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Abstract
We consider an initial-boundary value problem for the degenerate linear hyperbolic equation

as a model of the motion of an inextensible string fixed at one end in the gravity field. We shall
show the existence and the uniqueness of the solution and study the regularity of the solution.

1. Introduction

1. Introduction
We are concerned with the motion of an inextensible string of finite length with uniform

density having one end fixed and another end free and acted on solely by forces of the gravity
and the tension. Let L be the length of the string and s (∈ [0, L]) be the arc length measured
from the free end of the string. Suppose that the string is described as a curve

u(s, t) = (u1(s, t), u2(s, t), u3(s, t)), s ∈ [0, L]

at time t and that the fixed end of the string is at the origin in R3 (see Fig. 1 below).

z
(x, y)

g

s = L

s = 0

s

Fig.1. Hanging string

The motion of the string is dominated by the force of gravity and the tension of the string.
Let ρ be the density of the string, g = (0, 0,−1) the acceleration of gravity vector, and
τ = τ(s, t) the (scalar) tension of the string. Then the equation of the motion of the string
has the form

(1.1) ρutt − (τus)s = ρg in (0, L) × (0, T )
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(for instance, see [9]). Inextensibility of the string is mathematically enforced by requiring
that

(1.2) |us| ≡ 1 in (0, L) × (0, T ).

As for the boundary conditions, we impose that

(1.3) u|s=L = 0, τ|s=0 = 0 on (0, T ).

The first condition of (1.3) means that the fixed end (s = L) of the string is at the origin in
R3 and the second one means that the tension vanishes at the free end (s = 0). As for the
initial conditions, we impose that

(1.4) (u, ut)|t=0 = (u0(s), v0(s)) in (0, L).

There are few results about the existence and the uniqueness of the solution of this initial-
boundary value problem. Reeken [6, 7] considered the motion of an inextensible string of
infinite length having one end fixed at the point (0, 0,+∞) in a gravity field. For technical
reasons he assumed that the acceleration of gravity vector g is not a constant. In precise, he
assumed that g = g(s) ∈ C∞ is constant for s ∈ [0, l] and grows linearly beyond s = l for
some l. Under this non-physical condition, he proved the existence locally in time and the
uniqueness of the solution provided the initial data are sufficiently close to a trivial stationary
solution. Preston [3] considered the motion of an inextensible string of finite length in the
absence of gravity, that is g = 0. He proved the existence locally in time and the uniqueness
of the solution for arbitrary initial data.

Remark. The stationary solution (ū, τ̄) of the boundary value problem (1.1)–(1.3) is given
by

ū(s) = (0, 0, s − L), τ̄(s) = ρs.

This implies that the stationary tension τ̄(s) is positive except at the free end (s = 0) and
degenerates linearly at this end.

In what follows we assume, for simplicity, that ρ = 1 and L = 1 and set I = (0, 1). In
this paper, assuming that the function τ(s, t) is given, we discuss on the solution u of the
initial-boundary value problem (1.1), (1.3), and (1.4) neglecting (1.2). More precisely, for
given functions τ(s, t) and f (s, t), we consider the following initial-boundary value problem:

utt − (τ(s, t)us)s = f (s, t) in I × (0, T ),(1.5)

u|s=1 = 0 on (0, T ),(1.6)

(u, ut)|t=0 = (u0(s), v0(s)) in I,(1.7)

where u(s, t) is a scalar unknown function. We note that the relationship between the position
vector u and the tension τ can be determined by the inextensibility constraint (1.2). If τ(s, t)
is strictly positive, then (1.5) is a wave equation with a non-degenerate coefficient, and hence
the existence and the uniqueness of the solution of the initial-boundary value problem (1.5)–
(1.7) are well-known. However, from the boundary condition (1.3) it is natural to assume
that τ(s, t) degenerates at s = 0.

Koshlyakov, Gliner, and Smilnov [1] considered the case τ(s, t) = s, which is the station-
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ary tension of the boundary value problem (1.1)–(1.3). By using eigenfunction expansion
method they proved the existence of the solution of the initial-boundary value problem (1.5)–
(1.7) with f ≡ 0. Yamaguchi [8] also considered the case τ(s, t) = s. However, instead of a
linear equation (1.5), he considered a semi-linear equation

(1.8) utt − (τ(s, t)us)s = f (s, u) in I × (0, T ).

Under some technical conditions of f (s, u) he proved the existence of a time global solution
of the initial-boundary value problem (1.8), (1.6), and (1.7) provided the initial data are
sufficiently small.

Remark. If (u, τ) is a smooth solution of the initial-boundary value problem (1.1)–(1.4),
then the tension τ satisfies

τ(0, t) = 0, τs(0, t) > 0, and τ(s, t) > 0 for (s, t) ∈ (0, L] × [0, T ]

under a physically natural condition. In other words, the tension τ(s, t) is positive except at
the free end (s = 0) and degenerates linearly at this end.

Taking into account of Remark above, for the given function τ(s, t) we assume that

(1.9) τ(s, t) = sa(s, t), where a ∈ C∞(Ī × [0, T ]) is strictly positive on Ī × [0, T ].

In this paper, we shall show the existence and the uniqueness of the solution of the initial-
boundary value problem (1.5)–(1.7) and study the regularity of the solution under this as-
sumption (1.9).

This paper is organized as follows. In Section 2 we define function spaces Xm(R+) which
are essentially the same as in [6]. We also state our main theorem. In Section 3 we introduce
maps � and � which play crucial roles to prove main theorem. We also give the proof of
main theorem admitting that some propositions hold. Section 4 is devoted to functions with
weights. In Section 4.1 we prove some inequalities. In Section 4.2 we prove a function
in Xm(R+) can be approximated bysmooth functions. In Section 5 we give the proofs of
propositions used in Section 3 admitting that Proposition 5.1 holds. In Sections 6 we give
the proof of Proposition 5.1.

2. Notation and main theorem

2. Notation and main theorem
Throughout this paper, for two norms ‖ · ‖1 and ‖ · ‖2 we will write ‖v‖1 � ‖v‖2 to denote

the fact that ‖v‖1 ≤ C‖v‖2 for a certain constant C which is independent of v. We will also
write ‖v‖1 � ‖v‖2 to denote the fact that ‖v‖1 � ‖v‖2 and ‖v‖2 � ‖v‖1. In other words, ‖v‖1 � ‖v‖2
means that the two norms ‖ · ‖1 and ‖ · ‖2 are equivalent.

