
Machine Learning Approach to Task Ranking

Michael Yoseph Ricky1,
Spits Warnars Harco Leslie Hendric2, Widodo Budiharto3, Bahtiar Saleh Abbas4

Bina Nusantara University1, 2, 3, 4

mricky@binus.edu1, shendric@binus.edu2, wbudiharto@binus.edu3,
bahtiars@binus.edu4

Abstract – There are variety of methods and algorithms that can be used to overcome the ranking
problem. Task ranking is one of the problems that can be solved by using a machine learning
algorithm ranking problem. This work focuses on finding the right approach and corresponding
algorithms in the process of ranking to be able to help people in determining which jobs have a
higher priority than others. Our approach is to compare several algorithms performed in the process
of ranking that are Bipartite Ranking, k-partite Ranking, and Ranking by pairwise comparison.
We're used questionnaires and deployment of prototype of Intelligent Personal Assistant Agent to
apply the appropriate algorithm in intelligence agent in arranging task priority in daily activity that
must be done by the users. After training dataset and evaluate the validation dataset using NDCG,
it is found that the collaborative ranking used have a more accurate value / lower variance test
evaluation because it uses a large dataset and smaller training dataset. We found that labeling for
more than 2 values it is not recommended to use a bipartite ranking if there are many repetitive
data, both k-partite ranking and rank by pairwise comparison are able to be used for multi-
dimensional data labeling.

Keywords: Task Ranking, Bipartite Ranking, k-partite Ranking, Ranking by pairwise comparison,
Intelligence Agent

I. Introduction

Technology is created by human and will be used to
help human activities where the technology which is
derived from the human mind is created to assist humans
in performing their activities more easily. It is without
doubt that technology can help human in performing their
daily work or even performing as an assistant who can
help in reminding the plan of activities that should be
done. One of the example is intelligent personal assistant
agent which can assist humans in performing their daily
work, such as organizing and conducting the complex
tasks on the desktop office setting [2].

Obviously, in determining priority in human daily
activities, we require a proper and appropriate algorithm
such as machine learning to determine which activity has
the most priority. One of the example is “learning to rank”
machine learning technique with many methods option to
determine task priority, where will training the existing
models in the ranking task [1]. Learning to rank is very
useful for many application in Information Retrieval,
Natural Language Processing, and Data Mining [1].

Meanwhile, determination of the ranking activity
priority will be subjected for each human where they have
their own ranking preferences for their daily activities.

Thus, it would be very important for humans where
“learning to rank” algorithm can help them to rank their
daily activities with the highest ranking should be the one
that should be done first. The Preference Distribution
Learning (PDL) method can be used to conduct multi-
label ranking by rankers/users where inconsistent ranking
from different people can be solved [3].

II. Problem Statement
We are interested to apply 3 of LTR methods to solve

instance, label, and object ranking using bipartite,
multipartite ranking (k-partite) and learning by pairwise
comparison according to their quality and accuracy [4].
Furthermore, we are interested in finding the right
approach and corresponding algorithms in the process of
ranking to be able to help people in determining which
jobs have a higher priority than the others. Effort has been
done by comparing several algorithms performed in the
process of ranking which are Bipartite Ranking, k-partite
Ranking, and Ranking by pairwise comparison. Our goal
is to apply the appropriate algorithm in intelligence agent
using Collaborative Filtering in arranging a priority in
daily activity that must be done by the users.

2017 14th International Symposium on Pervasive Systems, Algorithms and Networks & 2017 11th International Conference

on Frontier of Computer Science and Technology & 2017 Third International Symposium of Creative Computing

2375-527X/17 $31.00 © 2017 IEEE

DOI 10.1109/ISPAN-FCST-ISCC.2017.67

512

2017 14th International Symposium on Pervasive Systems, Algorithms and Networks & 2017 11th International Conference

on Frontier of Computer Science and Technology & 2017 Third International Symposium of Creative Computing

2375-527X/17 $31.00 © 2017 IEEE

DOI 10.1109/ISPAN-FCST-ISCC.2017.67

507

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Binus University Repository

https://core.ac.uk/display/224297012?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

III. Various Ranking Methods
There are various methods currently used in the process

of determining the ranking using machine learning. It is
not defined which method is best used in determining the
priority task. Each method has its own way in determining
the ranking process using models and existing training
data [8]. At this section we will discuss how these methods
and applications will be used in the algorithm / method
used in determining the task ranking.

