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Abstract. This paper presents a framework to mine summary emerging patterns 

in contrast to the familiar low-level patterns. Generally, growth rate based on 

low-level data and simple supports are used to measure emerging patterns (EP) 

from one dataset to another. This consequently leads to numerous EPs because 

of the large numbers of items. We propose an approach that uses high-level 

data: high-level data captures the data semantics of a collection of attributes 

values by using taxonomies, and always has larger support than low-level data. 

We apply a well known algorithm, attribute-oriented induction (AOI), that 

generalises attributes using taxonomies and investigate properties of the rule 

sets obtained by generalisation algorithms.    
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1   Introduction 

Data mining aims to find patterns in data. Recently, emerging patterns [1] have 

become popular for classification problems [7][11]. Emerging patterns (EP) [9] 

represent contrasting characteristics between two data sets usually expressed as 

conjunctions of attribute values in a given class of records. The most familiar 

approaches use classification [6][10][11]. A pattern is emerging (EP) if its support 

from one dataset to another increases. A pattern is jumping emerging (JEP) if its 

support from the previous dataset changes from zero to non-zero. 

EPs have been successfully used in classification algorithms with mainly low-level 

(primitive) data. Low-level data has a tendency to be distinct yet represent 

semantically similar information e.g. for an attribute “Course”, there may be two 

different university degree subjects “Chemistry” and “Physics” that are both in 

category “Science”, a level higher than both subjects. These are two distinct items of 

data yet they semantically belong to one item “Science”. The problem with low-level 

EP algorithms is the generation of many EPs because of the combinatorial problem in 

the number of items and also the use of small supports. As a consequence, most EP 

classifiers use level-wise border searches to control pattern explosion [8][10]. In 
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contrast using high-level summarised data or attribute taxonomies (is-a hierarchies) 

that capture significant data features often tends to prune common and irrelevant 

features usually found from low-level data, leaving only high-level supported items 

[13]. Attribute taxonomies reveal attribute details at various higher levels in the 

hierarchy. It is well known that larger supports of an attribute’s values occur at higher 

levels than at lower levels of a given taxonomy [12].  Using this fact, it is imperative 

that EPs can be used to exploit various taxonomic levels of attributes to express 

varying support levels of item combinations, and hence more significant EPs.    

A well established algorithm for mining is-a hierarchies from large data to produce 

conjunctions of attribute-value pairs is attribute-oriented induction (AOI) [14]. 

Attribute taxonomies, also known as background knowledge or concept hierarchies, 

are provided by a domain expert or generated automatically. AOI can generate 

various types of rule patterns, including discriminant, characteristic and classification 

rules. In the latter case, there is no need to train the data as AOI searches through the 

input space using both low-level data and their corresponding taxonomies. The reader 

is referred to [3] for details on the basic AOI algorithm. 

Our motivation is three-fold: firstly, AOI is a versatile algorithm for solving the EP 

problem using various techniques; secondly, larger supports of attribute values mostly 

occur higher up the taxonomy than would be for low-level values; thirdly, as there is 

usually a combinatorial explosion of patterns at a low-level, it makes it more difficult 

for a user to interpret so many patterns compared with a general pattern i.e. patterns 

expressed at high taxonomic levels. Thus such general patterns have more expressive 

potential, and represent global data semantics better, than single primitive patterns. 

In this paper we give formal definitions of the problem of mining HEPs and 

introduce and begin to evaluate an algorithm, AOI-HEP (High-level Emerging 

Patterns) which mines high-level emerging patterns using an enhanced AOI approach. 

The paper is organised as follows: Section 2 presents the background; Section 3 

gives the problem definition; section 4, the new AOI-HEP algorithm; section 5 

experimentation; and Section 6 presents conclusions. 

2   Background 

In this section, we introduce formal HEP definitions used in the paper.  

Let },..,,{ 21 mAAAD =  be a dataset with m attributes each with a domain 

)( iADom  and N tuples. For each attribute there are a set of values or 

instances }{ k

ia , mk ≤≤1 and Ni ≤≤1 . We can also label classes to which these 

instances belong as },..,,{ 21 vCCCC = . An item is an (attribute, instance) pair 

),( k

ik aA . A set of items is an itemset when there is a combination of 

items, Nmna
n

i

k

i *,
1

<
=

∪ , for some values of k . The number Nm* is the largest 

possible number of combinations of items for m attributes and N  tuples. 