Let Z+ denote the set of non-negative integers and R+ denote the set of positive real
numbers, namely, Z+ = {0, 1, 2, . . .} and R+ = (0,+∞). We use the following notation for
the function spaces: For m ∈ Z+ we define

(2.1) Xm(R+) = {u ∈ L2(R+); ‖u‖Xm(R+) < +∞}
equipped with the norm
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‖u‖Xm(R+)(2.2)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k∑
j=0

‖∂ j
su‖L2(R+) +

k∑
j=0

‖s j∂
k+ j
s u‖L2(R+), m = 2k, k ∈ Z+,

k∑
j=0

‖∂ j
su‖L2(R+) +

k∑
j=0

‖s j+ 1
2 ∂

k+1+ j
s u‖L2(R+), m = 2k + 1, k ∈ Z+,

where ∂su = d
ds u(s). Similarly, we define the function space Xm(I) and the norm ‖ · ‖Xm(I)

replaced R+ by I in the definitions (2.1) and (2.2) above (these function spaces Xm(I) are
essentially the same as those in Section 2 in [6]). We note that a function u ∈ Xm(I) is
expressed as u = ũ|I for some ũ ∈ Xm(R+). Furthermore, we define

Λm
X =

m⋂
j=0

C j([0, T ]; Xm− j(I))

equipped with the norm

‖u‖Λm
X
=

m∑
j=0

sup
t∈[0,T ]

‖∂ j
t u(·, t)‖Xm− j(I).

Remark. Let m ≥ 2 be an integer and suppose that

f ∈ Λm−1
X and (u0, v0) ∈ Xm(I) × Xm−1(I).

If u is a solution of the initial-boundary value problem (1.5)–(1.7) in the class u ∈ Λm
X , then

we have ∂ j
t u(0, s) = U( j)(s) ( j = 0, 1, . . . ,m), where U( j)(s) is determined from the initial

data (u0, v0) inductively by

U(0)(s) = u0(s), U(1)(s) = v0(s),

and

U( j)(s) =
j−2∑
i=0

( j − 2
i

)
∂s
(
∂

j−2−i
t τ(0, s)∂sU(i)(s)

)
+ ∂

j−2
t f (0, s), j = 2, 3, . . . ,m.

Since U( j) ∈ Hm− j(δ, 1) ( j = 0, 1, . . . ,m− 1) for any δ ∈ (0, 1), we can define the trace of the
function U( j) ( j = 0, 1, . . . ,m − 1) at s = 1. Therefore, the compatibility conditions which
are necessary to insure that the solution u is in Λm

X are given by

(2.3) U( j)|s=1 = 0, j = 0, 1, . . . ,m − 1.

Our main theorem is as follows:

Theorem 2.1. Let m ≥ 2 be an integer and T > 0. Suppose that

f ∈ Λm−1
X and (u0, v0) ∈ Xm(I) × Xm−1(I)

satisfy the compatibility conditions (2.3). Then the initial-boundary value problem (1.5)–
(1.7) has a unique solution u ∈ Λm

X, which satisfies the estimate

(2.4) ‖u‖Λm
X
� ‖u0‖Xm(I) + ‖v0‖Xm−1(I) + ‖ f ‖Λm−1

X
.
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3. Proof of the main theorem

3. Proof of the main theorem3.1. Preliminaries.
3.1. Preliminaries. We use the following notation for the function spaces: For m ∈ Z+

we define

(3.1) Hm
rad(R2) = {w ∈ Hm(R2); w is a radially symmetric function}

and denote H0
rad(R2) by L2

rad(R2). Similarly, we set Ω = {(x, y) ∈ R2; x2 + y2 < 1} and define
the function space Hm

rad(Ω) replaced R2 by Ω in the definition (3.1) above. We note that a
function w ∈ Hm

rad(Ω) is expressed as w = w̃|Ω for some w̃ ∈ Hm
rad(R2).

For the proof of Theorem 2.1, we introduce the following notation: For u ∈ L2(R+) we
define the function u� : R2 → R as

u�(x, y) = u(x2 + y2), (x, y) ∈ R2.

Then it is easily checked that the map � : L2(R+) 
 u �→ u� ∈ L2
rad(R2) is bijective and

norm-preserving in the sense that

‖u�‖L2(R2) =
√
π‖u‖L2(R+) for u ∈ L2(R+).

This map � gives the following relationship between Xm(R+) and Hm
rad(R2) and between

Xm(I) and Hm
rad(Ω).

Proposition 3.1. Let m ∈ Z+. Then the map � : Xm(R+) 
 u �→ u� ∈ Hm
rad(R2) is bijective

and for u ∈ Xm(R+) it holds that

‖u�‖Hm(R2) � ‖u‖Xm(R+).

Proposition 3.2. Let m ∈ Z+. Then the map � : Xm(I) 
 u �→ u� ∈ Hm
rad(Ω) is bijective

and for u ∈ Xm(I) it holds that

‖u�‖Hm(Ω) � ‖u‖Xm(I).

The proofs of Propositions 3.1 and 3.2 are given in Section 5.
For convenience, we also construct the inverse map of � : L2(R+)→ L2

rad(R2). For given
w ∈ L2

rad(R2), since w is radially symmetric, there exists a function W : R+ → R such
that w(x, y) = W(r), where r =

√
x2 + y2. Using this function W, we define the function

w� : R+ → R as

w�(s) = W(s
1
2 ), s ∈ R+.

Then it is easily checked that the map � : L2
rad(R2) 
 w �→ w� ∈ L2(R+) is also bijective and

norm-preserving in the sense that

‖w�‖L2(R+) =
1√
π
‖w‖L2(R2) for w ∈ L2

rad(R2).

This map � : L2
rad(R2) → L2(R+) is the inverse map of � : L2(R+) → L2

rad(R2). Therefore,
from Propositions 3.1 and 3.2 we immediately have

Corollary 3.3. Let m ∈ Z+. Then the map � : Hm
rad(R2) 
 w �→ w� ∈ Xm(R+) is bijective

and for w ∈ Hm
rad(R2) it holds that

‖w�‖Xm(R+) � ‖w‖Hm(R2).
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Corollary 3.4. Let m ∈ Z+. Then the map � : Hm
rad(Ω) 
 w �→ w� ∈ Xm(I) is bijective and

for w ∈ Hm
rad(Ω) it holds that

‖w�‖Xm(I) � ‖w‖Hm(Ω).

We also introduce the following differential operators: For m ∈ Z+ we define Am as

A0u = u, A1u = s
1
2 ∂su, A2u = ∂s(s∂su),

and

Amu =

⎧⎪⎪⎨⎪⎪⎩
Ak

2u, m = 2k, k ∈ Z+,

A1Ak
2u, m = 2k + 1, k ∈ Z+

(these operators Am are essentially the same as those in Section 2 in [6]). Then we have

Proposition 3.5. Let w ∈ X2(R+) and u, v ∈ X1(R+). Then it holds that

(3.2) (A2w)� =
1
4
Δw�, (A1u)�(A1v)� =

1
4

(∇u� · ∇v�),
where Δ and ∇ are the Laplacian and the gradient in R2, respectively.