There are some issues in the ranking problem such as
the instance ranking, ranking object and label ranking [4].

In the instance ranking that describes ranking process
at an instance and set label, where the label is
determined to have a fixed order 1 > . . > and each
instance is associated with a label . Given a set of
instances as training data, where the objective of this task
is to find the rankings order for a new instance [5]. In
object ranking the model is given a preference information
from the set of pairwise in a form and model must be able
to determine the ranking order in the instance [6]. In the
label ranking, the label is given instance space and label
set , where the preference information is given in the
form > where indicates preference instance in

 rather than . A set of preference information is used
as training data in a model, where the purpose of the task
of the model is to find a preference ranking among all the
labels for all instances. Label ranking can be an additional
extension in conventional classification setting [7].

III.1. Bipartite Ranking

In the bipartite ranking, the instances will be given a
label of positive or negative with the purpose of creating a
score function that minimalizes the possibility of miss-
ranking that maximizes the area under the ROC curve,
where ROC curve is a graphical plot used to illustrate the
performance of binary classifier system. Previous
experiment obtained quantitative bounds for bipartite
ranking in terms of a broad class of proper (composite)
loss function given proper term strongly [9]. It is proven
that this technique used is considerably simple and relies
on properties of proper (composite) losses as elucidated
recently.

In the bipartite ranking, the problem of the learning is
given a training sample that consists of a set sequence of
positive training examples and a set sequence of negative
examples and its goal is to learn a real-valued ranking
function that ranks future positive instances higher than
negative ones and assigns values to positive instances
higher than to negative ones.

Example of its application in information retrieval is to
retrieve documents from multiple databases that are
relevant to a given subject, where the training examples
given to the learner consist of documents labeled as
relevant (positive) or irrelevant (negative), and the end

goal is to produce a list of documents containing relevant
documents in the top position, and irrelevant documents in
the bottom position. In other words, documents that are
relevant to the search keywords will have a higher ranking
than the irrelevant.

The purpose of this learning is to find a ranking
function that can accurately perform the process of
ranking the instances, the learning algorithm that is used
should have a ranking function with minimal expected
ranking error. More details are as follows, if a learning
algorithm select a ranking function of a class of ranking
functions , positive instance distribution , and
negative instance distribution then the output of the
ranking function ∈ ℱ with the expected error ℛ , () which is close to the best possible with class ℱ
[10].

Fig. 1. Bipartite Ranking

III.2. K-Partite Ranking

K-partite algorithm used for recommending items use a
diverse set of features [11]. In k-partite, the algorithm used
is not a ranking system but it is a rating system, which will
give a rating ranging from 1 with increment of 1. The
concept is similar to bipartite which will have nodes k.
Various domain has a diverse set of features available that
requires a recommendation decision, for example, when
giving a recommendation in music, the feature correspond
to the terms in the music title, the name of singer or band,
and the music genre. The most common way to
incorporate features into the heterogeneous features into
the random walk algorithm is by using a k-partite graph.
To personalize a recommendation to every user, it takes a
query centered on the random walk on the graph.

A k-partite graph is a graph that has nodes that can be
partitioned into k disjoint sets, so there will be no two
nodes on the same partition that is adjacent. Let ={ 1, 2, … , , } denote a k-partite graph, where each
is a partition of nodes and Ε is the set of edges. For
example in the case of music recommendation using =3 where the three partitions have correspondence to the
users, music, and genre.

513508

Fig. 2. K-Partite Ranking

In k-partite algorithm where the instance space , has
a training input sample = (1, 2, … ,), with output
ranking function ∶ Χ → ℝ where: = (, … ,) Χ (1) 2 = (, … ,) Χ (2) 1 = (, … ,) Χ (3)

Fig. 3. Multi-way clustering on k-partite graph. t
means terms, d means music file, a means the singer. The
nodes labeled as H1, H2,..., H7 correspond to cluster of

terms, files, and singer.

