc
h

Fi
gu

re
7.

4:
Tr

ac
e

ke
rn

el
pr

ofi
lin

g
gr

ap
hs

of
th

e
ba

se
lin

e
fo

r
th

e
K

it
ch

en
an

d
H

ai
rb

al
ls

ce
ne

s
us

in
g

a
G

ef
or

ce
G

TX
68

0.
R

es
ol

ut
io

n
is

10
24

x7
68

w
it

h
32

sp
p.

N
od

es
ha

ve
A

oS
fo

rm
at

an
d

ar
e

st
or

ed
in

D
FS

or
de

r.
Th

e
fig

ur
e

sh
ow

s
th

e
ru

nt
im

e
be

ha
vi

or
(l

ef
ty

ax
is

)
an

d
G

PU
m

et
ri

cs
(r

ig
ht

y
ax

is
)

ov
er

al
lr

en
de

ri
ng

lo
op

it
er

at
io

ns
(x

ax
is

).
BV

H
no

de
s

ar
e

ei
th

er
st

or
ed

in
gl

ob
al

m
em

or
y

(t
op

)
or

te
xt

ur
e

m
em

or
y

(b
ot

to
m

).

105

Chapter 7. Cache-Optimized BVH GPU Memory Layouts for Tracing Incoherent Rays

0
5

10
15

20
25

30
35

0% 10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%
Sponza

B
aseline

-D
FS/A

oS

0
5

10
15

20
25

30
35

0m
s

2m
s

4m
s

6m
s

8m
s

10m
s

12m
s

14m
s

16m
s

18m
s

0
10

20
30

40
50

60
0% 10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%
San

M
iguelB

aseline
-D

FS/A
oS

0
10

20
30

40
50

60
0m

s

5m
s

10m
s

15m
s

20m
s

25m
s

30m
s

35m
s

40m
s

45m
s

0
5

10
15

20
25

30
35

0% 10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

0
5

10
15

20
25

30
35

0m
s

2m
s

4m
s

6m
s

8m
s

10m
s

12m
s

14m
s

16m
s

18m
s

R
untim

e
C

ache
load

hit
rate

SIM
D

eff.
B

ranch
eff.

Load
eff.

Inst.
replay

overhead
R

ays
in

batch
Prim

ary
rays

in
batch

0
10

20
30

40
50

60
0% 10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

0
10

20
30

40
50

60
0m

s

5m
s

10m
s

15m
s

20m
s

25m
s

30m
s

35m
s

40m
s

45m
s

R
untim

e
C

ache
load

hit
rate

SIM
D

eff.
B

ranch
eff.

Load
eff.

Inst.
replay

overhead
R

ays
in

batch
Prim

ary
rays

in
batch

Figure
7.5:

Trace
kernelprofiling

graphs
ofthe

baseline
for

the
Crytek

Sponza
and

San
M

iguelscenes
using

a
G

eforce
G

TX
680.

R
esolution

is
1024x768

w
ith

32spp.
N

odes
have

A
oS

form
atand

are
stored

in
D

FS
order.

The
figure

show
s

the
runtim

e
behavior(lefty

axis)
and

G
PU

m
etrics

(right
y

axis)
over

allrendering
loop

iterations
(x

axis).
BV

H
nodes

are
either

stored
in

globalm
em

ory
(top)

or
texture

m
em

ory
(bottom

).

106

7.5. Evaluation

layout Crytek Sponza Kitchen Hairball San Miguel

BVH node R H SZ R H SZ R H SZ R H SZ

GMem

TDFS AoS 581.7 86.7 94.3 1386.2 89.1 218.6 7504.9 60.5 948.8 2071.4 71.4 287.4
BFS AoS 583.3 86.5 94.3 1364.6 89.0 218.6 7462.2 60.4 948.8 2131.1 70.7 287.6
TBFS AoS 582.6 86.6 94.3 1371.8 89.1 218.6 7469.5 60.4 948.8 2142.8 70.8 287.7
vEB AoS 582.5 86.6 94.3 1374.6 89.0 218.6 7469.4 60.6 948.6 2165.4 70.7 287.7
COL AoS 582.5 86.7 94.3 1385.5 89.1 218.6 7539.5 60.6 949.1 2166.9 70.9 287.7
DFS AoS 583.5 86.6 94.3 1394.9 89.0 218.6 7576.0 60.7 949.1 2205.3 70.6 287.9
SWST AoS 582.2 86.8 94.3 1391.9 89.1 218.6 7638.8 60.8 949.3 2267.9 71.0 288.0
BFS SoA32_24 581.0 85.1 94.1 1310.1 88.4 217.8 9099.2 55.3 950.3 2683.3 64.4 287.4
vEB SoA32_24 583.9 85.3 94.2 1355.1 88.7 217.9 9059.4 55.7 950.1 2824.0 64.6 287.6
COL SoA32_24 585.1 85.4 94.2 1335.2 88.8 217.9 9269.1 55.4 950.7 2859.4 64.9 287.7
DFS SoA32_24 595.3 84.6 94.2 1357.9 88.3 217.9 9320.0 54.8 950.7 2932.9 63.3 288.2
BFS SoA16_8 637.4 77.2 93.4 1346.1 81.7 213.4 10747.6 38.1 942.2 3270.6 48.3 285.3
vEB SoA16_8 641.3 77.9 93.3 1364.4 83.4 215.3 10555.1 40.0 942.8 3376.6 48.6 286.1
COL SoA16_8 651.3 77.8 93.2 1371.4 84.0 215.3 10780.1 39.6 943.4 3437.5 49.1 286.3
DFS SoA16_8 680.1 75.8 93.6 1436.5 82.0 217.1 10969.3 38.3 943.0 3667.2 45.4 287.1

TMem

TDFS AoS 372.4 76.5 136.3 812.6 65.6 268.1 5369.4 59.8 1053.8 1300.4 61.0 337.3
BFS AoS 373.1 76.4 136.3 807.7 65.6 268.1 5356.7 59.9 1053.8 1315.0 61.2 337.3
TBFS AoS 373.1 76.5 136.3 810.2 65.7 268.1 5359.3 59.9 1053.8 1315.0 61.2 337.3
vEB AoS 373.0 76.5 136.3 806.7 65.5 268.1 5357.3 59.8 1053.8 1326.4 61.1 337.3
COL AoS 373.4 76.5 136.3 804.2 65.6 268.1 5386.1 59.8 1053.8 1334.8 61.0 337.3
SWST AoS 373.8 76.5 136.3 805.1 65.5 268.1 5394.3 59.9 1053.8 1353.1 60.9 337.2
DFS AoS 374.2 76.4 136.3 806.2 65.4 268.1 5394.9 59.8 1053.8 1356.4 60.9 337.3
BFS SoA32_24 412.9 73.0 136.4 845.6 61.5 268.3 6868.8 56.6 1056.5 1877.0 56.4 337.3
vEB SoA32_24 417.0 73.0 136.4 837.4 61.1 268.3 6839.6 56.4 1056.6 1955.8 56.2 337.4
COL SoA32_24 417.1 73.0 136.4 852.9 61.2 268.3 6956.5 56.3 1056.5 1978.8 56.2 337.4
DFS SoA32_24 423.4 72.7 136.4 852.7 60.7 268.3 6971.4 56.3 1056.5 2023.4 55.9 337.3
BFS SoA16_8 497.0 60.2 135.7 988.0 43.9 264.8 9570.8 36.7 1048.7 2837.8 34.7 335.0
vEB SoA16_8 495.3 61.1 135.6 981.6 43.9 266.5 9261.5 37.8 1048.9 2932.9 35.2 335.3
COL SoA16_8 506.1 61.2 135.6 973.1 44.2 266.6 9515.5 37.7 1048.6 2999.3 35.3 335.4
DFS SoA16_8 535.7 60.5 135.7 1042.8 42.9 267.6 9663.3 38.4 1049.5 3229.9 35.1 335.9

Table 7.2: Ranking of BVH and node layout combinations w.r.t. average speedup, where
nodes are either stored in global memory (GMem) or texture memory (TMem). Runtime
(R) in milliseconds, cache hit rate (H) in percent and transferred data size (SZ) in giga-
bytes are shown. The thresholds of TDFS, TBFS, and SWST in global memory are 0.6, 0.3,
and 0.5, respectively. In texture memory the thresholds are 0.6, 0.2, and 0.4, respectively.

basically a DFS layout, on average performed slightly worse than DFS. The better per-
forming tree layouts have a number of effects. On average, slightly less data is transferred
by global load instructions, the average number of transactions per global load request is
decreased and instruction replay overhead dropped minimally (see Schulz et al. [2013]
for details). This is reflected in a higher IPC count because fewer instructions have to be
issued due to memory replays. We can see the impact that the SoA32_24 node layout has
on the caches in a lower L2 global load hit rate. A L2 cache miss is more expensive and
displaces twice as many nodes than when using the AoS node layout. The situation is
similar but exacerbated for the SoA16_8 layouts which all exhibit worse performance due
to their even higher miss penalty which results in very low cache hit rates.

Texture Memory Again we can see that the node layout has the biggest performance
impact with the AoS layout performing best followed by SoA32_24 and SoA16_8. Perfor-
mance differences of the AoS and SoA16_8 based layouts range from 17% – 50%. The
best performing combination is the TDFS BVH layout with a threshold of 0.6 using the

107

Chapter 7. Cache-Optimized BVH GPU Memory Layouts for Tracing Incoherent Rays

Crytek Sponza Kitchen Hairball San Miguel

BVH node R BVH node R BVH node R BVH node R

GMem

BFS SoA32_24 581.0 BFS SoA32_24 1310.1 BFS AoS 7462.2 TDFS AoS 2071.4
TDFS AoS 581.7 COL SoA32_24 1335.2 vEB AoS 7469.4 BFS AoS 2131.1
SWST AoS 582.2 BFS SoA16_8 1346.1 TBFS AoS 7469.5 TBFS AoS 2142.8
vEB AoS 582.5 vEB SoA32_24 1355.1 TDFS AoS 7504.9 vEB AoS 2165.4
COL AoS 582.5 DFS SoA32_24 1357.9 COL AoS 7539.5 COL AoS 2166.9
TBFS AoS 582.6 vEB SoA16_8 1364.4 DFS AoS 7576.0 DFS AoS 2205.3
BFS AoS 583.3 BFS AoS 1364.6 SWST AoS 7638.8 SWST AoS 2267.9
DFS AoS 583.5 COL SoA16_8 1371.4 vEB SoA32_24 9059.4 BFS SoA32_24 2683.3
vEB SoA32_24 583.9 TBFS AoS 1371.8 BFS SoA32_24 9099.2 vEB SoA32_24 2824.0
COL SoA32_24 585.1 vEB AoS 1374.6 COL SoA32_24 9269.1 COL SoA32_24 2859.4
DFS SoA32_24 595.3 COL AoS 1385.5 DFS SoA32_24 9320.0 DFS SoA32_24 2932.9
BFS SoA16_8 637.4 TDFS AoS 1386.2 vEB SoA16_8 10555.1 BFS SoA16_8 3270.6
vEB SoA16_8 641.3 SWST AoS 1391.9 BFS SoA16_8 10747.6 vEB SoA16_8 3376.6
COL SoA16_8 651.3 DFS AoS 1394.9 COL SoA16_8 10780.1 COL SoA16_8 3437.5
DFS SoA16_8 680.1 DFS SoA16_8 1436.5 DFS SoA16_8 10969.3 DFS SoA16_8 3667.2

TMem

TDFS AoS 372.4 COL AoS 804.2 BFS AoS 5356.7 TDFS AoS 1300.4
vEB AoS 373.0 SWST AoS 805.1 vEB AoS 5357.3 TBFS AoS 1315.0
TBFS AoS 373.1 DFS AoS 806.2 TBFS AoS 5359.3 BFS AoS 1315.0
BFS AoS 373.1 vEB AoS 806.7 TDFS AoS 5369.4 vEB AoS 1326.4
COL AoS 373.4 BFS AoS 807.7 COL AoS 5386.1 COL AoS 1334.8
SWST AoS 373.8 TBFS AoS 810.2 SWST AoS 5394.3 SWST AoS 1353.1
DFS AoS 374.2 TDFS AoS 812.6 DFS AoS 5394.9 DFS AoS 1356.4
BFS SoA32_24 412.9 vEB SoA32_24 837.4 vEB SoA32_24 6839.6 BFS SoA32_24 1877.0
vEB SoA32_24 417.0 BFS SoA32_24 845.6 BFS SoA32_24 6868.8 vEB SoA32_24 1955.8
COL SoA32_24 417.1 DFS SoA32_24 852.7 COL SoA32_24 6956.5 COL SoA32_24 1978.8
DFS SoA32_24 423.4 COL SoA32_24 852.9 DFS SoA32_24 6971.4 DFS SoA32_24 2023.4
vEB SoA16_8 495.3 COL SoA16_8 973.1 vEB SoA16_8 9261.5 BFS SoA16_8 2837.8
BFS SoA16_8 497.0 vEB SoA16_8 981.6 COL SoA16_8 9515.5 vEB SoA16_8 2932.9
COL SoA16_8 506.1 BFS SoA16_8 988.0 BFS SoA16_8 9570.8 COL SoA16_8 2999.3
DFS SoA16_8 535.7 DFS SoA16_8 1042.8 DFS SoA16_8 9663.3 DFS SoA16_8 3229.9

Table 7.3: Per-scene ranking of BVH and node layout combinations w.r.t. runtime, where
nodes are either stored in global memory (GMem) or texture memory (TMem). Runtime
(R) in milliseconds is shown as well. The thresholds of TDFS, TBFS, and SWST in global
memory are 0.6, 0.3, and 0.5, respectively. In texture memory the thresholds are 0.6, 0.2,
and 0.4, respectively.

AoS node layout. It is only marginally faster than the baseline layout combination. In-
terestingly, there is an increase in the amount of data transferred across all scenes and
layout combinations though the transaction size of both the texture cache and the global
memory L2 cache is 32B. The only explanation we can provide for a lower traffic size of
global memory is superior broadcasting compared to texture memory.

Memory Area Comparison If we compare the runtime of the best layout combinations in
texture and global memory, we can observe that using texture memory is approximately 30
– 40% faster. Even some of the slowest layout combinations in texture memory are faster
than the best layout combinations in global memory. Our baseline layout with nodes in
texture memory also outperforms all layout combinations in global memory by 25% – 38%.
The reason why texture memory performs better is not entirely clear. As we have seen in
Section 7.2, the average access latency of texture memory is consistently lower than for
global memory and for access patterns which cause very high latency in global and shared
memory, the texture memory’s latency increases only by a comparably small amount. We

108

7.6. Conclusion

presume that this property of the texture memory cache, in conjunction with quite possibly
other unknown hardware details, let it deal very well with incoherent memory accesses
such that it is on average faster than the L2 global memory cache. Contrary to Aila et al.
[2012] our path tracer benefited from using texture memory for loading nodes when run
on a Fermi GPU (see Schulz et al. [2013]).

Comparison of Best Layout Combination Figure 7.6 and Figure 7.7 show profiling graphs
for the baseline layout combined with profiling graphs for the on average best performing
TDFS 0.6/AoS layout. For both layouts we included the memory bandwidth of the L2
cache for node access via global memory and memory bandwidth of the texture cache for
access via texture memory. Overall we can see that independent of the memory area used
for node access all metrics, except for runtime and bandwidth, are essentially identical
for both layouts. Lower relative kernel runtimes of TDFS 0.6/AoS are directly related to
a higher relative memory bandwidth. This is most pronounced in San Miguel, Hairball,
and Kitchen. The relative bandwidth increase for TDFS 0.6/AoS is slightly higher for node
access via global memory. It is unclear where this bandwidth improvement comes from,
as cache hit rate and load efficiency are the same for both layouts. Only San Miguel also
clearly shows a slightly increased L2 cache hit rate.

7.6 Conclusion

We have presented a number of different BVH layout schemes and analyzed their perfor-
mance on tracing ”real-world” distributions of incoherent rays. Two schemes make use
of information gathered in a pre-processing pass over the BVH. Our TDFS layout had the
best average speedup in global and texture memory. In global memory we have achieved
a runtime reduction by 1% – 6%. We gained a 30% – 40% runtime reduction compared to
the baseline in global memory when the BVH is stored in texture memory similar to Aila
et al. [2012]. But also accessing the baseline in texture memory, an improvement of only
0.5% – 4.0% was observable for the TDFS layout. The common DFS layout performed
worst for all node layouts in both memory areas. Excluding layouts using statistics the
equally simple BFS layout on average performed best and similar to the TDFS layout.

There are several possibilities for future work. We have not included the performance
impact on tracing coherent rays with our analyzed layouts. As optimizing the BVH layout
and ray grouping and reordering techniques are orthogonal one might investigate if there
is any synergy when using both techniques together. Especially BVH layouts based on node
access statistics should benefit from these techniques. Knowing that a node is more likely
to be visited can unfold its full potential when the relevant rays are processed together.
Generally increasing SIMD efficiency will result in more memory accesses being issued at
a time which may be beneficial for our node reordering techniques. The dynamic fetch
kernel from Aila et al. [2012] which replaces terminated rays when SIMD efficiency drops
below a certain percentage could be used to investigate this. The GK110 [NVIDIA 2016b]
features a 48 KB read-only data cache, which is the same as the texture memory cache. It
would be interesting to see the effects of a much larger texture cache. As kd-tree nodes
are much smaller than BVH nodes more nodes fit into cache lines. Though this should
increase cache hits, more nodes get evicted on cache misses. It would be interesting to
see which effect outweighs the other and what performance gains can be achieved with
different tree layouts.

109

Chapter 7. Cache-Optimized BVH GPU Memory Layouts for Tracing Incoherent Rays

0
10

20
30

40
50

60
70

80
90

100
0% 10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%
K

itchen
C

om
parison

-D
FS/A

oS
-TD

FS
0.6/A

oS

0
10

20
30

40
50

60
70

80
90

100
0m

s

2m
s

4m
s

6m
s

8m
s

10m
s

12m
s

14m
s

16m
s

18m
s

0
10

20
30

40
50

60
70

80
90

100
110

120
130

140
150

160
170

180
0% 10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%
H

airballC
om

parison
-D

FS/A
oS

-TD
FS

0.6/A
oS

0
10

20
30

40
50

60
70

80
90

100
110

120
130

140
150

160
170

180
0m

s

10m
s

20m
s

30m
s

40m
s

50m
s

60m
s

70m
s

80m
s

0
10

20
30

40
50

60
70

80
90

100
0% 10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

0
10

20
30

40
50

60
70

80
90

100
0m

s

2m
s

4m
s

6m
s

8m
s

10m
s

12m
s

14m
s

16m
s

18m
s

R
untim

e
C

ache
load

hit
rate

SIM
D

eff.
R

el.bandw
idth

Load
eff.

Inst.
replay

overhead
R

ays
in

batch
Prim

ary
rays

in
batch

0
10

20
30

40
50

60
70

80
90

100
110

120
130

140
150

160
170

180
0% 10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

0
10

20
30

40
50

60
70

80
90

100
110

120
130

140
150

160
170

180
0m

s

10m
s

20m
s

30m
s

40m
s

50m
s

60m
s

70m
s

80m
s

R
untim

e
C

ache
load

hit
rate

SIM
D

eff.
R

el.bandw
idth

Load
eff.

Inst.
replay

overhead
R

ays
in

batch
Prim

ary
rays

in
batch

Figure
7.6:

C
om

parison
of

the
trace

kernelprofiling
graphs

using
the

baseline
layout

(solid)
and

the
best

perform
ing

TD
FS

0.6/A
oS

layout
(dashed)

for
the

K
itchen

and
H

airballscenes.
R

untim
e

behavior
(left

y
axis)

and
G

PU
m

etrics
(right

y
axis)

over
allrendering

loop
iterations

(x
axis)

are
show

n.
BV

H
nodes

are
either

stored
in

globalm
em

ory
(top)

or
texture

m
em

ory
(bottom

).
B

ranch
efficiency

is
replaced

w
ith

cache
bandw

idth,w
hich

is
norm

alized
w

.r.t.the
highest

bandw
idth

achieved
in

an
iteration

containing
incoherent

rays.