Proposition 3.6. Let w ∈ H2
rad(R2) and u, v ∈ H1

rad(R2). Then it holds that

(3.3) A2w
� =

1
4

(Δw)�, (A1u�)(A1v
�) =

1
4

(∇u · ∇v)�.
The proofs of Propositions 3.5 and 3.6 are given in Section 5. In what follows, admitting

that Propositions 3.2, 3.5, and 3.6 hold, we shall give the proof of Theorem 2.1.

3.2. Uniqueness of the solution.
3.2. Uniqueness of the solution. Let u ∈ Λm

X be a solution of the initial-boundary value
problem (1.5)–(1.7) and set w = u�. Then Proposition 3.2 yields

w ∈ Λm
H, rad :=

m⋂
j=0

C j([0, T ]; Hm− j
rad (Ω)).

Furthermore, from the assumption (1.9) we have

(τus)s = (saus)s = a(sus)s + sasus = aA2u + (A1a)(A1u).

Thus Proposition 3.5 shows that w is a solution of the following initial-boundary value prob-
lem:

wtt − 1
4

(a�Δw + ∇a� · ∇w) = f � in Ω × (0, T ),(3.4)

w = 0 on ∂Ω × (0, T ),(3.5)

(w, wt)|t=0 = (u�0, v
�
0) in Ω.(3.6)

From the assumption (1.9), the function a�(s, t) is strictly positive onΩ×[0, T ], and hence
(3.4) is a wave equation with a non-degenerate coefficient. Thus, by standard arguments of
initial-boundary value problem for a linear hyperbolic equation (for instance, see Proposi-
tion 2.1 in [5]), the solution w of the initial-boundary value problem (3.4)–(3.6) is unique.
Therefore the solution u of the initial-boundary value problem (1.5)–(1.7) is also unique. �
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3.3. Existence and estimate of the solution.
3.3. Existence and estimate of the solution. Let m ≥ 2 be an integer and suppose that

f ∈ Λm−1
X and (u0, v0) ∈ Xm(I) × Xm−1(I)

satisfy the compatibility conditions (2.3). We now consider the initial-boundary value prob-
lem (3.4)–(3.6). Proposition 3.2 yields

f � ∈ Λm−1
H, rad and (u�0, v

�
0) ∈ Hm

rad(Ω) × Hm−1
rad (Ω).

Moreover, f � and (u�0, v
�
0) also satisfy the compatibility conditions of the initial-boundary

value problem (3.4)–(3.6). Thus, by standard arguments (for instance, see Theorem 3.1 in
[5]), we obtain a unique solution

w ∈ Λm
H :=

m⋂
j=0

C j([0, T ]; Hm− j(Ω))

of the initial-boundary value problem (3.4)–(3.6), which satisfies

(3.7) ‖w‖Λm
H
� ‖u�0‖Hm(Ω) + ‖v�0‖Hm−1(Ω) + ‖ f �‖Λm−1

H
.

Since the solution of the initial-boundary value problem (3.4)–(3.6) is unique and func-
tions a�, f �, u�0, v

�
0 are radially symmetric, the solution w is also radially symmetric, namely,

w ∈ Λm
H,rad. Now let us set u = w�. From Corollary 3.4 we have u ∈ Λm

X . Moreover, Propo-
sition 3.6 shows that u is a solution of the initial-boundary value problem (1.5)–(1.7). The
estimate (2.4) follows from Proposition 3.2 and (3.7). �

4. Functions with weights

4. Functions with weights4.1. Auxiliary inequalities.
4.1. Auxiliary inequalities. We start with the following lemma.

Lemma 4.1. Let w ∈ L2(0, 1) and set

W(s) = s−
1
2

∫ s

0
w(σ) dσ, s ∈ (0, 1).

Then we have W ∈ L2(0, 1) and it holds that

‖W‖L2(0,1) ≤ 4
e
‖w‖L2(0,1).

Proof. For 0 < δ < 1 we set

Eδ =
(∫ 1

δ

W(s)2 ds
) 1

2
.

Using integration by parts we have

E2
δ =

∫ 1

δ

1
s

(∫ s

0
w(σ) dσ

)2
ds

= (log s)
(∫ s

0
w(σ) dσ

)2 ∣∣∣∣s=1

s=δ
−2
∫ 1

δ

(log s)
(∫ s

0
w(σ) dσ

)
w(s) ds
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= | log δ|
(∫ δ

0
w(σ) dσ

)2 − 2
∫ 1

δ

s
1
2 (log s) W(s)w(s) ds

≤ | log δ|
(∫ δ

0
w(σ) dσ

)2
+

4
e
‖w‖L2(0,1)Eδ,

where we used 0 ≤ s
1
2 | log s| ≤ 2

e for s ∈ (0, 1). In short, we obtain

(4.1) E2
δ ≤ Aδ + BEδ, where Aδ = | log δ|

(∫ δ

0
w(σ) dσ

)2
, B =

4
e
‖w‖L2(0,1).

Solving the quadratic inequality (4.1), we have

(4.2) Eδ ≤ 1
2

(B +
√

B2 + 4Aδ ).

On the other hand, we note that

|Aδ| ≤ | log δ|
(∫ δ

0
1 dσ
)(∫ δ

0
w(σ)2 dσ

)
= δ| log δ|

(∫ δ

0
w(σ)2 dσ

)
→ 0 as δ→ +0.

Therefore, passing to the limit as δ→ +0 in (4.2), we conclude the proof. �

As an immediate corollary to Lemma 4.1 we have

Corollary 4.2. Let u ∈ L2(R+) and suppose that A1u, A2u ∈ L2(R+). Then we have

∂su(s) =
1
s

∫ s

0
w(σ) dσ, where w = A2u.

Proof. Since ∂s(s∂su) = w, there exists a constant c ∈ R such that

s∂su(s) = c +
∫ s

0
w(σ) dσ.

This implies

(4.3) cs−
1
2 = A1u − s−

1
2

∫ s

0
w(σ) dσ.

From Lemma 4.1 and the fact that A1u, w ∈ L2(0, 1), the right-hand side of (4.3) belongs
to L2(0, 1). On the other hand, we note that s−

1
2 � L2(0, 1). This implies c = 0, which

concludes the proof. �

Lemma 4.3. Let v ∈ L2(0, 1) and suppose that ∂s(sv) ∈ L2(0, 1). Then it holds that

sup
s∈(0,1)

|s 1
2 v(s)| ≤ ‖∂s(sv)‖L2(0,1).