Accordingly, in AOI, for each attribute there is a taxonomy miH i ≤≤1, linked to 

it.  To define support, we first represent a characteristic AOI rule pattern as a 

conjunction of items with instance values of any object x , which can be referred to as 

a complex pattern [7] of the form: 

  %][,)(..)( 11 svxAvxA kk =∧∧=    (1) 

where %s  is the usual support (% of tuples in the dataset) and 

)}({ iii ADomHv ∪∈ . We see that support is for a more complex expression of 

item-value pairs than single items. Note that svi
are not necessarily low-level data or 

domain values but extracted from attribute hierarchies
iH . In AOI, this pattern forms 

part of a characteristic rule [5]. The definition of itemset uses the term ruleset as a 

complex pattern represented by (1). A characteristic rule according to [4] is defined as  

eh →  (2) 

where e  is evidence (shown as equation 1) and h is the hypothesis or class 

description we wish to characterise. Thus we rewrite (1) as a characteristic rule:  

%][)(..)()( 11 svxAvxAxC kki =∧∧=→  

in relation to some hypothetical class iC . Given two data sets 21 , DD  with 

rulesets 21 , RR , we want to find interesting emerging rule patterns like (3) using 

supports ||/)(|,|/)( 2211 21
DXcountsDXcounts RR == where X is a given 

complex pattern (equation 3), namely )},,(),..,,{( 11 kk vAvAX = for k attribute-

value pairs. Note that we can use many relevant interestingness measures from the 

literature to compare interestingness of patterns, not only based on support, as 

highlighted in [4]. 

3   Problem Definition 

Following the definitions of emerging patterns, we formulate the problem as follows:  

given rule sets 
ji RR , of datasets 21 , DD , a ruleset is a series of attribute 

conjunctions. A subset iRX ⊆  is called a setrulek − if || Xk =  is the number 

of attribute-value pairs in X .  We need to define subsumption properties for the case 

where one ruleset subsumes another by one or more values from the taxonomy. A 

HEP is a ruleset whose support increases from one ruleset of a dataset to another. A 

ruleset X is a HEP from 1R of 1D   to 2R of 2D if 0/ 12 >= ssσ . Note that 

],0[ ∞∈σ and if ∞=σ , then the pattern is a jumping high-level emerging pattern 

(JHEP). If 0=σ , then there is no HEP, otherwise ∞<< σ0 is merely an 
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HEP−ρ  where ρ is a threshold. A HEP pattern 
ir can consist of low and high-

level values from the taxonomy. There is a subsumption property such that if two 

HEPs exist and 
ji rr ⊆ , then ir is covered by 

jr i.e. 
jr has one or more ancestor 

concept values of some or all values in ir . There is therefore an order relation 

≤ defined on child-ancestor pairs )',( ii vv as ii vv '≤ for each attribute taxonomy. 

Below we give subsumption properties that help to find HEPs and JHEPs. All patterns 

found by the AOI-HEP algorithm with properties as in section 3.1 are HEP patterns.  

3.1   Subsumption Properties 

P1. Total Subsumption Emerging Pattern (TSEP). We say that ruleset X is totally 

subsumed by ruleset Y if YyXxyx ∈∈∀≤ ,, and |||| YX ≤ . Note that this 

property is true for both partial orders i.e. cases where yx = or yx < . For example, 

let )},(),,(),,{( 443311 vavavaX =  and 

)',(),',(),',{( 443311 vavavaY = where kk vvancestor ')( = . Then X is totally 

subsumed byY . The TSEP rule condition “=” or “equality-based” may be rare to find 

as it is equivalent to finding exactly matching rulesets in the two datasets where as 

“<” or “ancestor-based” means X has some ancestors inY . The equality condition 

means the same number of conjunctions and attribute-value pairs exist. We note that 

the ancestor subsumption property can be equivalent to finding large and frequent 

itemset in classical  frequent itemset mining. 

 

P2. Partial Subsumption Emerging Pattern (PSEP). We say that ruleset X is 

partially subsumed by ruleset Y if there exists some Yy ∈ which is an ancestor of 

some Xx ∈ and .|||| YX <  For example, let 

)},(),,(),,{( 443311 vavavaX = and ).,(),',(),,{( 443311 vavavaY = There is 

one partial subsumption value such that 33 ')( vvancestor = and all other values 

satisfy .yx =  In addition, given )},(),,{( 3311 vavaZ = , then Z is partially 

subsumed byY without ),( 44 va . 

