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Abstract
Fan, Chen, Ma and Wang [5] constructed a moment-angle manifold whose cohomology ring

is isomorphic to that of the connected sum of sphere products consisting of one product of three
spheres. In this paper, we show that these are in fact diffeomorphic.

1. Introduction

1. Introduction
The topology of moment-angle manifolds has been studied by many authors [9, 4, 2, 6],

and it is now known that this can be rather complicated. A connected sum of sphere products
gives a typical example of such manifolds.

Theorem 1.1 (McGavran [9] and Bosio-Meersseman [2]). Let K be the triangulation
of a sphere that is dual to the simple polytope obtained from the k-simplex by cutting
off � > 0 vertices, i.e., the boundary of a stacked polytope. Then, the moment-angle
manifold associated to K is diffeomorphic to a connected sum of sphere products ZK �

#�j=1

(
S j+2 × S 2k+�− j−1

)# j(�+1
j+1) .

Here, X# j denotes the connected sum of j-copies of a manifold X without boundary.
Moreover, for k = 2, 3 Bosio and Meersseman characterized precisely the spherical trian-
gulation that gives rise to a connected sum of sphere products as a moment-angle manifold.
See Proposition 11.6 of [2]. In addition, see the paper [6]. In these observations, only a
product of two spheres appears.

Fan, Chen, Ma, and Wang [5] found that the cohomology ring of the moment-angle man-
ifold Z∂P8

28
is isomorphic to that of the connected sum of sphere products

(1.1) M = (S 3 × S 3 × S 6)#(S 5 × S 7)#8#(S 6 × S 6)#8,

where ∂P8
28 is the boundary of P8

28 (a simplicial 4-polytope with 8 vertices) described in [7].
The combinatorial structure of ∂P8

28 is described in §2 in terms of missing faces and facets.
In this paper, we show that the moment-angle manifold Z∂P8

28
is in fact diffeomorphic to

the connected sum of sphere products given above, and we affirm the conjecture of [5].

Theorem 1.2. The moment-angle manifold Z∂P8
28

is diffeomorphic to M as defined by
(1.1).
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2. Moment-angle manifold

2. Moment-angle manifold
To prove that Z∂P8

28
is diffeomorphic to M, we follow the standard method, i.e., the use

of h-cobordism theory. The following theorem is a simple modification of Theorem A1 of
Gitler and López [6].

Theorem 2.1. Let Q be a compact smooth manifold of dimension d+1 ≥ 6 with boundary
∂Q, satisfying the following:

(1) Q is simply connected with a simply connected boundary.
(2) There is a finite collection {Xj} of disjointly embedded closed smooth manifolds

inside Q with trivial normal bundles.
(3) The embedding

∐
j X j → Q induces isomorphisms of integral homology groups of

positive dimensions, and Hi(Q) = 0 for i ≥ d − 1.

Then, Q is diffeomorphic to the boundary connected sum of
∐

j X j×Dd+1−dim Xj , and therefore
∂Q is diffeormophic to # j(Xj × S d−dim Xj).

To construct a manifold Q with boundary Z∂P8
28

, we employ the polyhedral product.
Let K be a simplicial complex on the vertex set [m] = {1, 2, · · · ,m}. A moment-angle

complex ZK associated to K is defined by

ZK =
⋃

σ∈K
(D2)σ × (S 1)[m]\σ ⊂ (D2)m.

This construction has been generalized to the polyhedral product. See [1, 3]. Let (X, A) =
{(Xi, Ai)}i∈[m] be a set of pairs of spaces (Xi, Ai). For a subset I ⊂ [m], we define

(X, A)I = {(x1, · · · , xm) ∈
m∏

i=1

Xi | x j ∈ Aj if j � I}.

Then, the polyhedral product ZK(X, A) is defined as the union of (X, A)σ for all faces σ of
K:

ZK(X, A) =
⋃

σ∈K
(X, A)σ.

If K is an n-dimensional triangulated sphere with m vertices, then ZK has the structure
of an (n + m + 1)-dimensional manifold. See Theorem 4.1.4 of [3]. Moreover, if K is the
boundary of a simplicial polytope, then ZK is a smooth manifold. See Theorem 6.2.4 of [3].
Therefore, ZK is called a moment-angle manifold if K is a triangulated sphere.

Now, we recall the simplicial complex ∂P8
28 in the manner described by Fan, Chen, Ma,

and Wang [5].

Definition 2.2. For a simplicial complex K on [m], a subset I ⊂ [m] is called a missing
face or minimal non-face of K if I is not a simplex of K, but all of its proper subsets are
faces of K. The set of missing faces of K is denoted by MF(K).