Proof. Let us set w = ∂s(sv). Then, by using the same argument as in the proof of
Corollary 4.2 we have

sv(s) =
∫ s

0
w(σ) dσ, s ∈ (0, 1),

and hence

|sv(s)| =
∣∣∣∣
∫ s

0
w(σ) dσ

∣∣∣∣ ≤ (
∫ s

0
1 dσ
) 1

2
(∫ s

0
w(σ)2 dσ

) 1
2 ≤ s

1
2 ‖w‖L2(0,1), s ∈ (0, 1).
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This concludes the proof. �

Lemma 4.4. Let α > − 1
2 and v ∈ L2(R+), and set

V(s) =
1

sα+1

∫ s

0
σαv(σ) dσ, s ∈ R+.

Then we have V ∈ L2(R+) and it holds that

‖V‖L2(R+) ≤ 2
1 + 2α

‖v‖L2(R+).

By using an argument similar to that in the proof of Lemma 4.1, we can also prove Lemma
4.4 (see also Lemma 1 in [7]). Thus we omit the proof.

Lemma 4.5. Let α, β ∈ R and suppose that α > − 1
2 and α + β ≥ −1. In addition, let

w ∈ L2(R+) and suppose that suppw ⊂ [0,R] for some R > 0. Moreover, set

W(s) = sα
∫ +∞

s
σβw(σ) dσ, s ∈ R+.

Then we have W ∈ L2(R+) and it holds that

‖W‖L2(R+) ≤ 2
1 + 2α

‖sα+β+1w‖L2(R+).

Proof. For 0 < δ < 1 we set

Eδ =
(∫ +∞

δ

W(s)2 ds
) 1

2
.

By using an argument similar to that in the proof of Lemma 4.1, we have

E2
δ =

1
1 + 2α

s1+2α
(∫ +∞

s
σβw(σ) dσ

)2 ∣∣∣∣s=+∞
s=δ

+
2

1 + 2α

∫ +∞
δ

s1+2α
(∫ +∞

s
σβw(σ) dσ

)
sβu(s) ds.

Since suppw ⊂ [0,R], we have s1+2α(
∫ +∞

s σβw(σ) dσ)2|s=+∞ = 0. Thus we obtain

E2
δ ≤

2
1 + 2α

∫ +∞
δ

s1+2α
(∫ +∞

s
σβw(σ) dσ

)
sβu(s) ds

=
2

1 + 2α

∫ +∞
δ

W(s)sα+β+1u(s) ds ≤ 2
1 + 2α

‖sα+β+1u‖L2(R+)Eδ.

This implies

(4.4) Eδ ≤ 2
1 + 2α

‖sα+β+1u‖L2(R+).

Therefore, passing to the limit as δ→ +0 in (4.4), we conclude the proof. �

4.2. Approximating functions.
4.2. Approximating functions. We shall show that a function in Xm(R+) can be approx-

imated by smooth functions. Let R+ denote the set of non-negative real numbers, namely,
R+ = [0,+∞). We define

C∞0 (R+) = {u : R+ → R; u = ũ|R+ for some ũ ∈ C∞0 (R)}.
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Then we have

Lemma 4.6. Let m ∈ Z+. Then C∞0 (R+) is dense in Xm(R+).

Proof. We divide the proof into three steps.

First step: Suppose that u ∈ Xm(R+). Let us take ρ ∈ C∞0 (R) with ρ(s) ≥ 0,
∫

R ρ(s)ds = 1
and set

uε(s) = Jεu(s) ≡
∫

R
u(se−εσ)ρ(σ) dσ, s ∈ R+

for 0 < ε ≤ 1 (this operator Jε is the same as that in Section 2 in [4]). We note the following:

Lemma 4.7. Let α ∈ R and take ρ ∈ C∞0 (R) with ρ(s) ≥ 0,
∫

R ρ(s)ds = 1. In addition, let
w ∈ L2(R+) and set

Wε(s) =
∫

R
w(se−εσ)eεασρ(σ) dσ, s ∈ R+

for 0 < ε ≤ 1. Then we have Wε ∈ L2(R+) for 0 < ε ≤ 1 and it holds that

Wε → w in L2(R+) as ε → +0.

By using arguments similar to those in Section 2 in [4] and in Section 3 in [2] we can
prove Lemma 4.7. Thus we omit the proof. We continue the proof of Lemma 4.6. From
Lemma 4.7 it is easily checked that uε → u in Xm(R+) as ε → +0. Moreover, we have
uε ∈ Xm(R+) ∩ C∞(R+) for 0 < ε ≤ 1 (see Section 2 in [4], Section 3 in [2]). Therefore,
replacing u by uε , we may suppose that u ∈ Xm(R+) ∩C∞(R+) without loss of generality.

Second step: Suppose that u ∈ Xm(R+) ∩ C∞(R+). Let us take ψ ∈ C∞0 (R) with suppψ ⊂
(−1, 1) such that ψ(s) ≡ 1 near s = 0 and set

uε(s) = ψ(εs)u(s), s ∈ R+

for 0 < ε ≤ 1. Then it is easily checked that uε → u in Xm(R+) as ε → +0. Moreover, we
have uε ∈ Xm(R+) ∩ C∞(R+) with supp uε ⊂ [0, 1

ε
] for 0 < ε ≤ 1. Therefore, replacing u by

uε , we may suppose that u ∈ Xm(R+)∩C∞(R+) with supp u ⊂ [0,R] for some R > 0 without
loss of generality.

Third step: Suppose that u ∈ Xm(R+) ∩ C∞(R+) with supp u ⊂ [0,R] for some R > 0. Let
us take χ ∈ C∞0 (R) with supp χ ⊂ (−1, 1) such that χ(s) ≡ 1 near s = 0 and set χε(s) = χ( s

ε
)

for 0 < ε ≤ 1. Moreover, we set

uε(s) =
1

(m − 1)!

∫ +∞
s

(s − σ)m−1(χε(σ) − 1)(∂m
s u)(σ) dσ, s ∈ R+

for 0 < ε ≤ 1. Since (χε − 1)∂m
s u ∈ C∞0 (R+), we have uε ∈ C∞0 (R+) for 0 < ε ≤ 1. In what

follows, we shall show that uε → u in Xm(R+) as ε → +0.
Repeating integration by parts we have

u(s) = − 1
(m − 1)!

∫ +∞
s

(s − σ)m−1(∂m
s u)(σ) dσ,

and hence uε is written as uε = u + vε , where
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vε(s) =
1

(m − 1)!