110

7.6. Conclusion

0
5

10
15

20
25

30
35

0%10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

11
0%

12
0%

C
ry

te
k

Sp
on

za
C

om
pa

ri
so

n
-D

FS
/A

oS
-T

D
FS

0.
6/

A
oS

0
5

10
15

20
25

30
35

0m
s

2m
s

4m
s

6m
s

8m
s

10
m

s

12
m

s

14
m

s

16
m

s

18
m

s

0
10

20
30

40
50

60
0%10

%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

11
0%

12
0%

Sa
n

M
ig

ue
lC

om
pa

ri
so

n
-D

FS
/A

oS
-T

D
FS

0.
6/

A
oS

0
10

20
30

40
50

60
0m

s

5m
s

10
m

s

15
m

s

20
m

s

25
m

s

30
m

s

35
m

s

40
m

s

45
m

s

0
5

10
15

20
25

30
35

0%10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

11
0%

12
0%

0
5

10
15

20
25

30
35

0m
s

2m
s

4m
s

6m
s

8m
s

10
m

s

12
m

s

14
m

s

16
m

s

18
m

s

R
un

ti
m

e
C

ac
he

lo
ad

hi
t

ra
te

SI
M

D
ef

f.
R

el
.b

an
dw

id
th

Lo
ad

ef
f.

In
st

.
re

pl
ay

ov
er

he
ad

R
ay

s
in

ba
tc

h
Pr

im
ar

y
ra

ys
in

ba
tc

h

0
10

20
30

40
50

60
0%10

%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

11
0%

12
0%

0
10

20
30

40
50

60
0m

s

5m
s

10
m

s

15
m

s

20
m

s

25
m

s

30
m

s

35
m

s

40
m

s

45
m

s

R
un

ti
m

e
C

ac
he

lo
ad

hi
t

ra
te

SI
M

D
ef

f.
R

el
.b

an
dw

id
th

Lo
ad

ef
f.

In
st

.
re

pl
ay

ov
er

he
ad

R
ay

s
in

ba
tc

h
Pr

im
ar

y
ra

ys
in

ba
tc

h

Fi
gu

re
7.

7:
C

om
pa

ri
so

n
of

th
e

tr
ac

e
ke

rn
el

pr
ofi

lin
g

gr
ap

hs
us

in
g

th
e

ba
se

lin
e

la
yo

ut
s

(s
ol

id
)

an
d

th
e

be
st

pe
rf

or
m

in
g

TD
FS

0.
6/

A
oS

la
yo

ut
(d

as
he

d)
fo

r
th

e
Sp

on
za

an
d

Sa
n

M
ig

ue
ls

ce
ne

s.
R

un
ti

m
e

be
ha

vi
or

(l
ef

ty
ax

is
)

an
d

G
PU

m
et

ri
cs

(r
ig

ht
y

ax
is

)
ov

er
al

lr
en

de
ri

ng
lo

op
it

er
at

io
ns

(x
ax

is
)

ar
e

sh
ow

n.
BV

H
no

de
s

ar
e

ei
th

er
st

or
ed

in
gl

ob
al

m
em

or
y

(t
op

)
or

te
xt

ur
e

m
em

or
y

(b
ot

to
m

).
B

ra
nc

h
ef

fic
ie

nc
y

is
re

pl
ac

ed
w

it
h

ca
ch

e
ba

nd
w

id
th

,w
hi

ch
is

no
rm

al
iz

ed
w

.r.
t.

th
e

hi
gh

es
t

ba
nd

w
id

th
ac

hi
ev

ed
in

an
it

er
at

io
n

co
nt

ai
ni

ng
in

co
he

re
nt

ra
ys

.

111

Chapter 7. Cache-Optimized BVH GPU Memory Layouts for Tracing Incoherent Rays

112

Chapter 8

Multi-GPU Out-of-Core Top-Down SAH-
based kd-Tree and BVH Construction

Contents
8.1 Related Work . 114

8.2 Motivation and Assumptions . 117

8.3 Construction . 117

8.4 Implementation . 123

8.5 Evaluation . 126

8.6 Summary and Discussion . 137

After we analyzed the GPU cache behavior of different BVH tree and node memory layouts
to improve BVH traversal performance in the previous chapter, we finally shift our focus
on fast construction of high quality BVHs and kd-trees. A tremendous amount of previous
work focuses on the efficient construction of ray tracing acceleration structures in a CPU
and GPU context. Construction times are on the order of milliseconds for scenes with an
appropriate number of primitives. But a common requirement of these approaches is that
geometry and the acceleration structure are small enough so that they can completely stay
in-core. This renders these approaches unsuitable for applications with a huge amount of
geometry, e.g. highly detailed environments in production rendering. Especially GPU-
based construction approaches suffer from this issue, as GPU memory typically is around
one order of magnitude smaller than system memory. Though out-of-core CPU and GPU
rendering has been investigated, there has been less attention on efficient out-of-core ac-
celeration structure construction. Acceleration structures are typically assumed as given.
Exceptions are PantaRay [Pantaleoni et al. 2010] and work by Wang et al. [2013], which
perform out-of-core SAH-based BVH construction in a hybrid bottom-up top-down ap-
proach on CPU and GPU. Both approaches, however, avoid top-down SAH construction
in the upper levels. This is understandable as it requires several expensive iterations over
the whole geometry. Instead an initial regular clustering is performed in just a few itera-
tions without SAH guidance. The collection of clusters itself is reorganized in a top-level
SAH-based BVH, but split decisions are already suboptimal by the pre-clustering.

113

Chapter 8. Multi-GPU Out-of-Core Top-Down SAH-based kd-Tree and BVH Construction

To the best of our knowledge complete SAH-based out-of-core BVH construction has
not been done with GPUs. We argue that this is, however, worth the effort as the higher
quality will result in less memory loads in the final application due to better separation of
geometry. This is in fact even more important for out-of-core rendering. Though typically
larger than BVHs, kd-trees can perform better than the former. But out-of-core kd-tree
construction has not been addressed on both, CPUs and GPUs. The main reason for this
is their unbounded memory footprint, which is problematic in an out-of-core context.

We show that full SAH-based top-down out-of-core BVH and even kd-tree construc-
tion can be done in a way that efficiently exploits the massive parallelism of GPUs. Apart
from handling of the huge data itself, the significant overhead introduced by memory copy
operations between host and GPU is the biggest challenge that has to be faced. Memory
copies drastically reduce the computational throughput and introduce additional synchro-
nization requirements between the two sides. It becomes an even more serious bottleneck
when the system is extended to multiple GPUs.

Our contributions are as follows:

• an efficient out-of-core multi-GPU algorithm for BVH and kd-tree construction that
allows the memory footprint of the output tree as well as the geometry to exceed
graphics memory,

• a construction that applies SAH right from the beginning and does not rely on quality
degrading pre-clustering of geometry, and

• an SAH improvement threshold that allows to trade rendering performance for a
reduced acceleration structure memory footprint and construction time in a con-
trollable way.

8.1 Related Work

A high quality acceleration structure is essential to achieve good ray tracing performance.
As described in Section 2.5 empirically BVHs and kd-trees perform best when constructed
using SAH originally introduced by Goldsmith and Salmon [1987] and MacDonald and
Booth [1989,1990]. Construction of SAH-based kd-trees and BVHs for ray tracing is a chal-
lenging and time consuming task. State-of-the-art algorithms construct trees top-down
and try to locally optimize SAH on a per node basis. From Section 2.5.3 we know this
construction computes the cost csplit of splitting a node n containing |n| triangles into two
hypothetical left and right leaf nodes l and r as:

csplit = ct + pl |l|ci + pr |r|ci . (8.1)

pl and pr are the geometric probabilities of intersecting the tentative left and right node
depending on the surface area of their bounds. |l| and |r| are the number of triangles
in the left and right leaf. In case of ordinary BVHs |l| + |r| = |n| holds, while in case
of kd-trees the sum can be bigger than |n| due to triangle splitting. ct and ci are the ray
traversal implementation dependent constants. If csplit is smaller than the cost cleaf = ci ·|n|
for creating a leaf node for n the node is split. Our choices for the traversal constants can
be found in the evaluation section (Section 8.5). Wald and Havran [2006] and Wald et al.
[2007] introduced O(n log(n)) CPU algorithms for SAH based kd-tree and BVH construc-
tion. We give an overview over the most relevant related work on parallel GPU approaches
for these algorithms and out-of-core acceleration structure construction.

114

8.1. Related Work

8.1.1 kd-Trees

Zhou et al. [2008] proposed the first GPU kd-tree construction algorithm, which achieved
realtime build times for small scenes. It applies a hybrid construction strategy that uses
cheap spatial median splits in the upper levels and expensive SAH splits as soon as a
node contains at most 64 triangles. The poor splitting decisions made in most of the top
part of the tree cannot be corrected or compensated in any way in the last 1 to 6 levels.
As a result the negative effect of spatial median splitting on tree quality increases with
scene size. Wu et al. [2011] proposed an efficient GPU implementation and Choi et al.
[2010] proposed an efficient multi-core implementation of full SAH construction. Full
SAH algorithms involve sorting the complete data several times for each dimension.

Popov et al. [2006], proposed binned kd-tree construction which does not require sort-
ing. This approach uses a discrete amount of equidistant split planes to sample the SAH
cost function at certain points. It allows for much faster implementations with negligi-
ble tree quality deterioration. Danilewski et al. [2010] presented an efficient single-GPU
implementation of binned SAH kd-tree construction. All steps are implemented in five
different variations/stages. Each stage is optimized for a distinct amount of geometry in
a node and number of such nodes in a tree level. Only one stage is computed at a time.
Thus, nodes which are classified for a different stage than the current one are scheduled
for later processing. Scheduling details and overhead are not discussed, but the authors
state their implementation is faster than the lower quality hybrid construction from Zhou
et al. [2008].

8.1.2 BVHs

First efficient GPU algorithms for BVH construction were proposed by Lauterbach et al.
[2009]. They presented three approaches with different trade-offs between tree qual-
ity and construction time. The fastest algorithm called linear BVH (LBVH) first assigns
Morton codes to triangles. Then the triangles are sorted according to their codes using
efficient parallel radix sort. The whole BVH can then be extracted from the sorted Morton
codes by interpreting them as coordinates in an octree. This simple construction roughly
corresponds to a spatial median split which results in poor tree quality, but is fast to com-
pute. The second algorithm is a parallel approach for full binned-SAH BVH construction.
Tree quality is high but construction is much slower, especially since the approach taken
lacks sufficient parallelism in the upper levels. To strike a balance, they propose a third
algorithm, that is a hybrid of the former two. The upper levels are constructed according
to the highly parallel first algorithm while the remaining levels expose enough parallelism
to be efficiently constructed according to the second one. As a result the output tree is
of lower quality than full SAH as it suffers from the same problems as Zhou et al.’s ap-
proach. Exact SAH values are omitted but the authors report tracing times close to full
SAH for the hybrid algorithm and up to 7 times higher for LBVH. Pantaleoni and Luebke
[2010] and Garanzha et al. [2011] proposed much faster implementations for LBVH and
the hybrid algorithm called HLBVH which allow realtime rebuilds for scenes with up to 2
million triangles. A key change in the hybrid algorithm is, that LBVH is used to build the
lower levels of the tree first. The roots of the subtrees themselves are then used for binned
top-down SAH BVH construction. Thus the expensive part of the algorithm is performed
on much less input elements and tree quality is improved in the important upper levels.
The authors state a tree quality which is about half way between LBVH and full SAH.

115

Chapter 8. Multi-GPU Out-of-Core Top-Down SAH-based kd-Tree and BVH Construction

8.1.3 Out-of-Core construction

The discussed GPU-based BVH and kd-tree construction techniques require both static
scene geometry and transient data to fit into GPU memory. There is only little work on
out-of-core ray tracing acceleration structure construction, especially in the context of
GPUs. Wald et al. [2001a] roughly outlined an hypothetical out-of-core algorithm for
kd-tree (called BSP-tree in the paper) construction involving several compute nodes with
CPUs. The exact construction strategy is, however, unstated.

Baert et al. [2013] proposed an out-of-core CPU algorithm for regular voxelization and
bottom-up sparse voxel octree construction of extremely large triangle meshes. They man-
age to be roughly as fast as an unoptimized in-core solution for in-core datasets with just 1
GB of available memory by exploiting the relationship between Morton codes and octrees.
Their concepts are not applicable to top-down SAH-based kd-tree or BVH construction.

Pantaleoni et al. [2010] proposed an out-of-core two-level BVH construction algorithm
for complex scenes which runs entirely on the CPU. First, the scene geometry is divided
into a regular 3D grid of buckets. Afterwards geometry buckets are merged or split into
chunks with respect to a specified target chunk size. For each chunk of geometry a sep-
arate SAH based BVH is constructed. Then, the chunks themselves are organized into a
single top-level SAH-based BVH. Finally the tree of a chunk is decomposed into a set of
smaller treelets (bricks) and stored on disk. Wang et al. [2013] presented a combined pre-
processing and rendering approach for many lights rendering of out-of-core scenes that
uses GPUs in all steps. Acceleration structure construction is very similar to [Pantaleoni
et al. 2010]. The main difference is how initial chunks are determined. Each primitive is
associated with a Morton code. Then the list of primitives is sorted with respect to their
codes and partitioned into chunks of specified target size. The resulting spatial clustering
should be at least similar to [Pantaleoni et al. 2010]. Instead of an ordinary SAH-based
BVH a higher quality SBVH [Stich et al. 2009] is constructed for each chunk. SBVHs allow
to also adaptively apply spatial splits during construction if beneficial. No efficient SBVH
GPU implementation has been presented to date. Thus it is unfortunate, that the authors
have omitted any details of their implementation. Again chunks themselves are organized
in a single top-level BVH. Both methods can be described as a bottom-up top-down ap-
proach. This is not possible with kd-trees as placement of the root splitting plane is a
global decision, that affects all following steps due to triangle splits. Further both meth-
ods lead to reduced acceleration structure quality as the applied initial chunking enforces
a spatial median like distribution of triangles.

Finally, Hou et al. [2011] presented semi out-of-core extensions to the GPU kd-tree
construction approach from Zhou et al. [2008] and the hybrid BVH construction approach
from Lauterbach et al. [2009]. Hereby only the size of the tree is allowed to exceed graph-
ics memory. Scene geometry has to completely fit into memory. As an extension to the two
algorithms, their approach also inherits the inferior quality in the upper tree levels these
algorithms suffer from. They propose a partial-BFS order that processes as many nodes
in parallel in a BFS manner as memory allows. In every iteration as many descendants
of the previous batch as fit into memory are processed. Thus if not all nodes of a tree
level fit into memory the algorithm gradually transform into a DFS-BFS traversal. The
algorithm degenerates to full BFS processing for small scenes. Special care is taken to
reduce the amount of memory resulting from triangle duplicates in kd-tree construction.
They propose the commonly used technique already introduced by Havran and Bittner
[2002] to store a primitive reference for every triangle that consists of its bounding box

116

8.2. Motivation and Assumptions

and a reference to it. When a triangle is split only its primitive reference is split into two
new references with tightly fitted bounding boxes. No geometry has to be duplicated.
Additionally, they store a 32-bit code with each reference that allows to efficiently recon-
struct the up to 9 vertices of the polygon resulting from clipping the referenced triangle
against the box. It is unclear what the authors need the polygon vertices for as the original
triangle together with the tight bounding box of the clipped triangle is already sufficient.
Thus their format is actually inferior in terms of memory-footprint reduction compared to
state-of-the-art.

There is no work on full top-down SAH-based out-of-core GPU BVH construction. Work
on out-of-core kd-tree construction with any strategy is not available neither for GPU nor
CPU.

8.2 Motivation and Assumptions

In the previous section we could see that previous work on out-of-core construction traded
tree quality for simplicity and construction speed. Full top-down SAH-based constructed
trees have their benefits especially in an out-of-core context. Applying SAH right from
the beginning of construction leads to better separation of geometry and reduces the
amount of geometry and nodes that have to be loaded. As discussed in Section 2.5.7,
Aila et al. [2013] noted that in general greedy top-down SAH-based construction algo-
rithms produce trees that are faster to trace than predicted by their SAM cost. The trees
also can perform better than trees constructed with other construction strategies that pro-
duce lower SAM cost. The authors introduced the end-point-overlap (EPO) metric, which
in combination with SAM can better predict performance of scalar (and almost of SIMD)
ray tracing. EPO describes the expected extra traversal cost due to node overlap. While
we observed in Chapter 5 and Chapter 6 that in some cases the combined SAM-EPO pre-
dictor was not sufficient, our results mostly supported its validity. These observations
allow to conclude that SAM alone much more accurately predicts trace performance of
kd-trees than of BVHs, as kd-trees have no node overlap and thus zero EPO cost. On the
other hand, bottom-up kd-tree construction is not possible and there is no alternative to
top-down SAH-based construction when quality is desired.

Assumptions Our approach builds on several assumptions. First of all it is only out-of-
core w.r.t. GPU memory, i.e., the memory footprint of geometry, any transient data, as
well as the final tree are allowed to exceed available graphics memory. We have a host-
side memory cache that is used for swapping data out of and into the GPUs. The host
cache itself has no size limit, i.e., no explicit swapping to hard disk occurs. If it gets full
nonetheless, the operating system is assumed to take care of swapping. There is no limit
on the allowed number of GPUs.

8.3 Construction

Precise sweep SAH-based construction in the sense of Wald et al. for kd-trees [Wald and
Havran 2006] and BVHs [Wald et al. 2007] relies on sorting input geometry several times.
In an out-of-core multi-GPU computing context this is prohibitively expensive and difficult

117

Chapter 8. Multi-GPU Out-of-Core Top-Down SAH-based kd-Tree and BVH Construction

job type #chunks #nodes multi-GPU?

multi > 1 1 yes
single 1 ≥ 1 no

Table 8.1: Overview of the number of chunks and nodes a multi- or single-job contains
and whether multi-GPU processing is possible.

to implement. Thus our base method of choice is binned construction [Popov et al. 2006],
[Wald 2007]. We refer to Section 2.5.4 for algorithm details.

A key observation made by Popov et al. [2006] is that binning could also be per-
formed independently on arbitrary subsets of geometry. The final binning result would
be obtained by combining the results of the subsets. This renders binning highly suitable
for a multi-GPU approach and forms the basis of our out-of-core algorithms. We now first
discuss our BVH construction algorithm and proceed by describing the kd-tree algorithm
as a modification to the BVH algorithm.

8.3.1 BVH Construction

As we allow geometry to exceed GPU memory we unavoidably have to partition it into
chunks that can be managed by a GPU. A single GPU performs binning and partitioning
on a single chunk of geometry at a time. A chunk can only contain up to NC triangles. NC
depends on the maximum amount of memory available on the GPUs and the maximum
amount of memory required during execution. Peak memory consumption is reached in
the triangle partitioning step, which requires a single GPU to be able to store its input and
output primitives. As partitioning does not produce duplicates we have NC input plus NC
output triangles. Thus the upper bound of NC is chosen such that the input primitives
consume at most 50% of the maximum available memory. In practice we use much lower
thresholds of 10% for several reasons. First, we need memory for auxiliary data such as
bin counters and bin bounds. Further, we want several chunks to be present in a GPU at the
same time. This allows to asynchronously load more chunks while a chunk is processed.
Geometry chunks are logically grouped in either so called single- or multi-jobs which are
scheduled by the host for processing. A multi-job contains the geometry chunks of a single
node, that is too large to completely fit into a single GPU. Single-jobs contain a single
chunk that aggregates the complete geometry of one or more nodes such that it still fits
into GPU memory. Thus multi-jobs can be processed by several GPUs, while single-jobs
are processed by a single GPU. The criteria for multi- and single-jobs are summarized in
Table 8.1.