For a sequence of integers i1 < i2 < · · · < ik, i1i2 · · · ik denotes the set {i1, i2, · · · , ik}. ∂P8
28
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is a simplicial complex with the vertex set [8], and is characterized by its missing faces

MF(∂P8
28) = {56, 78, 123, 134, 235, 346, 147, 467, 128, 258},

and ∂P8
28 has 18 facets (maximal faces):

1245, 1246, 1257, 1267, 1357, 1367, 2347, 2367, 2457,

3457, 1458, 1468, 1358, 1368, 2348, 2368, 2468, 3458.

K = ∂P8
28 is decomposed as K = K[6] ∪ linkK(7) ∗ 7∪ linkK(8) ∗ 8, where linkK(v) denotes

the link of v in K. For reader’s convenience, K[6], linkK(7) and linkK(8) are described in
Figure 1. As noted in [5], K[6] can be viewed as a thick 2-sphere with two 3-simplices 1245
and 1246.
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Fig.1. K = ∂P8
28

Let D3
+ = {(x, z) ∈ R × C | x2 + |z|2 ≤ 1, x ≥ 0} and S 2

+ = {(x, z) ∈ D3
+ | x2 + |z|2 =

1}. Set Q = Z∂P8
28

((D3
+, S

2
+), (D2, S 1), · · · , (D2, S 1)). Then, Q is a 13-dimensional smooth

manifold with boundary Z∂P8
28

. Because (D3
+, S

2
+) is contractible as a pair of spaces, Q is

homotopy equivalent to Z∂P8
28

((∗, ∗), (D2, S 1), · · · , (D2, S 1)), which is identified with Z∂P8
28−1,

where ∂P8
28 − 1 = {σ ⊂ {2, · · · , 8} | σ ∈ ∂P8

28}. To apply Theorem 2.1, we need to know the
homotopy type of Z∂P8

28−1. For a subset I ⊂ [8], we denote the full subcomplex of ∂P8
28 on I

by (∂P8
28)I .

Theorem 2.3. The following homotopy equivalence holds:

Q 	 Z∂P8
28−1 	 (S 3

56 × S 3
78) ∨ S 5

235 ∨ S 5
346 ∨ S 5

467 ∨ S 5
258

∨S 6
4678∨S 6

4567∨S 6
3467∨S 6

3456∨S 6
2578∨S 6

2568∨S 6
2358∨S 6

2356∨S 7
45678∨S 7

25678∨S 7
23568∨S 7

34567,

where S k
I denotes the sphere S k, which appears for the first time in Z(∂P8

28)I
as a wedge

summand.
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3. Fat wedge filtration

3. Fat wedge filtration
To prove Theorem 2.3, we make use of the fat wedge filtration introduced by Kishimoto

and the author in [8].
Let K be a simplicial complex on [m]. For each subset I ⊂ [m], KI denotes the full

subcomplex on I. That is, KI = {σ ∈ K | σ ⊂ I}. We regard ZKI as a subspace of ZK , by
identifying it with ZKI × {−1}Ic

. On the other hand, the projection (D2)m → (D2)I induces
the projection ZK → ZKI . In particular, ZKI is a retract of ZK .

Now, we recall the fat wedge filtration of ZK . For 0 ≤ i ≤ m, the fat wedge filtration of
ZK is given by

Zi
K = {(x1, · · · , xm) ∈ ZK | at least m − i of x j are −1},

which induces the following filtration of ZK :

Z0
K = {∗} ⊂ Z1

K ⊂ · · · ⊂ Zi
K ⊂ · · · ⊂ Zm

K = ZK ,

where ∗ = (−1, · · · ,−1). Then, it is easy to see that

Zi
K =

⋃

I⊂[m], |I|≤i

ZKI .

The key property of the fat wedge filtration of the moment-angle complex is the following.

Theorem 3.1 (Theorem 5.1 of [8]). For i = 1, . . . ,m, Zi
K is obtained from Zi−1

K by attach-

ing a cone to the composition of maps ϕKI : Σi|KI | → Zi−1
KI

incl−−→ Zi−1
K , for each I ⊂ [m] with

|I| = i.

There exist some classes of simplicial complexes whose attaching maps for Zi
K are trivial.

One such complex is the fillable complex.

Definition 3.2. A simplicial complex K is fillable if there are missing faces L1, · · · , Lr of
K such that |K ∪ {L1, · · · , Lr}| is contractible.