Examples of its application in the experiment [12] that
has been done using the data sets OHSUMED [13] and
MOVIELENS [14], where OHSUMED test collection is
the benchmark data sets used to evaluate the performance
of recommender systems, MOVIELENS the data sets
consisting of 100,000 movie ratings provided by 943 users
on 1682 movies. OHSUMED tests conducted by using a
standard collaborative filtering approach. For data
MOVIELENS compared its performance with

collaborative filtering algorithms that exist, the result is
due to the number of movies while its rating limited use
integers in the range between 1 and 5, the problem is many
movies have identical ratings.

III.3. Ranking by Pairwise Comparison

The most important benefit in ranking by pairwise
comparison is to reduce the problem to the rank label
binary several classification problem. Pairwise learning is
well-known in the context of classification, because it
allows one to transform a multi-class classification
problem. Pairwise classification has been used in many
areas for example in statistics, neural networks, support
vector machine and others [15]. In general, this technique
is more accurate than the method in the general
classification.

For example, the problem of > 2 classes ℒ ={ 1 … },, into a number of binary problems. Base
learner ℳ is trained for each pair of labels(,) ℒ, 1 ≤ < ≤ ; where the total number of (− 1)/2 models are needed. ℳ intended to
separate the object with a label from those having label

. During classification time, every prediction models
will be determined for voting ℳ between and ,
label with the highest value of the results of voting will be
proposed as a final prediction.

Ranking by pairwise comparison overall complexity
depends on the average number of preference provided for
each training example. While being a quadratic in the
number of labels if the full rank is given, it will be only
linear for setting classification. In any case, it isn’t more
expensive than the constraints classification and can be
cheaper if the complexity of the basic learner is super-
linear.

IV. Collaborative Filtering
Collaborative filtering is one of the models used in most

recommender systems. Recommender systems can create
personalized recommendations for each user as required
by the user to suit user preferences [16]. Personal
Intelligence agent here will use the learning method to
learn in advance what is preferred by the user, what is
usually done by the user, and what actions are usually
performed by the user. Relating it to the ranking means
that every action taken by each user will be stored in the
database.

The workings of collaborative filtering (CF) is making
observations preferences of each user whose data was
collected from the targeted user and will be compared with
all the preferences of all users. CF models perform
calculations to estimate the preferences of all items
available, then from the items that is to be sorted by
estimated preferences, eventually a subset of top items
will be shown to the user as a recommendation.

The important thing to consider is how to make the
process of training and evaluation of the system CF.

514509

Evaluating the performance of the CF system is based on
the collected ratings from all user that will be partitioned
into a training set and a test set. Model will learn on the
training set and be evaluated using a test set.

The process of learning to rank is done using supervised
learning problem where each labeled training data is is
assumed. Training data sets consists of various tasks
performed by users who have inputted in accordance with
the standard priorities by the various users who have a list
of query-comparison pairs (,) labeled with the
corresponding relevance score = {(, ,): ∈[1. .]}. Where labeling of each task is done using three
values, namely high, medium, and low with the higher
priority task will be weighted higher value, so that the low
will have a value of 1, medium will have a value of 2, and
the high will have a value of 3, where the value will
increase in accordance with the number of the task.

In evaluating the "learning to rank" will be used
Normalized Discounted Cumulative Gain (NDCG) [17].
NDCG has one user-defined parameter and two
functions (gain function and discount function) that make
it desirable in the ranking setting. The gain function allows
a user to set the significance of each relevance level. The
discount function makes items lower in the ranked list
contribute less to the NDCG score. Let become a vector
of relevance values for sequences of items and denote a
permutation over the sequence of items in , then is the
index of the ℎ item in and relevance is the actual
value of this item. The Discounted Cumulative Gain
(DCG) for this Permutation π is defined as:

@ (,) = ∑ () (4)

Normalized Discounted Cumulative Gain (NDCG) can
be defined as: @ (,) = @ (,)@ (, ∗) (5)

V. Experiment Result
To determine the ranking algorithm which can be used

in managing the priority ranking in task management to be
applied in personal intelligence agent, we conducted
experiments with quantitative method in gathering
information of student profile (shown in figure 5) with 55
respondent students in various majors at universities in
Indonesia. Each respondent will fill the profile data that is
used to determine the behavior of the user and his daily
activities.