The algorithm is initialized by partitioning the geometry into chunks, which are all
grouped together in a multi-job for the root node. Upon execution of a multi-job, chunks
are distributed to several GPUs to perform binning on them in parallel. Then, the interme-
diate binning results are copied to one GPU which combines them to compute the global
binning result and determine the approximately best split plane. This introduces a single
point of synchronization within multi-jobs which is unavoidable if we aim for full SAH
top-down construction. The best binning axis and split position is sent to the other GPUs,
so that they can perform the actual distribution of triangles into the left and right subtree
for every chunk. If all triangles of a chunk are put exclusively into the left or the right
sub tree, no copying is needed. We easily identify this case for each chunk by looking at

118

8.3. Construction

0 1 2 3

0a 1 2a 3a0b 2b 3b

0a 12a3a 0b 2b 3b

Figure 8.1: Splitting a multi-job with four chunks into two new multi-jobs. The split
results in seven chunks. Chunk merging reduces the number of chunks to five. Chunks
are grouped in a first-fit manner for computational simplicity. A more optimal strategy
would have grouped 2b and 3b together to increase minimum chunk size for even higher
GPU efficiency.

the binning counters of the intermediate per-chunk results. After the splitting step a new
multi-job containing the corresponding chunks is created for both new subtrees. Both jobs
are completely independent and can be processed in parallel on multiple GPUs.

Repeated splitting of chunks eventually results in chunk sizes which cannot fully oc-
cupy a GPU. As a countermeasure we perform a merging step directly after splitting. It
merges small chunks into new chunks with at most NC triangles. Therefore a merging
schedule is created. We start with an empty merge group. Then we iterate the list of
chunks and merge them into the group as long as the chunk size limit is not exceeded.
If a chunk does not fit into the current group, we do not immediately open a new group.
Instead we iterate over all groups that have been opened so far to seek for a suitable group
in a first-fit manner. If no group could be found, a new merge group is opened. Though
we could go for a more optimal chunk grouping algorithm, our simple approach already
significantly reduces the number of chunks and increases the efficiency of the algorithm.
Multi-job splitting with chunk merging is depicted in Figure 8.1.

But even with chunk merging, subtrees will eventually need only one chunk and con-
tain a small number of triangles. To alleviate this problem the algorithm can decide to
merge the data of both resulting subtrees into a single-job if it fits after splitting. This
further helps to maintain good GPU utilization. Though the amount of geometry in a
single-job stays the same or decreases due to leaf creation, the number of nodes can in-
crease. As nodes cause additional memory overhead because of binning related and other
auxiliary data it might be necessary to create two single-jobs. It would be possible to
merge different single-jobs if they fit into a single chunk. But because of the indepen-
dence that is defined between jobs this would require synchronization and is not included
in our approach.

8.3.2 Job Scheduling

Scheduling of single- and multi-jobs can be done breadth-first or depth-first. In case of
breadth-first, all subtrees on the same depth are processed before commencing to the next
depth level. This is done in all parallel implementations except for Hou et al. [2011]. An
inherent property of breadth-first construction is that creation of inner nodes is implicitly

119

Chapter 8. Multi-GPU Out-of-Core Top-Down SAH-based kd-Tree and BVH Construction

0 0 0 0

1 1 14 14

2

3-4

5-6 7-8

9

10 11

12-13

15 16

17-18

19-22

Figure 8.2: Processing order of multi-jobs (red) and single-jobs (blue) for a single GPU
and a scene initially consisting of four chunks. Each rectangle depicts a chunk that fits
into GPU memory. The numbering indicates different nodes and the processing order of
these nodes at the same time. Dashed boxes indicate single-jobs which were small enough
to not be split. The second level has the same number of chunks due to chunk merging.
The chunk containing nodes 3 and 4 contained too many splits and/or additional node
information after processing and had to be split into two single-jobs.

temporally promoted, while creation of leaves happens more at the end of the algorithm.
With our target scene sizes, for which the whole geometry does not fit into GPU memory it
is highly likely that data has to be swapped to the host cache to process a different subtree
on the same level with this strategy. Thus, our method of choice is a partial-DFS-BFS order.
It aims at first processing a subtree to its end to reduce the amount of transient geometry
but also accounts for increasing node parallelism in the lower parts of the tree. Another
advantage is that data that just has been split is typically directly processed further, so that
swapping of subtrees is less likely. Single-jobs locally construct the acceleration structure
in a breadth-first manner. In general this is no problem as, by their very nature, data of
single-jobs is already small enough to fit into a single GPU. An example processing order
is depicted in Figure 8.2.

The execution flows of a GPU and the scheduler are illustrated in Figure 8.3. Our
scheduler works with two separate stacks for single- and multi-jobs. Initially the single-
job stack is empty and the multi-job stack contains a job for the tree root. When a GPU is
looking for work it first checks if there is a currently active multi-job, as these have highest
priority. The reason for this is that the more GPUs participate in multi-job processing, the
less swapping occurs. If there is no currently active multi-job or the multi-job has no
unprocessed chunks left, we first check the single-job stack and then the multi-job stack
for work. If the single-job stack is empty it pops a multi-job from the multi-job stack.
Single-jobs that possibly have been created after splitting are put on the single-job stack.
If the right subtree created by a multi-job again is a multi-job it is pushed onto the multi-job
stack, while if the left subtree is a multi-job it is issued directly.

8.3.3 kd-Tree Construction

The main differences between the kd-tree and BVH algorithm arise from the fact, that we
need the triangle geometry in the splitting stage. Unfortunately, as geometry does not

120

8.3. Construction

START END
Process

single-job

Is a multi-job
active?

Any
single-jobs
available?

Any
multi-jobs
available?

Participate in
multi-job

[true]

Process multi-job

[true]

[false][true]

[false][false]

START

[true]

[false]

Process nodes in
parallel on one GPU

Merge subtrees into
one single-job

Create two separate
singel-jobs

[false]
[true]

Process chunks in
parallel on multiple

GPUs

Merge chunks

Enqueue
multi-job

[true] [false] ENDDoes data fit
onto one GPU?

Any nodes left?

Does data fit
onto one GPU?

Enqueue
single-job

Figure 8.3: Depiction of the execution flow of a GPU looking for work (top) and the job
creation and processing flow (bottom). Multi-job and single-job processing related events
are colored orange and blue respectively.

completely fit into graphics memory, we cannot just duplicate primitive references on a
split. Referenced geometry must be present, too, to recompute tight bounds. To get any
memory savings from the surjective mapping of references to triangles, we would have
to keep a list of triangle geometry with each chunk that exactly only contains triangles
referenced by the primitive references without duplicates. This requires a chunk scope
index per primitive reference. In case the original triangle index cannot be reused because
triangles need a unique index for additional properties like normals and a material, this
also requires additional storage. After each split all referenced triangles would have to be
detected while filtering out duplicates. For simplicity we avoid all this and also duplicate
the actual triangle geometry on chunk splitting. But we still do not have to retessellate
along splitting planes.

As in the BVH case, peak memory consumption is reached in the triangle splitting step.
As potentially all triangles might get split we have NC input plus up to 2NC output triangles.
Thus NC is chosen such that the input primitives consume at most 33% of the maximum
available memory. Despite the higher memory overhead caused by the geometry, auxiliary
data is lower for the kd-tree. Thus, we again used the same 10% threshold as for BVHs in
practice.

121

Chapter 8. Multi-GPU Out-of-Core Top-Down SAH-based kd-Tree and BVH Construction

Figure 8.4: Example of localized binning with eight bins for a scene with three triangles
which already has been split once (black split plane). Conventional binning (left) con-
structs equidistant split planes (red and green for left and right node) w.r.t. node bounds.
Two planes for the left node have all geometry on one side. Localized binning (right) uses
the bounds of the clipped geometry of a node for split plane construction. Compared to
conventional binning, for a fixed number of bins this allows for a more effective sampling
of the candidate cost function.

As already discussed, we conclude from the results of Aila et al. [2013] that SAH much
more accurately predicts trace performance of kd-trees than of BVHs. Thus, it is more
worthwhile to find minimal SAH splits. Our choice of using an approximating binning
approach is disadvantageous in this regard. As a countermeasure we propose to construct
bins for binning from the tight bounds of the geometry in a node rather than from node
bounds. Node bounds are not guaranteed to be tight for space partitioning algorithms.
Figure 8.4 depicts this localized binning approach. Localized binning guarantees that all
split planes produce a real partition whereas conventional binning can produce planes
where all geometry is only on one side and thus effectively wastes cost function samples.
This can also be seen in the example figure. A comparison of localized binning with
conventional binning is provided in Section 8.5.5.

Depth-first job scheduling is even more crucial for kd-tree than for BVH construction.
Breadth-first scheduling would result in a rapidly increasing amount of transient geometry
from triangle splitting. Creation of leaves should be favored as it decreases the amount of
transient geometry.

8.3.4 Improvement Threshold

Finding ways to reduce the number of nodes in the output tree is desirable for several
reasons. Less nodes means faster construction and, more importantly in an out-of-core
context, smaller tree sizes. For kd-trees this also means less duplicates, which again is a
benefit in an out-of-core context. As the implementation dependent traversal cost con-
stant ct has a huge impact on tree size, Danilewski et al. [2010] proposed to treat it as a
parameter that allows to trade quality for construction performance. They showed results
for relative costs ranging from ct = 1.3 to ct = 16. But even 1.3 is already relatively high
for a kd-tree. Relative traversal cost of kd-trees is usually around 0.5 and around 1 for
BVHs. As an alternative we introduce an SAH improvement threshold τ. We only perform
a node split if the best split manages to decrease the node’s SAH cost by at least a factor

122

8.4. Implementation

of τ. That is we perform a split if the following inequality is true:

1−
csplit

cleaf
> τ. (8.2)

The motivation behind this is the observation that if a split manages to decrease SAH by p,
the actual trace performance gain usually is lower than p. Rearranging the split criterion
for cleaf gives

cleaf >
csplit

(1−τ)
= csplit

�

1+
τ

1−τ

�

. (8.3)

Thus, we can see that τ effectively increases the whole split candidate cost by τ
1−τ which

is not equivalent to simply increasing ct . This is a more rigorous approach than the one
proposed by Danilewski et al., as it allows us to use the correct implementation depen-
dent costs. Thresholds of as small as 5% have a huge impact on tree depth and triangle
duplication. The resulting effects on construction and ray tracing performance are shown
in Section 8.5.6.

8.4 Implementation

We used Nvidia’s CUDA Version 8.0 1 to implement our proposed algorithm. The bin-
ning and splitting steps are implemented in different kernels and are also implemented
differently for multi- and single-jobs. We use a fixed number of 64 bins for BVH construc-
tion and 128 bins for kd-tree construction. Empirically larger bin counts only increased
construction times without significant SAH improvements. Thus, we optimized our im-
plementations for these bin counts. We first describe details of the BVH implementation
and then the differences of the kd-tree implementation.

8.4.1 BVH Implementation

A chunk of a multi-job consists of millions of primitive references that all belong to the
same node. This offers a tremendous amount of primitive parallelism. A straight forward
way to do this would be to create enough blocks for all three binning dimension to bin all
N chunk primitives. This results in NB = 3

N
SB

£

blocks with a block size of SB. For each
block we would have to store a set of 64 bins where each bin stores a primitive counter
and bin bounds. Using a 4 byte counter and 4 bytes per bounds coordinate component
results in 28 bytes per bin. For our smallest evaluation dataset Powerplant with 12.7M
primitives, which easily fits into a chunk, and a block size of 256 this results in 148830
blocks which in total require about 250MB of auxiliary binning data. As several chunks
have to be present for much larger datasets this is too much and the multi-job binning
kernel have to keep the amount of needed device memory for intermediate data as low as
possible. Therefore, we let binning operate in a persistent-blocks manner [Aila and Laine
2009]. A chunk is equally partitioned among the NSM streaming multiprocessors of a GPU.
This is done by letting at least as many blocks as there are multiprocessors iterate over the
primitives and collect results in shared memory. Each thread in a block computes the
destination bin for its own primitive and atomically updates the bin bounds and the count
in shared memory. As CUDA only defines atomicMin and atomicMax operations for integral

1https://developer.nvidia.com/cuda-downloads

123

https://developer.nvidia.com/cuda-downloads

Chapter 8. Multi-GPU Out-of-Core Top-Down SAH-based kd-Tree and BVH Construction

class n processed by remarks

Large n> 2048 #SMs blocks / node / dim. geometry parallelism
Medium 256< n≤ 2048 block / node / dim. node parallelism

Small 32< n≤ 256 warp / node / dim. implicit SIMD synchr.
Tiny 16< n≤ 32 warp / node exact SAH

Micro 8< n≤ 16 half warp / node exact SAH
Nano n≤ 8 quarter warp / node exact SAH

Table 8.2: The different node classes along with their triangle limits and parallelization
for BVH single-job processing. Each class is processed by a dedicated kernel. The kd-tree
implementation uses a similar classification.

data types, triangle bounds are stored in order preserving integer format [Terdiman 2000].
After a block iterated over all its triangles it atomically combines its results with the results
from other blocks in global memory. For code simplicity a block only performs binning
in a single binning dimension. Thus, a set of blocks is generated for each dimension and
we only require a single set of bins per dimension. This essentially nullifies the amount
of needed auxiliary memory to a constant 5.25KB with our 64 bins per dimension. The
resulting minimum number of blocks for multi-job binning is BMJ = 3 · NSM. Depending
on the chosen block size and kernel resource usage integer multiples of BMJ have to be
used to maximize occupancy. After binning, results of all chunks are combined and the
best split plane is determined with parallel prefix sum and reduction.

The next step is distribution of primitive references to the new children. We explicitly
dedicate blocks responsible for putting primitives only to the left or only to the right side.
Each block compacts its triangles and writes them to a position specified by atomic coun-
ters for both children. The resulting number of blocks for splitting is SMJ = 2·

 Nchunkprimitives
SB

£

.

In the spirit of the GPU kd-tree construction approach from Danilewski et al. [2010] a
single-job uses different specialized kernels for binning and partitioning depending on the
number of primitives in a node. This is to adapt to the shift from primitive parallelism to
node parallelism by adapting the mapping of threads to primitives and nodes. Danilewski
et al. [2010] execute their different specializations in stages. Each stage works on the
complete set of nodes. When threads responsible for a node detect that a node has the
wrong primitive count they immediately return, causing unnecessary overhead. Stages
which map nodes to warps are especially inefficient because they loose effective occupancy
when warps in a block partially return if they have the wrong node primitive count.

To avoid these problems we analyze the current set of nodes to classify each node w.r.t.
its number of primitives into six different classes. For each class a compact list of node IDs
is extracted which is then processed by the corresponding specialized implementation. We
use a block size of 256 for all binning and partition specializations. The different classes
along with their triangle limits and parallelization are depicted in Table 8.2. Large-nodes
still offer enough geometry parallelism that they essentially can be processed by several
multiprocessors like a chunk of a multi-job but with a set of blocks for every node. With
Medium-nodes parallelism slowly changes to node parallelism, where a single block per
dimension performs binning on a node in a couple of iterations over the geometry in a
node. With Small-nodes effective occupancy would start to decrease as there would be less
primitives than threads in a block which causes warps in a block not to be assigned to any

124

8.4. Implementation

primitives. Thus, Small-nodes switch to mapping warps in a block to nodes and let warps
iterate over the triangles of a node for binning in a persistent-warps manner. We also take
advantage of the implicit synchronization of threads in a warp by omitting block synchro-
nization primitives which greatly increases performance. With less than 32 primitives per
node the Small-node approach starts to suffer from decreasing SIMD efficiency. The last
three node classes Tiny, Micro, and Nano account for this by partitioning a warp into sub
warps which process their own node, keeping more lanes busy. Similar to Danilewski et al.
[2010] for kd-trees we noticed that initialization of all bins and performing scans on the
bin data dominates computation time for such small node primitive counts. This is even
more severe for BVHs as BVH bins store 3.5 times as much information as kd-tree bins.
Thus, like Danilewski et al. [2010] we switch to exact SAH computation for such small
nodes by letting each thread iterate over all primitives. It also turned out to be beneficial
to directly handle all three candidate dimensions.

With additional effort it should be possible to introduce more node classes for more
differentiated levels of parallelism.

8.4.2 kd-Tree Implementation

Implementation of multi- and single-job processing is analogous to the BVH case with the
different node classes. The major difference is that we have to count enter and exit events
of primitive references which is simpler in terms of computation and memory consump-
tion than growing of bin bounds in BVH construction. The primitive distribution step is
more involved, as we also actually have to split triangles to compute clipped primitive
bounds. A straightforward implementation requires a couple of nested conditional state-
ments with computational complexity in their bodies which causes poor SIMD efficiency
due to high thread divergence and also resulted in high register usage which additionally
reduced occupancy. Empirically most primitives in a node do not straddle the split plane.
According to Wald and Havran [2006] “for reasonable scenes [1], there will be (at most)
O(
p

N) triangles overlapping” the split plane. Thus, our approach of choice is to exploit
this by splitting primitive distribution into two phases. The first phase copies all primi-
tive references and triangles to their respective side of the split plane including references
which have to be split. Duplicate primitives are explicitly compactly stored at the ends
of the arrays of each side. Without the primitive splitting code this kernel is essentially a
memory copy kernel which has high occupancy due to its simplicity. Now in the second
phase the highly divergent and inefficient primitive bounds splitting kernel is only exe-
cuted on the few compacted duplicate primitives. Performance of splitting increased by
almost one order of magnitude with this approach compared to the branching version.

8.4.3 Out-of-Core Work and Data Management

CUDA kernels are grouped in a so called task. Data dependencies of kernels are registered
with the task. Multi-jobs have tasks for binning, combination of binning results and chunk
splitting. A whole single-job is mapped to one task.

A GPU device processes at most two tasks at a time. One task executes its kernels
while the other resolves its data dependencies. Devices in need of work register at a task
scheduler. A good scheduling strategy aims at reducing host-to-GPU, GPU-to-host and
GPU-to-GPU memory transactions. At the same time GPUs have to be kept busy as much
as possible. Our chosen task scheduling strategy for a requesting device is as follows: The

125

Chapter 8. Multi-GPU Out-of-Core Top-Down SAH-based kd-Tree and BVH Construction

scheduler iterates over all available tasks and determines for each task the most suitable
device. The primary deciding factor for suitability is the number of already resolved data
dependencies. The second factor is the number of tasks currently processed by a device.
A requesting device is only assigned tasks it is the most suitable device for. Thus, we
intentionally assign no task if there are other more suitable devices for the available tasks.
If a task is equally suitable for all devices, it is assigned to the requesting device. Though
this seems subpar at first, it proved to be a good strategy as it trades some idle time for a
significant reduction in memory transfers.

GPU memory allocation functions in CUDA cause overhead and, even worse, synchro-
nize the GPU. To avoid these issues we allocate a large self managed GPU memory pool
for each GPU on startup. Allocations are performed in a first fit manner and are evicted
to system memory with an LRU strategy. Data dependencies belonging to the two tasks a
device can process at a time are protected from eviction. In the rare case, that no memory
can be allocated due to external fragmentation a defragmentation step is performed.

When resolving dependencies, data that resides in other GPUs’ memory pools is di-
rectly asynchronously copied via peer-to-peer GPU copy. This avoids expensive round
trips through system memory. For transactions from or to system memory to be asyn-
chronous, CUDA requires the involved system memory to be page-locked. Allocation of
page-locked memory has a much higher overhead than GPU memory allocation and also
causes synchronization. Again we avoid these issues by allocating a huge self managed
memory pool of page-locked memory on startup.

8.5 Evaluation

We evaluated the proposed construction algorithm with regard to scaling behavior and
performance for four different scenes of increasing size. All experiments were performed
on a system running Ubuntu 16.04 which is equipped with two Intel Xeon E5-2687W v3
deca-core CPUs, 128GB of RAM, and eight NVIDIA Geforce GTX 980 GPU cards with 4GB
of RAM each (NVIDIA driver version 375.66). The underlying threading machinery of our
implementations used Intel’s Threading Building Blocks (TBB) version 2017 Update 62.

We used four scenes of increasing memory footprint ranging from 12.7M triangles
(438MB) to 940M triangles (31.5GB) (see Figure 8.5). The smallest scene, Powerplant,
can be considered an upper bound for in-core GPU algorithms. As already mentioned in
Section 8.4 all BVH construction tests used 64 bins and kd-tree construction tests were
performed with 128 bins. All kd-tree tests where preformed with localized binning (see
Section 8.3.3), except for the evaluation of localized binning itself in Section 8.5.5. The
effects of localized binning, hybrid construction, and the SAH improvement threshold on
tree quality and actual traversal cost were evaluated using an in-core multi-core CPU path
tracer.