 
P3. Overlapping Emerging Patterns (OEP). Overlapping emerging patterns occur 

when there are one or more common patterns between rulesets. . If we have 

),(),',(),,{( 443311 vavavaY = and )},(),,(),,{( 553311 vavavaZ =  then 

Y overlaps Z except for ),( 55 va . The pattern ),( 55 va absent in Y is a jumping 

HEP (JHEP) from Y to Z . We call this a partially subsumed and overlapping 

jumping high-level emerging pattern JHEPp −3
 under property P3. Conversely, 



the overlapping property can also be used to find diminishing patterns i.e. if suddenly 

the whole pattern disappears from one dataset to another.  

Intuitively, both HEP and JHEP  can be obtained from patterns exhibiting 

properties P1, P2 and P3 by comparing supports using a growth function. The basic 

emerging pattern problem was highlighted in [1] with a growth rate given in terms of 

simple support i.e. 
)(sup

)(sup
)()(

1

2

Xp

Xp
XGXrateGrowth ==− where X is an 

itemset of datasets 21 , DD  for some threshold ρ . In our case, as we have 

subsumption properties between rulesets, we represent pattern X from 1D and 

pattern Y from 2D and supports 21 , ss respectively as defined earlier (Equation (1)). 

Given that emerging patterns are a function of supports 21 , ss , the growth rate can be 

measured by any function ),( 21 ssf . The subsumption properties hold as follows:  
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(3) 

Equation (3) shows that property P1 is synonymous with many classification 

approaches [1][10] where 

1

2
21 ),(

s

s
ssf =   for measuring emerging patterns when 

the itemsets match exactly. For rulesets, a coverage function ),( ji RRC is used to 

measure how two rules compare (their similarity) or simply a measure of distance 

between rules as defined in [2].  This measures the number of attributes in both rules, 

overlapping and non-overlapping with special conditions. When coverage is 

determined, rulesets are paired to measure emerging ruleset patterns using the growth 

function f . This process is equivalent to finding large and frequent itemsets in 

classical frequent itemset mining and comparing them between datasets as used in 

emerging patterns. Note that properties P1 and P2 can lead to all three 

values )/,,0( 12 ss∞
; 

P3 is used to help find jumping emerging patterns. Section 4 

shows how these patterns are extracted by firstly determining the coverage of rulesets. 

4   AOI-HEP Algorithm 

The AOI-HEP algorithm uses a growth function f and a coverage measure 

),( ji RRC (similar to the distance metric in [2]) between any rulesets
ji RR , , given 

N rulesets. The algorithm scans through characteristic rulesets mined from two 

datasets 21 , DD  and puts them into relevant pairings according to their coverage 
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using properties P1, P2 and P3 as discussed (Line 3). At Line 4, ),( ji RRC  checks 

rule similarity and collects different rulesets e.g. TSEP, OEP etc. After collecting k 

rulesets, the function f
 
is applied to determine the degree of growth.(Line 8). 

 

Input : rulesets 
NRR ...,,1
from D1, D2; threshold t, using AOI 

Output: NmValvalepvalepEP imm ≤∞∈= ],,0[]},,[],..,,{[ 11  

EP =emerging Pattern, 1,1 == ji  

1. EP  � ∅, rulesets�∅ 

2. Iterate through the rule sets by comparing 
ji RR , rules 

3.  WHILE NOT (
iR ==∅and 

jR ==∅)and i, j <= t  

4.   if ),( ji RRC  is satisfied // distance or similarity of rules 

5.      ][krulesets � ),(][ ji RRAddkrulesets +   

6. END WHILE  

7. FOR  DOrulesetstok ||0:   

8.     )( krulesetfEPEP ∪= //Apply growth function f 

9. OUTPUT }{EP
 

The result obtained at Line 9 returns a mixture of patterns, OEP, TSEP, PSEP etc. We 

can apply a ranking function to order the significance of such patterns in terms of 

their growth-rate. Note that the growth-rate function can be more complex than use of 

simple support ratios as high-level rule-based emerging patterns have fewer but more 

complex patterns compared to single itemset patterns. 

5   Experimentation 

To demonstrate the effectiveness of the proposed AOI-HEP, we have carried out 

experimentation on breast cancer Wisconsin dataset using 5 attributes that influence 

cancer diagnosis (699 patterns) [15], and constructed concept hierarchies for each: 

clump thickness, cellSize, cellShape, bareNuclei and normalNuclei. Dataset D1 had 

349 tuples and D2 had 350. Some of the challenges in the experiments and the 

presented framework was setting an optimal threshold so that the rules and growth 

rates are meaningful, as the case is in AOI. Evidently, bigger thresholds generate 

numerous patterns while smaller thresholds generate fewer and meaningless patterns. 