∫ +∞
s

(s − σ)m−1χε(σ)(∂m
s u)(σ) dσ.

Thus, in order to prove that uε → u in Xm(R+) as ε → +0, it suffices to show that

(4.5) vε → 0 in Xm(R+) as ε → +0.

We consider two cases depending on whether m is even or odd. Since the proofs are the same
in the two cases, we only give the proof of (4.5) in the case where m is odd (m = 2k+ 1) and
omit it in the case where m is even. In what follows, we shall show that

‖vε‖X2k+1(R+) =

k∑
j=0

‖∂ j
svε‖L2(R+) +

k∑
j=0

‖s j+ 1
2 ∂

k+1+ j
s vε‖L2(R+) → 0 as ε → +0.

Let us set wε = χε sk+ 1
2 ∂2k+1

s u. Since sk+ 1
2 ∂2k+1

s u ∈ L2(R+), it is easily checked that wε → 0
in L2(R+) as ε → +0. We note that vε is written as

(4.6) vε(s) =
1

(2k)!

∫ +∞
s

(s − σ)2kσ−k− 1
2wε(σ) dσ.

Thus, for j = 0, 1, . . . , k, taking the j-th order derivative of (4.6), we have

∂
j
svε(s) =

1
(2k − j)!

∫ +∞
s

(s − σ)2k− jσ−k− 1
2wε(σ) dσ.

Therefore, using Lemma 4.5 and noting suppwε ⊂ [0,R] we obtain

‖∂ j
svε‖L2(R+) � ‖sk+ 1

2− jwε‖L2(R+) � ‖wε‖L2(R+) → 0 as ε → +0.

Similarly, for j = 0, 1, . . . , k, taking the (k + 1 + j)-th order derivative of (4.6), we have

s j+ 1
2 ∂

k+1+ j
s vε(s)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
s j+ 1

2

(k − j − 1)!

∫ +∞
s

(s − σ)k− j−1σ−k− 1
2wε(σ) dσ, j = 0, 1, . . . , k − 1,

−wε(s), j = k.

Thus Lemma 4.5 yields

‖s j+ 1
2 ∂

k+1+ j
s vε‖L2(R+) � ‖wε‖L2(R+) → 0 as ε → +0.

Therefore, in the case where m is odd, we proved (4.5). Similarly, in the case where m is
even, we can also prove (4.5). �

5. Proofs of propositions

5. Proofs of propositions
In this section, we shall give the proofs of propositions used in Section 3. The proofs of

Propositions 3.1 and 3.2 are essentially the same. However, the proof of Proposition 3.1 is a
little easier than that of Proposition 3.2, since I and Ω are bounded sets. Therefore, we only
give the proof of Proposition 3.1 and omit the proof of Proposition 3.2. In what follows,
admitting that Proposition 5.1 below holds, we shall prove Propositions 3.1, 3.5, and 3.6.
The proof of Proposition 5.1 is given in Section 6.
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Proposition 5.1. Let m ∈ Z+. Then for u ∈ L2(R+) the following three conditions (A),
(B), and (C) are equivalent;

(A) u ∈ Xm(R+),
(B) s

i
2 ∂

j
su ∈ L2(R+) for i = 0, 1, . . . ,m and j = i, i + 1, . . . , [ m+i

2 ],
(C) Aju ∈ L2(R+) for j = 0, 1, . . . ,m,

where [α] denotes the largest integer not greater than α. Moreover, for u ∈ Xm(R+) it holds
that

‖u‖Xm(R+) �
m∑

i=0

[ m+i
2 ]∑

j=i

‖s i
2 ∂

j
su‖L2(R+) �

m∑
j=0

‖Aju‖L2(R+).

Before the proofs of Propositions 3.1, 3.5, and 3.6 we consider higher order derivatives
of u�. Let u ∈ C∞(R+) and p, q ∈ Z+. Then, by direct calculation we have

(5.1) ∂
p
x∂

q
yu� =

[ p
2 ]∑

i=0

[ q
2 ]∑

j=0

p! q!
(p − 2i)! i! (q − 2 j)! j!

(2x
r

)p−2i(2y
r

)q−2 j
(s

p
2+

q
2−i− j∂

p+q−i− j
s u)�,

where r =
√

x2 + y2.

Lemma 5.2. Let m ∈ Z+. Then for u ∈ Xm(R+) and for p, q ∈ Z+ with p + q ≤ m, (5.1)
also holds.

Remark. For a general function u ∈ C∞(R+), (5.1) does not necessarily hold. Indeed,
suppose that (5.1) holds for u(s) = log s and we shall derive a contradiction as follows.
From (5.1) we have

Δu� =
1∑

i=0

2!
(2 − 2i)! i!

{(2x
r

)2−2i
+
(2y

r

)2−2i}
(s1−i∂2−i

s u)�(5.2)

= 4(s∂2
su)� + 4(∂su)� = 4(A2u)�,

where Δ is the Laplacian in R2. As is well-known, since u�(x, y) = log(x2 + y2), we have
Δu� = 4πδ, where δ is the Dirac delta function. However, by direct calculation, we have
(A2u)� = 0. This is a contradiction. Therefore Lemma 5.2 is not obvious.

Proof of Lemma 5.2. Let u ∈ Xm(R+) and w denote the right-hand side of (5.1). We shall
show that ∂p

x∂
q
yu� = w. From Lemma 4.6 we can choose {un} ⊂ C∞0 (R+) such that un → u

in Xm(R+) as n → ∞. Similarly, let wn denote the right-hand side of (5.1) replaced u by un.
Since un ∈ C∞0 (R+), it follows from (5.1) that ∂p

x∂
q
yu

�
n = wn. Thus for arbitrary ϕ ∈ C∞0 (R2)

it holds that

(5.3) (−1)p+q(u�n, ∂
p
x∂

q
yϕ)L2(R2) = (wn, ϕ)L2(R2).

We now note the following:

Lemma 5.3. Let m ∈ Z+. Then for u ∈ Xm(R+) and for p, q ∈ Z+ with p + q ≤ m it holds
that
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[ p
2 ]∑

i=0

[ q
2 ]∑

j=0

‖s p
2+

q
2−i− j∂

p+q−i− j
s u‖L2(R+) � ‖u‖Xm(R+).