For SAH-based kd-tree construction we used the constants (ct , ci) = (1.3,1.0) though
ct = 0.75 corresponds to the actual relative traversal cost of our CPU path tracer. ct = 0.75
resulted in too excessive triangle splitting for the larger scenes. For BVH construction we
used (ct , ci) = (1.2,1.0). Following the approach from Section 5.4.2 we computed the
average number of traversal steps ns and primitive intersection tests np performed by
our path tracer to get platform and ray traversal implementation independent ray tracing

2https://www.threadingbuildingblocks.org/

126

https://www.threadingbuildingblocks.org/

8.5. Evaluation

Powerplant: 12.7M triangles, 438MBPowerplant: 12.7M triangles, 438MBPowerplant: 12.7M triangles, 438MBPowerplant: 12.7M triangles, 438MBPowerplant: 12.7M triangles, 438MBPowerplant: 12.7M triangles, 438MBPowerplant: 12.7M triangles, 438MBPowerplant: 12.7M triangles, 438MBPowerplant: 12.7M triangles, 438MBPowerplant: 12.7M triangles, 438MBPowerplant: 12.7M triangles, 438MBPowerplant: 12.7M triangles, 438MBPowerplant: 12.7M triangles, 438MBPowerplant: 12.7M triangles, 438MBPowerplant: 12.7M triangles, 438MBPowerplant: 12.7M triangles, 438MBPowerplant: 12.7M triangles, 438MB Boeing: 336M triangles, 11.3GBBoeing: 336M triangles, 11.3GBBoeing: 336M triangles, 11.3GBBoeing: 336M triangles, 11.3GBBoeing: 336M triangles, 11.3GBBoeing: 336M triangles, 11.3GBBoeing: 336M triangles, 11.3GBBoeing: 336M triangles, 11.3GBBoeing: 336M triangles, 11.3GBBoeing: 336M triangles, 11.3GBBoeing: 336M triangles, 11.3GBBoeing: 336M triangles, 11.3GBBoeing: 336M triangles, 11.3GBBoeing: 336M triangles, 11.3GBBoeing: 336M triangles, 11.3GBBoeing: 336M triangles, 11.3GBBoeing: 336M triangles, 11.3GB

Atlas: 507M triangles, 17GBAtlas: 507M triangles, 17GBAtlas: 507M triangles, 17GBAtlas: 507M triangles, 17GBAtlas: 507M triangles, 17GBAtlas: 507M triangles, 17GBAtlas: 507M triangles, 17GBAtlas: 507M triangles, 17GBAtlas: 507M triangles, 17GBAtlas: 507M triangles, 17GBAtlas: 507M triangles, 17GBAtlas: 507M triangles, 17GBAtlas: 507M triangles, 17GBAtlas: 507M triangles, 17GBAtlas: 507M triangles, 17GBAtlas: 507M triangles, 17GBAtlas: 507M triangles, 17GB David: 940M triangles, 31.5GBDavid: 940M triangles, 31.5GBDavid: 940M triangles, 31.5GBDavid: 940M triangles, 31.5GBDavid: 940M triangles, 31.5GBDavid: 940M triangles, 31.5GBDavid: 940M triangles, 31.5GBDavid: 940M triangles, 31.5GBDavid: 940M triangles, 31.5GBDavid: 940M triangles, 31.5GBDavid: 940M triangles, 31.5GBDavid: 940M triangles, 31.5GBDavid: 940M triangles, 31.5GBDavid: 940M triangles, 31.5GBDavid: 940M triangles, 31.5GBDavid: 940M triangles, 31.5GBDavid: 940M triangles, 31.5GB

Figure 8.5: Test scenes used for our experiments. The depicted camera views were also
used for measurement of traversal cost.

performance measurements. Combined with the SAH cost constants (ct , ci) this lets us
compute the average measured traversal cost m = nsct + npci . In case of BVH traversal
we used the constants (ct , ci) = (1.2, 1.0) we also used for construction. For kd-trees we
used our actual ct = 0.75 of our path tracer.

8.5.1 Peak System Memory Footprint

For BVH construction we need to store primitive references, which consist of a bounding
box and a primitive id. Using 32-bit values this requires 28 bytes per primitive. For kd-tree
construction we additionally need to store the triangle primitives themselves. This results
in 64 bytes per primitive for kd-tree construction. Table 8.3 lists the peak amount of system
memory required to store the initial set of primitives for BVH and kd-tree construction
when using no GPU. Adding GPUs reduced this peak amount by the amount of graphics
memory each GPU provided. In our setup this meant a 4GB reduction per GPU. Using
all eight GPUs only kd-tree construction for Atlas and David required additional system
memory. kd-tree construction can cause the footprint to grow slightly larger in the upper

127

Chapter 8. Multi-GPU Out-of-Core Top-Down SAH-based kd-Tree and BVH Construction

Builder Powerplant Boeing Atlas David

BVH 339MB 8.8GB 13.2GB 24GB
kd-tree 775MB 20GB 30.2GB 56GB

Table 8.3: Peak amount of system memory required to store the initial set of primitives for
BVH and kd-tree construction when using no GPU. Each added GPU reduces this amount
by the available amount of graphics memory.

levels due to triangle splitting. As described in Section 8.3.2 we apply a partial-DFS-BFS
job scheduling order, which not only reduces this temporary footprint growth but also
causes the amount of transient primitives and primitive references to decrease rapidly.

8.5.2 Comparison with Optimized CPU Implementations

To better judge the efficiency of our GPU implementations we first compare performance
with in-core CPU builders. Our test system has enough system memory for the CPU algo-
rithms to work on the larger scenes. NVIDIA Optix3 is a GPU ray tracing middleware which
also provides CPU and GPU-based BVH construction solutions. As of version 4.1, Optix
has no GPU solution for out-of-core full top-down SAH-based BVH construction. Further,
the construction constants for SAH-based construction are not exposed. For these reasons
we do not include a comparison with Optix.

For BVH construction we compare against the highly optimized high quality BVH
builder from Intel’s Embree4 library. Embree provides a set of highly optimized ray tracing
kernels and BVH builders which exploit the SIMD capabilities of CPUs. Some aspects make
comparison difficult, though. Embree uses a lower count of 32 bins for construction. Fur-
ther, it constructs multi-branching BVHs (MBVH) with branching factor 8 for our hardware
setup. While MBVH construction uses binary construction during construction we cannot
directly apply its used traversal constant ct . The BVHs constructed for our test scenes
with Embree have an average of four primitives per leaf. Empirically this corresponds to
ct = 2.4 for pure binary BVH construction which we used for our GPU implementation for
comparison with Embree.

For kd-tree construction we intended to compare with the freely available implementa-
tion of the highly parallel construction algorithm from Choi et al. [2010]. Their implemen-
tation used ct = 0.75 for construction which we changed to ct = 1.3 for comparability.
Unfortunately, we had to artificially limit the maximum depth of their implementation
because it did not seem to stop construction on its own for our smallest scene, Power-
plant. Choi et al. [2010] themselves evaluated their algorithm with a maximum depth
of 8, which is only enough for very small scenes with a primitive count on the order of
103 primitives. As our GPU implementation produced a tree with depth 58 for Powerplant
we used this number as the maximum depth for the implementation of Choi et al.. The
resulting construction time of Powerplant was 20 minutes. This is already slower than
the serial implementation from Wald and Havran [2006] which according to the authors
is “poorly optimized”. Thus, we decided to use our own parallel implementation, which
lets threads cooperatively process larger nodes or construct whole subtrees on their own

3https://developer.nvidia.com/optix
4https://embree.github.io/

128

https://developer.nvidia.com/optix
https://embree.github.io/

8.5. Evaluation

BVH(s) kd-tree(s)

Scene GPU Embree Rel. GPU CPU Rel.

Powerplant 0.7 0.6 -14.3% 2.7 7.2 +166.7%
Boeing 27.5 17.5 -36.4% 101.0 237.7 +135.3%
Atlas 36.0 26.8 -25.6% 110.5 275.9 +149.7%
David 77.6 190.0 +144.8% 228.4 508.8 +122.8%

Table 8.4: Timings for BVH and kd-tree construction of our GPU implementations on
a single GTX 980 with Embree and our CPU implementation for kd-tree construction on
a deca-core processor with 20 threads. The relative time difference of GPU and CPU
implementations is shown as well. See Section 8.5.2 for more details on the test setup
and comments on comparability.

#GPUs 1 2 3 4 5 6 7 8

BVH (ms) 891 625 551 429 356 356 358 364

kd-tree (ms) 2691 1696 1301 1079 965 943 919 770

Table 8.5: GPU construction time scaling for Powerplant with increasing number of GPUs.

if they are small enough.
Experiments were conducted with a single GTX 980 GPU and one deca-core CPU with

20 threads. Results of the GPU and CPU implementations including relative time differ-
ences are shown in Table 8.4. Though a bit slower for BVH construction, our single GPU
can roughly compete with Embree on a deca-core processor for the first three scenes. For
reasons unknown to us Embree shows a drastic increase in construction time for David
and clearly falls behind our GPU solution. For kd-tree construction our GPU solution is 2
to 3 times faster than our CPU solution. Our implementation did not use vectorization.
With proper vectorization we expect our CPU solution to be at least on par with our GPU
solution given our hardware setup. Our CPU solution is also about two orders of magni-
tude faster than the implementation from Choi et al. [2010]. We suspect the reason for
this enormous discrepancy must be a bug or weakness in their implementation related
to the size of the Powerplant scene, as they used smaller scenes and the aforementioned
maximum tree depth of 8 for their evaluation.

8.5.3 Multi-GPU Scaling

For multi-GPU scaling behavior we measured construction time and speedup efficiency
of our construction algorithms with one to eight GPUs. Speedup efficiency En =

Sn
n for

n processors is defined as the ratio of speedup Sn =
T1
Tn

, where Tn is the construction
time for n GPUs (Kumar et al. [1994]). A speedup efficiency of 1 means perfect linear
speedup, whereas an efficiency of 0.5 means the speedup corresponds to the expected
perfect speedup for half as many processors. As Powerplant is an in-core dataset we had
to artificially split it into n chunks for n GPUs. Results for BVH and kd-tree construction
are depicted in Figure 8.6 for all scenes. Results for Powerplant are also shown separately
in Table 8.5. Timings also include geometry load time. We also provide differentiated

129

Chapter 8. Multi-GPU Out-of-Core Top-Down SAH-based kd-Tree and BVH Construction

2 3 4 5 6 7 8

10

20

30

40

50

60

70

80

90

n

t(s) BVH Construction Time

2 3 4 5 6 7 8

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

n

E
BVH Speedup Efficiency

2 3 4 5 6 7 8

50

100

150

200

n

t(s) kd-Tree Construction Time

2 3 4 5 6 7 8

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

n

E
kd-Tree Speedup Efficiency

Powerplant Boeing Atlas David

Figure 8.6: Scaling of construction time with the number of GPUs (left) and speedup
efficiency (right) for BVH (top) and kd-tree construction (bottom).

plots for single- and multi-job processing time, and speedup efficiency for BVH and kd-
tree construction in Figure 8.7 and Figure 8.8. As Powerplant is initially split into n
chunks with n GPUs there are no multi-jobs when using one GPU. Thus multi-job speedup
efficiency is w.r.t. two GPUs for this scene.

Powerplant clearly shows by far the lowest speedup efficiency for BVH and kd-tree
construction. It is the only scene where efficiency falls below 50%. Though the speedup
of BVH single-job processing is superlinear and similar to the other scenes for kd-tree
construction the introduction of multi-jobs from artificial chunk generation causes large
extra overhead.

For BVH construction with two GPUs speedup efficiency is above 90% for Boeing and
Atlas, and above 80% for David. Even with eight GPUs efficiency stays above 50% for
these three scenes. From the job processing time plots we can see that BVH single-job
efficiency is above 90% for the three smaller scenes and still above 80% for David with
eight GPUs. Thus, as expected the loss in global speedup efficiency comes from lower
multi-job scaling, which falls to less than 40% efficiency. While single-job time initially
is higher than multi-job time the higher single-job efficiency manages to achieve lower

130

8.5. Evaluation

2 3 4 5 6 7 8

10

20

30

40

50

n

t(s)
BVH Single-Job Time

2 3 4 5 6 7 8

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

n

E
BVH Single-Job Speedup Efficiency

2 3 4 5 6 7 8

10

20

30

n

t(s) BVH Multi-Job Time

2 3 4 5 6 7 8

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

n

E
BVH Multi-Job Speedup Efficiency

Powerplant Boeing Atlas David

Figure 8.7: BVH scaling of job processing time with the number of GPUs (left) and
speedup efficiency (right) for single- (top) and multi-jobs(bottom). Due to its size Pow-
erplant does not have multi-jobs with 1 GPU and speedup efficiency is w.r.t. two GPUs in
this case.

131

Chapter 8. Multi-GPU Out-of-Core Top-Down SAH-based kd-Tree and BVH Construction

2 3 4 5 6 7 8

10
20
30
40
50
60
70
80
90

n

t(s)
kd-Tree Single-Job Time

2 3 4 5 6 7 8

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

n

E
kd-Tree Single-Job Speedup Efficiency

2 3 4 5 6 7 8

10
20
30
40
50
60
70
80
90

100
110
120
130

n

t(s) kd-Tree Multi-Job Time

2 3 4 5 6 7 8

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

n

E
kd-Tree Multi-Job Speedup Efficiency

Powerplant Boeing Atlas David

Figure 8.8: Kd-tree scaling of job processing time with the number of GPUs (left) and
speedup efficiency (right) for single- (top) and multi-jobs(bottom). Due to its size Pow-
erplant does not have multi-jobs with 1 GPU and speedup efficiency is w.r.t. two GPUs in
this case.

132

8.5. Evaluation

Scene Powerplant Boeing Atlas David

SAM
Full 55.0 130.7 38.4 29.8
Hybrid 62.3 126.0 37.3 30.8
Rel. +13.3% -3.6% -2.9% +3.4%

m
Full 101.3 186.6 44.4 42.9
Hybrid 115.0 194.3 45.0 44.8
Rel. +13.4% +4.1% +1.4% +4.4%

Build(s)
Full 0.9 29.4 41.5 84.6
Hybrid 1.6 33.0 78.0 112.1

Table 8.6: Timings, tree quality (SAM), and average measured traversal cost m for our
full top-down construction and our implementation of the hybrid construction algorithm
proposed by Pantaleoni et al. [2010].

processing time than multi-jobs starting from four GPUs.

Results of kd-tree construction show similar total speed up efficiency. Kd-tree construc-
tion has slightly lower single-job efficiency with 70% to 80% and slightly higher multi-job
efficiency with 40% to 50%. Contrary to BVH construction multi-job processing time is
higher from the beginning.

8.5.4 Tree Quality Comparison with Hybrid Construction Approach

To compare quality of our results with more simple to implement hybrid techniques we
implemented the out-of-core BVH construction approach from Pantaleoni et al. [2010].
The input of their algorithm consists of microgrids, a collection of micropolygons. To stay
faithful to their implementation, we converted our scenes into microgrids by regular recur-
sive clustering of triangles into microgrids of at most 256 triangles. The limit for bucket
aggregation is the same 64KB of microgrid references, while the threshold for further
subdivision of overfull buckets is 4M triangles. Suitable aggregate clusters of buckets are
issued to available GPUs as single-jobs to construct corresponding sub-BVHs. For top-level
tree construction exact sub-BVH SAM costs are used. We omit the treelet construction step
as we do not need it for our renderer. Results are shown in Table 8.6. Though efficiency
of our implementation did not have highest priority, construction time is shown as well.
An optimized implementation should achieve lower construction times.

For Powerplant we observed a 13% higher SAM and traversal cost with hybrid con-
struction. For Boeing, hybrid construction actually achieves a 4% smaller SAM cost, but
traversal is 4% slower. Atlas and David more or less have similar SAM and traversal costs to
the full top-down approach. The reason for this is, that though these scenes have the high-
est triangle count they expose a much more uniform tessellation and simpler shape. This
makes it easier to construct well performing trees. In fact we also constructed a much
simpler spatial median split BVH for David and Atlas. The resulting SAM and traversal
costs were practically identical to full top-down and hybrid construction.

133

Chapter 8. Multi-GPU Out-of-Core Top-Down SAH-based kd-Tree and BVH Construction

Scene SAM m

N L Rel. N L Rel.

Powerplant 101.7 93.5 -8.1% 109 97.4 -10.6%
Boeing 777 159.3 142.8 -10.4% 166.7 127.3 -23.6%
Atlas 173.5 103.3 -40.6% 133.9 78.2 -41.6%
David 190.5 79.7 -58.2% 551.6 78.7 -85.7%

Table 8.7: SAM and average measured traversal cost m of our test scenes for kd-tree
construction with normal (N) and localized binning (L). Relative differences of the costs
are shown as well.

8.5.5 Localized Binning

A comparison of tree quality and traversal cost for kd-trees constructed with normal and
localized binning is provided in Table 8.7. Measured traversal costs correlate more or
less well with these SAM cost improvements. We achieve 8.1% and 40.6% smaller SAM
costs for Powerplant and Boeing with slightly higher traversal cost reductions of 10.6%
and 41.6%. SAM cost improvements of 10.4% and 58.2% for Boeing and David are less
correlated with the much higher traversal cost reductions of 23.6% and 85.7%. Our results
show that localized binning can yield huge SAM cost improvements for binned kd-tree
construction without significant implementation overhead. This allows to use lower bin
counts, which reduces resource overhead.

8.5.6 SAH Improvement Threshold

We evaluated the effects of applying the improvement threshold described in Section 8.3.4
to kd-tree and BVH construction. Therefore we made several construction runs with
thresholds ranging from τ= 0% to τ= 20% in 5% steps for all scenes. For each threshold
we measured construction time, SAM cost, traversal cost m and tree size. For kd-trees we
additionally measured the number of primitive duplicates. A BVH node is 64 bytes in size.
48 bytes are needed for a pair of children bounds, 8 bytes for a pair of child pointers, and
8 bytes for a pair of triangle counts in case a child is a leaf. A kd-tree node is 16 bytes
in size. 4 bytes are used for the split plane, 4 bytes for encoding the node type (inner
node or leaf) and split dimension/triangle count, and 8 bytes for a pair of child pointers.
Construction was performed using a single GTX 980 GPU. Results are shown in Table 8.8.
Figure 8.9 additionally gives relative differences of the various measured quantities to the
case τ= 0%.

Results are mixed. In case of BVH construction we were able to push τ to 10% without
noticing significant changes in traversal cost when not considering Boeing. For Atlas and
David τ can even be pushed to τ = 20% without major traversal cost reductions. At the
same time their BVHs are more than 30% smaller at this threshold. Boeing shows a much
more dramatic development. Already with τ = 5% SAM cost more than doubles. With
only a 9% increase traversal cost does not follow this SAM cost explosion. Still this in-
crease is already higher than for the other scenes. BVH analysis showed that construction
created a leaf with 16K triangle primitives with almost 1% of the scene bounds surface
area which has a high contribution to the SAM cost. As not all rays visited this leaf the
average traversal cost increase is not as high. Already for τ = 0% there is a leaf with

134

8.5. Evaluation

Powerplant kd-tree Powerplant BVH

τ(%) Build(s) SAM m Dupl. Size(MB) Build(ms) SAM m Size(MB)

0 2.7 93.5 97.4 537% 387 891 55.0 101.3 331
5 2.2 97.8 100.5 418% 304 880 55.4 102.0 304
10 1.8 102.1 106.4 325% 275 846 58.5 105.1 275
15 1.4 111.0 119.4 243% 247 840 60.8 106.8 247
20 1.1 138.0 137.2 161% 175 760 69.6 112.0 175

Boeing 777 kd-tree Boeing 777 BVH

τ(%) Build(s) SAM m Dupl. Size(GB) Build(s) SAM m Size(GB)

0 101.0 142.8 127.3 560% 9.0 30.6 130.7 186.6 7.8
5 86.5 147.6 132.3 440% 6.2 29.5 279.8 203.2 7.1
10 73.6 155.4 140.8 340% 4.0 28.1 441.2 356.4 6.4
15 65.1 166.9 153.1 252% 2.4 27.3 1.1k 2.8k 5.6
20 56.4 194.0 176.1 175% 1.3 27.0 9.4k 6.7k 4.5

Atlas kd-tree Atlas BVH

τ(%) Build(s) SAM m Dupl. Size(GB) Build(s) SAM m Size(GB)

0 110.5 103.3 78.2 267% 11.1 41.5 38.4 44.4 14.7
5 93.5 105.9 81.3 215% 7.9 39.6 39.2 45.0 13.8
10 79.4 111.6 89.1 173% 5.5 39.5 39.2 45.0 13.0
15 70.2 123.1 106.6 137% 3.7 39.4 39.3 45.1 11.6
20 62.1 135.0 120.4 103% 2.3 37.2 40.2 45.7 9.6

David kd-tree David BVH

τ(%) Build(s) SAM m Dupl. Size(GB) Build(s) SAM m Size(GB)

0 228.4 79.7 78.7 271% 20.8 84.6 29.8 42.9 27.1
5 189.2 82.2 85.4 219% 14.9 84.0 30.4 43.2 25.4
10 162.6 88.0 90.0 176% 10.4 82.3 30.4 43.2 23.7
15 142.4 94.5 100.2 138% 6.9 79.5 30.4 43.3 21.3
20 127.1 104.1 110.9 105% 4.3 77.1 31.3 43.7 17.5

Table 8.8: Effects of the improvement threshold on kd-tree and BVH construction time,
tree quality, tree size and measured traversal cost m for all test scenes. The relative amount
of triangle duplicates is included for kd-tree construction.