AOI-HEP was run with thresholds 3, 4 and 5.  

Firstly, we assumed that all occurrences of the attribute value “ANY” in the 

output patterns were meaningless, and so we did not consider threshold 2 in that case. 

We did not set a growth-rate threshold but ordered all the growth-rates in descending 

order. Note also that values “-“ in table 1 indicate no patterns found. It is easy to infer 

from table 1 that TSEP patterns obviously occur when lowest or highest thresholds 

are used. 



Table 1.  Patterns from cancer datasets D1, D2 [15]   

   OEP Growth% PSEP Growth% TSEP Growth% Threshold 

High Low High  Low  High Low 

3 11.30 0.08 1.50 0.12 0.58 - 

4 23.46 1.09 6.00 0.09  - - 

5 3.28 0.46 0.75 0.14  2.49  0.05  

 

 The former justifies the need to remove root node “ANY” but in the latter, we can 

have numerous patterns in which we case we need to pick the strongest ones.  

We noted, as per property 1, that TSEP rules (i.e. exactly matching in some 

cases) were rare to find, but not OEP patterns. Using threshold 3 between D1 and D2, 

we found one large OEP pattern: Rule 3 (D1): “Clumpthickness=highriskClump AND 

cellSize=aboutAverage”, Rule 1 (D2): “Clumpthickness=lowriskClump AND 

cellSize=aboutAverage”,growth-rate (0.79/0.068)=11.30. In contrast, we found the 

smallest OEP pattern to be: Rule 1 (D1):“Clumpthickness=lowriskClump AND 

cellSize=aboutAverage AND cellShape=aboutAverage” overlapping with Rule 3 

(D2): “Clumpthickness=highriskClump AND cellSize=aboutAverage”, growth-rate 

(0.04/0.51)=0.08. Technically, the former presents a redundancy in that clump 

thickness does not discriminate in the growth of the pattern. In the real world, 

practitioners will find this pattern of concern, noting the growing number of patients 

with thickening clumps despite average cancer cell sizes. In the latter, practitioners 

would use the least growing OEP pattern and note the role played by the 

differentiating attribute “cell shape = about average” between patients with high risk 

clump thickness and those with low risk clump thickness despite cell sizes being 

about average. 

 We observed threshold 5 for patterns. The highest OEP pattern (see table 1) 

had a growth-rate of 3.28 i.e.  rules R2 (D1) and R1 (D2): 

“clumpthickness=mediumClump AND cellSize=smallSize AND 

cellShape=smallShape AND bareNuclei=smallNuclei”. Basically, higher thresholds 

could be useful drill-down strategies to check or further validate rules already found 

using low thresholds. In this case, we could look for high impact patterns, for example 

the TSEP growth-rate 2.49 for threshold 5 and check whether this pattern is supported 

sufficiently at higher levels accordingly using some growth-rate threshold.   

 Further experiments were done on some UCI repository dataset, the adult 

dataset and similar and interesting patterns were discovered. Generally, the sequence 

of patterns OEP, PSEP and then TSEP in table 1 denote their order of importance. 

That is OEPs are quite “frequent” as would be in non-generalisation algorithms, 

TSEPs are expected in generalisation and merge approaches. They can also be rare 

but could reflect trends of “similar” subsumed patterns between datasets. 

6   Conclusion 

The paper has presented a novel framework for mining HEPs using AOI, the AOI-

HEP algorithm. This framework has highlighted different aspects of mining emerging 

patterns by use of more complex rulesets, instead of itemsets, and their subsumption 
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properties that translate into different types of emerging patterns. HEP patterns are 

particularly representative and informative in relation to large datasets and complex 

rulesets. Initial evaluation suggests that matching rulesets can use a general function 

that evaluates coverage or similarity of rules. We intend to apply the algorithm on 

further diverse real datasets, noting that optimal threshold choices (not too small or 

too big) could also influence ruleset generation and consequently growth rates. We 

will also extend the presented framework for mining total subsumption patterns at 

different hierarchical levels (including root node “ANY”) by taking into account 

features of hierarchical data such as distances, similarity between concepts and 

appropriate level supports. We also note that the pattern properties presented here are 

well placed to handle uncertainty or fuzziness in the patterns. 
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