Theorem 3.3 (Theorem 7.2 of [8]). If K is fillable, then the attaching map ϕK is null
homotopic.

4. Proof of Theorem 2.3

4. Proof of Theorem 2.3
From this point on, K denotes ∂P8

28. Here, we remark that (K − 1)I = KI for a subset
I ⊂ [8] − 1. Because K − 1 does not have ghost vertices, it is easy to see that Z1

K−1 	 ∗.
Step I): Z2

K−1. Because by Theorem 3.1 we have a cofiber sequence
∨

I⊂[8]−1, |I|=2

Σ2|KI | → Z1
K−1 	 ∗ → Z2

K−1

and |KI | is not contractible for I ⊂ [8] − 1 with |I| = 2 if and only if I = 56 or I = 78, we
have a homotopy equivalence Z2

K−1 	 S 3
56 ∨ S 3

78.
Step II): Z3

K−1. |KI | is not contractible for I ⊂ [8] − 1 with |I| = 3 if and only if I is one
of the four missing faces with three vertices in MF(K), it does not contain the vertex 1, and
in each case KI � ∂Δ2. Clearly, ∂Δ2 is fillable, and the attaching maps ϕKI are all trivial by
Theorem 3.3. Thus, we have that Z3

K−1 	 S 3
56 ∨ S 3

78 ∨ S 5
235 ∨ S 5

346 ∨ S 5
467 ∨ S 5

258.
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Step III): Z4
K−1. In [5], the authors classified non-contractible full subcomplexes of K with

four vertices. There are three possible types described in Figure 2.

A B C

Fig.2

If KI is of type A, then I = 5678 and ZKI = S 3 × S 3. If KI is of type B or type C, then it is
a fillable complex, and the attaching map is trivial. Thus, we have the homotopy equivalence

Z4
K−1 	 (S 3

56 × S 3
78) ∨ S 5

235 ∨ S 5
346 ∨ S 5

467 ∨ S 5
258

∨ S 6
4678 ∨ S 6

4567 ∨ S 6
3467 ∨ S 6

3456 ∨ S 6
2578 ∨ S 6

2568 ∨ S 6
2358 ∨ S 6

2356.

Step IV): Z5
K−1. |KI | is not contractible for I ⊂ [8] − 1 with |I| = 5 if and only if I is the

complement of one of the four missing faces with three vertices in MF(K) that contains the
vertex 1. In all cases, it is easy to see that KI is fillable, and the attaching map is trivial.

Z5
K−1 	 (S 3

56 × S 3
78) ∨ S 5

235 ∨ S 5
346 ∨ S 5

467 ∨ S 5
258 ∨ S 6

4678 ∨ S 6
4567 ∨ S 6

3467 ∨ S 6
3456

∨ S 6
2578 ∨ S 6

2568 ∨ S 6
2358 ∨ S 6

2356 ∨ S 7
45678 ∨ S 7

25678 ∨ S 7
23568 ∨ S 7

34567.

Step V). Z6
K−1 and ZK−1. For |I| = 6, |KI | is not contractible if and only if I is the comple-

ment of one of the two missing faces with two vertices in MF(K). That is, I = 123456 or
I = 123478. In both cases I contains the vertex 1, and therefore |(K − 1)I | is contractible for
all I ⊂ [8] − 1 with |I| = 6.

Because |K − 1| is contractible, Z7
K−1 	 Z6

K−1 	 Z5
K−1, and we have completed the proof of

Theorem 2.3.

5. Proof of Theorem 1.2

5. Proof of Theorem 1.2
We call S 3

56 × S 3
78 or S k

I a wedge summand when they appear as a wedge summand of
Q. To construct an embedding for a wedge summand to Q, we make use of the smooth
embedding ZlinkK (σ) → ZK , where linkK(σ) = {τ ∈ σc |τ ∪ σ ∈ K} is the link of σ in K. To
embed S 3

56 × S 3
78, we use linkK(13) = {∅, 5, 6} ∗ {∅, 7, 8}. Then, ZlinkK (13) = S 3 × S 3 and the

embedding ZlinkK (13) = S 3 × S 3 → ZK ⊂ Q represents the wedge summand S 3
56 × S 3

78.
To embed the other wedge summands, we use linkK(2) and linkK(4).
The facets of linkK(2) are 145, 146, 157, 167, 347, 367, 457, 348, 368, 468, and

therefore it is the boundary of a stacked polytope as linkK(2) is described below.
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Fig.3. linkK(2)