A Personal Assistant shown in figure 6 will help to
interact with the user. A Personal Assistant is a software
agent that acts semi-autonomously for and on behalf of a
user, modelling the interests of the user and providing
services to the user or other users. It is unobtrusive but
ready when needed and rich in knowledge about the users

and their areas of work. This is the generalized notion of a
Personal Agent from the agents’ standards body,
Foundation for Intelligent Physical Agents [18].

The functions of a Personal Agent can be as varied as
carrying out one or more of the following activities:
managing a user’s diaries, filtering and sorting email,
managing a user’s desktop environment, managing a
user’s activities, plans and tasks, locating and delivering
multimedia information, recommending entertainment,
purchasing desired items, and, planning travel [19].

There is a list of possible proactive activities that an
assistive agent might perform on behalf of its user to
support task management, which is divided into several
categories: act directly, act indirectly, collect information,
and remind, notify, ask. [20].

Acting directly, the agent can perform the next step or
steps of a shared task, perform or prepare for future steps
of a shared task now, initiate the first step of a shared or
agent task, suggest (shared) tasks the agent can take over
and perform, establish a learning goal (i.e., to learn new
capabilities).

Acting indirectly, the agent can suggest a user task to
be delegated to a teammate, or suggest that the user offer
to take on the task of a teammate, suggest a meeting to be
rescheduled, suggest a lower-priority task to be postponed
to free resources, suggest a task to be promoted or
demoted in priority, suggest (better) ways to achieve a
(shared) task, anticipate failures of (shared) tasks and look
for ways to reduce the failure likelihood or reduce the
impact of a failure.

Collecting information, the agent can gather,
summarize information that is relevant to a user or a
shared task, monitor the status of tasks delegated to a
teammate, monitor and summarize resource levels and
commitments, analyze possible
consequences/requirements of a (shared) task.

 Remind, notify, and ask, the agent can remind of the
user’s next step in a shared task, notify upcoming
deadlines and events, ask for feedback or guidance from
user, ask for clarification or elaboration of a (shared) task,
monitor and filter incoming messages.

TABLE I
USER AND AGENT ACTIVITIES

Entity Action

Agent

• Get different requests and
messages from its human via user
interface
• Do analysis using appropriate
algorithm
• Do calculation of priority of
tasks
• Inform and display
information of tasks based on the
priority of task

515510

User

• Insert the personal profile
• Insert the tasks and priority
• Do the task based on agent
information
• Ask and inform the agent
about the task

Fig. 4. Agent and User Flow Activity

Figure 4 shows the agent and user activity. First the user
will interact with the user interface to input the profile,
then the agent will process the input data and calculate the
priority according to user preference, then the agent will
process the data input from the user using the algorithm
ranking (Bipartite Ranking, k-partite Ranking, and
Ranking by pairwise comparison), then it will provide the
information of the task by using collaborative filtering to
the user which has been prepared, analyzed, and calculated
by the agent.

Fig. 5. Entry User Profile

Fig. 6. Agent User Interface

Fig. 7. Activity Input User Interface

Fig. 8. Illustrations of Activities to be performed

TABLE II
PROFILE OF RESPONDENTS

Age Respondent Percentage

<18 3 5%
19-21 35 64%
22-24 15 27%
>25 2 4%

Activities that have been inputted by the user will have
its priority level determined between high, medium, or
low. Every activity will be mapped using a ranking
algorithm. Using bipartite ranking where high and
medium will recorded into positive value and the low will
be into negative value. Using k-partite ranking, each task
will be given a value, the most common activities
performed by the user will be given a higher rating than
the other. Using rank by pairwise comparison, each
activity will be recorded as query-pair comparison

User Interact with
UI

Agent : Collecting
information from

User
Agent: Analysis
Task & Priority

Agent : Inform the
User by UI

User Action :
Accept or Pending

or Reject

User Inform the
Agent by UI

Agent do analysis
by user action

Agent Interact
with User by UI

516511

between activities with priorities.