We omit the proof of Lemma 5.3 because it is easily derived from Proposition 5.1. We
continue the proof of Lemma 5.2. Since

‖u�n − u�‖L2(R2) =
√
π‖un − u‖L2(R+) � ‖un − u‖Xm(R+),

we have u�n → u� in L2(R2) as n→ ∞. Similarly, from Lemma 5.3 we obtain

‖wn − w‖L2(R2) �
[ p

2 ]∑
i=0

[ q
2 ]∑

j=0

‖(s
p
2+

q
2−i− j∂

p+q−i− j
s (un − u))�‖L2(R2)

�
[ p

2 ]∑
i=0

[ q
2 ]∑

j=0

‖s p
2+

q
2−i− j∂

p+q−i− j
s (un − u)‖L2(R+) � ‖un − u‖Xm(R+),

and hence wn → w in L2(R2) as n → ∞. Thus, passing to the limit as n → ∞ in (5.3), we
obtain

(−1)p+q(u�, ∂p
x∂

q
yϕ)L2(R2) = (w, ϕ)L2(R2),

which shows that ∂p
x∂

q
yu� = w. �

We now give the proofs of Propositions 3.5, 3.6, and 3.1.

Proof of Proposition 3.5. From Lemma 5.2 and (5.2) we obtain the first part of (3.2).
Similarly, using Lemma 5.2 we can also prove the second part. �

Proof of Proposition 3.6. We shall show the first part of (3.3). Since w is radially
symmetric, there exists a function W such that w(x, y) = W(r), where r =

√
x2 + y2. In polar

coordinates, it holds that Δ f = ∂2
r f + 1

r ∂r f + 1
r2 ∂

2
θ f . Thus we have Δw = W ′′(r) + 1

r W ′(r),
and hence (Δw)� = W ′′(s

1
2 ) + s−

1
2 W ′(s

1
2 ). On the other hand, by direct calculation we have

A2w
� = A2(W(s

1
2 )) = 1

4 W ′′(s
1
2 ) + 1

4 s−
1
2 W ′(s

1
2 ). This proves the first part of (3.3). Similarly,

we can also prove the second part. �

Proof of Proposition 3.1. First we shall show that

(5.4) ‖u�‖Hm(R2) � ‖u‖Xm(R+) for u ∈ Xm(R+).

If p, q ∈ Z+ satisfy p + q ≤ m, then from Lemmas 5.2 and 5.3 we have

‖∂p
x∂

q
yu�‖L2(R2) �

[ p
2 ]∑

i=0

[ q
2 ]∑

j=0

‖s p
2+

q
2−i− j∂

p+q−i− j
s u‖L2(R+) � ‖u‖Xm(R+).

This shows (5.4). Next we shall show that

(5.5) ‖w�‖Xm(R+) � ‖w‖Hm(R2) for w ∈ Hm
rad(R2).

We note that ‖Ajw
�‖L2(R+) � ‖w‖H j(R2) for j = 0, 1, . . . ,m. Indeed, in the case where j is even

( j = 2k), Proposition 3.6 yields
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‖A2kw
�‖L2(R+) =

1
4k ‖(Δkw)�‖L2(R+) =

1
4k
√
π
‖Δkw‖L2(R2) � ‖w‖H2k(R2).

Similarly, in the case where j is odd ( j = 2k + 1), we have

‖A2k+1w
�‖L2(R+) =

1
22k+1

√
π
‖∇(Δkw)‖L2(R2) � ‖w‖H2k+1(R2).

Therefore Proposition 5.1 yields

‖w�‖Xm(R+) �
m∑

j=0

‖Ajw
�‖L2(R+) �

m∑
j=0

‖w‖H j(R2) � ‖w‖Hm(R2).

Since the map � is the inverse map of �, we complete the proof. �

6. Equivalent expressions

6. Equivalent expressions6.1. Key inequalities.
6.1. Key inequalities. Proposition 5.1 follows directly from Propositions 6.1, 6.2, and

6.3 below, which shall be proved in this section.

Proposition 6.1. Let m ∈ Z+ and u ∈ Xm(R+). Then it holds that

m∑
i=0

[ m+i
2 ]∑

j=i

‖s i
2 ∂

j
su‖L2(R+) � ‖u‖Xm(R+).

Proposition 6.2. Let m ∈ Z+ and u ∈ L2(R+) and suppose that s
i
2 ∂

j
su ∈ L2(R+) for

i = 0, 1, . . . ,m and j = i, i + 1, . . . , [ m+i
2 ]. Then it holds that

m∑
j=0

‖Aju‖L2(R+) �
m∑

i=0

[ m+i
2 ]∑

j=i

‖s i
2 ∂

j
su‖L2(R+).

Proposition 6.3. Let m ∈ Z+ and u ∈ L2(R+) and suppose that A ju ∈ L2(R+) for j =
0, 1, . . . ,m. Then it holds that

‖u‖Xm(R+) �
m∑

j=0

‖Aju‖L2(R+).

6.2. Proof of Proposition 6.1.
6.2. Proof of Proposition 6.1. Proposition 6.1 follows from Lemmas 6.4 and 6.5 below.

Lemma 6.4. Let k ∈ Z+ and u ∈ X2k(R+). Then for l = 0, 1, . . . , k it holds that

(6.1)
2l∑

i=0

‖s i
2 ∂k−l+i

s u‖L2(R+) � ‖u‖X2k(R+).

Lemma 6.5. Let k ∈ Z+ and u ∈ X2k+1(R+). Then for l = 0, 1, . . . , k it holds that

2l+1∑
i=0

‖s i
2 ∂k−l+i

s u‖L2(R+) � ‖u‖X2k+1(R+).

Admitting for the moment that Lemmas 6.4 and 6.5 hold, we shall give the proof of
Proposition 6.1.
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Proof of Proposition 6.1. By rearranging the terms of the sum we note that

m∑
i=0

[ m+i
2 ]∑

j=i

‖s i
2 ∂

j
su‖L2(R+) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k∑
l=0

2l∑
i=0

‖s i
2 ∂k−l+i

s u‖L2(R+), m = 2k, k ∈ Z+,

k∑
l=0

2l+1∑
i=0

‖s i
2 ∂k−l+i

s u‖L2(R+), m = 2k + 1, k ∈ Z+.

Thus, from Lemmas 6.4 and 6.5 we conclude the proof of Proposition 6.1. �

Since the proofs of Lemmas 6.4 and 6.5 are the same, we only give the proof of Lemma
6.4 and omit the proof of Lemma 6.5.

Proof of Lemma 6.4. From Lemma 4.6 we may suppose that u ∈ C∞0 (R+) without
loss of generality. In this proof, for simplicity, we denote L2(R+) and Xm(R+) by L2 and
Xm, respectively. We will use the same letter C to denote an inessential positive constant,
which may vary from line to line. We prove the inequality (6.1) by induction on l. From the
definition (2.2) the inequality (6.1) obviously holds for the case l = 0. Inductively assume
that the inequality (6.1) holds for the case l. We consider the case l + 1. Let us set

xi = ‖s i
2 ∂k−(l+1)+i

s u‖L2 , i = 0, 1, . . . , 2l + 2.