2K triangle primitives with 0.1% scene bounds surface area which hints at BVH construc-
tion having some trouble in finding good partition candidates for this scene. This may
be caused by the fact that we inserted the Boeing scene into an environmental light box
which is made from 12 triangle primitives. This increased the non-uniformity in triangle
sizes. An SBVH (see Stich et al. [2009]) would have performed much better in this case. At
τ= 10% also traversal cost explodes. Along with these incoherent observations construc-
tion time and more so tree size decreases steadily but slowly with increasing thresholds
for all scenes. Thus, while our improvement threshold seems to be able to trade some
traversal performance for acceptable reductions in tree size, it is unclear if it is applica-
ble in general considering the result from Boeing. A larger number of out-of-core scenes
would be required to make a reliable statement.

In case of kd-tree construction all measurements are more sensitive to the improve-
ment threshold. At τ = 5% SAM and traversal cost on average increased by 5% for all
scenes. At the same time tree size is reduced by 25% to 30% and the number of duplicates
by at least 20%. At τ = 10% SAM and traversal cost is already increased by at least 10%

135

Chapter 8. Multi-GPU Out-of-Core Top-Down SAH-based kd-Tree and BVH Construction

0% 5% 10% 15% 20%

−50%

−25%

+0%

+25%

+50%
kd-tree

0% 5% 10% 15% 20%

−50%

−25%

+0%

+25%

+50%
BVH

0% 5% 10% 15% 20%

−75%

−50%

−25%

+0%

+25%

+50%

0% 5% 10% 15% 20%

−50%

−25%

+0%

+25%

+50%

0% 5% 10% 15% 20%

−75%

−50%

−25%

+0%

+25%

+50%

0% 5% 10% 15% 20%

−50%

−25%

+0%

+25%

+50%

0% 5% 10% 15% 20%

−75%

−50%

−25%

+0%

+25%

+50%

build SAM m size dupl.

0% 5% 10% 15% 20%

−50%

−25%

+0%

+25%

+50%

build SAM m size

Figure 8.9: Relative differences of the quantities from Table 8.8 to the case of an improve-
ment threshold of 0% for kd-tree (left column) and BVH (right column) construction. The
x-axis depicts the improvement threshold, while the y-axis depicts the relative quantity
difference. From the top row to the bottom row the scenes are Powerplant, Boeing, Atlas,
and David.

136

8.6. Summary and Discussion

and increases slightly superlinearly for higher τ. Except for Powerplant tree size is halved
and duplicates reduced by at least 30%. While larger τ significantly reduce tree size and
the number of duplicates, performance decreases steadily. Cost explosions for Boeing do
not occur as spatial splits can better deal with non-uniform geometry. Thus, for kd-trees
the improvement threshold more predictably allows to trade traversal performance for
much smaller tree sizes and duplicate counts. Thresholds smaller than 5% should result
in very minor traversal cost increases with already noticeable size reductions.

8.6 Summary and Discussion

We presented two approaches for full SAH-based top-down parallel out-of-core BVH and
kd-tree construction that also scale with multiple GPUs. The performance of our BVH
construction implementation with one GPU was comparable to the highly optimized and
vectorized BVH builder of the Embree library running on a deca-core processor. Using
binned construction allowed us to easily parallelize construction in the upper tree levels
across multiple GPUs. As soon as subtrees are small enough to be completely processed by
a single GPU, the sheer amount of such subtrees still allowed us to occupy several GPUs.
We showed, that it is possible to construct high quality kd-trees even with the binned
approach at relatively low bin counts. Key to this is our localized binning approach.

Traversal cost of the kd-tree was lower than with a BVH for the more complex shaped
Powerplant and Boeing scenes. Performance was inferior for Atlas and David. Both scenes
have a lot of empty space. Thus, most certainly this was due to the better empty space cut-
off capabilities of the BVH. Implementing empty space cut-off techniques as for example
described in Wald and Havran [2006] probably would have shifted odds again in favor of
kd-trees. We also used a higher traversal cost constant for kd-tree construction to prevent
excessive splitting. Thus, measured traversal cost would be even lower with the lower
constant. At the same time the tree memory footprint would be much higher and should
be larger than the BVH memory for all scenes. To reduce this overhead we proposed an
SAH improvement threshold for tree construction. A threshold of up to 10% allowed to
reduce tree size by more than 50% and duplicates by at least 30%. At the same time,
rendering performance also decreased by at least 5%. Application of the threshold to BVH
construction displayed a much stronger scene dependence. Results ranged from almost
no performance reduction to gradual degradation, or sudden severe degradation.

We also compared tree quality with a hybrid construction approach. Traversal costs
were 13% and 4% higher for Powerplant and Boeing with hybrid construction. For Atlas
and David the full top-down and the hybrid approach essentially produced the same result
as a simple top-down spatial median split construction.

8.6.1 Future Work

A future avenue would be to combine our BVH and kd-tree algorithms to construct an
out-of-core SBVH algorithm (see Stich et al. [2009]). This lets us take advantage of the
smaller memory footprint and construction time of BVHs, and quality increasing splits of
kd-trees. Presumably, application of the improvement threshold would also give better
results, similar to the kd-tree. A possibility to reduce memory overhead from duplicates
during construction was sketched in Section 8.3.3. Another direction would be to find an
efficient out-of-core algorithm for the BVH construction approach from Karras and Aila

137

Chapter 8. Multi-GPU Out-of-Core Top-Down SAH-based kd-Tree and BVH Construction

[2013] (see Section 2.5.5). They perform local BVH optimizations on a fast to construct
low quality BVH in parallel. The resulting BVHs have almost the same traversal perfor-
mance as a full SAH-based top-down construction but can be constructed much faster.
Mapping this algorithm to huge datasets should pose a difficult challenge when the BVH
does not fit into GPU memory. It would also be interesting to see if the local tree opti-
mizations are still effective for much larger trees.

138

Chapter 9

Final Summary and Discussion

Contents
9.1 Summary . 139

9.2 Discussion . 141

In this dissertation we presented several contributions on bounding volume hierarchies
(BVH) and kd-trees in the context of ray tracing. We now proceed with a summary and
discussion of the relevant chapters, and conclude with discussions of overall open prob-
lems and future work in the final chapter.

9.1 Summary

The overarching problem of chapters four to six was the construction of BVHs with higher
quality. Higher quality was meant in the sense of BVHs with a measurable lower average
number of node and primitive intersection tests. A good indicator for hierarchy quality
is the surface area metric (SAM). Construction strategies based on the surface heuristic
(SAH) are able to build BVHs with lower SAM cost than other strategies.

SAM and SAH both use a geometric conditional probability for intersecting the bounds
of a node. In Chapter 4 we attempted to improve this probability function in order to im-
prove SAM and SAH, as well. Our function definition is based on the observation that
the conditional probability of intersecting a convex body A with a random ray given that
we intersected another convex body B which contains A depends on the ray direction.
This probability can expose strong directional variance. In contrast to the conventional
probability function pc used for SAM and SAH our alternative function pa included this di-
rectional dependence in its derivation. Except for certain types of bounding volumes such
as spheres or cubes, where pa directly simplifies to pc , our probability cannot be evaluated
analytically. We identified cases where pa degenerates to the conventional probability. In
general, we found that pa and pc did not have a large absolute difference in our exper-
iments. Ultimately, this also explained why SAH-based construction with pa resulted in
essentially the same BVHs than construction with pc .

139

Chapter 9. Final Summary and Discussion

Additionally, we noted that for random rays the outer body is more likely to be inter-
sected from some directions than from others, which effectively changes the probability
distribution of random ray directions. We were able to show that pa simplifies to pc when
this effective non-uniform ray direction distribution is factored into the derivation of pa.
This revealed an alternative derivation for the conventional probability pc which allowed
to interpret pc as accounting for directional variation. This property of pc has been unrec-
ognized so far and might partially explain the lasting success of the surface area heuristic
and metric.

Aila et al. [2013] found that SAM is less accurate in predicting the traversal perfor-
mance of BVHs then predicting the traversal performance of kd-trees, as it does not suf-
ficiently capture the extra BVH traversal costs caused by node overlap. BVH construction
has to minimize SAM and EPO cost of a BVH to be sure that measured traversal cost is
reduced as well. In Chapter 5 we attempted to improve traversal performance by con-
structing BVHs with lower SAM and EPO cost. To achieve this, we examined three con-
struction algorithms that use the SAM cost of temporarily constructed SAH-built BVHs to
guide BVH construction. This was motivated by research from Aila et al. [2013]which has
shown that greedy top-down SAH builders construct BVHs with superior traversal perfor-
mance despite the fact that the resulting SAM costs are higher than those created by more
sophisticated builders. This comes from the innate property of the top-down builder to
implicitly minimize the EPO metric. This property allowed us to implicitly guide construc-
tion to choose candidates, which produce lower EPO, as the temporary BVHs have also
been constructed with the greedy top-down construction strategy. Our constructed BVHs
gave a significant increase in trace performance. We made several observations where
temporary BVH construction with spatial splits clearly built BVHs with the lowest SAM
and EPO cost, but other construction algorithms gave higher measured traversal perfor-
mance. These observations suggest, that the SAM-EPO predictor is not sufficient. While
our approach is not suitable for real-time BVH construction, we have shown that the pro-
posed algorithm has subquadratic computational complexity in the number of primitives,
which still renders it usable in practical applications.

Additionally, we have shown that the uncentered Pearson correlation is more suitable
for computation of α values for the SAM-EPO ray tracing performance predictor than the
centered Pearson correlation as used by Aila et al. [2013]. The centered Pearson corre-
lation violates the proportionality assumption between predicted and measured traversal
performance. Though the SAM-EPO predictor was initially designed for diffuse rays our
improvement in the forecasting abilities also increased its relevance for primary rays.

In Chapter 6 we attempted to increase the quality of BVHs constructed with bottom-up
approaches. The highest quality bottom-up approach is agglomerative clustering, a greedy
bottom-up algorithm from Walter et al. [2008]. This algorithm is guided by the intuition
that always clustering nodes which give the cluster bounds with the lowest surface area
should be beneficial w.r.t. the SAM cost of the resulting tree. We presented a fully SAM-
driven approach for agglomerative clustering. For this, we developed a SAM cost function
for the cost of tracing a forest of BVHs. From this function we derived two clustering strate-
gies. The first strategy clusters nodes where the cluster has lowest SAM cost. The second
strategy clusters nodes which give the largest reduction in the forest cost. Both strategies
allow to naturally create leaves as a clustering decision, which was not possible with the
original approach in a meaningful way. While our first strategy proved to be detrimental
for tree quality, our second strategy on average produced better BVHs than the original

140

9.2. Discussion

algorithm. This is overshadowed by the fact that the original algorithm and our clustering
based algorithms performed worse than standard top-down plane sweeping in two thirds
of the test scenes. Most of these scenes suffered from severe performance degradations.
Aila et al. [2013] made similar observations for the original algorithm. We found that the
bottom-up approach in general creates larger EPO costs. The greedy bottom-up process
favors the creation of inner nodes where the children are closer together, risking overlap.
Also, clustering decisions in lower levels do not take into account consequences regarding
overlap in the upper tree levels. Greedy top-down sweep construction tries to create inner
nodes where the children have small bounds, but by construction are also separated. As
we have seen in Chapter 5 the greedy top-down algorithm from Popov et al. [2009] also
suffered from high overlap as it allowed any kind of object split as long as the SAH cost is
smaller.

Chapter 7 moved the focus to traversal performance with parallel hardware. We in-
vestigated how different BVH tree and node memory layouts in different memory areas
impacted the ray tracing performance when tracing incoherent rays of a GPU path tracer.
We also optimized the BVH layout using information gathered in a pre-processing pass by
applying a number of different BVH reordering techniques. Depending on the memory
area chosen for the BVH nodes and scene complexity, we achieved moderate speedups.
The overall observation we made is that node layout had the largest impact on perfor-
mance. In our extended data collection (see Schulz et al. [2013]) we could see that this
is true for different GPU architectures, and that the best layout also can differ between
architectures. Similar to Aila et al. [2012] we also observed that accessing the BVH via
texture memory results in a significant performance boost. When assessing nodes via tex-
ture memory node layout was still important, but the chosen tree layout had a smaller
influence on performance.

Finally, in Chapter 8 we focused on the problem of high quality acceleration structures
in an out-of-core context. We presented a multi-GPU full top-down SAH-based BVH and
kd-tree construction approach for scenes, which are of production rendering size and thus
are by far several times larger than GPU memory. Existing GPU approaches for full top-
down construction require geometry and the acceleration structure to completely fit on a
single GPU. Out-of-core GPU approaches perform hybrid bottom-up top-down construc-
tion which suffers from reduced acceleration structure quality in the critical upper levels
of the tree. To handle the massive amount of geometry we split it into chunks. Using
binned SAH-based construction allowed to bin chunks independently from each other on
multiple GPUs, but some inter GPU synchronization was necessary to merge the binning
results in upper tree levels. The slight quality loss from binning was compensated with
higher bin counts and a localized binning strategy in case of kd-trees. A partial-DFS-BFS
node processing order exploited different levels of inter- and intra-GPU parallelism, and
aimed at rapidly reducing the transient memory footprint. With a single commodity GPU
we achieved comparable performance to a high-end deca-core CPU. Speedup efficiency
was above 70% with four GPUs and stayed above 55% with eight GPUs.

9.2 Discussion

In this dissertation we managed to greatly improve BVH quality w.r.t. measurable traversal
performance. The major problem with research on BVH quality is that is not possible to de-
termine how close results are to the optimum. Unfortunately, when using SAM as the gold

141

Chapter 9. Final Summary and Discussion

standard for BVH quality the construction of ground truth BVHs, which are optimal w.r.t.
SAM, is highly unfeasible. The situation is complicated further by the results from Aila
et al. [2013] on the necessity of the EPO metric to more accurately predict BVH traversal
performance. Our own results from Chapter 5 and Chapter 6 mostly support the validity
of the EPO metric. Constructing SAM-EPO metric optimal ground truth BVHs should be
even more unfeasible than constructing SAM optimal BVHs. The scene dependence of the
required α value is problematic, too.

Our construction approach in Chapter 5 successfully relied on the implicit EPO reduc-
tion of greedy top-down SAH-based plane-sweeping construction which has been observed
by Aila et al. [2013] to construct lower SAM-EPO metric cost BVHs. The more general ge-
ometric object splits from Popov et al. [2009], which we examined and discussed in Chap-
ter 5, and the bottom-up agglomerative clustering construction strategy from Walter et al.
[2008]with and without our SAM-based clustering heuristic in Chapter 6 turned out to be
harmful for SAM and EPO. In the light of this, future research should perhaps concentrate
on construction strategies, which only allow object partitions that can be associated with
separating planes. This has two interesting aspects. First, this might allow to again use
SAM alone as the gold standard for quality by simply relying on the implicit EPO reduc-
tion of this split type. Secondly, this construction strategy limits the number of different
BVHs that can be constructed. Perhaps it is possible to develop a minimum-SAM algo-
rithm akin to the approach from Karras and Aila [2013], which only considers the plane
constrained partitions. Hopefully this algorithm might have a lower computational and
space complexity. Even in case that the complexities are unpractical, they might be small
enough to create ground truth BVHs for larger scenes than Karras and Aila’s approach.
Being able to create a ground truth BVH for small models such as the Sibenik scene with
its 80K primitives should already be sufficient to assess if more research on BVH quality
is worthwhile. It would also be interesting to see if the standard SBVH algorithm already
produces BVHs, which are better than the optimal purely object split-based BVH.

Considering the accuracy of the SAM-EPO predictor the question arises whether it is
worthwhile to further improve on the conditional intersection probability function of SAM
as we attempted in Chapter 4. Our results indicate that the conventional probability func-
tion is already sufficient. For diffuse rays the lowest and highest mean absolute percentage
error of the predictor we measured in Chapter 5, Table 5.1 was just 2.5% and 8.4%, respec-
tively. Even in the purely hypothetical case that this error could be completely explained
by a better intersection probability function, there is not much room left for improvement.

Our higher quality BVHs should also complement our efforts on improving the cache
behavior of tracing incoherent rays on GPUs. The lower average number of traversed
nodes should reduce the pressure on GPU memory caches. Regardless of the memory
area we used for node access we observed that our best tree and node layout combina-
tions mainly increased performance by improving the achieved cache bandwidth. At the
same time the cache hit rate and the ratio of required to loaded data stayed the same,
which raises the question what caused the bandwidth increase. Observations like this one
and disclosed intricate or exposed GPU properties probably will change with every new
GPU generation. This calls for an auto tuning approach, that optimally adapts the tree and
node layouts to the current hardware platform. Section 10.7 in the future work chapter
provides a sketch for this. Our techniques would clearly benefit from ray reordering tech-
niques to extract ray coherence from ray batches. A more optimal approach would be to
actually build a more ray tracing friendly GPU with the architecture properties proposed

142

9.2. Discussion

by Aila and Karras [2010]. Their additionally proposed ray traversal algorithm has a high
cache efficiency, which is insensitive to the ray coherence properties of a batch of rays.
Unfortunately, such a GPU still has not materialized.

Huge data parallel problems where not all data fits into graphics memory can pose a
serious challenge for GPUs if the processing of data chunks takes less time than loading
data chunks on the GPU. Higher quality BVH and kd-tree construction mostly comes at
the cost of higher construction time from more computations. This can make out-of-core
construction of higher quality acceleration structures on GPUs more attractive. We have
shown that SAH-based construction already offers enough computational intensity to ef-
ficiently overlap computations with onloading and offloading of data which resulted in
competing performance of a consumer GPU with a high-end server CPU.

While our RSAH-based construction algorithms are more compute intensive than pure
SAH-based construction, they are less suitable for out-of-core GPU construction. Though it
is not necessary to explicitly store temporary BVHs, their construction requires additional
memory from temporary primitive references. Their memory footprint can exceed the
amount of available GPU memory and increase the amount of transient data that has
to be managed. Construction on multiple GPUs should involve more synchronization.
Working on cheap subtree cost approximations for RSAH-based construction which do
not require the construction of temporary BVHs would be desirable in general but might
also be readily applied to our out-of-core GPU-based construction approach. A candidate
for such an approximation might be an experimental heuristic we present in Section 10.9.

143

Chapter 9. Final Summary and Discussion

144

Chapter 10

Future Work

Contents
10.1 Possible SAM-EPO Metric Insufficiency 145

10.2 Explicit EPO Reduction . 146

10.3 RSAH and the LCV Metric . 146

10.4 Treelet-based BVH Optimization with RBVH 146

10.5 Including Ray Termination into BVH Construction 147

10.6 Predictive Power of the RTSAH Metric 147

10.7 BVH Tree and Node Layout Auto-Tuning 148

10.8 Bounding Volume Graph . 148

10.9 An Experimental Alternative Surface Area Heuristic 148

10.10 Out-of-Core BVH Optimization . 149

Chapters 5 to 8 already discussed possible directions for future work on their respective
subject matter. We briefly recapitulate the most promising suggested directions in an
organized concise manner and also include overall open questions and future work.