TABLE III
RESULT OF CALCULATE MAPPING THE PRIORITY

Activity Bipartite
Ranking

k-partite
Ranking

Ranking by pairwise
comparison

High Positive 3 Activity - High

Medium Positive 2 Activity - Medium

Low Negative 1 Activity - Low

Evaluation for the same activities that other users have
made on bipartite ranking shows that there are some
activities in priority high that is under the medium priority
because these activities is often appeared or performed by
another user, because the priority of high and medium are
in the same positive value.

In k-partite ranking every activity has been given a
rating by the agent, the level of efficiency of the algorithm
is quite good, with the negative side is when there is a new
activity that is inputted by the user and is not in the
database before, it will be given a lower rating, but the
agent will still help to define and calculate to keep a high
rating on the right priorities.

In rank by pairwise comparison, each activity will be
sorted as high, medium, then low, the activity that is often
done by the user will be placed on higher priority
compared to the other activity, so any new activity can be
inserted in accordance to the priorities.

 From the speed of the process for a dataset, bipartite
ranking processing speed is higher than the other (shown
in table 4), while k-partite ranking has a lower processing
speed because it must compare all of the data to the
existing data, and rank by pairwise comparison would
have the average speed compared with the two other
algorithms because the process of indexing the data has
been created using the label value to every existing query
comparison.

TABLE IV
RESULT OF COMPARISON ALGORITHM

Algorithm
Speed in

processing
data

Accuracy

Bipartite Ranking High Low

k-partite Ranking Low High
Ranking by pairwise

comparison Medium High

VI. Conclusion
After doing training in the training dataset and evaluate

the validation dataset using NDCG, it is found that the
collaborative ranking have a more accurate value / lower
variance test evaluation because it uses a large dataset and
smaller training dataset. There are variety of methods and
algorithms that can be used to overcome the ranking
problem. From algorithm Bipartite Ranking, k-partite
Ranking, and Ranking by pairwise comparison used in this
study, we found that for labeling more than 2 values it is

not recommended to use a bipartite ranking there are many
repetitive data, because later it has to be combined with
other methods to get the accurate task ranking in
accordance to user needed. K-partite ranking and rank by
pairwise comparison are both able to be used for multi-
dimensional data. K-partite ranking will generate data
with a large variation, while rank by pairwise comparison
will consistently follow standard ranking that has been
established. In the experiments that have been conducted
it is found that pairwise comparison ranking algorithm is
the best solution that can be used in determining the
priority task.

In the future development, the other methods can be
used in the ranking problem to ensure getting the
appropriate algorithm in the task priority ranking with
multi-dimensional data. Agents can also combine ranking
algorithm with other method to get the best result. To
determine which is the best ranking algorithm that can be
used in managing the priority ranking in task management
to be applied in personal intelligence agent, each activity
to be inputted by the user should always be processed and
checked again by the agent so that the task priority
informed to the user is more accurate and uses more data
sets so that the training and the test set can decrease the
bias in the model predictions.

References
[1] Hang LI, A Short Introduction to Learning to Rank, The Institute

of Electronics, Information and Communication Engineers, Special
Section on Information-Based Induction Sciences and Machine
Learning, Vol.E94-D, No.10 October 2011.

[2] Neil Yorke-Smith, Shahin Saadati, Karen L. Myers, David N.
Morley, The Design of A Proactive Personal Agent for Task
Management, International Journal on Artificial Intelligence
Tools, Vol. 21, No. 1 (2012) 1250004.

[3] Xin Geng, Longrun Luo, Multilabel Ranking with Inconsistent
Rankers, 2014 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3742-3747.