From the definition (2.2) we note that

x0 = ‖∂k−l−1
s u‖L2 � ‖u‖X2k , x2l+2 = ‖sl+1∂k+l+1

s u‖L2 � ‖u‖X2k .

Therefore, in order to prove the inequality (6.1) for the case l + 1, it suffices to show that

y :=
2l+1∑
i=1

aix2
i � ‖u‖2X2k where ai = 2i2 .

For i = 1, 2, . . . , 2l + 1, using integration by parts we have

x2
i = (∂k−l−1+i

s u, si∂k−l−1+i
s u)L2

= −(∂k−l−2+i
s u, ∂s(si∂k−l−1+i

s u))L2

= −i (∂k−l−2+i
s u, si−1∂k−l−1+i

s u)L2 − (∂k−l−2+i
s u, si∂k−l+i

s u)L2

≤ i ‖s i−1
2 ∂k−l−2+i

s u‖L2‖s i−1
2 ∂k−l−1+i

s u‖L2 + ‖s i−1
2 ∂k−l−2+i

s u‖L2‖s i+1
2 ∂k−l+i

s u‖L2

= i xi−1‖s i−1
2 ∂k−l−1+i

s u‖L2 + xi−1xi+1

≤ ai−1

8ai
x2

i−1 +
2ai i2

ai−1
‖s i−1

2 ∂k−l−1+i
s u‖2L2 +

ai−1

2ai
x2

i−1 +
ai

2ai−1
x2

i+1

=
5ai−1

8ai
x2

i−1 +
ai

2ai−1
x2

i+1 +
2ai i2

ai−1
‖s i−1

2 ∂k−l+i−1
s u‖2L2 .

On the other hand, the inductive hypothesis implies

‖s i−1
2 ∂k−l+i−1

s u‖L2 ≤
2l∑

i=0

‖s i
2 ∂k−l+i

s u‖L2 � ‖u‖X2k ,

and hence
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x2
i ≤

5ai−1

8ai
x2

i−1 +
ai

2ai−1
x2

i+1 +C‖u‖2X2k .

Moreover, since 2a2
i ≤ ai−1ai+1, we have

(6.2) 8aix2
i ≤ 5ai−1x2

i−1 + 2ai+1x2
i+1 +C‖u‖2X2k .

Taking the sum of the inequalities (6.2) over i = 1, 2, . . . , 2l + 1, we obtain

8y =
2l+1∑
i=1

8aix2
i ≤

2l+1∑
i=1

(
5ai−1x2

i−1 + 2ai+1x2
i+1 +C‖u‖2X2k

)

≤ 5y + 5a0x2
0 + 2y + 2a2l+2x2

2l+2 +C‖u‖2X2k ,

and hence

y ≤ 5a0x2
0 + 2a2l+2x2

2l+2 +C‖u‖2X2k � ‖u‖2X2k ,

which concludes the proof. �

6.3. Proof of Proposition 6.2.
6.3. Proof of Proposition 6.2. For simplicity, we introduce the following notation: For

m ∈ Z+ we define ||| · |||Xm(R+) as

|||u|||Xm(R+) =

m∑
i=0

[ m+i
2 ]∑

j=i

‖s i
2 ∂

j
su‖L2(R+).

Then it is easily checked that |||u|||Xm(R+) ≤ |||u|||Xm+1(R+). Therefore, in order to prove Proposi-
tion 6.2, it suffices to show the following lemma.

Lemma 6.6. Let k ∈ Z+ and u ∈ L2(R+) and suppose that |||u|||Xk(R+) < +∞. Then it holds
that

(6.3) ‖Aku‖L2(R+) � |||u|||Xk(R+).

Proof. We prove the inequality (6.3) by induction on k. Clearly we have

‖A0u‖L2(R+) = ‖u‖L2(R+) = |||u|||X0(R+), ‖A1u‖L2(R+) = ‖s 1
2 ∂su‖L2(R+) ≤ |||u|||X1(R+).

Thus the inequality (6.3) for the case k = 0, 1 is trivial. Inductively assume that the inequality
(6.3) holds for the case k. We consider the case k + 2. Let u ∈ L2(R+) and suppose that
|||u|||Xk+2(R+) < +∞. Set w = A2u. Then we have

|||w|||Xk(R+) = |||∂s(s∂su)|||Xk(R+) =

k∑
i=0

[ k+i
2 ]∑

j=i

‖s i
2 ∂

j+1
s (s∂su)‖L2(R+)

�
k∑

i=0

[ k+i
2 ]∑

j=i

(‖s i
2 ∂

j+1
s u‖L2(R+) + ‖s i+2

2 ∂
j+2
s u‖L2(R+)

)

�
k+2∑
i=0

[ k+i+2
2 ]∑

j=i

‖s i
2 ∂

j
su‖L2(R+) = |||u|||Xk+2(R+) < +∞,

and hence the inductive hypothesis implies ‖Akw‖L2(R+) � |||w|||Xk(R+). Thus we obtain
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‖Ak+2u‖L2(R+) = ‖Akw‖L2(R+) � |||w|||Xk(R+) � |||u|||Xk+2(R+),

which shows the inequality (6.3) for the case k + 2. �

6.4. Proof of Proposition 6.3.
6.4. Proof of Proposition 6.3. For the proof of Proposition 6.3, we need Lemmas 6.7

and 6.8 below.

Lemma 6.7. Let k ∈ Z+ and u ∈ L2(R+) and suppose that A1u ∈ L2(R+). In addition, set
w = A2u and suppose that w ∈ X2k(R+). Then for j = 0, 1, . . . , k it holds that

(6.4) ∂
j+1
s u(s) =

1
s j+1

∫ s

0
σ j(∂ j

sw)(σ) dσ.

Lemma 6.8. Let k ∈ Z+ and u ∈ L2(R+) and suppose that A1u ∈ L2(R+). In addition, set
w = A2u and suppose that w ∈ X2k+1(R+). Then for j = 0, 1, . . . , k + 1, (6.4) also holds.

Proof of Lemma 6.7. We prove (6.4) by induction on j. Corollary 4.2 shows that (6.4)
holds for the case j = 0. Inductively assume that (6.4) holds for the case j. We consider the
case j + 1. Recalling the inductive hypothesis and using integration by parts we have

∂
j+2
s u(s) = ∂s

( 1
s j+1

∫ s

0
σ j(∂ j

sw)(σ) dσ
)
=

1
s
∂

j
sw(s) − j + 1

s j+2

∫ s

0
σ j(∂ j

sw)(σ) dσ

=
1
s
∂

j
sw(s) − 1

s j+2

(
σ j+1(∂ j

sw)(σ)
∣∣∣∣σ=s

σ=0
−
∫ s

0
σ j+1(∂ j+1

s w)(σ) dσ
)
.