10.1 Possible SAM-EPO Metric Insufficiency

For the agglomerative clustering-based algorithms in Chapter 6 and to a much higher
degree for the RSSBVH algorithm in Chapter 5 we observed the situation where an algo-
rithm constructs a BVH with lower SAM and EPO cost than another algorithm, but gives a
higher measured traversal cost. RSSBVH in general performed worse than expected from
its achieved SAM and EPO reductions. We concluded, that there must be an unidentified
effect which is not captured in the SAM-EPO metric and might be related to the spatial
splits applied by RSSBVH. Additional primitive duplicates seem not to be the cause, as we
observed only slightly more or even less duplicates for RSSBVH compared to the similarly
performing RSBVH algorithm. The agglomerative clustering-based algorithms do not per-
form spatial splits. Thus, our observations for these algorithms might hint at an additional
uncaptured effect, or spatial splits are not the issue. But due to the low severity of violation

145

Chapter 10. Future Work

of these algorithms the observations might also just be random. Finding an explanation or
perhaps a new BVH quality metric which can explain the observed discrepancies at least
for RSSBVH is an interesting direction for future work.

10.2 Explicit EPO Reduction

Our RSAH-based algorithms rely on the implicit EPO minimization of SAH-based top-
down BVH construction to reduce EPO. Our approach allows to directly include EPO into
the construction process. We can readily compute EPO of a candidate partition from the
temporarily built BVHs combined with the node to split. This would allow us to directly
use the SAM-EPO traversal cost predictor to guide construction. This requires prior knowl-
edge of the scene dependent α value needed for the predictor which usually is unknown.
According to experiments from Aila et al. [2013] using a fixed α (α = 0.71 in their case)
can give acceptable predictions. Alternatively, fast and accurate determination of α for
unknown scenes is also an interesting problem. While construction should be much more
expensive with explicit EPO reduction, it would still be interesting to see the improvement
in traversal performance.

10.3 RSAH and the LCV Metric

In addition to the EPO metric, Aila et al. [2013] also proposed the leaf count variability
(LCV) metric, which in a convex combination with SAH and EPO can explain SIMD perfor-
mance of their GPU ray tracing experiments. They found that top-down greedy SAH-based
construction also implicitly reduces LCV. This property should be naturally inherited and
boosted by our RSAH-based algorithms. Thus, BVHs constructed with our RSAH algo-
rithms might also be specially suited for SIMD traversal. Experimental validation of this
conjecture is left for future work.

10.4 Treelet-based BVH Optimization with RBVH

In Section 2.5.5 we introduced the fast and parallel high quality BVH construction algo-
rithm from Karras and Aila [2013], which first constructs a cheap-to-build low quality
BVH, which then is post-processed in a fast and parallel optimization step to yield a high
quality BVH. The resulting BVHs achieve quality close to greedy top-down SAH-based con-
struction in much less time. The optimization step computes locally optimal (w.r.t. SAM)
sub-hierarchies on treelet partitions of the low quality BVH. As their minimum-SAM BVH
construction algorithm has Ω(exp n) computational and O(exp n)memory space complex-
ity only small treelet sizes are practical. We suspect that the local optimal solutions proba-
bly are not optimal w.r.t. EPO. Though our RBVH algorithm does not construct minimum-
SAM BVHs, its computational complexity and space requirements allows for much larger
treelets. Combined with its high-quality lower-EPO output it would be interesting to see
what can be achieved. Ideally, results have higher quality than standard SAH-based con-
struction in much less time.

146

10.5. Including Ray Termination into BVH Construction

10.5 Including Ray Termination into BVH Construction

In Section 2.5.8 we briefly discussed the RTSAH metric from Ize and Hansen [2011]which
gives a measure for the expected traversal cost of BVHs and kd-trees with occlusion rays
taking into account that rays can terminate during traversal. Without experimental vali-
dation the authors claim that their metric is valid for intersection rays as well. They also
do not present an RTSAH-motivated construction algorithm. Our ∆SAGGLO and RSAH-
based algorithms can easily be modified to include RTSAH. RTSAH can be directly inte-
grated into our forest cost function of ∆SAGGLO and the bottom-up construction allows
to conveniently compute RTSAH cost of cluster candidates on-the-fly. We still expect the
resulting BVHs from∆SAGGLO to suffer from high overlap in the upper tree levels. All our
RSAH-based algorithms can be directly turned into RTSAH-based algorithms by comput-
ing the RTSAH metric on the temporary subtrees to compute RTSAH partition candidate
scores. Under the assumption that the RTSAH metric is indeed usable for ordinary inter-
section rays it would be interesting to see the improvement in traversal performance.

10.6 Predictive Power of the RTSAH Metric

In the light of the previous section it is an interesting question how well RTSAH performs in
predicting traversal performance compared to the SAM-EPO metric, especially as RTSAH
does not require a scene dependent constant. As we already had our set of constructed
BVHs available from our RSAH experiments in Chapter 5 we simply computed RTSAH
for them and computed the mean absolute percentage error (MAPE) of the predicted and
measured speedups. Ize and Hansen [2011] provided an adapted RTSAH version for clos-
est intersection rays (called radiance rays in their publication) which we used. Preliminary
results are collected in Table B.1, Appendix B. We also included the conventional SAM and
the combined SAM-EPO predictor with α values determined with the uncentered Pearson
correlation.

Though there are exceptions, at least in our experiments RTSAH clearly has a higher
average MAPE than the conventional SAM, and the SAM-EPO predictor performed best.
RTSAH assumes that rays always terminate in leaves. Suspecting this might be too sim-
plifying we tried a simple approximation of the actual termination probability. For this we
computed the expected number of intersected leaf primitives as the sum of the two sided
primitive areas divided by the leaf bounds surface area and clamped the result to one. For
leaves with a single primitive or a tessellated planar surface this actually gives the cor-
rect termination probability w.r.t. the ray distribution underlying the SAM. RTSAH with
our modified leaf occlusion computation is included as RTSAH+ in Table B.1. RTSAH+
clearly improved on RTSAH but still has higher MAPE than SAM. SAM can be derived from
RTSAH by assuming that rays never terminate. In the light of this it is unclear if a more
accurate termination probability can improve the result further, or if RTSAH generally is
inferior to SAM and RTSAH+ simply interpolates between both metrics. Whereas RTSAH
treats leaves like solid blocks, RTSAH+ treats leaves like they are filled with a gas that
probabilistically terminates rays. A more accurate approximation should probably at least
distinguish between ray termination in- and outside of node overlap. An improved RTSAH
metric or completely different termination-based metric is left for future work.

147

Chapter 10. Future Work

10.7 BVH Tree and Node Layout Auto-Tuning

In Chapter 7 the optimal BVH tree and node layout heavily depended on the chosen GPU
architecture. For a ray traversal implementation to always give optimal performance with
future hardware a layout auto-tuning approach should be followed. For this a small set of
benchmark scenes and benchmark ray sets should be provided by the application. Then,
performance of different tree and node layouts in different memory areas would be pro-
filed. Different layouts and memory areas could also be tried for the geometry. This in-
creases the search space further. It should also be beneficial to provide dedicated kernels
for intersection/occlusion rays and coherent/incoherent rays which have to be auto-tuned
separately. To avoid an exhaustive search the techniques proposed by Weber and Goesele
[2016] might be applied.

10.8 Bounding Volume Graph

It would be interesting to investigate if it is possible to adapt the concept of the graph-
based acceleration structure from Gribble and Naveros [2013] (see Section 2.4) to BVHs as
this might eliminate the need for a traversal stack without having to process nodes several
times. Other stackless BVH traversal algorithms either only allow a specific traversal order
or have to process BVH nodes several times. Gribble and Naveros [2013] derived the graph
from the spatial scene decomposition from a kd-tree by converting leaves into sectors
which store lists of adjacent sectors. In case of ambiguity inner nodes of the kd-tree which
can resolve the ambiguity are referenced. The spatial decomposition allowed to uniquely
identify which node in the graph to process next and guaranteed traversal progress. As
the union of all leaf volumes in a BVH is not guaranteed to cover the whole volume of the
scene bounds there can be leaves, which are adjacent to uncovered space. Further, leaf
nodes can overlap. Both aspects make it difficult to identify which node to process next
during traversal. One possibility might be to analyze the octants defined by the bounds of
leaves by combing the half spaces of the bounding planes of three different dimensions.
Then each octant references the deepest common ancestor node of all leaves the octant
overlaps. At traversal time the ray chooses the appropriate octant depending on the ray
direction and resolves the closest leaf. Additional logic is required to avoid cycles during
traversal. If this sketch combined with some additional modifications indeed results in
a working algorithm, it has to be seen if it is competitive due to the possibly excessive
handling of ambiguity.

10.9 An Experimental Alternative Surface Area Heuristic

Motivated by the discussions in Section 5.6.2 and Section 6.4 we developed an alternative
experimental surface area heuristic for greedy top-down BVH construction. It approxi-
mates the subtree cost of partition candidates, is less blind to the immediate cost caused
by the two new partition nodes, and at the same time is simple and cheap to evaluate.
According to the iterative definition in Equation 2.33 of the SAM cost of a BVH the cost can
be split into the summed cost cI = ct

∑

n∈I proot
n of all inner nodes I and the summed cost

cL = ci
∑

n∈L proot
n |n| of all leaves. When creating a partition candidate we approximate

the cost of the subtrees on each partition side by assuming that all primitives will end up

148

10.10. Out-of-Core BVH Optimization

in separate leaves. This allows us to directly compute the BVH leaf cost cL for the left side
l and right side r of a partition as an approximation for their subtree cost. Leaving out
the common 1

Aroot
area factor from the scene bounds in the geometric probability and the

ci constant this results in sum of primitive bounds areas cl =
∑

p∈Pl
Ap for the subtree cost

approximation of the left side with its set of primitives Pl . The subtree cost approximation
for the right side is analogous. We could add the partition subtree root bounds Al to cl to
improve the approximation. But this would cause Al to get lost in cl though Al actually
contributes to the cost of the BVH as discussed in Section 5.6.2. Thus, we decided to in-
clude Al by multiplying cl with Al . Putting everything together our experimental surface
area heuristic (XSAH) is defined as

csplit = Al

∑

p∈Pl

Ap

!

+ Ar

∑

p∈Pr

Ap

!

. (10.1)

Only little effort is required to implement XSAH in a greedy SAH-based top-down builder.
We only use the heuristic for best split candidate determination. To decide whether to
create a leaf node we compute the conventional SAH cost for the best split determined
with XSAH and compare against the conventional leaf cost.

We conducted preliminary experiments with top-down sweep construction with XSAH
on the scenes from Chapter 5. In Appendix C average results are shown in Table C.1 and
separately for each scene in Table C.2 where the algorithm is denoted XBVH. The standard
top-down sweeping construction (BBVH) algorithm and RBVH are included for compar-
ison. Except for Powerplant and Rungholt, which in general proved to be problematic
scenes, XBVH always performed better than BBVH. In some scenes the result is also close
to RBVH. Considering that XBVH is essentially as simple to compute as BBVH this is a good
result. Identifying why it failed in Powerplant might result in an improved heuristic. But
more scenes should be evaluated to detect more problematic scenarios. It is also inter-
esting to see, how XSAH performs with binned construction and the SBVH algorithm. As
XSAH seems to be more sensitive to the size of the bounds of a partition it might be even
able to improve the geometric splits from Popov et al. [2009]. Further, it might also be
used to improve the quality of temporary subtrees in RSAH-based construction for overall
higher quality. As a more or less accurate approximation to the RBVH algorithm XBVH
might also be used for treelet-based BVH optimization with much larger treelets.

10.10 Out-of-Core BVH Optimization

Our presented out-of-core GPU BVH construction approach gave competitive construction
performance compared with a deca-core processor. The treelet-based in-core construc-
tion approach from Karras and Aila [2013] is a promising alternative to top-down SAH
based construction. To find an efficient out-of-core algorithm for this approach which can
efficiently utilize multiple GPUs is an interesting direction for future work. Mapping this
algorithm to huge datasets should pose a difficult challenge when the BVH does not fit into
GPU memory. To fit into memory the BVH has to be split into chunks. The optimization is
performed bottom-up or top-down in a clear chunk processing order. For a single GPU at
least this should allow to precompute a chunk processing schedule which optimizes the
asynchronous processing and on- and off-loading of required chunks with a chunk cache.
Optimization treelets that cross several chunks increase implementational effort.

149

Chapter 10. Future Work

R

A

B

R

A

B

Figure 10.1: Example of a BVH where the two red leaves A and B are assumed to be close
together in space and would greatly improve hierarchy quality if merged into a leaf, but
at the same time are far apart in the hierarchy. Their closest common ancestor is R. In a
corresponding undirected graph the nodes have a distance of nine. Left: The treelet size
of four is smaller than nine. No treelet starting at R can contain A and B at the same time.
Treelet optimization may decrease or increase the node distance. After several iterations
the nodes may end up in the same treelet. This should be less likely for large BVHs in
out-of-core settings. Right: The treelet size must be at least nine to be able to include
both nodes. The subtrees of the treelet degenerate into lists in this case.

It would also be interesting to see if the local tree optimizations are still effective for
much larger trees. If the distance d between nodes in a corresponding undirected graph
is larger than the treelet size n they cannot end up in the same treelet for optimization
to resolve unfavorable leaf constellations. This is a problem if both nodes are close to-
gether or even overlapping in space, but far away from each other in the tree. Spatial or
object median split constructions can easily generate such constellations. Even in case the
treelet size is large enough there is no guarantee for both nodes to end up in the treelet.
Though several optimization iterations can change the distances between nodes this prob-
ably is less likely for tree depths encountered in out-of-core scenes. See Figure 10.1 for
an illustration of this problem.

150

Appendix A

RSAH-based Construction Complexity

A.1 Naïve Sweep-Sweep Construction Complexity

In Section 5.2.1 we stated that an RSAH algorithm based on the common naïve sweep
approach which sorts in every step has a complexity of O

�

N2 log2 N
�

. In this appendix
we provide a derivation for this result. The naïve top down SAH-based plane-sweeping
construction algorithm implementation according to MacDonald and Booth [1990] sorts
all node primitives every time it determines the best SAH-based split. This results in an
overall complexity of O

�

N log2 N
�

. For a node with N primitives a sweep-sweep RSAH
algorithm based on this implementation first has to sort its primitives in O (N log N) and
then construct 2(N −1) temporary BVHs for its N −1 candidate partitions. This results in
the following recurrence relation:

T (N) = N log N + 2

�N−1
∑

i=1

i log2 i

�

+ 2T
�

N
2

�

Using the upper bound
∑N−1

i=1 i log2 i < N2 log2 N we get:

T (N)< N log N + 2N2 log2 N + 2T
�

N
2

�

< N log N + 2N2 log2 N

+ 2

�

N
2

log
N
2
+ 2

�

N
2

�2

log2 N
2
+ 2T

�

N
4

�

�

< 2
log N
∑

i=0

2i

�

N
2i

log
N
2i
+
�

N
2i

�2

log2 N
2i

�

At this point we drop the lower order addend and assume N = 2n, n ∈ N:

T (N) = 2
n
∑

i=0

2i
�

N
2i

�2

log2 2n

2i
= 2N2

n
∑

i=0

(n− i)2

2i

= 2N2

�

n2
n
∑

i=0

1
2i
− 2n

n
∑

i=0

i
2i
+

n
∑

i=0

i2

2i

�

→ O
�

N2n2
�

= O
�

N2 log2 N
�

(A.1)

151

Chapter A. RSAH-based Construction Complexity

A.2 Binning-Binning Construction Complexity

In this appendix, we derive the result from Equation 5.7, Section 5.2 in detail.

T (N) =2

� B
∑

i=1

i
N
B

log
�

i
N
B

�

�

+ 2T
�

N
2

�

=2

� B
∑

i=1

i
N
B

log
�

i
N
B

�

�

+

4

� B
∑

i=1

i
N
2B

log
�

i
N
2B

�

�

+ 4T
�

N
4

�

=2
log N
∑

i=0

2i

B
∑

j=1

j
N

2iB
log

�

j
N

2iB

�

!

=2
log N
∑

i=0

N
B

B
∑

j=1

j log
�

j
N

2iB

�

!

=2
log N
∑

i=0

N
B
(log H(B) + B log N − iB − B log B)

Here we use the upper bound log H(B)< B2 log B.

T (N)<2
log N
∑

i=0

N
B

�

B2 log B + B log N − iB − B log B
�

=2
log N
∑

i=0

(BN log B + N log N − iN − N log B)

=2
�

N log2 N + BN log(B) log(N)−

O(N log N)−O(log2 N)
�

∈O(N log2 N).

(A.2)

152

Appendix B

RTSAH Metric Speedup Prediction Ex-
periments

Average prediction MAPE (%)

Primary rays Diffuse rays

Scene RTSAH RTSAH+ SAM SAM-EPO RTSAH RTSAH+ SAM SAM-EPO

Babylon 32.3 24.4 14.6 9.4 27.5 19.8 10.0 6.2
Bubs 4.4 3.7 5.7 5.7 7.0 6.2 4.6 4.6
Conference 15.0 14.2 9.0 8.9 13.4 12.8 4.3 2.5
Epic 27.4 25.0 22.5 10.9 24.0 21.4 18.9 8.4
Fairy 7.4 7.4 7.9 8.0 5.1 5.0 4.5 3.4
Hairball 32.4 27.0 18.0 13.2 22.9 17.6 8.8 2.8
Powerplant 16.3 11.7 15.2 4.1 12.6 8.1 8.5 3.4
Rungholt 2.2 2.3 2.6 2.6 2.0 2.1 2.6 2.6
San Miguel 25.0 23.5 20.0 9.0 23.4 22.8 13.2 7.8
Sibenik 15.2 12.3 11.2 3.5 8.3 5.8 4.7 3.1
Soda 13.0 12.1 12.2 9.7 15.5 14.6 8.5 4.6
Sponza 22.2 19.3 16.7 12.4 18.7 16.3 9.8 5.9

Average 17.7 15.2 13.0 8.1 15.0 12.7 8.2 4.6

Table B.1: Preliminary results of the mean absolute percentage error (MAPE) of speedup
prediction with the RTSAH, SAM, and SAM-EPO metrics. RTSAH results are computed
from the BVHs obtained in Chapter 5. α values for the SAM-EPO metric correspond to
the ones obtained with the uncentered Pearson correlation in Table 5.1. RTSAH+ uses a
more accurate leaf termination probability described in Section 10.6.

153

Chapter B. RTSAH Metric Speedup Prediction Experiments

154

Appendix C

Experimental Alternative Surface Area
Heuristic Experiments

Avg. (Min/Max) reduction (%)

Primary rays Diffuse rays

Algorithm SAM EPO p m p m

RBVH
-11.7 -22.2 -13.3 -10.4 -12.7 -8.9

(-2.7/-33.3) (-1.4/-65.3) (-2.7/-33.3) (+0.9/-28.3) (-2.7/-33.3) (+0.4/-23.7)

XBVH
-7.4 -17.7 -9.2 -7.6 -8.5 -6.0

(+0.8/-32.5) (+3.4/-64.4) (+1.3/-32.5) (+3.0/-22.3) (+1.1/-32.5) (+3.4/-19.7)

Table C.1: Average, minimum, and maximum reduction of SAM, EPO, as well as predicted
(p) and measured (m) traversal cost of primary and diffuse rays over all preliminary results
in Table C.2 relative to BBVH as baseline for RBVH and our experimental BVH builder (see
Section 10.9) based on XSAH (XBVH).