[4] Johannes Fürnkranz and Eyke Hüllermeier, Preference Learning:
An Introduction in Johannes Fürnkranz and Eyke Hüllermeier
(Ed.), Preference Learning, Springer, 2010, pp. 1-17.

[5] Weiwei Cheng, Jens H ̈uhn, Eyke H ̈ullermeier, Decision Tree and
Instance-Based Learning for Label Ranking, proceedings of the
26th International Conference on Machine Learning, Montreal,
Canada, 2009, pp. 161-168

[6] Johannes Fürnkranz and Eyke Hüllermeier, Preference Learning
and Ranking by Pairwise Comparison in Johannes Fürnkranz and
Eyke Hüllermeier (Ed.), Preference Learning, Springer, 2010, pp.
65-82.

[7] Shankar Vembu and Thomas Gärtner, Label Ranking Algorithms:
A Survey in Johannes Fürnkranz and Eyke Hüllermeier (Ed.),
Preference Learning, Springer, 2010, pp. 45-64.

[8] Vikas C. Raykar, Shipeng Yu, Eliminating Spammers and Ranking
Annotators for Crowdsourced Labelling Tasks. Artificial
Intelligence 172, 2008, pp. 1897–1916, Elsevier.

[9] Shivani Agarwal, Surrogate Regret Bounds for Bipartite Ranking
via Strongly Proper Losses, Journal of Machine Learning
Research, 15:1653-1674, 2014.

[10] Shivani Agarwal and Dan Roth, Learnability of Bipartite Ranking
Functions, P. Auer and R. Meir (Eds.): COLT 2005, LNAI 3559,
pp. 16–31, 2005.

[11] Xin Liu () and Tsuyoshi Murata, Detecting Communities in
K-Partite K-Uniform (Hyper) Networks, Journal Of Computer
Science And Technology Task Management, 26(5): 778{791 Sept.
2011.

517512

[12] Haibin Cheng, Pang-Ning Tan, Jon Sticklen, William F. Punch,
Recommendation via Query Centered Random Walk on K-partite
Graph, Seventh IEEE International Conference on Data Mining.
2008.

[13] Hersh WR, Buckley C, Leone TJ, Hickam DH, OHSUMED: An
interactive retrieval evaluation and new large test collection,
research Proceedings of the 17th Annual ACM SIGIR Conference,
pp. 192-201, 1994.

[14] Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J.
GroupLens. An open architecture for collaborative filtering of
netnews, Proceedings of the ACM Conference on Computer-
Supported Cooperative Work, Chapel Hill, NC, 1994.

[15] Eyke Hüllermeier, Johannes Fürnkranz, Weiwei Cheng, Klaus
Brinkera, Label ranking by learning pairwise preferences, Artificial
Intelligence 172, 2008, pp. 1897–1916, Elsevier

[16] Suhrid Balakrishnan, Sumit Chopra, Collaborative Ranking,
WSDM’12, February 8–12, 2012, Seattle, Washington, USA, pp.
143-152.

[17] K. Jarvelin and J. Kekalainen, Cumulated gain-based evaluation of
IR techniques, ACM Trans. Inf. Syst., 20:422–446, October 2002.

[18] IEEE Foundation for Intelligent Physical Agents, 2014, Retrieved
from http://fipa.org/specs/index.html

[19] Kumar, Subhash, et. al., a personal agent application for the
semantic web, American Association for Artificial Intelligence,
2002.

[20] Smith, Saadati, Myers, Morley, Proc. of 8th Int. Conf. on
Autonomous Agents and Multi agent Systems (AAMAS 2009),
Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–15,
2009, Budapest, Hungary, pp. 337-344.

Authors’ information

Michael Yoseph Ricky is Head of Program
Game Application and Technology in Bina
Nusantara University. He obtained a S.Kom.
in Computer Science from Bina Nusantara
University in 2009 and a M.M. in Business
Management from Binus Business School in
2011. He is 2nd year Ph.D. student in Bina
Nusantara University in Doctorate Computer
Science, DKI Jakarta, Indonesia. He was born
in Sukabumi, 13 July 1987. He is interested

in Intelligence Agent, Multimedia and Games.

518513