On the other hand, since w ∈ X2k(R+)(⊂ Hk(R+)), we have ∂ j
sw ∈ H1(R+). Thus ∂ j

sw is
continuous on R+. This yields σ j+1(∂ j

sw)(σ)|σ=s
σ=0 = s j+1∂

j
sw(s). Therefore (6.4) also holds

for the case j + 1. �

Proof of Lemma 6.8. In the same way as the proof of Lemma 6.7 we can prove (6.4) for
the case j = 0, 1, . . . , k. It remains to show the case j = k + 1. The same argument as in the
proof of Lemma 6.7 implies

∂k+2
s u(s) =

1
s
∂k

sw(s) − 1
sk+2

(
σk+1(∂k

sw)(σ)
∣∣∣∣σ=s

σ=0
−
∫ s

0
σk+1(∂k+1

s w)(σ) dσ
)
.

Since w ∈ X2k+1(R+), we have w ∈ H2k+1(a, b) for arbitrary a, b ∈ R+ with a < b. Thus ∂k
sw

is continuous in R+. This yields σk+1(∂k
sw)(σ)|σ=s = sk+1∂k

sw(s).
Next we shall show that σk+1(∂k

sw)(σ)|σ=0 = 0. From Lemma 4.3 we have

sup
s∈(0,1)

|s 1
2 ∂k

sw(s)|� ‖∂s(s∂k
sw)‖L2(0,1) � ‖∂k

sw‖L2(0,1) + ‖s∂k+1
s w‖L2(0,1)

� ‖∂k
sw‖L2(0,1) + ‖s 1

2 ∂k+1
s w‖L2(0,1) � ‖w‖X2k+1(R+),

and hence σk+1(∂k
sw)(σ)|σ=0 = 0. Thus (6.4) holds also for the case k + 1. �

We now give the proof of Proposition 6.3.
Proof of Proposition 6.3. We will give the proof of Proposition 6.3 only in the case where

m is odd (m = 2k + 1). More precisely, we will prove that if u ∈ L2(R+) and Aju ∈ L2(R+)
for j = 0, 1, . . . , 2k + 1, then it holds that
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(6.5) ‖u‖X2k+1(R+) �
2k+1∑
j=0

‖Aju‖L2(R+).

We prove (6.5) by induction on k. Clearly we have

‖u‖X1(R+) = ‖u‖L2(R+) + ‖s 1
2 ∂su‖L2(R+) = ‖A0u‖L2(R+) + ‖A1u‖L2(R+).

Thus (6.5) for the case k = 0 is trivial. Inductively assume that (6.5) holds for the case k. We
consider the case k+1. Let u ∈ L2(R+) and suppose that Aju ∈ L2(R+) for j = 0, 1, . . . , 2k+3.
We shall prove that

(6.6) ‖u‖X2k+3(R+) � ‖u‖X2k+1(R+) + ‖w‖X2k+1(R+),

where w = A2u. Indeed, the inequality (6.6) and the inductive hypothesis imply

‖u‖X2k+3(R+) � ‖u‖X2k+1(R+) + ‖w‖X2k+1(R+) �
2k+1∑
j=0

‖Aju‖L2(R+) +

2k+1∑
j=0

‖Ajw‖L2(R+)

=

2k+1∑
j=0

‖Aju‖L2(R+) +

2k+1∑
j=0

‖Aj+2u‖L2(R+) �
2k+3∑
j=0

‖Aju‖L2(R+).

Therefore (6.5) also holds for the case k + 1.
In what follows, we shall show the inequality (6.6), namely,

k+1∑
j=0

‖∂ j
su‖L2(R+) +

k+1∑
j=0

‖s j+ 1
2 ∂

k+2+ j
s u‖L2(R+) � ‖u‖X2k+1(R+) + ‖w‖X2k+1(R+).

By the definition (2.2) the inequality ‖∂ j
su‖L2(R+) ≤ ‖u‖X2k+1(R+) for the case j = 0, 1, . . . , k is

trivial. Next we shall show that ‖∂k+1
s u‖L2(R+) � ‖w‖X2k+1(R+). From Lemma 6.8 we have

∂k+1
s u(s) =

1
sk+1

∫ s

0
σk(∂k

sw)(σ) dσ.

Thus, from Lemma 4.4 we obtain

‖∂k+1
s u‖L2(R+) � ‖∂k

sw‖L2(R+) � ‖w‖X2k+1(R+).

Finally we shall show that

(6.7) ‖s j+ 1
2 ∂

k+2+ j
s u‖L2(R+) � ‖w‖X2k+1(R+)

for j = 0, 1, . . . , k + 1. We prove the inequality (6.7) by induction on j. We first consider the
case j = 0. Lemma 6.8 yields

s
1
2 ∂k+2

s u(s) =
1

sk+ 3
2

∫ s

0
σk+ 1

2 (s
1
2 ∂k+1

s w)(σ) dσ.

Furthermore, Lemma 4.4 implies

‖s 1
2 ∂k+2

s u‖L2(R+) � ‖s 1
2 ∂k+1

s w‖L2(R+) � ‖w‖X2k+1(R+).

Thus the inequality (6.7) holds for the case j = 0. Inductively assume that the inequality
(6.7) holds for the case j. We consider the case j + 1. We note that
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∂
k+1+ j
s w = ∂

k+1+ j
s A2u = ∂k+2+ j

s (s∂su) = s∂k+3+ j
s u + (k + 2 + j)∂k+2+ j

s u.

This yields

s j+ 3
2 ∂

k+3+ j
s u = s j+ 1

2 ∂
k+1+ j
s w − (k + 2 + j)s j+ 1

2 ∂
k+2+ j
s u,

and hence

‖s j+1+ 1
2 ∂

k+2+ j+1
s u‖L2(R+) � ‖s j+ 1

2 ∂
k+1+ j
s w‖L2(R+) + ‖s j+ 1

2 ∂
k+2+ j
s u‖L2(R+).

On the other hand, from the definition (2.2) we have ‖s j+ 1
2 ∂

k+1+ j
s w‖L2(R+) ≤ ‖w‖X2k+1(R+).

Moreover, the inductive hypothesis implies ‖s j+ 1
2 ∂

k+2+ j
s u‖L2(R+) � ‖w‖X2k+1(R+). Thus the in-

equality (6.7) holds also for the case j + 1. Therefore the inequality (6.6) is proved. �
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