155

Chapter C. Experimental Alternative Surface Area Heuristic Experiments

Primary rays Diffuse rays

Scene Builder Time SAM EPO p m p m

Babylon
RBVH 250.2 49.2 12.9 29.9 51.1 35.3 54.2
XBVH 5.3 50.2 12.6 30.3 47.8 35.9 54.3
BBVH 3.8 53.7 15.1 33.2 51.9 39.0 58.2

Bubs
RBVH 1500.2 16.2 2.9 16.2 32.0 16.2 36.5
XBVH 24.2 16.3 3.0 16.3 34.6 16.3 38.4
BBVH 16.5 24.2 8.4 24.2 44.5 24.2 47.9

Conference
RBVH 126.0 38.6 7.1 24.5 32.4 30.1 41.8
XBVH 3.2 41.8 7.6 26.5 35.0 32.6 45.1
BBVH 2.1 46.4 9.8 30.0 39.5 36.6 49.5

Epic
RBVH 237.5 19.5 6.0 10.6 69.2 11.5 69.2
XBVH 4.2 19.5 6.4 10.9 70.2 11.7 72.4
BBVH 3.3 21.3 7.1 12.0 72.6 12.8 73.1

Fairy
RBVH 111.0 31.5 3.0 8.7 40.0 12.2 47.2
XBVH 2.1 31.9 2.7 8.5 41.0 12.2 47.2
BBVH 1.4 33.4 3.4 9.4 43.4 13.1 49.3

Hairball
RBVH 1685.2 454.0 36.7 90.7 153.3 152.8 150.1
XBVH 26.9 465.9 37.5 93.0 160.5 156.7 152.9
BBVH 23.8 466.4 37.8 93.3 158.8 157.0 153.0

Powerplant
RBVH 96.7 41.1 13.0 27.9 60.8 33.1 60.3
BBVH 2.0 43.9 13.2 29.5 62.9 35.2 63.2
XBVH 2.5 44.3 13.6 29.9 64.8 35.6 65.3

Rungholt
BBVH 54.3 109.9 3.4 109.9 45.6 109.9 48.5
XBVH 62.4 109.5 3.4 109.5 45.6 109.5 48.6
RBVH 2432.7 105.5 2.7 105.5 46.0 105.5 48.7

San Miguel
RBVH 8985.2 17.3 7.5 13.1 95.8 14.5 95.0
XBVH 167.6 18.4 8.3 14.0 94.6 15.5 98.0
BBVH 130.5 20.3 10.2 16.0 109.5 17.4 104.9

Sibenik
RBVH 29.0 48.8 4.2 21.1 51.2 31.7 52.1
XBVH 0.7 50.9 4.2 21.9 54.6 33.0 53.4
BBVH 0.5 53.6 5.0 23.4 57.2 35.0 54.8

Soda
RBVH 1451.7 66.2 10.2 40.9 42.6 46.3 49.0
XBVH 26.8 74.9 11.7 46.4 44.8 52.5 49.3
BBVH 21.3 77.9 13.7 49.0 48.8 55.2 55.0

Sponza
RBVH 133.4 70.9 7.8 23.7 63.5 31.8 67.2
XBVH 2.8 75.8 8.9 25.7 66.7 34.3 70.5
BBVH 2.1 83.1 12.9 30.6 82.1 39.7 83.2

Table C.2: Preliminary results for our experimental BVH builder (see Section 10.9) based
on XSAH (XBVH) and the scenes also used in Chapter 5. Results for RBVH and the base-
line BBVH are included as well. p is the EPO-based measure for BVH performance (Equa-
tion 5.3) and m the average measured traversal cost (Equation 5.13). For each scene
builders are sorted from smallest to largest m of diffuse rays.

156

(Co-)Authored Publications

Dominik Wodniok and Michael Goesele. Construction of Bounding Volume Hierar-
chies with SAH Cost Approximation on Temporary Subtrees. Computers & Graphics,
2017.

Dominik Wodniok and Michael Goesele. Recursive SAH-based Bounding Volume Hi-
erarchy Construction. Proceedings of Graphics Interface, Victoria, BC, Canada, 2016.

Sven Widmer, Dominik Wodniok, Daniel Thul, Stefan Guthe, and Michael Goesele.
Decoupled Space and Time Sampling of Motion and Defocus Blur for Unified Ren-
dering of Transparent and Opaque Objects. Proceedings of Pacific Graphics, Okinawa,
Japan, 2016.

Dominik Wodniok, André Schulz, Sven Widmer, and Michael Goesele. Analysis of
cache behavior and performance of different BVH memory layouts for tracing inco-
herent rays. Proceedings of the 13th Eurographics Symposium on Parallel Graphics
and Visualization, Girona, Spain, 2013.

André Schulz, Dominik Wodniok, Sven Widmer, and Michael Goesele. Extended Data
Collection: Analysis of cache behavior and performance of different BVH memory
layouts for tracing incoherent rays. Technical report, TU Darmstadt, 2013.

Sven Widmer, Dominik Wodniok, Nicolas Weber, and Michael Goesele. Fast dynamic
memory allocator for massively parallel architectures. Proceedings of the 6th Work-
shop on GPGPU, Houston, TX, USA, 2013.

157

(Co-)Authored Publications

158

Bibliography

[Aila and Karras 2010] Aila, T. and T. Karras (2010). “Architecture Considerations for Trac-
ing Incoherent Rays”. In: Proceedings of the Conference on High Performance Graphics,
pp. 113–122.

[Aila and Laine 2009] Aila, T. and S. Laine (2009). “Understanding the efficiency of ray
traversal on GPUs”. In: Proceedings of the Conference on High Performance Graphics,
pp. 145–149.

[Aila et al. 2012] Aila, T., S. Laine, and T. Karras (2012). Understanding the Efficiency of
Ray Traversal on GPUs – Kepler and Fermi Addendum. NVIDIA Technical Report NVR-
2012-02. NVIDIA Corporation.

[Aila et al. 2013] Aila, T., T. Karras, and S. Laine (2013). “On Quality Metrics of Bounding
Volume Hierarchies”. In: Proceedings of the 5th High-Performance Graphics Conference,
pp. 101–107.

[Amanatides and Woo 1987] Amanatides, J. and A. Woo (1987). “A Fast Voxel Traversal
Algorithm for Ray Tracing”. In: EG 1987-Technical Papers, pp. 3–10.

[Antwerpen 2011] Antwerpen, D. van (2011). “Improving SIMD efficiency for parallel
Monte Carlo light transport on the GPU”. In: Proceedings of the ACM SIGGRAPH Sym-
posium on High Performance Graphics, pp. 41–50.

[Appel 1968] Appel, A. (1968). “Some Techniques for Shading Machine Renderings of
Solids”. In: Proceedings of the April 30–May 2, 1968, Spring Joint Computer Conference,
pp. 37–45.

[Arvo and Kirk 1989] Arvo, J. and D. Kirk (1989). “A Survey of Ray Tracing Acceleration
Techniques”. In: An Introduction to Ray Tracing. Academic Press Ltd., pp. 201–262.

[Ashikhmin and Shirley 2000] Ashikhmin, M. and P. Shirley (2000). “An anisotropic phong
BRDF model”. In: Journal of graphics tools 5.2, pp. 25–32.

[Baert et al. 2013] Baert, J., A. Lagae, and P. Dutré (2013). “Out-of-core construction of
sparse voxel octrees”. In: Proceedings of the 5th High-Performance Graphics Conference,
pp. 27–32.

159

Bibliography

[Barber et al. 1996] Barber, C. B., D. P. Dobkin, and H. Huhdanpaa (1996). “The Quickhull
Algorithm for Convex Hulls”. In: ACM Trans. Math. Softw. 22.4, pp. 469–483.

[Bender et al. 2002] Bender, M. A., E. D. Demaine, and M. Farach-Colton (2002). “Ef-
ficient Tree Layout in a Multilevel Memory Hierarchy”. In: European Symposium on
Algorithms, pp. 165–173.

[Benthin et al. 2012] Benthin, C., I. Wald, S. Woop, M. Ernst, and W. R. Mark (2012).
“Combining Single and Packet-Ray Tracing for Arbitrary Ray Distributions on the Intel
MIC Architecture”. In: IEEE Transactions on Visualization and Computer Graphics 18.9,
pp. 1438–1448.

[Bittner et al. 2015] Bittner, J., M. Hapala, and V. Havran (2015). “Incremental BVH con-
struction for ray tracing”. In: Computers & Graphics 47, pp. 135–144.

[Boulos et al. 2007] Boulos, S., D. Edwards, J. D. Lacewell, J. Kniss, J. Kautz, P. Shirley, and
I. Wald (2007). “Packet-based whitted and distribution ray tracing”. In: Proceedings of
Graphics Interface 2007, pp. 177–184.

[Boulos et al. 2008] Boulos, S., I. Wald, and C. Benthin (2008). “Adaptive ray packet
reordering”. In: IEEE Symposium on Interactive Ray Tracing, 2008. Pp. 131–138.

[Cazals and Sbert 1997] Cazals, F. and M. Sbert (1997). Some Integral Geometry Tools to
Estimate the Complexity of 3D Scenes. Research Report RR-3204. INRIA.

[Choi et al. 2010] Choi, B., R. Komuravelli, V. Lu, H. Sung, R. L. Bocchino, S. V. Adve, and
J. C. Hart (2010). “Parallel SAH k-D tree construction”. In: Proceedings of the Conference
on High Performance Graphics, pp. 77–86.

[Dammertz et al. 2008] Dammertz, H., J. Hanika, and A. Keller (2008). “Shallow Bound-
ing Volume Hierarchies for Fast SIMD Ray Tracing of Incoherent Rays”. In: Computer
Graphics Forum 27.4, pp. 1225–1233.

[Danilewski et al. 2010] Danilewski, P., S. Popov, and P. Slusallek (2010). Binned SAH
Kd-Tree Construction on a GPU. Tech. rep. Saarland University.

[Dutre et al. 2006] Dutre, P., K. Bala, P. Bekaert, and P. Shirley (2006). Advanced Global
Illumination. AK Peters Ltd.

[Emde Boas 1975] Emde Boas, P. van (1975). “Preserving order in a forest in less than
logarithmic time”. In: 16th Annual Symposium on Foundations of Computer Science
(sfcs 1975), pp. 75–84.

[Ernst and Greiner 2008] Ernst, M. and G. Greiner (2008). “Multi bounding volume hier-
archies”. In: IEEE Symposium on Interactive Ray Tracing, 2008. Pp. 35–40.

[Es and İ̧sler 2007] Es, A. and V. İ̧sler (2007). “Accelerated Regular Grid Traversals Using
Extended Anisotropic Chessboard Distance Fields on a Parallel Stream Processor”. In:
J. Parallel Distrib. Comput. 67.11, pp. 1201–1217.

160

[Euler 1758] Euler, L. (1758). “Elementa doctrinae solidorum”. In: Novi commentarii Aca-
demiae Scientiarum Imperialis Petropolitanae 4, pp. 109–140.

[Fabianowski et al. 2009] Fabianowski, B., C. Fowler, and J. Dingliana (2009). “A Cost
Metric for Scene-Interior Ray Origins”. In: Eurographics 2009 - Short Papers, pp. 49–
52.

[Flynn 1972] Flynn, M. J. (1972). “Some Computer Organizations and Their Effective-
ness”. In: IEEE Transactions on Computers 21.9, pp. 948–960.

[Fujimoto et al. 1986] Fujimoto, A., T. Tanaka, and K. Iwata (1986). “ARTS: Accelerated
Ray-Tracing System”. In: IEEE Computer Graphics and Applications 6, pp. 16–26.

[Ganestam and Doggett 2016] Ganestam, P. and M. Doggett (2016). “SAH guided spa-
tial split partitioning for fast BVH construction”. In: Computer Graphics Forum 35.2,
pp. 285–293.

[Ganestam et al. 2015] Ganestam, P., R. Barringer, M. Doggett, and T. Akenine-Möller
(2015). “Bonsai: rapid bounding volume hierarchy generation using mini trees”. In:
Journal of Computer Graphics Techniques 4.3, pp. 23–42.

[Garanzha and Loop 2010] Garanzha, K. and C. T. Loop (2010). “Fast Ray Sorting and
Breadth-First Packet Traversal for GPU Ray Tracing”. In: Computer Graphics Forum
29.2, pp. 289–298.

[Garanzha et al. 2011]Garanzha, K., J. Pantaleoni, and D. McAllister (2011). “Simpler and
Faster HLBVH with Work Queues”. In: Proceedings of the ACM SIGGRAPH Symposium
on High Performance Graphics, pp. 59–64.

[Gärtner 1999] Gärtner, B. (1999). “Fast and Robust Smallest Enclosing Balls”. In: Pro-
ceedings of the 7th Annual European Symposium on Algorithms, pp. 325–338.

[Gil and Itai 1999] Gil, J. and A. Itai (1999). “How to Pack Trees”. In: Journal of Algorithms
32.2, pp. 108–132.

[Goldsmith and Salmon 1987] Goldsmith, J. and J. Salmon (1987). “Automatic creation
of object hierarchies for ray tracing”. In: IEEE Computer Graphics and Applications 7.5,
pp. 14–20.

[Gottschalk et al. 1996] Gottschalk, S., M. C. Lin, and D. Manocha (1996). “OBBTree:
A hierarchical structure for rapid interference detection”. In: Proceedings of the 23rd
Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’96,
pp. 171–180.

[Gribble and Naveros 2013] Gribble, C. and A. Naveros (2013). “GPU Ray Tracing with
Rayforce”. In: ACM SIGGRAPH 2013 Posters, 98:1–98:1.

[Gribble et al. 2014]Gribble, C., A. Naveros, and E. Kerzner (2014). “Multi-Hit Ray Traver-
sal”. In: Journal of Computer Graphics Techniques 3.1, pp. 1–17.

161

Bibliography

[Gu et al. 2013] Gu, Y., Y. He, K. Fatahalian, and G. Blelloch (2013). “Efficient BVH con-
struction via approximate agglomerative clustering”. In: Proceedings of the 5th High-
Performance Graphics Conference, pp. 81–88.

[Gunther et al. 2007] Gunther, J., S. Popov, H.-P. Seidel, and P. Slusallek (2007). “Realtime
Ray Tracing on GPU with BVH-based Packet Traversal”. In: 2007 IEEE Symposium on
Interactive Ray Tracing, pp. 113–118.

[Hapala et al. 2011] Hapala, M., O. Karlík, and V. Havran (2011). “When It Makes Sense
to Use Uniform Grids for Ray Tracing”. In: Proceedings of WSCG’2011, communication
papers, pp. 193–200.

[Havran 1999] Havran, V. (1999). “Analysis of Cache Sensitive Representation for Binary
Space Partitioning Trees”. In: Informatica (Slovenia) 23, pp. 203–210.

[Havran 2000] Havran, V. (2000). “Heuristic Ray Shooting Algorithms”. Ph.D. Thesis.
Czech Technical University in Prague.

[Havran and Bittner 2002] Havran, V. and J. Bittner (2002). “On improving kd-trees for
ray shooting”. In: Journal of WSCG, pp. 209–217.

[Havran et al. 2006]Havran, V., R. Herzog, and H.-P. Seidel (2006). “On the Fast Construc-
tion of Spatial Hierarchies for Ray Tracing”. In: 2006 IEEE Symposium on Interactive
Ray Tracing, pp. 71–80.

[Heckbert 1982] Heckbert, P. (1982). “Color Image Quantization for Frame Buffer Dis-
play”. In: SIGGRAPH Computer Graphics 16.3, pp. 297–307.

[Hermann et al. 2008] Hermann, E., F. Faure, and B. Raffin (2008). “Ray-traced colli-
sion detection for deformable bodies”. In: GRAPP 2008-3rd International Conference
on Computer Graphics Theory and Applications, pp. 293–299.

[Hou et al. 2011] Hou, Q., X. Sun, K. Zhou, C. Lauterbach, and D. Manocha (2011).
“Memory-Scalable GPU Spatial Hierarchy Construction”. In: IEEE Transactions on Vi-
sualization and Computer Graphics 17.4, pp. 466–474.

[Hulst 1981] Hulst, H. C. Van de (1981). Light Scattering By Small Particles. Dover Publi-
cations.

[Intel 2017] Intel (2017). Intel Intrinsics Guide. https://software.intel.com/site
s/landingpage/IntrinsicsGuide/. [accessed: 2017.06.21].

[Ize and Hansen 2011] Ize, T. and C. Hansen (2011). “RTSAH Traversal Order for Occlu-
sion Rays”. In: Computer Graphics Forum 30.2, pp. 297–305.

[Jakob 2010] Jakob, W. (2010). Mitsuba renderer. http://www.mitsuba-renderer.
org. [accessed: 2016.07.19].

[Jensen 1996] Jensen, H. W. (1996). “Global Illumination Using Photon Maps”. In: Pro-
ceedings of the Eurographics Workshop on Rendering Techniques ’96, pp. 21–30.

162

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
http://www.mitsuba-renderer.org
http://www.mitsuba-renderer.org

[Kajiya 1986] Kajiya, J. T. (1986). “The Rendering Equation”. In: SIGGRAPH ’86, pp. 143–
150.

[Karras 2012] Karras, T. (2012). “Maximizing Parallelism in the Construction of BVHs,
Octrees, and K-d Trees”. In: Proceedings of the Fourth ACM SIGGRAPH / Eurographics
Conference on High-Performance Graphics, pp. 33–37.

[Karras and Aila 2013] Karras, T. and T. Aila (2013). “Fast Parallel Construction of High-
Quality Bounding Volume Hierarchies”. In: Proceedings of the 5th High-Performance
Graphics Conference, pp. 89–99.

[Kay and Kajiya 1986] Kay, T. L. and J. T. Kajiya (1986). “Ray Tracing Complex Scenes”.
In: SIGGRAPH Comput. Graph. 20.4, pp. 269–278.

[Kendall and Moran 1963] Kendall, M. G. and P. A. P. Moran (1963). Geometrical proba-
bility. Griffin London.

[Kim et al. 2010] Kim, T.-J., B. Moon, D. Kim, and S.-E. Yoon (2010). “RACBVHs: Random-
Accessible Compressed Bounding Volume Hierarchies”. In: IEEE Transactions on Visu-
alization and Computer Graphics 16.2, pp. 273–286.

[Klosowski et al. 1998] Klosowski, J. T., M. Held, J. S. B. Mitchell, H. Sowizral, and K.
Zikan (1998). “Efficient Collision Detection Using Bounding Volume Hierarchies of
k-DOPs”. In: IEEE Transactions on Visualization and Computer Graphics 4.1, pp. 21–36.

[Koopman 1956] Koopman, B. (1956). “The Theory of Search. II. Target Detection”. In:
Operations Research 4.5, pp. 508–509.

[Krokstad et al. 1968] Krokstad, A., S Strom, and S. Sørsdal (1968). “Calculating the
acoustical room response by the use of a ray tracing technique”. In: Journal of Sound
and Vibration 8.1, pp. 118–125.

[Kumar et al. 1994] Kumar, V., A. Grama, A. Gupta, and G. Karypis (1994). Introduction to
parallel computing: design and analysis of algorithms. Benjamin/Cummings Redwood
City.

[Lafortune and Willems 1993] Lafortune, E. P. and Y. D. Willems (1993). “Bi-directional
path tracing”. In: Proceedings of Third International Conference on Computational
Graphics and Visualization Techniques (Compugraphics ’93), pp. 145–153.

[Larsson 2008] Larsson, T. (2008). “Fast and Tight Fitting Bounding Spheres”. In: SIGRAD
2008. The Annual SIGRAD Conference Special Theme: Interaction; November 27-28;
2008 Stockholm; Sweden, pp. 27–30.

[Lauterbach et al. 2009] Lauterbach, C., M. Garland, S. Sengupta, D. Luebke, and D.
Manocha (2009). “Fast BVH Construction on GPUs”. In: Computer Graphics Forum 28,
pp. 375–384.

163

Bibliography

[Lehericey et al. 2013] Lehericey, F., V. Gouranton, and B. Arnaldi (2013). “New iterative
ray-traced collision detection algorithm for gpu architectures”. In: Proceedings of the
19th ACM Symposium on Virtual Reality Software and Technology, pp. 215–218.

[MacDonald and Booth 1989] MacDonald, D. and K. Booth (1989). “Heuristics for ray
tracing using space subdivision”. In: Proceedings of Graphics Interface ’89, pp. 152–
163.

[MacDonald and Booth 1990] MacDonald, D. and K. Booth (1990). “Heuristics for Ray
Tracing Using Space Subdivision”. In: The Visual Computer 6, pp. 153–166.

[Mansson et al. 2007] Mansson, E., J. Munkberg, and T. Akenine-Moller (2007). “Deep
Coherent Ray Tracing”. In: 2007 IEEE Symposium on Interactive Ray Tracing, pp. 79–
85.

[McGuire 2011] McGuire, M. (2011). Computer Graphics Archive. http://graphics.
cs.williams.edu/data. [accessed: 2016.08.02].