Thus linkK(2) is dual to the simple polytope obtained from the 3-simplex by cutting off 3
vertices. By Theorem 1.1, we see that ZlinkK (2) � (S 3 × S 7)#6#(S 4 × S 6)#8#(S 5 × S 5)#3. It is
easy to see where a sphere factor of ZlinkK (2) occurs, and we see that

ZlinkK (2) � (S 3
13 × S 7

45678)#(S 3
18 × S 7

34567)#(S 3
35 × S 7

14678)

#(S 3
56 × S 7

13478)#(S 3
58 × S 7

13467)#(S 3
78 × S 7

13456)

#(S 4
135 × S 6

4678)#(S 4
138 × S 6

4567)#(S 4
158 × S 6

3467)#(S 4
178 × S 6

3456)

#(S 4
356 × S 6

1478)#(S 4
358 × S 6

1467)#(S 4
568 × S 6

1347)#(S 4
578 × S 6

1346)

#(S 5
147 × S 5

3568)#(S 5
346 × S 5

1578)#(S 5
467 × S 5

1358).

Here, we remark that in the formula above, factors of S k
I arise from Z(linkK (2))I . The composite

of maps ZlinkK (2) → ZK ⊂ Q
	−→ ZK−1 maps a summand S k

I in ZlinkK (2) to S k
I in ZK−1 in a

homotopy equivalent manner for I = 346, 467, 4678, 4567, 3467, 3456, 45678, 34567.
To see this, it is sufficient to check that |(linkK(2))I | → |KI | is homotopy equivalent for those
I’s by Theorem 3.1. For I = 346, 467, 4678, 4567 or 3467, it is a routine work to check
that (linkK(2))I = KI . For I = 3456, |(linkK(2))346| = |K346| is a deformation retract both of
|(linkK(2))I | and |KI |. For I = 45678, |(linkK(2))467| = |K467| is a deformation retract both of
|(linkK(2))I | and |KI |. For I = 34567, |(linkK(2))346| = |K346| is a deformation retract both
of |(linkK(2))I | and |KI |. Thus in all cases the inclusion map |(linkK(2))I | → |KI | induces a
homotopy equivalence.

Similarly, the facets of linkK(4) are 126, 125, 168, 158, 238, 358, 268, 237, 357, 257.
These are just those of linkK(2), except with 4 replaced by 2 and 7 ↔ 8 exchanged with
5↔ 6. Therefore, we see that

ZlinkK (4) � (S 3
13 × S 7

25678)#(S 3
17 × S 7

23568)#(S 3
36 × S 7

12578)

#(S 3
56 × S 7

12378)#(S 3
67 × S 7

12358)#(S 3
78 × S 7

12356)

#(S 4
136 × S 6

2578)#(S 4
137 × S 6

2568)#(S 4
167 × S 6

2358)#(S 4
178 × S 6

2356)

#(S 4
356 × S 6

1278)#(S 4
367 × S 6

1258)#(S 4
567 × S 6

1238)#(S 4
678 × S 6

1235)

#(S 5
128 × S 5

3567)#(S 5
235 × S 5

1678)#(S 5
258 × S 5

1367).

Thus, we have obtained a necessary embedding for each wedge summand. Because all
wedge summands are embedded in the boundary of Q, the embeddings can be made mutu-
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ally disjoint and lying in a collar neighborhood of the boundary ZK .
Finally, we see that the normal bundles of the embedded manifolds are trivial. The nor-

mal bundle of S 5 (resp. S 7) embedded in ZK has been classified by the homotopy group
[S 5, BO(7)] � [S 4,O(7)] � 0 (resp. [S 7, BO(5)] � [S 6,O(5)] � 0) in [11] and [10]. Thus,
these are also trivial in Q. The normal bundle of S 6 embedded in Q is classified by the
homotopy group [S 6, BO(7)] � [S 5,O(7)] � 0. The normal bundle of S 3 × S 3 embedded in
Q is classified by the homotopy set [S 3 × S 3, BO(7)] = ∗. To see this, we consider the exact
sequence associated with the cofiber sequence S 3 ∨ S 3 → S 3 × S 3 → S 6:

0 � [S 6, BO(7)]→ [S 3 × S 3, BO(7)]→ [S 3 ∨ S 3, BO(7)].

Because [S 3∨S 3, BO(7)] � [S 3, BO(7)]× [S 3, BO(7)] � [S 2,O(7)]× [S 2,O(7)] � 0, we see
that [S 3 × S 3, BO(7)] = ∗. Thus, all of the normal bundles are trivial, and we have proved
Theorem 1.2 by applying Theorem 2.1.
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