[Mehta and Sahni 2004] Mehta, D. P. and S. Sahni (2004). Handbook Of Data Struc-
tures And Applications (Chapman & Hall/Crc Computer and Information Science Series.)
Chapman & Hall/CRC.

[Meister and Bittner 2016] Meister, D. and J. Bittner (2016). “Parallel BVH Construction
Using K-means Clustering”. In: Vis. Comput. 32.6-8, pp. 977–987.

[Möller and Trumbore 1997]Möller, T. and B. Trumbore (1997). “Fast, Minimum Storage
Ray-triangle Intersection”. In: Journal of Graphics Tools 2.1, pp. 21–28.

[Moon et al. 2010] Moon, B., Y. Byun, T.-J. Kim, P. Claudio, H.-S. Kim, Y.-J. Ban, S. W.
Nam, and S.-E. Yoon (2010). “Cache-oblivious ray reordering”. In: ACM Transactions
on Graphics (TOG) 29.3, 28:1–28:10.

[Müller and Fellner 1999] Müller, G. and D. W. Fellner (1999). “Hybrid scene structuring
with application to ray tracing”. In: Proceedings of the International Conference on Visual
Computing (ICVC’99), pp. 19–26.

[NVIDIA 2016a] NVIDIA (2016a). CUDA Compute Unified Device Architecture. www.nvid
ia.com/object/cuda_home_new.html.

[NVIDIA 2016b] NVIDIA (2016b). Kepler GK110 Whitepaper. www.nvidia.com/conten
t/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf.

[NVIDIA 2017a] NVIDIA (2017a). CUDA C Programming Guide. http://docs.nvidia.
com/cuda/cuda-c-programming-guide/index.html. [accessed: 2017.09.22].

[NVIDIA 2017b] NVIDIA (2017b). NVIDIA Nsight Visual Studio Edition 5.4 User Guide.
docs.nvidia.com/gameworks/index.html#developertools/desktop/nsig
ht/analysis/report/cudaexperiments/kernellevel/memorystatisticst
exture.htm. [accessed: 2017.09.12].

164

http://graphics.cs.williams.edu/data
http://graphics.cs.williams.edu/data
www.nvidia.com/object/cuda_home_new.html
www.nvidia.com/object/cuda_home_new.html
www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
docs.nvidia.com/gameworks/index.html#developertools/desktop/nsight/analysis/report/cudaexperiments/kernellevel/memorystatisticstexture.htm
docs.nvidia.com/gameworks/index.html#developertools/desktop/nsight/analysis/report/cudaexperiments/kernellevel/memorystatisticstexture.htm
docs.nvidia.com/gameworks/index.html#developertools/desktop/nsight/analysis/report/cudaexperiments/kernellevel/memorystatisticstexture.htm

[Naveros 2016]Naveros, A. (2016). Rayforce - High-Performance Raytracing Engine. http:
//rayforce.survice.com/. [accessed: 2016.11.02].

[Navratil et al. 2007] Navratil, P. A., D. S. Fussell, C. Lin, and W. R. Mark (2007). “Dynamic
Ray Scheduling to Improve Ray Coherence and Bandwidth Utilization”. In: 2007 IEEE
Symposium on Interactive Ray Tracing, pp. 95–104.

[Nicodemus 1965] Nicodemus, F. (1965). “Directional Reflectance and Emissivity of an
Opaque Surface”. In: Applied Optics 4.7, pp. 767–775.

[Ooi et al. 1987] Ooi, B. C., K. J. McDonell, and R. Sacks-Davis (1987). “Spatial KD-tree:
An Indexing Mechanism for Spatial Databases”. In: Proceedings of the IEEE COMPSAC
Conference.

[Pantaleoni and Luebke 2010] Pantaleoni, J. and D. Luebke (2010). “HLBVH: Hierarchical
LBVH Construction for Real-time Ray Tracing of Dynamic Geometry”. In: Proceedings
of the Conference on High Performance Graphics, pp. 87–95.

[Pantaleoni et al. 2010] Pantaleoni, J., L. Fascione, M. Hill, and T. Aila (2010). “PantaRay:
fast ray-traced occlusion caching of massive scenes”. In: ACM Transactions on Graphics
(TOG) 29.4, 37:1–37:10.

[Pharr et al. 1997] Pharr, M., C. Kolb, R. Gershbein, and P. Hanrahan (1997). “Rendering
complex scenes with memory-coherent ray tracing”. In: Proceedings of the 24th Annual
Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’97, pp. 101–
108.

[Pharr et al. 2010] Pharr, M., W. Jakob, and G. Humphreys (2010). Physically based ren-
dering: From theory to implementation. 2nd ed. Morgan Kaufmann.

[Pharr et al. 2016] Pharr, M., W. Jakob, and G. Humphreys (2016). Physically based ren-
dering: From theory to implementation. 3rd ed. Morgan Kaufmann.

[Plunkett and Bailey 1985] Plunkett, D. and M. Bailey (1985). “The Vectorization of a
Ray-Tracing Algorithm for Improved Execution Speed”. In: IEEE Computer Graphics
and Applications 5, pp. 52–60.

[Popov et al. 2006] Popov, S., J. Günther, H.-P. Seidel, and P. Slusallek (2006). “Experi-
ences with Streaming Construction of SAH KD-Trees”. In: 2006 IEEE Symposium on
Interactive Ray Tracing, pp. 89–94.

[Popov et al. 2007] Popov, S., J. Günther, H.-P. Seidel, and P. Slusallek (2007). “Stack-
less KD-Tree Traversal for High Performance GPU Ray Tracing”. In: Computer Graphics
Forum 26.3, pp. 415–424.

[Popov et al. 2009] Popov, S., I. Georgiev, R. Dimov, and P. Slusallek (2009). “Object
partitioning considered harmful: space subdivision for BVHs”. In: Proceedings of the
Conference on High Performance Graphics 2009, pp. 15–22.

165

http://rayforce.survice.com/
http://rayforce.survice.com/

Bibliography

[Prokop 1999] Prokop, H. (1999). “Cache-Oblivious Algorithms”. MA thesis. Massachusetts
Institute of Technology.

[Purcell et al. 2002] Purcell, T. J., I. Buck, W. R. Mark, and P. Hanrahan (2002). “Ray tracing
on programmable graphics hardware”. In: ACM Transactions on Graphics (TOG) 21.3,
pp. 703–712.

[Reddy and Rubin 1978] Reddy, D. R. and S. M. Rubin (1978). Representation of Three-
Dimensional Objects. Tech. rep. CMU-CS-78-113. Carnegie-Mellon University.

[Ritter 1990] Ritter, J. (1990). “An Efficient Bounding Sphere”. In: Graphics Gems. Aca-
demic Press Professional, Inc., pp. 301–303.

[Rubin and Whitted 1980] Rubin, S. M. and T. Whitted (1980). “A 3-dimensional Rep-
resentation for Fast Rendering of Complex Scenes”. In: Proceedings of the 7th Annual
Conference on Computer Graphics and Interactive Techniques, pp. 110–116.

[Santaló 1976] Santaló, L. A. (1976). Integral geometry and geometric probability. Addison-
Wesley Publishing Company.

[Schulz et al. 2013] Schulz, A., S. Widmer, D. Wodniok, and M. Goesele (2013). Extended
Data Collection: Analysis of Cache Behavior and Performance of Different BVH Memory
Layouts for Tracing Incoherent Rays. Tech. rep. 13rp003-GRIS. Fraunhofer IGD, TU
Darmstadt.

[Shilane et al. 2004] Shilane, P., P. Min, M. Kazhdan, and T. Funkhouser (2004). “The
Princeton Shape Benchmark”. In: Proceedings Shape Modeling Applications, pp. 167–
178.

[Solomon 1978] Solomon, H. (1978). Geometric probability. SIAM.

[Sramek and Kaufman 2000] Sramek, M. and A. Kaufman (2000). “Fast Ray-Tracing of
Rectilinear Volume Data Using Distance Transforms”. In: IEEE Transactions on Visual-
ization and Computer Graphics 6.3, pp. 236–252.

[Stich et al. 2009] Stich, M., H. Friedrich, and A. Dietrich (2009). “Spatial splits in bound-
ing volume hierarchies”. In: Proceedings of the Conference on High Performance Graphics
2009, pp. 7–13.

[Stone 1975] Stone, L. (1975). Theory of Optimal Search. New York: Academic Press,
pp. 27–28.

[Terdiman 2000] Terdiman, P. (2000). Radix Sort Revisited. http://codercorner.com/
RadixSortRevisited.htm.

[Veach and Guibas 1997] Veach, E. and L. J. Guibas (1997). “Metropolis light transport”.
In: Proceedings of the 24th annual conference on Computer graphics and interactive tech-
niques, pp. 65–76.

166

http://codercorner.com/RadixSortRevisited.htm
http://codercorner.com/RadixSortRevisited.htm

[Veach and Guibas 1995] Veach, E. and L. Guibas (1995). “Bidirectional estimators for
light transport”. In: Photorealistic Rendering Techniques. Springer, pp. 145–167.

[Vinkler et al. 2017] Vinkler, M., J. Bittner, and V. Havran (2017). “Extended Morton Codes
for High Performance Bounding Volume Hierarchy Construction”. In: Proceedings of
High Performance Graphics, 9:1–9:8.

[Vogiannou et al. 2010] Vogiannou, A., K. Moustakas, D. Tzovaras, and M. G. Strintzis
(2010). “Enhancing Bounding Volumes using Support Plane Mappings for Collision
Detection”. In: Computer Graphics Forum 29.5, pp. 1595–1604.

[Wächter and Keller 2006] Wächter, C. and A. Keller (2006). “Instant ray tracing: The
bounding interval hierarchy.” In: Rendering Techniques 2006, pp. 139–149.

[Wald 2007] Wald, I. (2007). “On fast Construction of SAH-based Bounding Volume Hi-
erarchies”. In: 2007 IEEE Symposium on Interactive Ray Tracing, pp. 33–40.

[Wald and Havran 2006]Wald, I. and V. Havran (2006). “On building fast kd-Trees for Ray
Tracing, and on doing that in O(N log N)”. In: 2006 IEEE Symposium on Interactive Ray
Tracing, pp. 61–69.

[Wald et al. 2001a] Wald, I., P. Slusallek, C. Benthin, and M. Wagner (2001a). “Interac-
tive Distributed Ray Tracing of Highly Complex Models”. In: Proceedings of the 12th
Eurographics Workshop on Rendering Techniques, pp. 277–288.

[Wald et al. 2001b]Wald, I., P. Slusallek, C. Benthin, and M. Wagner (2001b). “Interactive
Rendering with Coherent Ray Tracing”. In: Computer graphics forum 20.3, pp. 153–
165.

[Wald et al. 2007] Wald, I., S. Boulos, and P. Shirley (2007). “Ray tracing deformable
scenes using dynamic bounding volume hierarchies”. In: ACM TOG 26, p. 6.

[Wald et al. 2008] Wald, I., C. Benthin, and S. Boulos (2008). “Getting rid of packets -
Efficient SIMD single-ray traversal using multi-branching BVHs”. In: Interactive Ray
Tracing, 2008. RT 2008. IEEE Symposium on, pp. 49–57.

[Walter et al. 2007] Walter, B., S. R. Marschner, H. Li, and K. E. Torrance (2007). “Mi-
crofacet Models for Refraction through Rough Surfaces”. In: Proceedings of the 18th
Eurographics conference on Rendering Techniques, pp. 195–206.

[Walter et al. 2008]Walter, B., K. Bala, M. Kulkarni, and K. Pingali (2008). “Fast agglom-
erative clustering for rendering”. In: IEEE Symposium on Interactive Ray Tracing, 2008.
RT 2008. Pp. 81–86.

[Wang et al. 2013]Wang, R., Y. Huo, Y. Yuan, K. Zhou, W. Hua, and H. Bao (2013). “GPU-
based Out-of-Core Many-Lights Rendering”. In: ACM Transactions on Graphics (TOG)
32.6.

167

Bibliography

[Weber 2013] Weber, N. (2013). “Construction of Ray-Tracing Acceleration Structures in
an Out-of-Core Multi-GPU Environment”. MA thesis. TU Darmstadt. URL: http://
tubiblio.ulb.tu-darmstadt.de/83044/.

[Weber and Goesele 2016]Weber, N. and M. Goesele (2016). “Adaptive GPU Array Layout
Auto-Tuning”. In: Proceedings of the ACM Workshop on Software Engineering Methods
for Parallel and High Performance Applications, pp. 21–28.

[Weghorst et al. 1984] Weghorst, H., G. Hooper, and D. P. Greenberg (1984). “Improved
Computational Methods for Ray Tracing”. In: ACM Trans. Graph. 3.1, pp. 52–69.

[Wodniok and Goesele 2016]Wodniok, D. and M. Goesele (2016). “Recursive SAH-based
Bounding Volume Hierarchy Construction”. In: Proceedings of Graphics Interface 2016,
pp. 101–107.

[Wodniok and Goesele 2017] Wodniok, D. and M. Goesele (2017). “Construction of
bounding volume hierarchies with SAH cost approximation on temporary subtrees”.
In: Computers & Graphics 62, pp. 41–52.

[Wodniok et al. 2013]Wodniok, D., A. Schulz, S. Widmer, and M. Goesele (2013). “Anal-
ysis of Cache Behavior and Performance of Different BVH Memory Layouts for Trac-
ing Incoherent Rays”. In: Proceedings of the 13th Eurographics Symposium on Parallel
Graphics and Visualization, pp. 57–64.

[Wong et al. 2010]Wong, H., M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos
(2010). “Demystifying GPU microarchitecture through microbenchmarking”. In: IEEE
International Symposium on Performance Analysis of Systems & Software (ISPASS),
pp. 235–246.

[Wu et al. 2011] Wu, Z., F. Zhao, and X. Liu (2011). “SAH KD-tree construction on
GPU”. In: Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics,
pp. 71–78.

[Yin and Li 2014] Yin, M. and S. Li (2014). “Fast BVH construction and refit for ray tracing
of dynamic scenes”. In: Multimedia tools and applications 72, pp. 1823–1839.

[Yoon and Lindstrom 2007] Yoon, S.-E. and P. Lindstrom (2007). “Random-Accessible
Compressed Triangle Meshes”. In: IEEE Transactions on Visualization and Computer
Graphics 13.6, pp. 1536–1543.

[Yoon and Manocha 2006] Yoon, S.-E. and D. Manocha (2006). “Cache-Efficient Layouts
of Bounding Volume Hierarchies”. In: Computer Graphics Forum 25.3, pp. 507–516.

[Zhou et al. 2008] Zhou, K., Q. Hou, R. Wang, and B. Guo (2008). “Real-time KD-tree
construction on graphics hardware”. In: ACM Transactions on Graphics (TOG) 27.5,
126:1–126:11.

168

http://tubiblio.ulb.tu-darmstadt.de/83044/
http://tubiblio.ulb.tu-darmstadt.de/83044/

Lebenslauf1

1994 – 2000 Gesamtschule
Georg-Christoph-Lichtenberg Schule Ober-Ramstadt

2000 – 2003 Gymnasiale Oberstufe
Georg-Christoph-Lichtenberg Schule Ober-Ramstadt

2003 – 2010 Studium der Informatik
Technische Universität Darmstadt

2010 Abschluss: Diplom Informatiker
Diplomarbeit: „Realtime GPU-Raycasting of Volume Data with
Smooth Splines on Tetrahedral Partitions“
Referenten: Prof. Dr.-Ing. Michael Goesele, Thomas Kalbe

2010 – 2017 Wissenschaftlicher Mitarbeiter
Graphics, Capture, and Massively Parallel Computing (GCC)
Technische Universität Darmstadt

Seit 2018 3D Graphics Engineer
GritWorld GmbH Frankfurt

Ehrenwörtliche Erklärung2

Hiermit erkläre ich, die vorgelegte Arbeit zur Erlangung des akademischen Grades „Doktor-
Ingenieur“ mit dem Titel „Higher Performance Traversal and Construction of Tree-Based
Raytracing Acceleration Structures“ selbständig und ausschließlich unter Verwendung der
angegebenen Hilfsmittel erstellt zu haben. Ich habe bisher noch keinen Promotionsver-
such unternommen.

Darmstadt, den 23. Juli 2018

Dominik Maximilian Wodniok

1Gemäß § 8 Abs. 1 der Promotionsordnung der Technischen Universität Darmstadt
2Gemäß § 9 Abs. 1 der Promotionsordnung der Technischen Universität Darmstadt

169

	Title
	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	Introduction
	Problem Statement
	Contributions
	Thesis Overview

	Background
	Ray Tracing in Computer Graphics
	Ray Tracing-Based Global Illumination
	Ray Tracing Acceleration Structures

	Bounding Volume Hierarchies
	Traversal
	Bounding Volumes
	Bounding Efficiency Comparison
	Number of BVHs for a Scene
	Basic Construction Strategies

	kd-Trees
	Traversal

	Other Acceleration Structures
	The Surface Area Metric and Surface Area Heuristic
	Goldsmith and Salmon's Approach
	MacDonald and Booth's Approach
	SAH-based Construction
	Binned Construction
	The Minimum-SAM BVH and Treelet-based BVH Optimization
	The Spatial Split BVH
	The End-Point-Overlap Metric
	Other Metrics

	GPU Hardware Platform
	Kernels, Grids, and Blocks
	Warps
	SIMD and SIMT
	Memory Spaces
	Block Cooperation and Synchronization

	On the Geometric Probability Function of the Surface Area Metric
	The Conventional Conditional Intersection Probability
	Expected Projected Visible Area Approach
	Measure Theory Approach
	Comparison

	Expected Direction Dependent Conditional Probability
	Including Parent Intersection Likelihood

	Temporary Subtree SAH-based Bounding Volume Hierarchy Construction
	Background and Related Work
	Fast High Quality Construction
	Higher Quality BVHs

	Algorithm
	Computational Complexities
	Spatial Splits

	Improving Accuracy of the SAM-EPO Predictor
	Evaluation Setup
	Scenes and Algorithms
	Performance Measurements

	Results
	Geometric Object Partitions
	Construction Time
	Construction Complexity

	Discussion
	Insufficiency of the SAM-EPO Metric
	Inferiority of Geometric Object Splits

	Future Work

	An SAM-Driven Approach to Agglomerative Clustering
	SAM Cost of a BVH Forest
	Clustering Criteria
	Evaluation
	Discussion

	Cache-Optimized BVH GPU Memory Layouts for Tracing Incoherent Rays
	Related Work
	GPU Hardware Details / Test Setup
	Cache Properties

	GPU Path Tracer Implementation
	BVH Data Structures and Layouts
	Node Layouts
	Tree Layouts

	Evaluation
	Baseline Performance Analysis
	BVH and Node Layouts

	Conclusion

	Multi-GPU Out-of-Core Top-Down SAH-based kd-Tree and BVH Construction
	Related Work
	kd-Trees
	BVHs
	Out-of-Core construction

	Motivation and Assumptions
	Construction
	BVH Construction
	Job Scheduling
	kd-Tree Construction
	Improvement Threshold

	Implementation
	BVH Implementation
	kd-Tree Implementation
	Out-of-Core Work and Data Management

	Evaluation
	Peak System Memory Footprint
	Comparison with Optimized CPU Implementations
	Multi-GPU Scaling
	Tree Quality Comparison with Hybrid Construction Approach
	Localized Binning
	SAH Improvement Threshold

	Summary and Discussion
	Future Work

	Final Summary and Discussion
	Summary
	Discussion

	Future Work
	Possible SAM-EPO Metric Insufficiency
	Explicit EPO Reduction
	RSAH and the LCV Metric
	Treelet-based BVH Optimization with RBVH
	Including Ray Termination into BVH Construction
	Predictive Power of the RTSAH Metric
	BVH Tree and Node Layout Auto-Tuning
	Bounding Volume Graph
	An Experimental Alternative Surface Area Heuristic
	Out-of-Core BVH Optimization

	Appendices
	RSAH-based Construction Complexity
	Naïve Sweep-Sweep Construction Complexity
	Binning-Binning Construction Complexity

	RTSAH Metric Speedup Prediction Experiments
	Experimental Alternative Surface Area Heuristic Experiments
	(Co-)Authored Publications
	Bibliography

